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Spin Module Versions of WeyFs Reciprocity Theorem
for Classical Kac-Moody Lie Algebras

—An Application to Branching Rule Duality—

By

Koji HASEGAWA*

Abstract

We study tensor products of the spin modules (i.e. the Fermion Fock space representations) for classical
(simple or affine) Kac-Moody Lie algebras. We find out that there are mutually commutant pairs of classical
Kac-Moody algebras acting on the spin modules, and describe the irreducible decompositions in terms of
Young diagrams. As applications, we obtain a simple explanation of Jimbo-Miwa's branching rule duality
(i.e. isomorphisms between coset Virasoro modules) [JM], generalization thereof and the duality of the
modular transformation rules of affine Lie algebra characters.
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§ Do Introduction

Oo00 The purpose of the paper

The Goddard-Kent-Olive construction, or the coset space representation, plays a
significant role in realization of the irreducible unitary Virasoro modules in the discrete
series ([GKO]). In connection with this method several authors ([GKO], [JM],
[JM1], [KW], [TK1], [Ya]) have noticed that there exists a kind of duality among the
branching rules. Such duality interchanges the roles of the "rank parameter" and the
"level parameter", as we will review in §0.2.

One of the purpose of this paper is to show that such duality is obtained as
a reflection of "dual pairs on the spin modules"—mutually commutant pairs of (affine)
Lie algebras which act on the Fermion Fock spaces.

In our main results, Theorems AFF and FIN in §0.1, we get the spin module
versions of the dual pair (Sm, GL(n, C)) on the module (Cw)®m (Weyl's reciprocity
theorem [W]), where ©m denotes the m-th symmetric group. They are dual pairs
consisting of two affine (or finite dimensional) classical Lie algebras which act on the
spin modules. Here spin modules are the 0(AT)-modules that correspond to the end
points of the Dynkin diagrams and its affine analogues ([Fl], [KP1]).

The fact that the spin modules admit various dual pairs has two applications.
Firstly we give a simple explanation of the duality among the branching rules

through the method which is called "seesaw pair" by S. Kudla ([Ku]) in the finite
dimensional theory (§0.2(i), §5). For example the coset Virasoro modules associated to
the two pairs

(1) sp(2r)A 0 sp(2r)A **T sI(2r)A

(level /) (level I') (level / + /')

and

(2) sp(2/ + 2/')A ID sp(2/)A © sp(2/')A

(level r) (level r) (level r)

turn out to be mutually isomorphic, where gA denotes the affinization of a simple Lie
algebra cj. In this case, the pair of dual pairs (both acting on the o(4(l + I')r)A-spin
module)
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f(sp(2r)A 0 sp(2r)A, sp(2/)A © sp(2/')A)
U I (sp(2r)A,sp(2/ + 2/')A)

is a seesaw pair. See Proposition I in §0.2 and Tables 5.2 ~ 5.3 for further examples.
The other application of dual pairs on the (affine) spin modules is the "duality" of

modular transformation rules of affine Lie algebra characters. It is based on the fact
that some of the characters for the spin modules are invariant under the S-transformation
(§0.2(ii),§6).

While the spin representations are constructed on the exterior algebras, there is
the symmetric algebra analogues, namely, so-called Segal-Shale-Weil modules or the
oscillator representations ([FF]). There are also dual pairs on these modules in the
finite dimensional case ([Ho]), but their affine correspondents are no longer dual pairs
(§0.4, §7).

In this introduction, we shall summarize the contents of this paper as follows.
§0.1 Main theorem
§ 0.2 Two applications of the main theorem

(i) Derivation of the branching rule duality
(ii) Derivation of the S-transformation rule duality

§0.3 How we obtained the main theorem
§ 0.4 Are there affine Segal-Shale-Weil versions?
§0.5 Notations and conventions in this paper
§ 0.6 Acknowledgement

0.1. Main theorem

For a finite dimensional reductive Lie algebra g over the complex number field C,
let

(1) gA :=g® cC[t,r1]0Cc

be the corresponding affine Lie algebra (§ 1.2.1). Suppose W = WN is an JV-dimensional
vector space with a non-degenerate symmetric bilinear form { , }, then put

(2) Wz+h := Wz+h := WN ®c t
hC[t, r1]

for h = 0 or 1/2 and define a bilinear form on Wz+h by

(3) {w ® t\ w' ® tv'} := (w, w'}(5v+v,50 .

Let Wz*h'~ be the maximal isotropic subspace with respect to this inner product which
contains W® t~hC[t~l~], and let /\(Wz+h'~) be the exterior algebra endowed with the
spin module structure over o(W)* ([Fl], [KP1]; §2.4). In the physicists' terminology,
Wz+h- ~ is the space of Fermion creation operators in the quark model construction and
the spin module f\(Wz+h'~) for h = 0 (resp. 1/2) is nothing but the Fermion Fock space
of the Ramond sector (resp. the Neveu-Schwartz sector).

Then our main result is the answer to the following
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Problem 0.1. Let us define the Lie algebra pairs (gL5 gR) and their embeddings
© QR c^> o(W) as follows.

(AA) gL 0 gR := g!(Fx) ® sl(72)[<^ gi^ ® F2)]

where W := (Fx ® F2) © (Ft ® F2)* .

(CC) QL © gR := spCFJ © sp(F2) ^ 0(W) , W := Fx ® F2 .

(00) gL © gR := o^) © o(F2) ̂  o(W) , W := V, ® F2 .

TTieH decompose the o(W)*-spin module /\(PFz+fl'~) (/z = 0, 1/2) with respect to the
subalgebra (gL © gR)A c^, o(W)A. >1

We need a definition.

Definition §0la (LZOC9A(1; I)). Let S be a group consisting of outer automorphisms
of an affine Lie algebra gA that preserve the canonical triangular decomposition
(§1.11.(4)).

Then for an weight A of gA
? denoting the corresponding irreducible highest weight

gA -module by LQA(^)3 we put

(4) LIX9A(^)-©^6{^) ; ffez}L9A(vi')

(§§ 1.3.2 ~ 4.). Here cr(-) is the adjoint action of a e Z.
For a weight /I of g and / e C, we put

(5) LZ^A(A;/) :

where J0 denotes the 0-th fundamental weight of gA (§ 1.2.3(1)). •

Now the statement is as follows.

Theorem AFF (Theorem 4.2.). As a g£ © g£ -module ((AA), (CC) or (OO)), the
o(W)A-spin module /\(Wz+h'~) (h = 0, 1/2) decomposes as follows.

(6) /\(Wz+h>~) - 0y LSL X9
L

A(iL(F); «) ® l*« *Q«(1R(Y); L)

See Table AFF for ZL , 2-R ; AL, 1R; J?, L and where Y varies.
List 4.2 giues t/ze complete list of the highest weight vectors with respect to g£ © gR .

AFF

K, L r, / r J

= dim fy 2/r 4/r

= 0 f(7, [7] - /r/2), T

F runs over 7 e ̂ ir_! 7 e ^r

List of HWV's List 4.2.AA List 4.2.CC
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Table AFF Continued

o(2l + 1)A, o(2r + 1)A o(2/)A, o(2r + 1)A o(20A, o(2r)A

K, L 2r + 1, 2/ + 1 2r + 1, 2/ 2r, 21

= dimW (21 + l)(2r + 1) 2/(2r + 1) 4/r

f 7, 7f

7 runs over 7 e ^z>r 7 e ̂ >r 7 6 &ltf

List of HWV's List 4.2.BB List 4.2.DB List 4.2.DD

Notations for Table AFF

(I) « <7U: the automorphism induced by the symmetry i<->j of the Dynkin
diagram (§ 1.5),

« ofyc\ an infinite order automorphism of gI(/)A whose restriction to sI(/)A ~
g(^4[i\) is the order / cyclic diagram automorphism ocyc (§ 1.3.4, § 1.5.2).

(II) • ^Zjr: the set of Young diagrams contained in the / x r-rectangle,
« Te®^, 7*6®^,, [7]eZ>0 for 7e^r: respectively denotes the trans-

posed, the complement, and the size of Y (see § 1.4.1).
(III) • A Young diagram is identified with a weight as usual, (see (3.3) of

§§1.4.2-5).
* AI. the /-th fundamental weight for o(2/) or o(2l + 1) (not the fundamental

weight Al for o(2/)A or o(2/ + 1)A, but its classical part).
• For the case of affine Lie algebra g!(0A> (h a) denotes the weight for gl(/)

whose restriction to $1(1) coinsides with A and a = <(A, a), lj> e C5 where
lj e gl(/) denotes the identity matrix. •

The finite dimensional version of this theorem is also obtained. For a group
Z consisting of diagram automorphisms and for a weight /I, denoting by L9(/l) the
irreducible highest weight g-module, we put

(7) LLX9W:=©A'6{, (A); f fe

We also employ the notation specified in the above. Then we have

Theorem FIN (Theorem 3.2.). As a gL © $R-module ((AA), (CC) or (OO)), the
o(W)-spin module /\(C[N12]) (N := dim W; §2.3) decomposes as follows (see Table FIN for
ZL, ZR; AL, /1R):

(8) A (C[W]) ^ ©y6^z,r L^^(AL(y)) ® L*K*(AR(7)) •

List 3.2 (^4y4-DD) gfjf^s t/ie complete list of the highest weight vector of each
irreducible component with respect to QL © gR.

For a given classical simple Lie algebra gR, all its irreducible modules appear in the
above decomposition (8) as we vary the counterpart gL.
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Table FIN

9L, 9R 9KO, sl(r) sp(2/), sp(2r)

ZL, £R {«*}, {a} {id}, {id}
N 2lr 4/r

AL(yURW (7,[7]-/r/2),T y,yt

List of HWV's List 3.2.AA List 3.2.CC

Table FIN Continued

gL, gR o(2l + 1), o(2r + 1) o(2/), o(2r + 1) o(2/), o(2r)

ZL, SR {#}, {#} ^-L,), {irf} ^^X <<7 r_ l i r>

N (21 + l)(2r + 1) 2l(2r + 1) 4/r

4(7), AR(7) y + 4, 1* + 4. 7 4- A19 y
f Y, Y*

List of HWV's List 3.2.BB List 3.2.DB List 3.2.DD •

These results can be summarized by using the notion of "dual pair" due to
R. Howe, and it turns out to be useful in explaining the branching rule dualities to do
so. Let us recall

Definition (Lib (Dual Pair [Ho]). For an associative algebra A, let us denote by
IrrC4) the isomorphism classes of irreducible ^-modules and by I/^ a representative for
A e ITT(A).

For two algebras A and A', which act on the same vector space V with satisfying
[A, A'~\ = 0, we say that the pair (A, A') is a dual pair on V if the following condition (9)
is satisfied.

(9) There exist some index set I and injections

such that V is decomposed as follows.

F ~*> /^TN T A /ex T A'
— VT7*e/ -^ A(i) ^ •L' A'(z)

(that is, A(i) determines A'(i) and vice versa). •

A g-module LXX9(/l) appearing in Theorems AFF and FIN gives rise to an
irreducible module of the algebra C[S] x 17 (g), which is defined by the natural action
of I on the enveloping algebra [/(g) (§1.3.2). (Also note that L^Xfl(A) = L9(4)
Therefore Theorems read as

Corollary to Theorems AFF and FIN0

(i) In each case of Theorem AFF, the pair

of algebras forms a dual pair on
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(ii) [Hol] In each case of Theorem FIN, the pair

(C[ZL]x l/(gL),C[SR]x t/(9R))

forms a dual pair on f\ (C[]V/2]). H

0.2. Two applications of the main theorem

(i) Derivation of the branching rule duality

Here we wish to show in a typical example how Theorem AFF works in explaining
the branching rule dualities. We need a definition.

Delnition 0.2 (Branching module). Suppose that A1 is an algebra and A2 its
subalgebra, then put

(1) 8(^! =) A2Yx '•= Hom^2(I/
2

M, LXl
A)

for A e Irr A± and \JL e Irr A2.
Assuming the complete reducibility, we have an isomorphism

(2) IA ~ ff

as an ^-module, and we call ^B(A1 => A2)% the branching module associated to the
inclusion (or restriction) A± =5 A2.

(In other words, branching module is the space of "highest weight vectors" in I/^
with respect to A2 whose weight is u). •

Recall a branching rule duality

Example 0.2 (A branching rule duality [GKO] [JM] [KW] [TK1, 2] [Y]). There
is an isomorphism between the coset Virasoro modules

diagonal

(3) Boeder -
- B(sp(2/)A =3 sp(2/ - 2)

where Aj denotes the j-th (affine) fundamental weight. •

Now we can deduce this duality from our viewpoint, by realizing these branching
modules in the spin module with the help of Theorem AFF.

In fact, consider the pair of Lie algebra pairs

f(9i, Si) := (*I(2)A 0 s!(2)A, sp(2/ - 2)A 0 *p(2)A)
(

acting on the o(4/)A-spin module /\(W£+h'-) ^ /\(W^~)® /\(W^~) through the
embedding 0.1(2). They satisfy the following inclusion relations (the seesaw pair prop-
erty [KuJ) in End
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' sI(2)A © sl(2)A =8l =3 g2 = sl(2)A

(level / - 1) (level 1) (level I)
(5)

sp(2l - 2)A © sp(2)A - 8i c 8'2 - sp(2/)'
(level 1) (level 1) (level 1)

On the other hand, due to Theorem AFF for (g£ , g£) = (spA, spA), the pairs
0' = 1, 2) form dual pairs, that is, roughly speaking, the module /\(W£+h'~)

is decomposed as follows.

Let us decompose /\(W£+h'~) as a g'j © g2-module in two ways:

(?) f / \ (W^~) ^ 0A (0, B(8l ID g2)S

then we find an isomorphism B(gx =3 g2)^ ~ B(g2 => gi)£. Writing down A's and ju's
explicitly, this gives Example 0.2. M

From our viewpoint in the above, it is straightforward to generalize this duality (3)
for the pair of 0.0.(1, 2).

Generally speaking, one seesaw pair, that is, a pair of dual pairs that satisfy the
property (5) (§5.1), provides one duality of branching rules (Proposition 5.1). Theorems
AFF and FIN yields various seesaw pairs and hence the corresponding dualities
(§§ 5.2 ~ 5.4): it turns out that the branching rule duality already exists in the finite
dimensional theory. In particular, intertwining the homogeneous picture representations
and the principal picture representations ([F2]) we deduce

Proposition I. (Another type of duality, Cor. 5.4.2). There is a "duality" between the
restrictions associated to the inclusion

(8) C[<o£>] x U(Ql(l) ® C[t, r1] 0 Cc)

5 C[tm, rm] © Cc)
(See "Notation for Table AFF" for o*c) and that to the invariant subalgebra with
respect to the cyclic diagram automorphism

(9) sl(mr) A £2 (sl(mr) A )<^r> [ ~ sl(r) A , Prop. 5.4.2] ,

in the sense that they yield mutually isomorphic branching modules: for any y e ^r-i and
YE %/i^r-i we have

as the coset fV^-modules. M

(ii) Derivation of the S-transformation duality

As a next application of Theorem AFF, we shall deduce a "duality" concerning
with the modular transformation rules of characters. It is based on the fact that the
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character of the Fermion Fock space ch /\(W^+1/2'~), which is essentially an AT-fold
product of

(11) <r1 / 4 8n"=ia+<Z"+ 1 / 2)> q = e2**,

is invariant under the "^-transformation" on the upper half plane

(12)

For example, let us apply this transformation to the following "character bilinear
identity" which is equivalent to Theorem AFF for (g£, g£) = (sp(2/)A, sp(2r)A), h = 1/2:

MTl rh A fWz+1/2»-^ — Y vsp(2i)A sp(2r)A

I1-3/ Cn/\l lky4^ ) — **Ye&ltr %Y,r X*Y,l >

where ^(
r
2')A denotes the normalized character (§1.2.3) of the module Lsp(2°A(Y; r).

Then the above mentioned invariance of the spin module character ch /\(V^Jr
+1/2>~)

yields the following "duality" of the S-transformation rules:

Proposition II (A duality of transformation rules, Cor, 6.2a). Let (M(£y))yty,eylr be
the scalar matrix of the S-transformation rule for level r characters of sp(2/)A:

y,y' Xy',r

Then there is a relation M(
y$ = M^;^- for y, y' e <3fltr, where the bar denotes the complex

conjugation and *Y e <3/rtl denotes the transposed diagram for a Young diagram Y e ^>r.
m

§3* How we obtained the theorem

Let us sketch the way how we find the dual pairs. Our motivation is to get
a better understanding of the Jimbo-Miwa's branching rule duality. Keeping in mind
that the Weyl's dual pair (Sm, GL(n)) on (C")®m provides close relation between the
Sm-modules and GL(n)-modules ([R, Chap. 3]), which can be recognized as a duality in
the sence of Jimbo-Miwa, we posed the following

Problem 03. Describe the commutant algebra of the o(L)A -action on the tensor
product /\(Wf+h'~)®R of the spin module /\(W^+h'~) and decompose it into irreducible
components. M

In our consideration, important is the following isomorphisms of vector spaces
(in h = 1/2 case).

(i) /\ (w^-)®R - A (0* w?+h>~) - A (w?R
+h>-)

In other words, the module /\(Wf+h'~)®R has the o(jLR)A-spin module structure and
hence we can introduce an o(i£)A -action on it. We hope that o(^)A generates the
commutant algebra of the o(L)A-action. Is it right? Thus we are lead to Problem 0.1
for the case (OO) itself.

For the algebras gL© gR c o(W) in Problem 0.1, first we can show (Propositions
1.2 and 1.4) that any irreducible g£ © SR -modules appear with finite multiplicities in the
o(W)A-spin module /\(Wz+h'~). This is due to the central charge identity
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where Z9* := is the Virasoro central charge for the Segal-Sugawara operators
c + g

associated with gA (1.2.2(3)), denoting by c (resp. g) the level (resp. the dual Coxeter
number) of g A. For example, (2) turns to the identity

L-* = J t -L(L- l ) /2 L-R(R-l)/2
1 j 2 R + (L - 2) L + (R - 2)

for the pair (g£, QR ) = (o(-^)A
? o(JR)A). Here we must note that [GKO] first recognized

the importance of computation of central charges.
To get accurate decomposition of the spin modules, we must compute their char-

acters as (gL© gR)A -modules and obtain "character bilinear identity" like 0.2(13). We
get explicit form of the character Identities due to the Weyl-Kac formula and Its
application "complementary decomposition formula" of Jimbo-MIwa [JM]. Thus we
obtain exact forms of dual pairs as In Theorem AFF.

After obtained Theorem AFF, we obtained Theorem FIN as its finite dimensional
version. Indeed, In terms of character identities we can obtain Theorem FIN as the
"classical limit" q -> 0 of Theorem AFF for h = 0 (however in this paper we derive
Theorem FIN independently to Theorem AFF, for the clearness of discussions).

0.4. Are Segal-Shale-Weil versions?

Thus we have succeeded In explaining the dualities, by constructing and using the
dual pairs of affine Lie algebras on the spin modules. Our construction of the dual
pairs was quite similar to that of dual pairs on the Segal-Shale-Weil modules (or the
oscilator representation) over the finite dimensional algebra sp(W), which is treated by
Howe's paper [Ho] and references therein. It is natural to seek the possibility of the
affine Segal-Shale-Weil analogues.

But the central charge calculation shows that the answer Is negative.

Proposition III (There are no affine Segal-Shale-Well versions, Proposition 7.1). Let
<9* be the affine Segal-Shale-Weil module over $p(W)A [FF], and consider ^ as a module
over the algebra

(1) sp(F1)A0o(F2)A

(resp. gI(Fx)A ©sI(F2)A) according to the inclusion

(2) sp(F1)0o(F2)c=sp(FF), W:=Vl®V2

(resp. gl(Fi) 0 sI(F2)[c=gI(F1 ® F2)] c $p(W)9 W := (Fx ® F2) © (Fi ® F2f). Moreover
assume that

(3) dim F! + 2 ̂  2 dim F2 and 2 dim V1 ̂  dim F2 - 2

(resp. 2 dim Fx ^ dim F2 and dim Vl ^ 2 dim F2). Then the pair (sp(Fi)A, o(F2)A) (resp.
\ s!(F2)

A)) does not form a dual pair on tf. •



WEYL RECIPROCITY FOR AFFINE LIE ALGEBRAS 751

0.5* Notations and conventions in this paper

Throughout this paper, we fix the conventions on classical Lie algebras (such as
the choice of Chevalley generators, parametrization of weights via Young diagrams, etc)
as in Sections 1.4 and 1.5.

The Virasoro algebra i^ii is usually defined by

(1) ^:=0m6

[/(m), /(n)] := (HI - n) l(m + n) + ?L

In this paper, we will use the following basis of

m3

(2) [d(m\ d(n)-] =(m-n) d(m + n) + — dm+n,0z , [T**, *] = 0 .

Note the base d(n) is obtained as d(n) := l(n) — <5nj0z/24 from l(n) in (1). By this
basis yV*-characters Tr gd(0) appearing in this paper enjoy the modular transformation
property without the fractional power factor q~z/24 (§ 1.2.2 ~ 3; see also Example 5.3).
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§ 1. Preliminaries for Classical Lie Algebras

1.0. Here are brief summaries on affine Lie algebras and their outer automor-
phisms. We also list basic data and fix the notation for the classical simple Lie algebras
and the classical affine Lie algebras following mainly [B] and [JM],

1.1. Conventions

Throughout this paper we work over the complex number field C. We denote by
Z (resp. Z>0, Z>0, ...) the set of rational integers (resp. positive, nonnegative, ...
rational integers). For a real number r, [r] £ Z is the maximum integer that does not
exceed r. We write SB (n e Z>0) for the symmetric group of n letters. By Mat(m, n)
we denote the set of all m x ?t-matrices, and Elj (1 < i < m, 1 <j < n) the matrix unit.
If m = n they satisfy Ei

jE
k
l = SjkEl

l9 where 5k = djk = dj
k is the Kronecker delta, and act

on C" = 0£=1 Cvk by E^vk = i/<5/. We write gl(n) for the Lie algebra Mat(n, n) with
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the bracket [_A, S] := AB - BA. We put ln := Zjn
=1E

jj. When we have to deal with
several Lie algebras g, I, ... at the same time, we often use the notation such as
L9(/l)9 Lf(^)? . . . ; %Qi, x\, . . . ; DQ(n), Dl(n), . . . etc., to distinguish the notions accordingly.

1.2. Kac-Moody Lie

We will follow Kac's book [Kac] for general terminologies.

1.2.1.

Let g be a finite dimensional reductive Lie algebra and B( , ) a non-degenerate
Invariant symmetric bilinear form on g. Then the affinization g A = g£ of g Is the Lie
algebra defined by

(1) gA :=

[x(ro), y(rift := [x, y](m + n) + mdm+n,0B(x, y)-c, [c, gA] := 0 ,

where x(m) denotes x®tm. We put g(n) := {X ® tn\X e g} and identify Xe$ with
^(0)e g(0) c gA. There is an extention f7^ x gA of the Virasoro algebra Vit by
g A , where

(2)

3

[d(m), d(n)] := (m - n) d(m + n) + — 4+«,o^ , l>, ̂ **] := 0 ,

and the action of ^'* on g A is defined by

(3) [d(m\ x(n)] := - n - x(m + n) and [z, g A ] := [^X c] := 0 .

(See 0.5 or 1.2.3 for the reason why we take m3/12 in (2) instead of (m3 — w)/12.)

Suppose that g is simple and of type Xr. Then the subalgebra g := Cd(0) x gA

of fV^ x gA Is isomorphic to the affine Kac-Moody Lie algebra of type X^l\ Its
canonical central element (resp. scaling element d) Is given by c (resp. —d(0)). Here
and after we choose the normalization B(99 0) = 2 for a long root 0 of g, and such If s
will be given in 1.4. Taking a triangular decomposition g = n_ 0 f) © n+ of g, we can
give and fix a triangular decomposition g = n+ © | © n_ canonically by

(4) § := l )©Cc©Cd and n+ := (g® t±1C[r±1])0n± .

Define AQ and 6 e 5* = (f) © Cc © O)* respectively by

(5) M©cd = ° • ^o(0 = 1 and 5|^0Cc = 0 ,

and extend each A e f ) * to fj by A|CceCd = 0. We have §* = I)* © C40 © C5. We
extend B to I* by the formula

^) + It + sm

for A, ,u e f)* and /, m, s, t e C.
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Let Aj and a? be the fundamental weights of g (not gA) and the dual labels of.
respectively (see 1.4 and 1.5 for their tables). Then the fundamental weights of gA are
given by

(6) A0 and Aj\=a^AQ + Aj (1 < j < r),

and the set of dominant integral weights is given by P+ + Cd, where P+ := 27/=0Z>0^-.
We put P+(l) := {A e P+ \A(c) = 1}. Also we put p := Zf^Aj e f)* and p := ̂ =0Aj =
p + gA0, where g is the dual Coxeter number g = p(c) = ^/0/v.

If g is abelian, then in what follows we regard i) = g, p = 0, p = Q and g = 0.

L2020 The Segal-Sugawara operators

Assume that g is simple or abelian, and that F is a gA-module that satisfies the
following two conditions.

(1) For any v E V, there exists an integer m E Z>0 such that §(n)v = 0 whenever
n > m.

(2) c = I • idv for some / e C such that / + g ^ 0,
The scalar / is called the level of F. Then it is well known that the following

Segal-Sugawara operator D^(n) e End F gives a (l^it x g)-module structure on F:

1 dim9 . / - d i m g
(3) yit 3 d(n)t-+DQ(ri) := —— Z Z °x.-(m)x<7(n — m)° — —-— -dn nidv ,

2(l + g ) j = i m e z J 24(l + g)n'° v

I - dim a ,

Here ({xj, {-XJ}) is a dual basis of g with respect to B and

f x(m)y(ri) if m < n
(4) °x(m)j;(?i)° := < (x(m)y(n) + y(n)x(m)}/2 if m = n .

\^y(n)x(m) if m > n

If 9 = © 9f with each gf is either simple or abelian, then we put

(5) D&(m) := Z^ D^i(m) and z^ := Zt- z^1 .

1.2.3. Irreducible modules and characters

An irreducible highest weight module of gA with the highest weight vector v0 is
characterized by (A; I) e I)* x C such that

(1) h(v0) - A(%0 (
V^ e W and c(i?0) = / • i;0 .

We call A (resp. /) the classical part (resp. level) of the highest weight and denote such a
module by L^(A; /). Provided that l + g^Q, then L§(A; /) satisfies 1.2.2(1)(2) and admits
a (Vit x gA )»module structure. In particular we can (and do) fix a g-module structure
canonically. Namely, for /Le t )* and /(^ — g)eC we will identify L%1;/) with the
g-irreducible highest weight module:
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according to the fact

From the famous strange formula it follows that

/ •d img |A H- p\2 — \p\2 \p\2 |A + p\2

() 24(1 + g) 2(1 + 0)= ~27~ 2(1 + 0) '

Suppose F is a diagonalized Crf(0)-module, that is,

(5) V= @m Vm , dim Vm < ao

where Vm := {v e V\d(G)v = mv} for m e C. Then for T e C and an operator u e End V
that satisfy Id(0), u] = 0, we define the character of V formally by

(6) chF(rrf(0) + e) := chr(t, u) := Sm e[mi] TraceF e27"" ,

where e[*] := e2™*, and put X§A.Z := c^u;*) f°r short. According to our choice of the
cocycle in the definition 1.2.1(2) of T^V*, we have (2) (3) above and hence ^A>z is nothing
but the so-called normalized character. It converges for t e C, Im T > 0 and u e I).

If g is simple, then for a dominant integral weight A + IA0 e P+ we have the
celebrated Weyl-Kac formula

(7) A.i(*, «) = Xi+jM+ffc H)/^.^(T, u) •

Here denoting by W (resp. M) the Weyl group of g (resp. the lattice part of the affine
Weyl group W = W tx M), we put

(8)

and

(9)

For the latter purpose we also put

(10) A:=A,,, ej?:=8£ and ^ := s/M

for a weight yi e |* of the form

A = A + IA0 mod GJ , / > 0 .

The denominator formula says that stfp^ = stf^ has a product form ^ which is given
explicitly in 1.5 for the classical non- twisted affine Lie algebras.

If g is abelian, then for / e Cx and /I E g* we have ([FK])

(U) *1A,(T, ti) = e[A(U)MT)-dim9 (u e g) ,

where rj is the Dedekind eta (1.5.1(14)). See also 1.3.3.
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OA Complete reduciMIity and the coset ^Vi-modules

The following lemma ensures complete reducibility throughout this article.

Lemma 1.2(1) [Kac, Theorem 10.7a]. Suppose g is simple and e{ e n+ denotes the
Chevalley generator of gA. Let V be an integrable gA-module which satisfies that
for any v e V, there exists m e Z>0 so that eti...einv = 0 whenever n > m. Then V is
isomorphic to a direct sum of IP(A) for A e P+.

(ii) [Kac, Lemma 14.4b]. Suppose g is abelian, and gx c gA the subalgebra
§x

 := gA~ 0Cc©g A 4 - ? where gA± := g <g> t±lC[t±l]. Let V be a $AX-module that
satisfies 1.2.2(2) and for any v G V9 there exists m > 0 so that g ( f l i ) . . .g(w/) i> = 0 provided
that nt > 0 (1 < i < j) 0nd En{ > m. Then V is isomorphic to a direct sum of the
irreducible module C/(gA X)MgA X)(gA + © C(c - I)) for I E Cx. m

Let gA be an affinization of a reductive Lie algebra g and let n and n' respectively
be representations of fV# and gA on the same space V. Suppose that their central
elements acts as n(z) = zK-idv and n'(c) = l-idv for some zn, I e C, and that

(1) \ji(d(m)\ 7E'(x(ii))] = -n• n'(x(m + n))

holds for any m, n e Z. This means

(2)

and D (m) := n(d(m)) — DQ (m) again defines a representation of ^V* on the branching
module (Definition 0.2)

(3) B^:=Homg.(L9V), V)

(4) ~ {v e V\(n+)v = 0 and v is of weight A} ,

if we assume the complete reducibility

This is the Goddard-Kent-Olive construction of the coset i^it-modules.

Proposition 1.2. We retain the above situation and moreover assume that the character
chv(i) converges for Im i > 0. Then the following three conditions are equivalent:

(i) V is finitely reducible as a gA -module,
(ii) zn = zQ\
(iii) n(d(m)) = Dl(m) for all m e Z.

Proof. Consider the coset representation D^(m). Then (i) -> (ii) follows from the
fact that any finite dimensional T^Vmodule must be trivial. Similarly (ii) -»(iii) follows
from that any unitarizable highest weight module with the central charge ( = the eigen-
value of z) zero is trivial. For (iii) -> (i) we consider the character. Using (iii), we
obtain

(6) oo > c

which shows dim EA < oo for each A.
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1.3. Modules which of

1.3.1. Diagram

Let Q(X)' be the derived algebra of the Kac-Moody algebra gpf) for a generalized
Cartan matrix X = (x;,j)o<i,j<z- Then $(X)f has the Chevalley generators [ei9fi9 ^}o<u<z
that satisfy the following defining relations:

(1) [hi9 hj] = 0 , [ht, €j] = x t j e j , [hh fi] = - x t j f j , [eh fj\ = 6uhj,

(ad etf-'vej = (ad f^fj = 0 (i *j).

Suppose (x^ is invariant under a permutation w of indices, that is3 w is a symmetry of
the Dynkin diagram of X. Then w induces an automorphism aw of Q(X)' by

(2) crw: gt t-» gw(i) for g = e, f, h (1 < i < I),

since this assignation preserves the defining relations. We call the automorphism thus
obtained a diagram automorphism. Note that crw preserves the triangular decomposition
of Q(X)'. Note also that (the adjoint of) aw acts on the roots and their linear
combinations by

(3) aw: oct}-^oiw(i) for a simple root a,-.

Lemma 1.3.1. Suppose X is of affine type. Then the above erw has a unique lifting
to the automorphism of $(X) and |* (also denoted by aw) that satisfies the following
conditions.
(4) ^w Q(xy and tfwlreo are given respectively by (2) and (3),
(5) <Jw(f)) c= | and <o-w(a), <7W(A)> = <X /i> /or anj a e |* 0wd /z 6 |,
(6) t/ze orJer o/ crw is equal to that of w.

Proof. As usual we assume that 0 is the index of affine point in the Dynkin
diagram. Recall that 5 = E[-=0 atat and c = E[=0 dthi9 where at (resp. dt) is the
i-th label (resp. dual label) for X ([Kac]). Therefore §* = 0|=0 Caf © O0 and
I = (+)!=o ̂ ^^ ® ^m ^ suffices to determine aw(d) e I) so that (5) and (6) holds, since
then (5) defines crw(^40) and the aw thus extended automatically gives rise to an
automorphism of Q(X). Since a{ = aw(i) it holds that ew(d) = d and hence we can
assume

(7) ffw(d) = d + Z[=0 Siht

with Si e C. The condition (5), <a~1(ai), d> = <af, o-w(d)>, then reads as ^(o^o1 ==

^Qflo1 + ^<jsjxj,i> Or

(8) ^ s^i£ - ao1^,^) - «i.o) (0 < i < 0 •

Similarly (6) reads as

(9) Z^i(w) ^(o = 0 ( 0 < i < l ) .

Now our task is to solve (8) and (9), and the case checking shows that there exists
a unique solution (sj for them in each case. S
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For X = A(^\ B{1\ CP} and D{
(1), we give in §1.5 the formulae of actions of the

diagram automorphisms on $ and $*.

Remark 1.3.1. (i) The condition (6) is not redundant.
(ii) If w(0) ̂  0, then the equality 0w(Aj) = Aw(j) is not always true (however

<rw(Aj) = Aw(j} mod C<5). On the other hand, it holds that <7w(p) = p. 9

1.3.2. Z EX gp^-moc&eles

Let X be a generalized Cartan matrix and Z c AutLie g(Z) be a group consisting
of diagram automorphism (1.3.1).

Definition 1.3.2. (i) We say a g(X)-module fa> F) is a Z x g(X)-modttfe if there
exists a projective representation ri of Z on V which satisfies the compatibility condition

(1) vf(a)n(gW(ar* = *(*(0))

for all G E Z and 0 e gpf). (The notation Z x gpQ is justified if we think it as an
abbreviation of the semi-direct product algebra C[Z] x U($(X)) which is generated by
Z and g(X).)

(ii) For a weight A9 we define a g(Jf)-module

(2) L^9WW:=0 / ieLaL9m(M)>

where Z-A denotes the Z-orbit of A. This module gives rise to an irreducible
Z x g(^T)-module by defining

(3) rc'((j)l^> := k(M)> for any a e Z ,

where |/x) denotes the highest weight vector of L9(-Y)(//).
We also define the character

accordingly. H

Remark 1.3.2. (i) The module LS*9(X)(A) does not always coincide with the module

(ii) For the Cartan matrix X of type Dn, $(X) ~ o(2n) holds and the group of
diagram automorphisms is generated by the element a = an_ l j n (1.4.5(0)) or order two.
In this case the module LZX9(X)(/l) for a dominant integral weight A is nothing but
a finite dimensional irreducible Pin(2w)-module, while L9(X)(A) is an irreducible Spin(2n)-
module. Here Pin(2n) and Spin(2n) denotes the double covering of the orthogonal
group O(2n) and SO(2n), respectively. H

Lemma 13.2, Suppose that a Z x ^(X)-module V is completely reducible as a
Q(X)-module, and Z is abelian. Then V decomposes into a direct sum of LSX9(X)(A)'s, that
is, there are modules BA's such that

as a Z K §(X)-module.
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Proof. A Z K gpO-submodule of 7 and a (Z, f|)-submodule of HWV(V) :=
{ye F|(n+)9(J)t; = 0} are In one to one correspondence with each other, where (n+)9(X)

denotes the subalgebra of $(X) generated by the Chevalley generators {et}. Since
HWV(V) has a weight space decomposition and Z is a finite group, HWV(V) can
be decomposed into a direct sum of irreducible (E, f))-modules. Then each of the
irreducible component is restricted its form as (J^es-A^I/^) under the assumption that
Z is abelian. Accordingly, the corresponding irreducible Z K g(Z)-submodule of V is
of the form LZK9W(^), which completes the proof. H

1.3.3. Review on Helsenberg systems [FK]

Let a be an abelian Lie algebra, B the non-degenerate symmetric bilinear form
on a and aA = a£ the corresponding affinization (1.2.1(1)). Then the subalgebra
aAX := @m=to®(m)®Cc is an infinite Heisenberg Lie algebra and we have a direct
sum decomposition a A = a © a A X a s a Lie algebra. Let Fez a* be a lattice, then each
y e F act on a A by

(1) y(a0 + ax):=a0 + ax - y(a0)c

for any a0 e o and £ x e o A X . We call this system F K aA = (/", aA) a Heisenberg
system. An a A -module is said to be a Ft* a A -module if there exists a projective action
of F satisfying the compatibility 1.3.2(1).

A typical F oc a A -module is the Boson Fock space

(2) I/**U /) := (@«e,+irCe«)®(U(a**)/U(a**)(C(c - I)© aA + ) )

where lea*, / e C x , aA± := a (x) t^CEt11] and C[-] (resp. S(-)) denotes the group
algebra (resp. symmetric algebra). For each cocycle

(3) s: r x r -> C x , fi(o, ^8)£(a + ft 7) = £(a, j8 + y)e( /J, 7) ,

the corresponding T K a-action on I/*aA(A; I) - ^AC[/r] ®S(oA") is given by the
following way:

(4) r 3 y H-» T/ := {e* ® p *-+ s(y, $)e«+ly ® p} ,

a 3 a H-» 5/5a := {ea (g) p i-> a(a)ea ® p} ,

( — m)- := {ea® p^e* ® a( — m)p} ,

® (lm-dp/da(-m))} ,

where a = A + //? e A -h /r, peS(a~), aea , m e Z>0 and d/da( — m) is the derivation
defined by a'( — «)H-»<5mjnB(a, a').

If / ^ O , then as is well known LrocaA(A, /) is irreducible ([FK, Proposition 2.4]).
By the definition (2) and the relation DaA(0)(eA) = (B(A, A)/2l)eA (1.2.2(3)), its character is
formally given by the theta series
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where a = a(0) e a and Br \tl (resp. ^(T)) is given by 1.2.3(8) (resp. 1.5.1(14)).

1.3.4 gl(/)A -modules

For gI(/)A we need the notions similar to that for g(X) in §1.3.2, namely
<0cfc> * gl(/)A-m°dules and Zl x gl(/)A -modules. Here and after, by gI(/)A we mean
the affinization of gl(i) associated to the invariant symmetric form B(x, y) := Trcz (xy).

Definition 1.3.4a (a|c e AutLie gI(/)A). We put

where z + !(/) means i + 1 mod /.

It holds that

(2) o"c?clsi(oA = acK: tne diagram automorphism of

associated to the cycle eye := (0, . . . , / — 1) ,

and

(3) <7£(l(n)) = l(n)-5nt0-c9

where 1 = 1,:= Sj=1 ̂  e gl(/) and l(w) is an element of the Heisenberg algebra
(C1JA cz gI(/)A. From the latter it follows that a*c is of infinite order.

Definition 1.3.4b «acfc> x gl(0 A -modules).
(i) Let (TC, F) be a gI(/)A -module. We say (TT, F) a <<rcfc> x gI(/)A-mo^w/e if there

is a projective action n' of <<TC^C> with the compatibility 1.3.2(1).
(ii) For (ju, t ; r ) e f )* x C x C, we define a gl(J) A -module L9l(Z)A(^, t; r) to be the

irreducible gI(/)A -module with the highest weight vector |//, t; r> ^ 0 that satisfies the
followings:

(4) fc(0) 1^ t; r> = M/i) IM, t; r> for h e ,

l,(0)|/i, t\ r> = f |M, t\ r> , c|/i, t; r> = r|/x, t; r>

and

Elj(n) |/i, t; r> = 0 if n > 0 or (n = 0, i < j) .

(iii) Putting

(5) ofyc - (2, s; r) := (<rcyc(A), s + r; r)

we define
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and we endow a <crc^c> K gI(l)A -module structure to this module by

(7) <c |A,s;r>:= <(A, s; r)> .

OeinItiOB 1.3.4c (Z' x gI(0A -modules).
(i) We define an action t of Zl on gI(/)A as follows.

(8) t: 1} = 0U Zsk -» AutL,e gI(0A (group horn) ,

c := c

(Ii) A gl(/)A -module (TC, V) is called a Z' x §1(1)" -module if there exists some
projective action TT' of Z* that satisfy 1.3.2(1) for any a E Zl and g e gI(I)A. H

Sublemma 13A Let V = (n, V) be a gI(l)A -module which is integrable as an sl(f)A-
module. Then the following two conditions are equivalent:

(S) VisaZlx $1(1) A -module.
(ii) V is a <<rcfc> x gI(/)A -module.

Proof. By the integrability there is a projective action of the Weyl group
W* ~ S, x 6 on F, where 6 ~ {En^.e Z'lSn,. = 0} denotes the root lattice of A^
([Kac,§3]). Let rw

(1 ..j} e Aut F be such an action of the cycle (1, ..., I) e ®z. For
(i) -> (Ii), the following formula gives the action of crcyc:

(9) ^«):=^i)^(1...0.

As for the converse (ii) -» (i), we can define the enaction by

(10) ^l)-^'^)^!...,,)"1-

This induces a Zl K gI(0A -module structure on F, since there already exists a g-action.

•
Put 1* := Zj=1 £,. e Zl <z (Cl)* and define its action on Cl A by the restriction of (8),

and let Zl* x C1A be the corresponding Heisenberg system (1.3.3(1)).

Lemma 1.3.4. (!) Suppose that V is a Zl x gI(/)A -module which satisfies the
assumptions in Lemma 1.2(i) as an $1(1)* -module and in Lemma 1.2(ii) as a (C1)A- module.
Then V is completely reducible, i.e. decomposes into a direct sum of

(1 1) LZI X9l(Z)A(A, s; r) := L<ff^> "^ \^ s; rfs .

(II) // r eZ > 0 and (A; r) is dominant integral as an $1(1) A -weight, then we have a
(Zl* oc Cl A) © sI(/)A -module isomorphism

(12) Lz'*^>Aa s; r) - ®^=1 Lzl*xClA((s +;>)!*//; r) ® LsI^A((ic^(A); r) .

Proof, (i) This follows from a similar consideration as in the proof of Lemma
1.3.2 with using Sublemma 1.3.4. Regard F as a <acfc> x gI(/)A -module and consider
the <o-c*c>-orbit of a highest weight vector with respect to gl(l)A.

(I!) Consider the dj^-action in the left hand side of (12). It acts on the sI(/)A-
components as an acyc and the action of (ofyc)

1 coinsides with that of 1* on the whole
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module. Hence recalling the representation theory of the Heisenberg system [Lemma
1.2(ii); FK, Proposition 2.4] we have

Lz'*9l(i)A(A, s; r) - L<ff->^l(')A(A, s; r)

(a£)J'+I"-& s; r))

(<7cycy(l), s + (j + bi)r; r)

A((s + jr)l*//; ^) ® L5^A(<V(A); r) . •

In view of 1.3.3(5), the statement of (ii) above can be interpreted in terms of
characters as follows. Put

(13) *Z'*9l(i)\s;r := ch LZ'*^>A(A, s; r)

(1.2.3(6)). Then we have

(14) XZ1 K 9l(0 A A,s;,(tD
9l(°A(0) + ul + fc) = 2j=1 *(!)- ̂ .̂ (T, u) • f ^^(A),^ A)

for ft e {ZfljE^ISfli = 0}, u, T e C and Im T > 0, where

(15) 0z
v,m(T, 11) := SM6V+mZ e|> + /^2T/2m]

(1.5.1(0)) and rj denotes the Dedekind eta function (1.5.1(14)).

Remark 1.3.4. The character (14) is essentially introduced by Jimbo and Miwa
first. See [JM, p. 34] for its further formulae. H

1.4. Notations for classical simple Lie algebras

In 1.4.1 we give some definitions on Young diagrams.
We give the following data in 1.4.2 ~ 1.4.5.
(0) Dynkin diagram;
(1.1) Realization, (1.2) the Che valley generators, (1.3) commutation relations;
(2.1) a Cartan subalgebra, (2.2) Simple roots, (2.3) positive roots and the root

spaces, (2.4) the highest root;
(3.1) Fundamental weights, (3.2) half sum of positive roots, (3.3) dominant integral

weights and their parametrization via Young diagrams;
(4) Character formula in terms of determinant;
(5.1) Normalized invariant symmetric form and (5.2) the induced bilinear form

on I)*.

1.4.1. Young diagrams

A sequence of nonnegative integers Y = (.y/)j=i with y1 > - • • > yl > 0 is called
a Young diagram. The set of all such 7's are denoted by ^. We put ®/^r :=
{(yj) e&i\r > y^} and call its element a Young diagram contained in the / x r rectangle.
The size of Y = (y^ is [7] := ^-^ e Z>0. For Y = (y^ E ̂ >r, its complement (in <&ltt.)
Yc = (ycjfj=i e <3fltt. is defined by yj := n — ym--r The transposed of Y is denoted by T; it
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is defined by folding along the diagonal in the graphical expression and belongs to
Also put F1" = (ylYp=i '= (*YY = '(Y*) E <9rJ for Y e <%. For example,

•f vII I = K-? = j» — j LJULjmm t t^^ <; niuii I = z, = j uura^K t ^3^3 g
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1.4.2. Type/f,_j

(0)
1 2 •-• r - 2 r - l

(1.1) g^U) ~ sl(r) := {x e 8I(r)|tr x = 0}

(1.2) «,«-»#,„

(1.3) [£',, £*,] = ̂  - ^/E", .

(2.1) I) = £ C(E\ - EJj) = {S UjEJj\I, Uj = 0} <= a := 0J=1 C£^ .

(2.2) a.j = £,- — £,-+! , where {fij}5=i c a* is the dual basis to
{£>,};_! and 1) := 8, -r1 21 e,.

(2.3) 4

(2.4) 0 = £ ! -£ , .

(3.1) 4 = £1 + --- + £j ( l < y < r - l ) .

(3.2) p = (r - 1)6! + • • • + 2ep_2 + £r_t .

(3.3) 9U 9 y = (y^-J ^ SJ-i y^ e P+ is bijective .

'5,3

(3.3') (Slr 3 Y = (yjYj=ii-»%j=i yjSjEP+ is surjective. The image of Y will be also
written by Y.

(4) For Y € P+ and zj e C(l < j < r) such that f]j ^ = 1,

n fc-T'
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(5.1) B(a, b) = Trcr(ab) for a, & e sl(r),

(5.2) B(a, ft) = (oL\ft) for a, ft e I)* ~ {£ a,.̂  e a*|! a,- = 0} , where (e^e,.) := <50-.

1A3. Type*,

(0)

(1.1) g(5r) - o(2r + 1) := {x 6 gl(2r + l)|'xJ0 + J0x = 0} , where

I - - T 0 -r~'-l

Jo == '

(1.2) Putting 5'j = B1''"-7' = B_u := £1
7- — £~ J_i, the isomorphism is given by

hj~BJj-B^j+1 IB',

(1.3) [B'j, 5*;] = ^/B', - ^i
iB

t
J. + r^''_fc + 5'_kB^ .

(2.1) l) = @CBJj.
j=i

(2.2) tXj = £j - £J+i (1 < ; < r) , ar = er ,

where {e,-}J=1 c I)* is the dual basis to {BJj}r
j=1.

(2.3) J+ = {£; ± e,| 1 < » <; < r} U {e,| 1 < j < r} ,

g£j±Ej = CB'+j , g£j =

(2.4) 0 = 8l + £2.

(3.1) ^^e^-H-e, ( !<7<r ) , Ar = fa

(3.2) p = (r - i)£i + • • • + f er_! + ier .

(3.3) P+ = P° JJ pi , where

P+° := Er ZA + TZA, and

is bijective. The image of Y will be also written by Y.

(4)(4)

for 7 6 P?, s = 0, 1 and zj e C (1 < j < r).
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(5.1) B(a, b) = i TrC2,+i(afc) for a, be o(2r + 1).

(5.2) B(e(, B}) = (e, £;) := fy .

1.4.4. Type C,

1 2 ••• r-2 r-1 r

(1.1) g(Cr) =* sp(2r) := {x e gI(2r)|'xJ5p + J5px = 0} , where

-1
0

-1
1

0
1

(1.2) Putting Oj = Cl'~j = C-itj := Elj — sgn(i/)£~J_f, the isomorphism is given by

C'r

(1.3) [C'y, C*

(2.1) f, = 0r=

(2.2) a,- = £,• - e,-+1 (1 < j < r) , ocr = 2er ,

where {e/}5=i <= h* is the dual basis to {C^} .̂

(2.3) A+ = {e,±e7 |l < i <; < r}U {2£j.|l < 7 < r } ,

9ei±E, = CC'^ , g2£j =

(2.4) 0 = 2£l .

(3.1) Aj = ei + — + e, ( ! < 7 < r ) .

(3.2) p = J-E! 4 ---- + 2EP_! + er .

(3.3) <yT3Y = (y])»ZyJeJeP+

is bijective. The image of Y will be also written by Y.

(4) For YeP+ andz,-eC (!<;<r) ,

Tr rn z ̂  - ^^-'^1Lm(1L j )- n (^-^) n
</'<»• l<i<j<r
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(5.1) B(a, b) = TrC2r(ab) for a, b e sp(2r).

(5.2) B(el,ej) = (eJ|eJ):=i5u.

1.45. Type Dr

1 2 3 - r-2^x> r - 1

(1.1) g(Dr) ̂  o(2r) := {x e gI(2r)|^J0 + J0x - 0}, where

• • • o — [0;+j,0 ];,./= ±1 ±r •
1 •

Putting Dlj = Dl'~J = D-itj := Elj — E~j_h the isomorphism is given by

(1.2)

(1.3) [D'j, I)*,] = 5/D', - 6W + 8-',DLk + S^D^ .

(2.1) b = 0;=1CDV

(2.2) a, = EJ - EJ+I (l<j<r), ar = sr_! + er ,

where {Sj}j=l c h* is the dual basis to {DJj}j=1.

(2.3) ^+ = {£i + e j . | l < i < 7 < r } , Q^ = CD1
 ±j .

(2.4) 0 = E! + s2 .

(3.1) AJ = e1+--- + eJ (1 < ; < r - 2) ,

4--1 = i(6l + ' ' ' + £,-1 - Er) » ^r = ifcl + ' ' ' + £r-l + £r) .

(3.2) p = (r - l)£l + • • • + 2er_2 + £,._! .

(3.3) P+ = (P+° U <j(P+°)) [j Pn.1 IJ ff (P+1 ) (disjoint union) .

Here P+° := {1 = EA^e P+IV^-e Z>0}, P+1 := P+° + ylr, and CT: h* B s^
(1 — 2^)6,- e h* is the action of the diagram automorphism ffr_1>r := ff(r_lir). The
map

is bijective. The image of Y will be also written by Y.
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(4) For A = I Aft e P+ and zj E C (1 < j < r),

Tlf / J i ( T | iZ:DJj}

Tr TO 7»A + TrK ( ' o±T r
+r-J ±

(5.1) B(a, b) = \ Treaty for a, b e o(2r) .

(5.2) B(e(, e,) = (e;|e;.) := ^. .

1.4.6. A convention for o(n)

Put o(lN) := {X e Ql(N)\X + 'X = 0} and

O'j := Elj - E*t e o(lw) .

rjv"i
Here the indeces i, 7 run over — n, —n + 1, ..., n — 1, n, where n := — (

that i, 7 do not take zero if N is even). Then the isomorphism o(I,y) =* o(7V) can be
given as follows.

(i) Case of N = 2n + 1. For i, j > 0,

we assume

(ii) Case of N = 2n. For i, ; > 0,

Then we introduce and fix a root basis of o(lN) by this isomorphism. We also
denote them by {Blj} or {D'j}, respectively.
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1.5. Notations for classical affine Lie algebras

In 1.5.1 we summarize some theta functions and their formulae.
In 1.5.2 ~ 1.5.5, following the notation in 1.4 we give
(0) Dynkin diagram (of classical nontwisted affine type), the dual label dt and the

dual Coxeter number g;
(1) parametrization of the dominant integral weights mod G5;
(2) Weyl group W * M;
(3) the numerator stf^ and the denominator ® (1.2.3(9)); and
(4) actions of the diagram automorphisms defined in 1.3.1.
For the sake of completeness, we list the rest of affine Dynkin diagrams and their

dual labels in 1.5.6.

1.5.1. Theta functions

Let / e R>0, jeR, T e C+:= {T e C, Im T > 0}, ueC and put e[*] := exp(27ii*),
i:=^/^l. We define

(0) fl2'*,-,^, «*) := S»ez (± l)"e (j + ln)u

Then 9^+
jtl = e z

j f l and 0z>~ j fj(T, u) = eC-j/irje^T, u + 1/2/), where 0z
j>z is as in

1.3.4(15). We have the following formulae.

\ ' j + J > l j,l '

(2) 0zjj(c9u)0\m(c9v)

a*>

(3)

(4) ^ , T , M ± = e~± + '^^,^, u)

(5) 0z
j>((T, «+ 1) = e[j]0z

j.1(t, u) (if 1 e Z)

For j, I e Z, we also have

( lu + mv\ z ( u-v\ , i c ~ .
i ,!+m\T5~y~; IU mfi-(l+m)k,lm(l+m)\1'>j . I \l> m fc ^>oJV / + m J \ l + mj

I" / T\ ~|
:
7t ,(T, u + T) = e -( u + - j { 6^1(1, u)

(6) 0Z,.,(T + !,«) = e[j( j - /)/2/] 0Z ., T, u + ,

(7) «z
j+!/2ii(T + 1, u) = e[l/8 + ;(; - /)/2/]0z,.,(T, «) ,

and the following transformation rules by Poisson's summation formula [Se].
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r / u 2

L 2t.

' "r-'fc/n z (T)|J)

Here we choose ^J —ii such that Re ^/ — h > 0.
In the case of / = 1, we use following notations after [JM].

(12)

= -0(t, 11+ 1) = -0(i, -11) = -zqll2Q(x, u + T)

= e[l/4 - u^Tiy^-^C- I/T, «/t) ,

(13)

= e[-u2/2T]y^-^(-l/T, II/T) ,

where q := e[t] and z := e[w].
Recall the Dedekind eta function and its transformation rule,

1.5.2.

0
(0) r - O - , 1

; 1 1 ••• 1 1 ;
1 2 ••• r-2 r-1

(1) There is a surjection
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(2) W ^ &r , M = Q := {Z mjSj e ©J=1 ZEj\ S, mj = 0} c h* .

(3) For an r- vector M = (MJ-)J-=I, put [M] := Ej=1 MJ and M} := Uj — [u]/r. By Ak

(0 < fe < r — 1) we denote the classical part of the (affine) fundamental weight Ak

(1.4.1(3.1)). Then

V

for S l^.eo* (1.4.1),

(4) Put eye := (0, 1,..., r - 1), w := ( '" * T j and let acyc and <

respectively be the corresponding diagram automorphisms. Then GwcrcycGw~^
acy~

l, and we have

= (S _ T(r _ i)/2r - Mr)c + Td + Z;=1 (uj^ + ((5^ - l/r)T)

acyc(sd + M0 + E;=I 3^fi/)

= (s - /(r - l)/2r - yr)5 + IA0 + S;=1 (j,^ + (dn - l/r)l)

and

<TW(SC + Td + S;=1 M,-^) = SC + id + S;=1 (-Ur+l_j)Ejj ,

aw(sd + M0 + Ej=1 ̂ .e^) = s^ + /i0 + i;=1 (-y r+1_</)fi/,

where we assume Ej=1 MJ = 0 and ZJ=1 ^ = 0.

cyc: L ^ l w:

L

1.5.3. Type j#

0 ex 1
(0) JX> o o = > o ; 2 2 ••• 2 1; 0 = 2r - 1 .

r- 1 r 1

L
— > mm (yl9 L — yj > y2 > ••• > yr > 0 ,(i) p+(L)=Lyio ; -

- - - =0 or 1/2

(2) W - Sr K {± l}r, M = {S m^- e 0J=1 Ze^S mj e 2Z}
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(3) For u = S;=1 Uj&j e 1) and A = Xj=1 ^ £ I)*,

«) ± Xr0i<A+tfo)(T> K) = det [fl^^T, "/)

(T, II) = l/fr)-*-" I] 0(T, II, - H7)0(T, II,

(4) The diagicim automorphism <TO = a01 that corresponds to the permutation (0, 1) is
given by

(701(sc + id + 2}=1 iijjy,.) = (s - T/2 + iijc + rrf + (T - iijfi1! + E}=2 w^- ,

= (s - L/2 + ̂ )5 + lJ0 + (L -

(0, 1):

It holds that aQ1 = t£i o r£i e Aut \f, where ra (resp. rj denotes the translation (resp.
the reflection) associated to a: for A e fj*,

t.(^) :=A + A(c)• a + {B(A, a) +

1.5.4. Type Cr
(1)

(0) o=>o o o o < = o ; 1 1 1 ••• 1 1 1;
0 1 2 • • • r - 2 r - 1 r

(1) There is a bijection

(2) V F ~ ® r x { ± l } ' , M = ®5=1 2Z£j. c f)* .

(3) For M = E;=I «,C^ e I) and A = 2;=1 ̂ e, e I)*,

^,,(T, M) = det [0\,,(T, 2u;.) - 0z_Aji,(T, 2tt,)

(4) Put w := I J and let aw be the corresponding diagram auto-

morphism. Then

<7w(sc + rd + s;=1 Wj.c^.) = (s - rt/4 + z;=1 M^C + id + z;«! (1/2 - ^+1_J-)c^. ,
aw(s^ + IA0 + Z;=1 W) = (s - lr/4 + Z;=1 yj/2)S + ^0 + ̂ =1 (/ - yr+l-j)ej ,
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In particular

dw(7 + IA0) = YC + IA0 mod O for 7 e &ftl .

I w 1

= o

= 2r - 2 .

^,..., yr) E (Z + s)r, s = 0 or 1/2

(2) W - Sr x { ± I}"'1 , M = {H m^-^- e @J=1 Ze^L m,- e 2Z} .

(3) For u = SJ=1 MJ/^J e 1), A = Sj=1 Ajfij e ^* and s, s' = ± 1,

T , M )

^(T5 U) = f/(T)-^-2) I] 0(T, W, - il^)e(T, II, + II,.) -
l<i<j<r

(4) The diagram automorphisms crw, <TO = t701 and crr = crr_1)r that corresponds re-

spectively to the permutations w := ( L (0, 1) and (r — i, r) are

given as follows.

<rw(sc + id + SJ=1 11̂ ) - (s - rr/8 + ZJ=1 V2)c + id + EJ=1 (t/2 - UH.^)^ ,

aw(s(5 + LAQ + Ej=1 yjfij) = (s - Lr/8 + Sj=1 yj/2)S + L^0 + Ej=1 (L/2 - y^^ .

In particular aw(Y + 2/i0) = Yc + 2/i0 mod C^ for Y e ^z.

id + Z;=1 ̂ D^-) = (s - t/2 + Mjc + id + (T - Mi

L^0 + 2;=1 yjej) = (s- L/2 + yi)5 + LA0 + (L

(0, 1):
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ffr-lir(sc + rd + 2;=1 UjDJj) = zc + xd + (E^1 UjDJ
}) - urD\ ,

<7r_lir(s<5 + LA0 + S;=1 3^5,) = s8 + LA0 + (SJiJ yp,) - y,er .

It holds that <TOI = t£] o rSi and ffr_ljr = r£r as an automorphism of i)*, where tEt and
r£| are as in 1.5.3(4).

1.5.6. Other affine diagrams and their dual labels [Kac]

1 2 1 1 2

1 2 3 2 1 1 2 2 - - - 2 2 2

(9 = 2r + 1)

1 2 3 2 1

2 1 2 2 ••• 2 2 1
o - - o - o - o D%\ o<=o - o ••• o - o=>o

1 2 3 4 3 2 1 ( 0 = 2 r )

(g = 18)

1 2 3 4 2

1 2 3 4 5 6 4 2

§ 2. Clifford Algebras and Spin Representations

2.0. We will briefly summarize about the spin representations ([B], [Fl], [FF],
[KP1]).

ZL Clifford algebra C(W)

Let FF be a vector space with a non-degenerate symmetric bilinear form { , }.
Then the algebra
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(1) C(W) := T(W)Kv ® w + w ® v - {v, w}>twosidedideal

is called the Clifford algebra associated to (W, { , }). Here T(W) denotes the tensor
algebra over W. We write uv for the residue class of u (x) v in C(W). When dim W < oo,
as a C-algebra

raV ; V ; (Mat(2", 2") 0 Mat (2W, 2"): if dim W = In 4- 1 '

2.2. The spin module /\ (PF~) of C(W)

First, suppose there exists an isotropic decomposition W=W+@W~, that is,
{W±, W^} = 0 and { , }\w+xw- *s nondegenerate (if dim W < oo, this means PF is
even dimensional). Then the exterior algebra /\(W~)9 viewed as a f\(W~)-module by
the left multiplication, gives rise to an irreducible left C(FF)-module by defining

(1) w+ • 1 := 0 for 1 e /\ (W~) and any w+ 6 W+ .

This module is isomorphic to the quotient module C(W)/C(W)W+ by the corre-
spondance !<-> 1 + C(W)W+, and its element is called a spinor. We denote the
representation C(W) 5 End /\(W~) by ow.

Next suppose W = W ®Ce be an orthogonal direct sum with {e, e} = 1 and W
has an isotropic decomposition W = W+ © W~ (in the following, we refer this type
of decomposition to a quasi-isotropic decomposition). Then a C(FF')-module /\(W~)
becomes an irreducible C(FF)-module by defining

(2) ^/2e-v:= ±(-l)p-v for i; e /\p (W) .

We denote this representation C(W) -> End /\ (W") by d^.
In both cases, we call an element of W~ (resp. W+) a creation operator (resp.

annihilation operator).

2.3. The spin module /\ (W$f) of o(AO

Suppose W = WN is of finite dimension N, and {ej"=_n is an orthonormal basis of
WN: {et, ej} = dv.

(0) (Notice: Here and after we put n:=[N/2] and regard that the indeces — n <
i, j, ' ' ' < n do not take zero if AT is even.)

Then the following map is a Lie algebra monomorphism.

(1) /?: o(lN) 3 0*j := Elj - &t ̂  e^ E C(WN) .

Taking a (quasi) isotropic decomposition of W and considering SN := o(^ o jg, we get
the spin representation of o(N). (In case of odd AT, ^N o ft ~ ^N o f$ holds and we can
write it SN.) Put
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(1 < j < n) to fix a (quasi) isotropic decomposition

(3) WN ̂  WN
+ ® WN~ (0 Ce0) , where W/ := ©^fC^" .

Then for i,j,k= —n,...9n and X = B or D, we have

(4) SN(Xlj) = :t/% and [^(J^)? ̂  = ^ - dLrfj .

for the root basis X*j (1.4.3 - 4, (1.2)), where : : is the normal product defined by

(5) :ab: := (ab - ba)/2 for a,beWN.

Moreover the isomorphism f\(W^) ~ (X)"=i/\(C^j) as a (@j CX^-J-module yields the
following character formula.

Proposition 23. Putting w7- := eUj for Uj E C, we have

TraceA ,„-, exp [ZjU «^] = fL'-i « + "f1'2) - •

There is a Hermitian form H on /\(W^~) uniquely defined by

(6) H(l, 1) = 1 and H(ej - u , v ) = H(u, ej • v)

(M, v e /\ ( Wx\ j = ± 1 ' • • ± n). We have H(i//j -u,v) = H(u, fy • v).

Theorem 23 [B]. (I) The Hermitian form H is positive definite and contravariant
with respect to the o(N)-action.

(ii) // N = 2n + 1, then as an o(2n + i)-module

The highest weight vector is given by I e
(iii) // N = 2n, then as an o(2ri)-module

where /\™(-) := ®pe2Z /\"(-) and A°dd(') := ©pe2z+1 A,p('). Hence
« <<!„-! ,„) K o(2n}-module by 1.3.2(9)

The highest weight vector of /\even(W^n) (resp. /\odd(W^n)) with respect to o(n) is given by

2.4 The spin modules /\ (WN
z+h>~) of o(N)A

We retain the notation in the previous paragraph. For ft = 0 or 1/2, we define
a vector space with the inner product

(1) wN
z+h := WN ® thCtt, r-1] with {a(/4 b(v)} := {a, 6}^+v,0 ,

where a, b e WN9 & v e Z + h and a(/*) := a ® f^. Given a (quasi) isotropic decom-
position WN = WK © WN (© Ce0) of W^ (2.3(3)), we choose an (quasi) isotropic
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decomposition

(2) WN
z+h = WN

z+h>+ © WN
z+k'~ (© Ce°) ,

where

and

e0(0) if h = 0 and N := odd ,
(4)v ' [0 otherwise.

We define the normal product for a(jj), b(v) e WN
z+h by

{— b(v)a(ii) if \JL > 0 > v

{a(n)b(v)-b(v)a(iJL)}/2 ifM = 0 = v
fl(ju)b(v) otherwise.

There is a Hermitian form If on /\(WN
z+h*~) determined by

(6) H(l, 1) = 1 and H(es(v) -u,v) = H(u9 €j( -v)-v).

Theorem 2.4a.(S) [Fl], The following map is a Lie monomorphism:

(ii) For x(m) e o(AT)A

(8) [S^(x(m)),JA(fc)] = [^WJW(m + fc) on

(iii) Let DB := D0(iV)A(n) (n e Z) fee the Virasoro operaters associated to the rep-
resentation S%+h (1.2.2). Then

(9) [

/or iA 6 »{,.
(iv) T/ie Hermitian form H (6) is positive definite and contravariant with respect to

the o(lN)A -action in (i). •

The sum Z -.^(/^(v): above should be understood as Z d(±)(:e£(ju)e7-(v):), where 4 (±)

denotes the spin representation of C(Wz+h). As is similar to §2.3, + give equivalent
representations in case of Wz

n+l 3 e° = e0(G) ^ 0.
The representation S£ = Sz+h is called the spin representation.
Put

(10) ChN
±tZ+h •= Ch/\even(^Z+h,-) ± Cfa^odd (^^Z+h.-,

(see 1.2.3(6) for ch.). As in §2.3 we have the followings.
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Proposition 2.4a [Fl]. The characters ch^'z+h have the following formulae:

(1 1) ch±'z (TA, + E?=1 up,) = 0
J=l

flT

1 + 1
^ (T£>O

1 +10(1,11..+ ~
n \ ' J

(cD0

0 (resp. 0, ^) fs ^zyen fey 1.5.1(12) (resp. ibid. (13), (14)) and

(12) H
+.«(T):

9==
exp (27rir)). H

Theorem 2«,4b [Fl]. Suppose N > 2.
(I) // /z = 1/2,

/\even (WK/+1/2'~) ^ L0(]V)A(0; 1) =

Aodd (P

highest weight vector is respectively given by 1, ^1(— i)' 1.
(H) Ifh = OandN = In, then

°ddA
highest weight vector is respectively given by 1, ^,(0)- 1.
(Hi) Ifh = OandN = 2n+l, then

A (W2n+^~) *

The highest weight vector is given by i.

Following the notation of 1.3.2(2), we therefore have

(13) A (WNZ+h'~) - L<ffol>*0(]V)A(0; 1) , etc.
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On /\ (WN
z+h'~) there are two actions of Virasoro algebra: one is the Segal-

Sugawara operators Dm = D0(Nr(m) (1.2.2(3)) obtained by S£, and the other is what
defined by

(14) f7* 3 d(m) i-> Dclif(m) , z H-> y id e End /\ ( W^*- ") ;

where

(15) Dc^(m) := - 6 } S m

which satisfies the foliowings ([FF, (5.17)]).

(16) [_Dclif(m\ a(v)] = - + v a(m + v) (a e WN)

(17) [DCH/(m), X(n)~\ = -nX(m + n) (X E o(N))

Proposition 2.4b [FF, Proposition 13]. For N > 2, we assert

(18) D0(N)A(m) = Dclif(m) for all me Z.

Proof. In view of Proposition 1.2 and the above commutation relation (17), the
assertion follows from the central charge identity

dim o(N) _ N(N - l)/2. _ N

Remark 2.4. (i) In the case of N = 1, the spin module /\ (W^+h'~\ viewed as
a Virasoro module by (15), decomposes as follows.

(20) /\even ( W^z+1/2' ~) - 1/̂ (0, 1/2)

/\odd (P^z+1/2'-) - L^(l/2, 1/2)

See Example 5.3 for the definition of L^^/i, c), where we also review their character
formula (5.3.(6)). These facts are shown by the character identities

(21)

and

(22) H±'1/2(T) = ChL^(0)1/2)(T) ±

all of which follows from the celebrated Euler identity (1.5.1(14))

(23) n?=i (1 - «") = E-z (- l)V3"2+n)/2

or

(24) fl?-i (! - (
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(II) In the case of N = 2, putting h := 1/2 — h we have the following isomorphism,
which is equivalent to the Jacobi triple product identity (1.5.1(12 ~ 13)) in terms of
characters.

(25) A (W2
z+h>-) ~ LZ£*0(2)A(/xe, 1)

Here Z x o(2)A = Ze K (CD^)* denotes the Heisenberg system (1.3.3(1)) defined by

(26) D\ := , B(Dl
l9D

1
l):=l and e(D\) = 1 ,

and LZ£*0(2)A(A, /) denotes its Boson Fock space representation (1.3.3(2) ~ (4)). See also
§8.

(iii) To calculate the relations such as (7), (8), (9), (16), (17) and (18), the method of
operator product expansion and the so-called Wick's theorem are quite useful. See e.g.
[FF] for them. H

§ 3. Dual Pairs of Classical Lie Algebras

3.0. In the following paragraphs 3.1 ~ 3.2 we state our main result in finite
dimensional cases. We give their proof in 3.3.

3.1. Definition of representations

Here we define the representations of some pairs of Lie algebras, which turn out to
form dual pairs (§0.1).

3.1.1. Case AA. (gL, gR) := (gl(/), sl(r)) on /\ (W2lr)

Let Vl and Vr be vector spaces of dimension / and r respectively and put
Vlr := Vl® Vr. We have the following three Lie algebra monomorphisms.

(1)

(2) R

(3) i: gl(Py 3

Here W2lr := Vlr 0 V£ and { , } denotes the inner product induced by the pairing
between Vlr and its dual Vj*. Clearly it holds

(4) [L'(gl(0), K(sl(rm = 0 and L'(gl(/)) 0 R'(sl(r)) = 0 .

Hence we get mutually commuting representations of gl(/), sl(r) by composing the
maps L := i o L', R := i o R' and the spin representation S of o(W2ir) ^ o(2/r) (2.4(7))
respectively:

(5) S o L: gl(0 -> End A (W2lr) , S o R: A(r) -> End A (Wir) -
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We shall describe these representations explicitly. Take a basis {^}J-=1 of Vt*
(resp. {vp}

r
p=1 of V*) which is dual to the basis {v*}1^ of Vl (resp. {vp}r

p=1 of Vr) (§1.1),
and put \l/j*p := vj ® vp, \l/jtp := vj ® vp (1 < j < /, 1 < p < r). Then {^p} U {\l/jtp} gives
a basis of W2lr that satisfy

(6) W, *k,q} = d\d\ and ty'-* ^} =0 = fa,, ^q} .

We fix an isotropic decomposition W2ir = W2lr ® W2lr given by

(7) W2
+

lr = Vlr = @ C^p and W2lr = V* = 0 Cty,p

and put i/rj'~p := ^J,P- Recall that :ab: = (ab - ba)/2 (2.3(5)).

Proposition 3.1. A A. We have the following formulae.

S o L(E\) = ZJ=1 : '̂p^: e C(W2Ir) - End A (»&) /^ ^*

(R) S o R(£*,) = Ej=1 :^^-%,: 6 C(W2Ir) ^ End A (W&) /or
(ii) [S

Remark 3.1.1. Consider the case r = 1. Let i;1, . . . ,» ' be a basis of C! in § 1.1 that
satisfies E'jVk = u'<5/ for E*. e gl(/). The isomorphism

(8) A TO 3 ^, • • • ^t ~ v ll • • • v ik e A (c')
between vector spaces induces that of their endomorphisms

(9) / :EndA(W27)^EndA(C'),

and we have the following commutative diagram.

^w End A (W21)

(10) O
«!(/)

Here we denote by C (resp. TC) the Chevalley involution Xi-t—'X (resp. the exterior
product representation). In fact, using the formula 3.1.AA(ii) we have the following,
which shows that S ° L coinsides with n ° C as representations of sl(l).

(11) (S

It also holds that /\ (W27r) - A (^27)®r (resp. A (»&) - A (^7)®') as a gl(/)-
(resp. gl(r)-) module. This isomorphism is given by the assignation

(12) A ( ̂ 27)®r 3 «(1) ® ' ' • ® ^<p) £ «1 A • • • A J e A ( W2~lr) ,
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where for ^(p) = ij/1 A • • • A \j/j e /\ (W2l)
(p) (the p-th copy) we put

(13) a* := ^p A - • • A ^'p E A (W2-lr) . B

ILL Case CC. (gL, gR) := (sp(2/), sp(2r)) on A (»&)

Let F2j and K2r respectively be a 21 and 2r dimensional vector space with an
alternating bilinear form ( , ) of maximal rank. Then W4lr := V2l ® V2r has a non-
degenerate symmetric bilinear form [u®x,v®y] := (u, v)2l • (x, y)2r and we have the
following Lie algebra monomorphisms.

(1)

(2)

We have [L(sp(2/)), R(sp(2r))] = 0 and L(sp(2/))nR(sp(2r)) = 0. Therefore we obtain
mutually commuting representations

(3) S o L: sp(2/) -> End A (W^) and S o R: sp(2r) -» End A (W&)

of sp(2/) and sp(2r) respectively, where S Is the spin representation of o(W4lr, { , }) ~
o(4/r) on /\ (^47r) (2.4(7)).

Explicitly these representations are given as follows. Choose a basis {V = i;_J-}jL_m

of (F2m, ( , )2J - C2- such that (v{ vk)2m = ~(vk9 v^)2m = d\ (m = /, r). Then we have
a basis [\l/j'p := \l/_jt_p:= vj®vp\j = ±1, ..., ± / ,p = ±1, . - - , ±r} of F^4/r that satisfy

(4) {iA^? ̂ .,} = ̂ 5M , where ^. p := ̂  ^ ,

and an isotropic decomposition

(5) W»r=»S i r eW&, where W& := ®j>0,p C^-* .

Proposition 3.1.CC. For CJ'fc e sp(2/) (1.4.3(1.2)) ( ;, k = ± 1, . . . , ± /),

(L) S o L(C'k) = S :iAJ''¥fc,p - sgn( jk)^k^.Jtp: E End
P=I

and for Cp
q E sp(2r) (p, q = ± 1, . . . , + r) we have

(R) S o R(C'g) = Z :^-'^.€ - sgntaW'-Vj.-,: e End

As in Case AA, AWfr) ^ A(c2r)®' as an sp(2r)-module.

3.1.3. Case OO. (gL, gR) := (o(L), o(R)) on

For M = L, R e Z>0, let WM be the M-dimensional vector space with nondegenerate
symmetric bilinear form { , }. There are following Lie algebra monomorphisms (See
§1.4.6 for o(lM)).

(1) L: o(WL) * o(lt) 9 R

(2) R: o(Wi) ̂  0(1,) a x ̂  1L ® x e o(WL ® WR) * o(lLR) .
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We have [L(o(lL)), R(o(lR))] - 05 L(o(WL)) H R(o(WR)) = 0. Putting WLR := WL ® WR

we obtain mutually commuting representations

(3) S o L: o(L) -> End /\(W£-R) and S o R: 0(R) -> End

where S is the spin representation of o(WLR).

Put m := — and let {^}JL_m be the orthonormal basis of WM such that

etSjk — ejdik (M = L, R), then we have an orthonormal basis [ejtp := e^®ep\—l<j<l,
— r<p<r} of WLR (we consider j (resp. p) does not take 0 if L (resp. R) is even). By
(j, p) > 0 we mean j > 0 or (j = 0, p > 0), and put

1 |~1

for (7, p) > 0 so that {^-', ^k_p} = SJ
kS'q (-/ < j, k < I, -r < p, q < r).

(5) W±R := ©u.,)>o C<A±J '±P (and e° = i//00 = 1/^00 == e00)

give a (quasi) isotropic decomposition of WLR:

(6) Wi* = ^A 0 WL~R(@ Ce°).

Proposition 3. LOO- For —l<j,k<l and —r<p,q<r,we have

(7) S o L(0\) = I7p=_r :ejtpektp:,

As for the root vectors Xj
k, X\ (X = B, D; § 1.4.6),

(8) S

3.2. The irreducible decompositions

Now we describe our result in the finite dimensional case, the irreducible decom-
position of the o(JV)-spin module f\(W^) as a gL © gR-module.

The pair (gL, gR) is defined by 3.1.1~3, and then N is given in Table 3.2. For
each case the space of creation operators W% is respectively chosen as 3.1.1(7), 3.1.2(5),
3.1.3(5), and the representation of g L ©g R on /\(W^~) is given by Proposition 3.1.AA~
OO. We fix the Chevalley generators as in §1.4 so that we can talk about highest
weights, which are parametrized by Young diagrams as in § 1.4. Recall Definition
1.3.2(2) of Lz*9(/l).

Theorem 302.
(i). As a 9L©gR-module (§§3.1.1~3), the o(N)-spin module /\(W^) decomposes as

follows.

(0) AW) - 0re*,r L^(4W ® L***(AR(Y))

Here /, r, ZL, ER, AL, 1R are given by Table 3.2 below and ®/lir denotes the set of all
Young diagrams in the I x r-rectangle (1.4.1.).
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List 3.2(AA-DD) is the complete list of the highest weight vector of each irreducible
component with respect to gL © gR. All finite dimensional irreducible modules of classical
simple Lie algebras appear as an irreducible component of a suitable /\(W^).

(ii) [Hoi] In particular, /\(W^) admits a £L x ^-action (1.3.2(4)) and each pair
(C[SL] K l/(gL), C[ER] x l/(gR)) forms a dual pair (Definition O.lb) on /\(Wj). H

Table 3.2

Case AA CC

9L, OR 9KO, sl(r) sp(2

EL,IR {«*},{«/} {*},{*}

N 2lr 4lr

AL(7), AR(7) (7, [7] - /r/2)<*>, <7 7, yt

List of HWV's List AA List CC

Subcases of OO(**> BB DB DD

gL, gR o(2l + 1), o(2r + 1) o(2Q, o(2r + 1) o(2/), o(2r)

ZL, £R {# }, {H } <^I-l.,>, {^} <fff-l .I>, <^r-l,

N (2/ + l)(2r + 1) 2/(2r + 1) 4/r

AL(7),AR(7) Y + A19Y* + AF Y + Alt 7f 7, 7f

List of HWV's List BB List DB List DD

Notation for 3.2. (*): In Case AA, by L9l(l)(A, a) we denote a gl(/) =
sl(l) © Clrmodule L5l(0(/l) ® CflJ where for a e C, Cfl is a one dimensional Clrmodule
defined by l , ( l ) :=fl- l .

(**): In Case OO, 0j_1 > z is the diagram automorphism of Dj (§ 1.4.5). •

List 3.2.AA

We identify YE <3/ltf with the data (Yj,p)i<j<i,i<p<r by

•4! / r 1 j\p I • • • r
yi ~> f I D D D D H - | 1

nnn^ _ _ „_

= (^ ,p) l<j</ , l<p<r •

Then the highest weight vector or weight ((7, [7] - /r/2), T) with respect to (gl(/), sl(r))
is given by
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List 3.2.CC

We identify Y e <Sfltf with the data (Yjtp) as follows:

f r ^ j\p 1 • - • r —r - - - — 1
fl nnnns• I 1 :

^/ T^ i ODDB • •
<&, r3 Y = I D D K - • <-> •

, • • • • • i
U • • ••! / | _ n - - - n

-D
mans- • i
DDB- •

I B B - • • I
J p = ± l — ± r

Then the highest weight vector of weight (7, 7f) with respect to (sp(2/), sp(2r)) is given

List 3.2.BB

Under the identification
-r

r
ylt,3Y = i

LI - - - - I ^

n- • -n

n • • • n

the highest weight vector of the weight (Y + Ah Y + Ar) with respect to (o(2/ + 1),

o(2r+l))is(nf, ,p = .>A,,p)-l .

List 3.2.DB(">

We make the identification

j\p 1- • • r 0 -r 1
1 n - • • n n

I D D D B * • i
... • DDB • •

. I B B - • • I
n ° « e D n i • • • B I

and put ff(f) := (Yjtp + 6jjdYj _lpl,n\jtp)>0. Then

—^

i^> : =(r if J ,P=H
j /o- ,p)-1 and

respectively give the highest weight vector of the weight

(Y + Al9 7f) and (ffi-u(Y + A& Y

with respect to (o(2/), o(2r + 1)).

List 3.2.DD(^

We make the identification

, r , j\p l . - . r - r . - . - l

/ -.V
Xr 31 =

f

i

L

DDDDB-
DDDB- •
DDffi • •
• H . • •

• • -H

1

4— ¥ '•

I

n-
•

D-

• .D

. -n

l~5pQnH71
1 DDDB- • 1

iSS?:: I
L •••!.
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put

Then the vector

(fk,=. ^ • i for to,,) = f> $L(f) and **(?)
respectively gives the weight vector of

(Y, 7*) , (<7,_ l f I(Y), Ff) and (7, ar_lsr(^)) .

for 3o2o we by f~] the in the

algebra which a up to the ± 1. Moreover,

(t|): In we n = 0 0 = 1, n 4- 1 = s9 etc (see
"Notations for List 4.2"). B

3.2. we the above in Case AA.
(I) First suppose r = 1. In this Theorem 3.2 as

(1)

Here 7(p) e ^ j is the Young diagram of p nodes, Aj

(1 < j < I — 1) is the we put v40 = 0 = At. For
that corresponds to the Young Y(p\ List 3.2=AA its vector
as

(2) fLr(p),=. ^/- ! = ^+i'' ^i e A'^C^T) -

We can say, "to gwe the highest weight vector of each Young diagram Y, just think Y
as the Maya diagram ([KNTY], [SN]) of the form". That is, let us introduce
the set of Maya (of I x r -component)

(3) mlr := {(mjj^jzi mj.P = ° or m}
l<p<r

a pure spinor |M> for M e $Rlir by

(4) aB / f r 3M = (mjJyfpHM>:= f] ^, e A (»&) -
mJ-,jp = Q

Then in this of r = 1, we can the above vector (2) as
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To see that this vector (2) or (5) is actually of weight Ap and is a highest weight
vector, use 3.1.1(11) as follows.

(6) S o L(0j)Wp+1 •• • M = ̂ p+l - to + SUP+i tfWi ' ' ' to-i(- ^J
s)to+i ' ' ' to

-to,+r--to ( i < j < p )

(7) S

= 0 (1 <j < / - ! ) .

Noting that the sl(/)-action preserves each /\S(W^7) (Remark 3.1.1), we find that
(1) is nothing but the decomposition into the homogeneous parts,

(8) f\(Wv) = ©p AP(W27) , A'""(^7) * LS*VP) ® Cp_p_i/2 .

Hence together with the sI(/)-module isomorphisms /\(W^) =± /\(C')* (3.1.1(10)) and

AP(C')* ^ A'~"(c')> we also §et

(9) A(c') = ®P A"(c') . Ap(c') =* L

This corresponds to the identity of symmetric functions

where sp stands for the p-th fundamental symmetric function.

(It) Next suppose that / = 3, r = 2. In this case the components are param-
etrized by the set of Young diagrams

/ 1 1 X MI fnn nn DD D[=] DD D" DD DIS DSi j ^(11) oy = <nn, an, an, DH, DH, nm, mm, nm, mm and mm = d>
^ *^ ) an ass H DP ^n an mm mm mm mm

Hence, for example, /\4(W^) (2lr =12) has two components

(12) i/<3> ( °° : : , 4 - 3 • 2/2] ® Lsl(2)(° ; ; ; )

and

(13) n I ' , 4 - 3 • 2/2^) ® L5l(2)(?9 ; ' ) .

The highest weight vector for the latter component is

12\
DB\nm ) =

1
(14) 2

3

and has weight Q-s^ + 0-e2 + (— l)-e3 = 0^! + \A2 (resp. ( — 1 / 2 ) - e l + ( — 3/2)-e2 =



786 KOJI HASEGAWA

2At) with respect to sl(3) (resp. sl(2)), where {ej is the dual basis to {E\} (§1.4.2):

(15) B i -+ l /2~ l /2 - 0 ™-> V2+l /2 - l /2= 1/2
(15) DJ-* +1/2 -1/2-^0, •••__1/2 _ i /2- l /2 =_ 3 / 2 - "

3o3. Proof of Theorem 3.2

3o3.1. Except for the Case BB, the proof owes to Lemma 3.3 below. Let g = n_ ©
I) © n+ be a simple Lie algebra and its triangular decomposition, and g0 be the maximal
reductive part of a maximal parabolic subalgebra containing I). We denote the set of
positive roots of (g, t)) (resp. (g0, 1))) by A+ (resp. A$\ and the Weyl group by W
(resp. WQ). Then there is a Z2-gradation g = g0 © g1? where gx := g^ © g^ and g^ :=
©aeJ+\^ g^, called a Cartan decomposition. In particular ad(g0)(g1) c gla Let K be
the Killing form of g. Then K\QI x gt is non-degenerate and ad(g0)-invariant. Hence
we have an inclusion

(1) g 0 c = o ( g l J K ) .

According to this inclusion we restrict the spin representation of o^, K) to g0. We fix
the isotropic decomposition gx = g^" © g^.

Lemma 33. [P] ^4s a §0-module, the following decomposition holds.

(2) A£Ven (9D ^ ©we^.-gnw

(3) A°dd (81) ̂  ©w6^,sgnW=

^ := {w £ FF|w(^J ) c= A+} and p (resp. p0) denotes the half sum of positive roots of
A+ (resp. JJ).

Proo/. Because of the linear independence of characters, it suffices to prove the
corresponding character identity. Put

(4) ch Aeven (9r ) = ^ ml ch L9°(A) , ch A°dd (81 ) = ZA ml ch L*°(l)

with mf e Z>0. First we assert

(5) m} = 0 if m f > 0 .

Indeed, if not there is an equality A = ju of weights for some A e P(/\even (g^)) and
/^eP(A°dd(gr))- Here P(-) denotes the weight set. Putting J+ \J j = {j8l5 ..., j8n},
A = ju means

(6) ^!& + - + sJJ = ̂ (sift + -• + siA)

with sj9 s- = ±1 and st ...sn = 1, si ...s^ = — 1. By our assumption for g0 there is
only one simple root a j € A + \AQ. We have A+\AQ = {L n^e A+\HJ = 1}. Hence
expanding /?/s in simple roots and comparing the a/ coefficient, we have a contradiction
and therefore the assertion.

Next we compute the alternative sum of characters,
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(A(9D - <8keA+\*S A(C9-.) ® Cl as a ̂ -module)

= £we^ (sgn w)

(Weyl denominator formula)

,'^W(w(p)-p0+po)-po

= 2weFKi (sgn w) ch L9o(w(p) — p0) (Weyl character formula) .

In the last equality we used the fact that w(p) — p0 is dominant integral with respect to
g0 for each w 6 W1 . If we put this

= ZA nl ch L9°(A) - EA nl ch L9o(A)

with wf > 0, now we have only to show mjf = n£. Note that nf = 0 if nf > 0. Then
from this property and (5), mf = nf follows. •

Proof of Theorem 3.2, Cases AA, CC, DB and DD. We put

fsl(/ + r) : in Case AA,
(8) g := J $p(2l + 2r) : in Case CC ,

[o(L+ R) : in Case OO .

Then in these cases we observe that the inclusion gL©c^ <= o(JV) in 3.1 coincides with
what introduced in (1): if we take g0 = gL © cj^, then gx ~ CN ^ WN. Hence thanks to
Lemma 3.3, we only have to describe the coset Wl explicitly in terms of Young
diagrams to get the irreducible decomposition. We can consult [JM, Proposition 1.1]
for this procedure; the idea is to use the following bijections.

Fact 3.3.1. We have the following commutative diagram of bijections of sets.

Y = (yj)l
j=i := (l + j- w(7))= 6 9

(9) SI+r/S, x ® r 9 w Q

Here the representative w is assumed to satisfy the conditions

(10) w(l) < w(2) < < w(/) and w(/ + 1) < • - • < w(/ + r) .

Under this bijection it holds that sgn(w) = (— l)[yt]. As a corollary, it holds that

l\r\ •

Together with this statement and the description of the Weyl groups given in § 1.4
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we obtain the desired description of the coset Wl9 and this is what we can find in
[JM]. The statement for the highest weight vectors can be verified directly. H H

Remark 3.3.1. (I) The above correspondance (9) is nothing but the graphical
execution of the subtraction w(p) — p0 for Case CC.

(II) In the case A A, Lemma 3.3 specializes to the identity

z1? ...9zr)
l<p<r

of the gl-characters #y, which is also appear in [Mac, p. 35(4.3')].
(ill) Lemma 3.3 is a result of Parthasarathy [P, Lemma 2.2]. This type of

application of the character formula is independently noticed in [JM], which is our
startpoint of the present work. [Has].

(iv) Theorem 3.2(AA5 CC, DB, DD) can be elementarily shown by the Laplace
expansion formula of determinant (of course with the knowledge of character formula),
as we will do in the next paragraph for the case BB. H

Proof of Theorem 3,29 Case BBa Since g0 = o(2l - h i ) © o(2r + 1) does not
contain a Cartan subalgebra of g = o(2J + 2r + 2), Lemma 3.3 does not work in this
case. But then instead of 3.3.1(7) we consider

n\

where D8 is the Weyl denominator and N\ := D° - ch L°(A), to deduce our result.
Namely, we have

(2) TraceA(^-(2,+I)(2rti)) exp ̂ S ^ + JE

w/+r - wt~
l~r ... w,A -
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for rjp CP e C, where w7- = exp r\j and zp = exp £p. Here we used the Laplace expansion
formula of determinant in the following form, which is a consequence of Fact 3.1.1.

(3) detE^Ji^^+^i;^^ .

Now dividing both sides by D0(2l+1)D0(2r+l) we get the desired identity

(4) Trace^-(2z+i)(2r+i)) exp E ̂  +
p=l

§ 4. Dual Pairs of Classical Affine Lie Algebras

4.0, This section is the main part of this paper. In 4.1 we give a generalization of
Yamanaka's result ([Ya]) by using central charge calculations. In 4.2 we describe the
main result for classical nontwisted affine Lie algebras. We prove them in 4.3 ~ 4.4.

4.1. Definition of representations

We retain the notation in Section 3. The inclusions

(1) L:g L ->o(WW and R:g R ->o(WW

(3.1.1~3, (1)(2)) induce inclusions

(2) L A : g A - ^o (^ ) A and RA: gR
A -> o(W

respectively defined by the formulae

L A (X(m)) := L(*)(m) |R A (X(m) := R(X)(m)
L A (CL) := Re0™* [R A (CR) := Lc0(^A '

where c°(]V)A (resp. CL, CR) denotes the canonical central element of o(JV)A (resp. QL> QR )
and jR (resp. L) is the positive integer given in Table 4.2. (The number R, as well as L,
is the ratio R := B0(N)(L(xl L(x))/59L(x, x) which does not depend on x e gL, x ^ 0,
where BQ denotes the normalized bilinear form of g (1.4).) For h = 0 or 1/2, let WJ*+h'~
be the space of creation operators given by 3.1.1(7), 3.1.2(5), 3.1.3(5) and 2.4(1 ~4), and
let SA = Sz+h be the spin representation of o(H^)A on /\(WN

z+h>-) (2.4(7)).
Then our interest is in the representations SA oLA and SA oRA of g^ and OR,

respectively.
The representations S o L, S o R of gL, gR are given by the formulae in Propositions

3.1.AA~OO, which are of the form

(4) S o L(X) = Z :ab: and S o R(X) = Z :a'b': ,

with a, fe; a', fcr e WV Then the representations SA o LA, 5A o RA of g£ , g^ are given
by the following formulae
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and
o RA(A"(m)) =

in End /\(Wjf +h '~). For example, Proposition 3.1.AA yields

(6) S A oL A (E ' /m))= S Z
fi+v=m

for the representation SA o LA of gl(/)A- Here ju and v run over Z + h (h = 0, 1/2) and
we followed the notation in § 2.4.

Both SA oLA and SA oRA define Virasoro module structures on /\(W^+ht~) by
1.2.2(3). We observe

Proposition 41. (i) [Ya]. Let DL(m) and DR(m) are Virasoro operators obtained by
SA o LA and 5A o RA through the Segal-Sugawara construction (1.2(8)). Then we have

(7) DL(m) + DR(m) = D0(]V)A(m) = Dclif(m) e End /\(Wf+h--)

for all m e Z.
(II) ^s a QL ©QR -module, /\(W^+h'~) decomposes into finitely many irreducible

components.

Proof. In view of Proposition 1.2, this follows from the central charge identity
or

(8) =
1

for each case (in case of (g£ , 9a ) = (gI(/)A
s sI(r)A), read the left hand side as 1 +

r(l2 - 1) [ l(r2 -
r + / l + r

Remark 4.1. The central charge identity (8) plays an essential role in the above.
The identities (7) of operators can be also verified by a direct computation, which will
be found in [Ya] for the pairs (g£, gA) = (sp(2/)A, sp(2r)A) or (gI(/)A

? sI(r)A). To show
(7) Yamanaka calculate there the Virasoro operators with using the Wick's theorem and
the operator product expansion. •

42. The irreducible decompositions

Now we are in a position to describe the irreducible decompositions of the o(N)A-
spin module /\(W£+h'~), viewed as a g£ ©OR -module through 4.1(4~5). Using the
notation in §3.1, we fix the space W^+hi~ (h = 0: Ramond sector or h = 1/2: Neneu-
Schwarz sector) of creation operators as stated in §4.1 and the triangular decom-
positions of g£ and g^ by 1.2.1(4). Recall the definition of LEK9(A, /) (1.2.3(1-2),
1.3.2(2), 1.3.4(4-6)).
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Theorem 4.2. (Main Theorem.)
As a gL © QR -module, the o(AT)A-spm module f\(W^+h'~) decomposes as follows:

Here h = 0 or 1/2, and EL , S£ , AL, 1R, R, L and w/iere Y runs over are given by Table
4.2. The complete list of the highest weight vectors with respect to §£ © §R ls given by
List 4.2.

In particular, /\(W^+h'~) admits an action of ££ x ZR (1.3.2(4)) and each pair
(EL * QL > SR * QK) forms a dual pair. ®

Table 42.

Case AA CC

K, L r, / r, /

N 2lr 4lr

ffc = 0 f(Y, [Y] - lr/2), 'Y fY, Y^
L ' R \h = i \(Y, [Y]),'Y IY.'Y

Y runs over Y e #iir_1 Y G ^>r

List of HWV's List AA List CC

Subcases of 66 BB DB DD

QL, QR o(2l + 1)A, o(2r + 1)A o(2/)A, o(2r + 1)A o(2/)A, o(2?

R, L 2 r+ l , 2 / + 1 2r, 2 / + 1 2r, 21

N (2/ + l)(2r + 1) 2/(2r + 1) 4lr

frr

Y runs over

List of HWV's List BB List DB List DD

Notations in Table 4.2. For o*c and (7, a) in Case AA, see 1.3.4(1 -6). a01,
(j,_u: 1.5.3 - 5(4). ^z: 1.4.3 - 5(3.1). <&ltr, [Y], Y1", 'Y: 1.4.1. Identification of Young
diagrams with weights: 1.4.2 ~ 5(3.3). H

List 4.2.AA

Let sjip (1 < j < /, 1 < p < r) be the orthonormal basis of the lattice Zlr =
©j.pZtj.p c= (f)0(2ir))* that are dual to Dj+lp

j+lp G t)0(2ir) (1.4.5(2)), so that we have
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S'J) = 6} and e.

Put h := 1/2 - h. For each element 7 = ^ i ^ j ^ i t i ^ p ^ r y j t p B j , p e Z'r + W*, where
1* :=SJ)P8J>P? we can assign a vector |y> e /\(W^h'~) defined by 8.1(5). Then
gI(/)A © sl(r)A-highest weight vectors are spanned by the set

yltp > > yltp > yltp - 1 for 1 < p < r)
yjtl > > yjtr > yjti - 1 for 1 < j < IJ ?

and the weight of \y -h M*> = \^,jip (yjjp + h)sjjpy is given by

for (gI(/)A, s!(r)A), respectively (see also Example 4.2).

List 4.2.CC

(A = 0): Under the identification

, r , j\p 1- • -r -r 1
1

Iggg"; - I = ( f )
J ' P " p = ± l - ± r

•n 'nnnn«-i
IODDB ' • |

i™« I I
°D i - • • • )

the highest weight vector of weight (Y9 Y^) is given by

(A = I): Under the identification

( r ^ j\p 1 . . . r — r- - • —1
1

i
; D D B • o " I
! • • < » - » I •ti-

the highest weight vector of weight (Y, *Y) is given by

List 4.2.BB*

(A = 0)**: Identify Y e ^r with f e Mat(2/ + 1, 2r + 1) as

j\p 1
— /

, r , :
r

'.., 3 ̂  = I

I

DDDDB-
DDDB- •
DDB- .
M M • « < >

. - °m

-1
^ 0

1

/

n

n
n
n

n

... r

n

n
. 8 o n

n
0

n

0
n
•
n
n
n
e

n

— r • .

n

n
n - -

rBdnc

1 BB o *
1 I'

• -1

D

0

n
• n

IB "°~~I
1 • °|

" 1

j. EJ_
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and define ff^(Y), a^(Y) e Mat(2/ + 1, 2r + 1) by

j,P := YJip

Then the vector** (Y[y. =m ^,p(Mo))' 1 f°r eac^ °f the matrices

/v \ _ y /SL /y\ ^R /y\\yj,p) — -1 ? ^oii1 / ? °oi\ J / 3

respectively gives the weight vector of weight

(Y + 4, 7f + v4 r), (4*1(7 + At), 7
f + Ar), (7 + ^|5 4

Li(^f + A)) -

(h = i): 7 e <% with f e + 1, 2r + 1) as

j\p I • • . r 0 -r • . . -1
1

I
«-> 0

— I

-1

and put

IDDDH^
.

l [ : 3So ,

Then the vector (Y[y. =0 \l/j'p( — i))-1 for each of the matrices

(y),p)=Y, ^(f), oj^f), &^(

respectively gives the highest weight vector of weight

List

(A = 0)**: 7 e WltT with 7 e 2r + 1) as

j\p 1 • • - r 0 -r 1
i • • • n n n • • • n

— 1 n • • • n n n • • • D
1 n ° • • n n

DD

I"
I

n n |_ • • • HJ

and 4i(?)9 ^L-ij(?) and of^f) e 2r + 1) by
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respectively. Then the vector**

(f
for

(yj,p)=Y,

respectively gives the highest weight vector of weight

(A = }): Identify Y e <3/ltT with Y e Mat(2/, 2r + 1) as

j\p 1 ... r 0 - r . - . - l
1

*i. r9y = /
L

IDDDB- ° I
DOS- •

and define

Then the vector

for

respectively gives the highest weight vector of weight
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List 42.DD*

(h = 0)**: Identify Y e <&ltr with Y e Mat(2/, 2r) as

1 . . . r -r 1
n . . - D D • • • n

n - • • n n • • • n

-/

-1
1 n • • • n

IDDD
DDB-I m m ' •

and define

Then the vector**

(fl.

for

(yj.p)=Y,

respectively gives the highest weight vector of weight

(h = J): Identify 7 e ^Zjr with 7 e Mat(2/, 2r) as

J\p 1 -.. r -r 1
1

IDDDB* • I
DDB- •

I B B - • • I
L_ J.-J.-5J

and define
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Then the vector

for

(y,.,p)=f,

respectively gives the highest weight vector of weight

Notations for List 4.2. H As in List 3.2 we use the notation f|, and identify
n = 0, 0 = 1 so that n + 1 = E, etc. For example, read List 4.2.DB, h = 1/2 as follows:
for the diagram

j \p l - . - r 0 -r—1
1
I

-1

H
I DDDHH I Sj

^ ^ff ,,-, ~
= Y e Mat(2/5 2r

I m
m
m (/ = 3, r = 5)

e Mat(21, 2r 4- 1) are respectively given by

IDDDHffll
n

D
g]
H

H
IDDD^HI [S

H

S
01

IDDDHBI B
H

EBSStMM E3
S

HHfflSQ H

(unchanged)

H The weight (rather, its classical part) of each vector in the list is given in the
manner: (weight for §£, weight for g£).

H We also use:
(*) In these cases, for a diagram automorphism a e Autc I* (§§1.5.2~5) and

I e Z>0 we define a(l): fy* -> I)* by

(j(A + M0) = *(0(>l) + ^o modO for 1 6 If .
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(**) In these cases (h = 0), we define ^/j|?(^0) as follows.

"<® = i f^ (0 )eW5f- -
-l) otherwise S

Remark 4.2(1). In contrast with the finite dimensional case, there are some ir-
reducible integrable highest weight modules that does not appear in our module
/\(W^+h'~): L0(2r)A(yi0 + Ar] for example. We have to consider then the tensor module
/\(W£"~) ® f\(W^12"') to obtain all such representations of o(^)A.

On the other hand, for sI(r)A and sp(2r)A it is remarkable that all level I irreducible
highest weight modules appear in /\(W^h'~) and /\(W^ht~) respectively.

(ii) By the well-known linear independence of characters [Kac, Proposition 13.9],
Theorem 4.2 is equivalent to the character identity

(1) ch A (Wz+h,-frDti(Q) + L(u) + T'D*A (0) + R(v)) = Sy z* (T, u) • (T', v) .

(Hi) The explicit form of decomposition (0) in Theorem 4.2 for (Case AA, h = 0)
appears in [JM, Proposition 2.5] as the character identity (1). For (Case CC, h = 0),
(0) is given in [KP1], to which we partly owe the simplification of the proof of Theorem
4.2 in this paper. H

Example 4.2. Here we will explain the highest weight vectors for Case A A, h = 1/2
in a graphical fashion. As in Example 3.2 we consider the case of / = 3, r = 2.

Let us first introduce the set SR = $Rfr
+1/2 of Maya diagrams of (I x r)-components

and the assignation 9W 3 Mi->|M> e /\(W^1/2'~) from W, to pure spinors in the
Fermion Fock space as follows: we put

(1) m := |(^.p(v))v^z+i/2 ̂ r TO''*(v) = Q (v<<Q)9 %p(v) = B (v » o)

and

(2)

The set {|M>|M e m} forms a basis of /\(W^1/2t~). For example,

, nn nn nn mm mm mm

••• -5 /2 -3/2 -1/2 1/2 3/2 5/2-

J\P 12
nn

( 4 ) • • •

••• -5 /2 -3/2 -1/2 1/2 3/2

A
DD DD DD HE Llil Bffl • • • ) = 1 6 A
DD DD DO BH ' x

nn „ nn nn us u^ \
nn 2 an nn mm mm-- ) =
nn Q nn nn as mm

12 12
,-v i nn ^ nn nn QS
(5) ••• nn 2 an nnnn ^ nn nn ^0n aa

--5/2 -3/2 -1/2 1/2 3/2-
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and so on. Hereafter + means that we will forget the information of the ordering of
fermion operators ^pj(v) in the expression.

Now we can express the highest weight vectors graphically. We consider the
highest weight vector |(}^)> := \^Jtpyj9pBjtpy e A WZ2+1/2'~) (12 = 2/r) given in List AA
that corresponds to the data

j\p
1

(6) = ?
m + 1 m
m + 1 m (meZ),

m m

for example. Forgetting the + , the definition (8.1(5)) of \(yjip)y reads as follows:

for m > 09

(7)

m + 1 m
m + 1 m

m m

and for m < 09

(8)
m + 1 m
m + 1 m

x n n +i
Formulae (7) and (8) are easily interpreted in of Maya diagrams, we have
the following expression (9).

f m + 1 ml "• m~* ^ + 2 m + f-
/m 1 \ aa aa DB BB BB \ , ^(9) m + 1 m ) = + • • • aa • • • aa DB BB • • • BB • • • > (m E Z)

/ ~ DD DD BB BB BB /
[_ m mj

With the help of Maya diagrams, the action of the auxiliary automorphism
dfyc e Aut(/\(Wfl^

1/2'~)) to the highest weight vector can be also described as follows.
(See §8.2 for the definition of a^c. Similarly to 1.3.4(9) it is as a composition
of some "translation" Ty~ and "index changing" (1, . . . , / )~ associated to the cycle

(10) ff*

m H- 1 m
m + 1 m

m m

m 4- 1 m
m + 1 m

m m

. ^^ ^ «,= +T + o(l ? 2, 3)— eu+sl2 \ /
aa aa DB HH mm

• a n - - - aa DB
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m-\
DD an ^ mm

•DD--- an J DHan an DH

m+
an an an

•an--- no an
an an an

m+ 1 m+ 1
m + 1 m
m + 1 m

For other cases (CC, 66) of Theorem 4.2, we can similarly express the highest
weight vectors by Maya diagrams. The graphical data (Yj~p) of highest weight vectors
given in List 4.2 are then interpreted into the ( —fo)-mode part (mjtp( — h)) (h = 0 or 1/2)
of their Maya diagram expressions

43. Proof of Theorem 4.2; in cases of h = 0

4.3.1. Let 9 = 90 © 9i be a simple Lie algebra and its Cartan decomposition in
Section 3.3. Putting

9oA := 9o ® C[f, r1] 0 Cc and gf := 8l ® C[t, r1] ,

the affinization gA also has a Z2-gradation gA = QQ © gf and QQ acts on 9iA w^tn

preserving the standard form ( | ) ([Kac, §6.2]). Choosing an isotropic decomposition
9f = 9 i A ' + e 9 i A ' ~ given by

we consider the Clifford algebra ^(gf,( | )) and its spin representation on /\(9iA '~).
Then oCgJ* acts on /\(gf '") as in Section 2. On the other hand there is a Lie
algebra monomorphism

/A :9oA^o( 9 ir induced by JA(x(/c)) := I(x)(k) ,

where /:g0-»o(9i) is the inclusion map (3.3.1(1)). Composing these maps we obtain
the representation of 9^ on /\(gf '").

Lemma 4.3 [KP1, Proposition 1]. As a Q£ -module,

where Wf := {w e WKA |w(^J) c ^+}> ^A denotes the Weyl group of ^ , and p (resp. p0)
t/ie sum of fundamental weights of gA (resp. g£ ).
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Proof. We can prove this similarly to Lemma 3.3, if we suitably modify the
notions there. ffl

Proof of Theorem 4.2, Case AA, CC9 DB and DD for h = 0. In these cases we
can derive the theorem similarly to Theorem 3.2 for the Case AA, CC, DB and DD,
using Lemma 4.3 above. The fact that List 4.2 actually gives highest weight vectors Is
straightforwardly verified. E3

4.3.2. As for the remaining case of Theorem 4.2 we prove them by case-by-case
verification of corresponding character identities. For that purpose we will utilize the
"complementary decomposition formula" obtained by JImbo-MIwa [JM, Proposition
2.4 and Table II].

Proof of Theorem 4.2 for Case BB, h = 0. We have

(1) chf2/+1)(2^1)(iD
c"/(0) + L(u) + R(v)) (see 2.4(15) for Dclif and 4.1 for L(u), R(v))

rt2T)J -^(T^. + J) -Mfo^ + i)

, nr-i 1 L=i

/7=1

^Y+Al,2r+l V f c > «/ *r f+>ir i2I+l

(Complementary decomposition formula [JM, Table II, (6)7°] for A = Al+r = (Al+r, 1))

T,1

ffoiO
WLr %Y+Alt2r+l

for e = Z tiyB-'j, v = 2 17,5%, where we put 1 := E Bp
p,
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u © v := Sj=1 uj&j + ZJUi vk&~l
k+l ,

and ^/+e := f"\t x @* = X^f"'^ (1-2.3(7 ~ 9), 1.3.2(3)).
Now (1) implies the desired identity

(2) ch,z
2m)<2r+i)W>L(0) + L(u) + T'DR(Q) + RW)

_y v < < r o i > K < H 2 l + l ) / v < a r 0 i > K O ( 2 r + l ) / , x
- ^ye^,r Xy+^,2r+i 1T' u) *rt+.ipf 21+1 IT , v) ,

where we abbreviate DL(0), DR(0) for lK(0), D^(O) respectively. H

4.4. Proof of Theorem 42 In of A = 1/2

We need the following formulae for the cases of h = 1/2.

Lemma 4A The following identities hold for /, r, k 6 Z>0, Fe^ r 5 A 6 P+(r), T, M,
Uj £ C, Im T > 05 u = Zj=1 M,- .̂ anJ 1 := Zj=1 Xs j (X = B, C, D according to the formula
(B), (C), (D)).

(A) 0

^ (T,U)
LJ -J -f U(T, Uj + f J - ' - -

(C) xf,(r } (T, is) = ^Zr/4e[S rw-]

Proof. (A) follows from the definition (1.5.1(4)). As for (C) and (D), together with
the Weyl group invariance, the diagram automorphism covariance

(1) chLU)(A) - chL(aw(A))(aw(h))

for the choice w = f . I yields these formulae. Use the formulae for

aw in 1.5.4 ~ 5.

w

0 1 ... /-I /
Case (C)

Proof of (B) is complicated a little. We write the diagram automorphisms (§1.3.1,
§ 1.5) of D\v (resp. BJ1}) as ag := (J0jl, a? := (7,_ l f l, cr^ := crw (resp. ^ := (Toa). Fixing
r € Z>0 and writing (A, k) := A + kA0, for ff.D = <j<f and a^ we define <J.D = GQ,
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a.D(l, 2r + 2) = (fi?(X)9 2r + 2) mod O (A 6 I)*0(2I)) ,

and also define fig: I>*0<21+1> -» I)*0<2<+i> by

ctf (A, 2r + 1) = (fig(Z), 2r + 1) mod CS (1 e f)*°<2m>) .

We identify the weight spaces and lattice parts of affine Weyl groups for o(2/) and
o(2/+ 1) by employing the expressions in §1.5.3 and §1.5.5: }f(2l} = f)0(2m), M0(2i) =
Mo(2/+i) Then putting pj ^.g.] := z ^ and noting g^2I) = 0M°(2Z+1) (1.2.3(8)), we deduce

the disired identity as follows.

y \»Ul /
AF,2r4

fl

0(2))" _
f(<7»(y,2r+l)+^T ' U

T, — M;

{y^T-2[i-]+ixs;,,,2r+2)(T, u)+y^

(Lemma 4.4(D))
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i \rn FT *7w
' Md(T,H, + i)

,°(2Z)A <V .^ _ 0(20A /v B1\

(1.5.3-5(4))

(1.5.3-5(4))

= (the right hand side of Lemma 4.4(B)). H

Proof of Theorem 4.2, Case AA, h = 1/2. Theorem 4.2 of Case AA (h = 0) means
that the following identity holds,

1N

Uj + Vp + 2j

where a = (TC};c (1.5.2(4)), 11 = *LUjEs
j9 [u]:=I,Uj, u|^*:=u-^l, and n = ZvpE

p
p is

assumed to be Trv = Zt;l, = 0. Substituting u,- by w7- — -, Lemma 4.4.(A) and the

formula 01 T, u - | J = e[w/2 - T/8]0(t, u) (1.5.1(13)) yield the desired identity for the

Case h = 1/2,
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Proof of Theorem 4.2, Case CC, h = 1/2. Theorem 4.2 of Case CC (h = 0), and
Lemma 4.4(C) yield the required identity as follows:

(4) ch^1/2(TDCii/(0) + L(u) + R(v))

= FL <;<M <P<r f 0K «/ + VP + 2 W*. UJ ~v" + 2J'7(T)~2)

= UJ.P (W-",-] ,̂ uj-l + vp + ^0(t, Uj - \ - vp +

= 9"*e[-£ ru,] Syefll-r Z??<2i'A T, S (uj - C^ 2 r ) A ( r , y)

rs*.P ̂ ')A(T, -S Ui+1_,C^Z5;t(2r)A(T, y)
5

r.»i., ^,2')A(T, u)XfJJ?r)A(T, v) (n = E'i «jC^, v = ^ !;PC%) . B

o/ Theorem 4.2, Case BB, fc = 1/2. For any u = Z't Uj&j, y = Z^ rpB%,
we have

(5) ch?2TtfK2r+1)(TDc"'(0) + L(n) + R(y))

*)2-ri
i>U«— + 1
2) \ ' J p 2

((r4)^]fl-^^
n

T, -( — + IlJ - », Ifll T, -

\( \\ l '
= (_i)^i)^ar+i)/8e (r + i ) 2 «J n

L\ 2/ J J-i
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x &*&(?, -f^—1 + ujevJ/S>B l>' 'K -^—1 + uW'"(T, v)

([JM], Table 11(6)7° for A = A0 and ^)

(Lemma 4.4B)

where ^ denotes the normalized denominator (1.5.3(3)). •

Proof of Theorem 4.2, Case DB, h = 1/2. By the h = 0 case and Lemma 4.4(D),
we have

(6) chf^2
+i)(tDcn/(0) + L(u) + R(v))

T\ 1

= ?'<
2r+1"8e[(2r + 1) E; «;]

= Zr.*.r zi,K
+la l )A(t, u)^j K °(2r+ir(T, v)

for any u = I\ UjDJj and v = Zrj upB%. ffi

Proo/ of Theorem 4.2, Case DD, h = 1/2. The result for the h = 0 case and
Lemma 4.4(D) yield the desired identity
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(7) ch^r
ll2(xDclif(Q) + L(u) + R(v))

l\*' ^ l\ <^2•t,UJ-Vp + -*'"M

, -2 «, + V^T, v)

where u = !,( UDjj, v =

§ 5. An Application to the Duality of Branching Rules

5.0. In the context of seesaw pair (§5.1, [Ku]), we give a simple explanation and gen-
eralizations of Jimbo-Miwa's duality in §§ 5.2 ~ 5.4. In § 5.4 we find a relation between
the diagram automorphisms and the inclusion g ® C[t, r1] © Cc =) g <g) C[fm, rm] © Cc.

Sol. Seesaw pairs and dualities

Definition 5.1 (Seesaw pair [Ku]). Suppose that there are two dual pairs (§0.1)
(Al9 A\) and (A2, A'2) acting on the same module F. After Kudla [Ku], we say the pair
((Al9 A\\ (A2, A'2)) of dual pairs form a seesaw pair if they satisfy the inclusion relations

(0) Al z> A2 and (hence) A\ c ^4'2

in End K We will write this situation as follows.

A! ID A2

(1) + +

A\ CL A'2. m

As we shall see below, one seesaw pair provides us one duality of branching rules,
i.e., an isomorphism between branching modules.

By Irr A we denote the totality of isomorphism classes of simple ,4-modules, and by
L^ the representative for A e Irr A. Recall the definition

(2)

of a branching module (A e Irr Al9 A 6 Irr A2\ 0.2(1), 1.2.4(3)).

Proposition 5,1. Assume the complete reducibility in the above situation (1), and
write the irreducible decompositions of V as a Aj © Aj-module (j = 1,2) as

(3) ^ S e , ! ) ® , , ,
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where Ij (resp. ^: Ij -> Irr AJ9 Aj: Ij ->• Irr A]) are suitable index sets (resp. suitable
injections).

Then for a e 7t and jS e I2 we have the following isomorphism between the branching
modules ("duality"):

(4)

Proof. Consider F as a ^ © A\- (resp. ^42 © ̂ 2") module, and then decompose
it with respect to the subalgebra A2 @ A\ a A± © A\ (resp. <=.A2®A'2). Under the
assumption of the complete reducibility we respectively obtain the followings:

(5) ^©.^Lfo.,®^.,

and

(6)

Now we compare the coefficients and get

(7) E(A, ID ^2)Si(a) ® zfli(a) - B(End V ̂  A2® A\)^

where zl S := < ^ , , . x . This implies the proposition.A (0 (otherwise) F F F

5.2. Finite dimensional case

We will present some typical ones of seesaw pairs on spinors and the corresponding
dualities.

From now on, we abbreviate the dual pair (C[Z] x [/(g), C[Z'] K U(Q')) as
(Z x g, Z' x g') (or (g, g'): when Z and Z' are trivial).

(aO). (gl(/), sl(2r)) and (sp(2/), sp(2r)) on A (»&)•

Theorem 3.2 says that these two pairs form dual pairs in C(W4lr) ~ End f\(W±lr).
Moreover they form a seesaw pair :

sl(2r) ^ sp(2r)

(1) + +

c sp(2/).

After the notation in 3.2 these inclusion relations are realized by the following embed-
dings (see [JM § 1, (1.3) and (1.4)]):
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(2)

(3)

Associated to this seesaw pair, we obtain the following duality as a direct consequence
of Proposition 5.1.

Corollary 52m ([JM, Proposition 1.3]).
For Y e &li2r and y E <3/ltf, we have

B(sl(2r) ID sp(2r))$ ^ B(sp(2/)

(bO). Next we consider the pairs

(4) (Sl(m + 4 sl(/)) and (gl(m) 0 gl(n), sl(l) 0

acting on /\(W^27(m+n)) — A^^Tm)® A(^2i»)« Each of them forms a dual pair on
(m+fi))> as f°r ^e latter pair which fact is easily seen as follows.

(5) A ( WW.>) ^

L9l(n) * - l

r,

They form a seesaw pair

gl(m + n) =3 gl(w) © gl(/i)

(6) + +

sl(/) c sl(/) © sl(/) (: diagonal embedding),

and Proposition 5.1 yields

Corollary 5.2b. For y e ^>m, y'e&i^ and Ye^m+n, the following isomorphism
holds.

B(gl(m + n) ID gl(m) © gl(n)):f ty' ^ B(sl(/) © sl(/) ̂  sIG))^, H

We present other examples of seesaw pairs in Tables 5.2a and 2b. If a seesaw pair
include o(2n) as its constituents, then we have to take the diagram automorphism
^2n = < ^ n - « > into consideration.
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Table 5.2a

sl(r) =3 Sr K o(r)

(al). + + (on

gl(/) cz S2J K o(2/)

E4r x o(4r) =3 sp(2r)

(a2). + + (on

S, K o(/) c= 5p(20

sl(/m) z> 0msl(0 ID sl(/)

(a3). + + + (on

sp(2/m) ZD 0msp(20 z> sp(2/)

(a4). + + + (on A (^7

sp(2n) cz 0msp(2n) cz sp(2mn)

Sta tx o(/m) =3 0m Z, tx o(0 z) Zt K o(/)

(a5). + + +

Sn K o(«) cz 0m 2n K o(n) c Smn K o(mn)

Table 5.2b

sp(2m + 2n) => sp(2m) © sp(2n)

(bl). + +

sp(2/) cz sp(2/) © sp(2/)

(on /\(W4-l(m+n)) ^ /\(W4-lm) ® A(W&))

SM+N x o(M + AT) z> (EM K o(M)) © (2W K o(JV))

(b2). + +

ZL ix o(L) c (ZL ix o(L)) © (SL ix o(L))

(on

Notation for Table 5.2. Here we put Z2n := <(Tn_ l j n> (1.3.1, 1.4.5), S2n+1 := {id}. H

Remark 5.2. The versions of Corollary 5.2b for the above seesaw pairs show that
the works [Ko], [KoTl] and [KoT2] are mutually in the same depth in the sence that
if we know the branching rules of the tensor product representation ([Ko, Theorem 3.1],
[KoTl, Cor. 2.5.3]), it also means that we know the branching rules with respect to the
restriction to the reductive subgroups of maximal rank ([KoT2, Theorem 2.5]). For
any type of classical Lie algebras Koike and Terada generalized there the celebrated
Littlewood-Richardson rule, which gives an exact algorithm to compute the multiplicity
dim B(gl(n) © gl(n) ID gl(n))£ in terms of Young diagrams. To consider their affine
versions will be an interesting problem. H
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53, Affine case (I)

The seesaw pairs we present in §5.2 have their affine versions. They explain so
called "rank-level dualities" concerning with the coset Virasoro modules.

For example, as an affine version for (aO) there is a seesaw pair

sl(2r)A ^ sp(2r)A

(level I) (level /)

(aO)\ + + (on A (*£"•-))•

Z locgi(/)A c: sp(2/)A

(level 2r) (level r)

Here the inclusions sI(2r)A => sp(2r)A and gI(/)A <= sp(2/)A are what induced by 5.2(2)
and 5.2(3) respectively, and Z* stands for the lattice part M of the Weyl group of
sp(2/)A (1.5.4(2)), which act on gI(/)A c sp(2/)A as the automorphism given by 1.3.4(8).
This seesaw pair yields

Corollary 5.3a. (I) For 7, y e ^M, we have the isomorphisms of coset

B(sl(2r)A =3 sp(2r)A)p4 ~ B(sp(2/)A ID Z< x 9I(/)
A)^V[)F]:r)

^

(II) For 0 < p < r, tet ^p = ^ + v40 fee t/ie fundamental weight of sp(2r)A ^
(1.2.1(6)). rten fte sp(2r)A-modw/e Lsp(2r)A(^p) = Lsp(2r)A(^p; 1) is irreducible as a

-module.

Proof. (I) The complete reducibility for the above restrictions are ensured by
Lemmata 1.2(i) and 1.3.4(i) (at this point we need §1.3). Hence in view of Proposition
5.1 the problem is that whether this is a ^Vmodule isomorphism, which is guaranteed
by Proposition 4.1(i). Indeed we have (denoting DflA(*) = DQA)

£>sl(2r)A _ £}Sp(2r)A _ /pgI(I)A _j_ £)sI(2r)A\ _ /pgI(Z)A

(ii) Let r = 1 in (i). Noting sp(2) ~ sl(2), we have

for any 7, ye^u (see 5.1(7) for A\). Since ( t y ; l ) = ty + A0 (ye&ltl) exausts the
fundamental weights Ap (0 < p < l\ we conclude (ii). •

See Table 5.3 for other examples of affine versions. As in the above Corollary, the
complete reducibility for the seesaw pair there is ensured by Lemmata 1.2, 1.3.2 and
1.3.4.



WEYL RECIPROCITY FOR AFFINE LIE ALGEBRAS 811

The duality associated to the seesaw pair (bl)A is the following, whose special case
n = 1 is known by [KW] and [Ya].

Corollary 5.3k For ye&ita9 y'e<8fmtn, YeWl+m,n and h = Q or 1/2, we have an
isomorphism of coset i^it-modules

^ B(sp(2J + 2m)A ID sp(2/)A 0

where we put yh:=y* (h = 0); *y (h = 1/2) , etc.

Table 53a

s!(r)A z> ZA x o(r)A

(al)A- + + (on

Z' x gI(/)A c S£f K o(2/)A

S^ x o(4r)A ZD sp(2r)A

(a2)A. + + (on

SJA x o(/)A c sp(2/)A

5I(/m)A is ©msI(0A =5 sl(/)A

(a3)A. + + + (on

Zn K gI(n)A c ©"-Z" K gI(w)A c Zmn x gI(mn)A

sp(2/m)A ID 0msp(2/)A =3 sp(2/)A

(a4)\ + + + (on
sp(2n)A c 0msp(2n)A c: sp(2/mn)A

S,Am x o(/m)A =5 0™^ K o(/)A ID S,A x o(/)A

(a5)A. + 4- + (on

ZM
A xo(n)A c 0mIn

A xo(n)A c S A
n x o

Table 5.3b

Zm+n x gl(m + n)A ZD (Zm x gI(m)A) © (Zn x

(bO)A. + +

(on A(w®ii) ^
sp(2m + 2n)A =3 sp(2m)A © sp(2n)A

c sp(2/)A © sp(2/)A

(on A(W2o£-)) ^ /\(W^-} ® f\(W?+h'-))

Z^+N x o(M + N)A =3 (Si x o(M)A) © (Sj{ x o(JV)A)

(b2)A. + +

££ x o(L)A c (S£ X o(L)A) © (S£ x o(L)A)

(on A(^M^))

Notation for Table 5.3. Here we put the group Z^ of diagram automorphisms
(1.3.1) as Z2

A
n+1 := <<70jl> (1.5.3(4)) and £2

A
n := <d0jl, dn_1)n> (1.5.5(4)). •
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Example 5.3, The seesaw pair (bO)A and (bl)A yield the dualities

(0) B(Z< x gI(l)A ^ (Z*-1 x gl(/ - 1)A) 0 (Z x

^B(sl(2)A ©*l(2)A

~ B(sp(2/) A z> sp(2J - 2)A

(/ = 2, 3, ..., 0 < p < I - 1, 0 < q < I, 0 < r < 1 and A0 := 0).

These branching modules are known to be isomorphic to

'*(Vi.,+i(0, c(l)) : if r = p + q mod 2
[0 : otherwise

as -^-modules ([GKO], [KW], [TK1, 2]). Here !/*(/!, c) denotes the irreducible left
yv$-module with the highest weight vector \h, c> (A, c E C) that satisfies

(2) (0) + |fc,c> = fc|fc,c>, z |A ? c> = c | / i ? c> ? d(m)\kcy=Q (m > 0) ,

(see Notice 0.5) and we put

o) * r n - f c ._ + 2) - gg + 1)}2 - 1
(3) h,.q(l) - fc,_,.I+1_,(/) .- 4(/ +1)(/ + 2)

Then it is also known that lf*(h, c)'s for the parameter

exhaust the discrete series unitarizable yv*-modules ([GKO]), whose characters are
given by the following ([FFu]; see 1.5.1(0) for 0Z):

(6) ch L^fc^/), c(/)) = rj(i)-1{ez
li+i p, ,1+1 -1-1 ,(T, 0) - 0z.l+1 I+1 _,_! (T, 0)}

l/ + 2 g r l l + 2 Z + 21 U+2 g l ' U + 2 f + 2 1

where := ad — be.
c a

From (1) (2) we can also recover the following result in [TK2].

^\hs(y^s(Y}(l + 1), c(l +1)) : if IJL = l[7] - (/ + l)[y]

^(^-S(y),s(y)(' + 1), c(l +1)) : if /x = /[7] - (I + l)[y] - /(/ + 1)
: otherwise

Here we regard sl(/) as

lE* e »!/ + l | f l I + 1 = 0 = a'
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and define the Heisenberg system (1.3.3(1)) (Ze_L x CE£) = (Ze± x (CEj_)£) by

(where e, G (0 C£*k)*, £,(£**) := <5/),

and B(E±, E±) := 1(1 + 1), and put

s(Y) := ryx — ry2 6 Z>0 for F = Ty i> f J>2) e ®i ,2 • *

Remark 5.3. (i) For a classical affine Lie algebra Xz
(1) and its invariant sub-

algebra (X}k))ff with respect to a diagram automorphism a, see [JM, Table IV] for many
examples of B(Jffk) =5 (Xfk))ff)^ (unfortunately with some "extra factors"), for small level
A. In the next paragraph § 5.4 we will deal with such a restriction.

(ii) As for the so-called branching coefficient

diag

that arises as the character of the coset Virasoro module associated to the tensor
product representation, we can calculate it from the knowledge of string functions. See
[KP2, §4] and [DJKMO, Appendix C] for this point. •

5.4. Affine case (II)

In the previous section we deal with the dualities that arise as affine analogues of
the finite dimensional ones in §5.2. Now we introduce a new type of seesaw pairs
(§5.4.2. (6, 7), §5.4.3. (1, 2)) and the corresponding dualities (Cor. 5.4.2, 5.4.3) that do not
have their finite dimensional versions. We will derive them by intertwining between
the homogeneous picture representations (our constructions) and the principal picture
representations ([F2]).

5.4.1. The twisted construction of the Virasoro operators

In the sequel we need the following twisted construction of the Virasoro algebra
due to Kac-Peterson [KP2, §2.5].

Let g be a simple Lie algebra of type Xr, a an automorphism of g of order N which
preserves the normalized bilinear form B, and

(1) 9 = 0j6z/NZ 9; where g;. := {x e g|<r(x) = e2n^j/Nx}

the corresponding gradation. Let g f f A be the fixed point subalgebra of g = gB with
respect to the automorphism 0-A defined by

(2) <7A(x(n)) := e-2^-lnlN(0(x))(n) and aA(c) := c .

Then g f f A realizes the Kac-Moody Lie algebra g(^k))» where k is the least positive
integer that ak is inner ([Kac, §8]; in the following of this paper we only need the case
of k = 1.), and the canonical central element is given by Nc. Let g be the dual Coxeter
number of
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Lemma 5.4.1 [KP2, Appendix 3]. Let {eiff} be a basis of g that satisfies ei>r e gr

and B(eitf, ejta) = ditjSr+StQ. Then

1 dim gr

(3) D(k) = D3' (*) := — — - Z Z °ei>K

defines a representation of i^tt on any $*-module that satisfies 1.2.2(1) and (2) (see also
1.2.2(4) for ° • o)- on such a module we have

(4) lD(m\x(n)-]=~x(Nm + n)

for x(m) e gaA, and

(5) \D(m\ D(n}-} = (m - n)D(m + n) + §m+n

5.4.2e The restriction (sl(mr) A )<<Icycr> c sI(mr)A and its counterpart
) C[s, s"1] 0 Cc =3 gl(/) ® C[sm, 5~m] ® Cc

We go back to dual pairs. Fix /, m, reZ> 0 . This time we remark that there is
an algebra isomorphism

(1)

induced by the isometry given by the assignation

(2) W2
z
lr^

2 3 f(* + mii-^ ^>*>p([* + i) e

for 1 <7 < /, 1 < a < m, 1 < p < r, ^ e Z. Here \l/a(v) and ^rfl(v) (a = (j, p) or (j, a3 p),
v e Z + 1/2) are the basis of W?n

+1/2 such that

(3) (iH/4 ^(v)} = <5V,+v,o and {^fl(^)9 ^&(v)} = 0 = {<fcM ^(v)} -

The isometry (1) preserves the isotropic decompositions (2.4(2)) and hence induces the
following Clifford algebra module isomorphisms

(4)
and

(5) co: End /\ (W^- -) ^ End A ( ,̂1/2' ") •

Theorem 4.2 says that in the left hand side of (5) there is a dual pair

(6)
level r level I
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while in the right hand side so is a pair

(7) (Z<xgl(0/\*I(mr)A) .
level mr level /

Here and after we write gI(Os
A = gl(0® C[s, s"1] © Cc, etc in order to distinguish the

mutually isomorphic algebras according to the spaces that they act on. Moreover we
observe that

Proposition 5.4.2. (i) Under the isomorphism (5), the following inclusion relations
(8) and (9) hold.

(8) Z' x 9I(/)S
A =3 Z1 x 8i(/)

 A

(level r) (level mr)

(9) sl(r)A c=sl(mr)A

(level I) (level I)

i.e. the two dual pairs (6) and (7) form a seesaw pair.
(ii) More precisely, (8) and (9) are respectively given by the following:

(8') Z* x gI(/)s
A 3 (my, x ® smv) £>' (7, x ® tv) e Z' x gl(/) A

mc<-i c ,

(9') co|5l(r).: sl(r)s
A ^ sI(mr)A

Fp 6?) ca+mv i_>/ya F^ 6b Fp
£ q(& S r^ 1^0=1 ^ m+/3-a ^> ̂  «

C I— > C

(1 < p, g < r, 1 < a < m, v e Z, y e Z1) .

we identify E*p (x) £^ e Mat(m, m) ® Mat(r, r) with E*+mpp+mq e Mat(mr, mr) (1 < a,
j6 < r; 1 < p, q < m).

(iii) In particular, the image of the latter coincides with the fixed point set
(sI(mr)A)<ff^cr> c: sI(mr)A of the order m cyclic automorphism (ocyc)

r, where acyc denotes the
order mr cyclic diagram automorphism (1.5.2(4)) of sI(mr)A.

Proof. On A (PF2i
+1/2' -) - A (W2i^ -), we have

Ep
q ® s'+™ = Sj=1 2,6Z r^^ - i)^(oc + mn - ^ + i):

= Sj=1 2V6Z SJ=1 :^'(/? + mv - i)^,,(a + mn - ft - mv + i):

AZ]=1 IV6Z ZJ=.+1 :^^'p(v + i)^-,,-a,€(m(n - v) - i):

+ Sj=1 Xv e Z SJ=1 :^.*(v + i)^^a+.,,(m(n - v + 1) - i):

since (2) preserves the normal products. Together with verification of the corre-
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spondence of Che valley generators, this proves the claim (8). The statement (9) is
obtained similarly. S3

Remark 5.4.2. In case of / = r = 1, the homogeneous picture representation of
gi(m)A on A(^2m+1/2'~) induces that on /\(W?+1/2'~) through the isomorphism (1) - (5),
which is nothing but the so-called principal picture representation ([Kac, §§ 14.7, 14.13]).

m
To obtain the coset yv*-operators associated to the inclusion (9'), we shall clarify

the graded structure of its image. Let a be the inner automorphism of sl(mr) defined
by

(10) a(x ® y) := ExE~l ®y (x e gl(m), y e gl(r)),

^?and

modm

c sl(mr) ® C[n, i*"1] © Cc

the associated affine Lie algebra (§5.4.1). We have an isomorphism

e sl(m). Then

where E :=

~s 0
2

8

0 8m

, s :=

0 1

where 1 < a, jg < m9 1 < p, q < r and n e Z. Put F :=
0 ' - ' .

1 0
from Proposition 5.4.2 it is easy to see

Lemma 5A2. We have

(p o a)(Ep
q ® s") = Pn®Ep

q®un , (po co(c) = me

and

cp<

where Ad(P) ® 1 denotes the automorphism of (s!(mr)A)<rA giv

(13) Ad(P)®l :

and (sI(mr)A)<ffA 'Ad(p)®1> stands for the fixed point subalgebra of s!(mr)A concerning with
<TA and Ad(P)® 1. M

Thanks to this lemma we can introduce a yVa-module structure into the branching
module

(14) B(5I(mr)A => (sI(wrXA)<^>^
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by the difference of the twisted Virasoro operators

(15)

and

zi—>
/I(m2r2-l)
\ I + mr / + r

(In (15), we extend the isomorphism <p~l (12) of Lie algebras to that of (formally
completed) enveloping algebras.) Note that the branching module

B(Z< x 9I(/)S
A => ai-^Z' x 8I(/XA C^iT =* B(Z/ *

associated to (8') also admits the T^Va-action defined by

(16)
m

and

mr(l2 -
z h-> m 1

l + r ) mr + l

Now the seesaw pair (8, 9) yields the following duality (i).

Corollary 5.4.2. (i) For Y e ^>mr_1 and y e ^>r_i, we /iat;e t/ze isomorphism

x (SI(/) ® C[s, s-1] 0 Cc) ^ mZl x (gl(/) (x) C[sm, S~m] 0 Cc))^

o/ t/ze coset i^^-modules defined by (16) aw^ (15) respectively, where we parametrize
<<7cycr^ '-modules by ly e ^r_M according to the isomorphism (Prop. 5.4.2(iii))

(II) The matrix of the branching modules

B(*I(mr)A ^ (lm ® *I(r))A ) := (B(sI(mr)A ^ (lm ® sI(r))A

associated to the inclusion in Table 5.2.a3 factors into the form

= B(Z^ K (sl(/) (x) C[t, r1] 0 Cc) ̂  mZ? x (gl(/) ® C[tm, rm] 0 Cc))

(x) B(sl(r) ® C[r, r1] © Cc ID sl(r) ® C[tm, rm] © Cc)) .

Proo/. (I) Our task is to prove the equality D(15)(Jc) = D(16)(fc) of the coset yv*-
operators for any k E Z, which is valid similarly as in Corollary 5.3a if we can show the
identity

/i i \
(17) w -DQl(l^(mk) + -D5l(r)sA(mfc) - (DsW(fc) + (^(D^""^ (k))) = 0 .

ym m J

To prove (17), we have only to show that the left hand side above commutes with
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gI(/)A 0sl(mr)A, because Proposition 1.2(ii)-»(iii) works then since

^ t r(l2 - 1) t l(r2 - l)\ 1 t I(m2r2 - 1) , mr(l2

m 1 H 1 — I = Imr = 1 H h -
/ + r r + 1 J I + mr mr

holds. Using Proposition 4.1(i) we have

4-

p=l /

£ - + m y _ _a_

= i a = i v e z 2m 2 J'p

a — 1/2/ a

This expression enables us to compute the commutator in problem. Together with
Lemma 5.4.1 and (11) we know that the left hand side of (17) actually commutes with
gI(/)r

A © sl(mr) ,A , proving the statement.
(li) Discussions in this paragraph (5.4.2) can be summarized as the following

diagram.

((*): " = " means the isomorphism in Cor. 5.4.2(i).)
Here s!(r)s

A = sl(r)® C[s, s"1] © Cc, etc. and Ad P and c- denote the auto-
morphisms denned by (11) and by x ® sk H-» x ® (ss)k, B:—e2"'lm, respectively. Now
using (i), the assertion follows as
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B(sI(mr)A =.(lm(x)sl(r))A)

= B(sl(mr) A =) (sI(mr)A)<<^r>) ® B((sl(mr)A)<<T<-r> ^ (lm ® sl(r)) A)

= B(Z< x gI(/)M
A z> mZ< x gl(/)M

A
m) ® B(sI(r)M

A ^ sl(r)u
A

w) . •

5.4.3. The restriction sp(2/) ® C[t, r1] 0 Cc ID sp(2/) ® C[tm, rm] 0 Cc
and the diagram automorphism of C(1)

2r.

We can apply the method in the previous paragraph (5.4.2.) to other types of
classical affine Lie algebras. For example, here we will deduce the type CJ1} version for
Cor. 5.4.2.

We start with the isometry W^m ~ W^r
1/2 which is similary obtained as in

5.4.2(2). It induces the algebra isomorphisms C(W?lr
+1/2) ~ C(W%£12) and

(1) End A(^t+1/2'~) ^ End

Theorem 4.2 yields the following seesaw pair of affine Lie algebras.

(2) sp(2/)
(level r) (level mr)

+ +
(3) sp(2r)A c=5p(2mr)A

(level/) (level/) .

Then the corresponding duality is the following

Corollary 5.4.3 [Has, §3]. (I) ,4s coset i^tt-modules, we have

B(sp(2/) ® C[t, r1] 0 Cc ID sp(2/) ® C[r, rm] 0 C •

* B(sp(2mr)A ^ sp(2r)A)p4 (7 e 9^, y e 9r

where i is the Lie algebra homornorphism defined as follows.

A 3 C"q(a

(1 < a < m, /c 6 Z and 1 < p, q < r.)
we put

fp,* ._ /-'p+ma. f •— C nnd r<p,<z;q,P ._ /^p+miz,q+mp
^ q,p •— ̂  q+mp-> ^p,a;q,P -~ ^p+ma,q+mp ana ^ -— ̂

(II) When m = 2, z(sp(2r)A) = {x 6 sp(4r)A |aw(x) = x}, w/zere (Tw is the order 2
diagram automorphism of sp(4r)A = g(C2r

(1)) (§ 1.5.4).

w
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Proof. Together with Theorem 4.2 (Case CC, h = 1/2) and Proposition 5.2, (i)
immediately follows from the explicit description of inclusions (2) and (3). (The linear
map i is just the inclusion (2) and coincides with the restriction of the homomorphism
(5.4.2(9')) to sp(2r)A.) The proof of (ii) is given by the straightforward verification of
correspondence of the Chevalley generators. 9

From (ii), we can recognize Jimbo-Miwa's result [JM, Proposition 3.11, Case (5)] as
a special case (m = 2) of (i).

§ 6. Am Application to the Duality of Modular Transformation of Characters

6 Jo In 6.1 we summarize the S- transformation rules of spin module characters.
They are applied to deduce some "duality" on the transformation rules of affine Lie
algebra characters in 6.2. The author owes the contents of this section to Professor
Tsuchiya.

6Jc S-traesformatioE of

Recall the definition of ch^z+h in §2.4:

(1) Ch|'Z+/l := Cl lven^Z+h, - ) ± Chodd ( F rZ+h,-) ,

and the definition of the modular transformation for the function on I) = fy°(N) © Cc
Cd: XoA(h):=x(A(h)),

(2) A(-*d + tc + .) :
yr + 5 \ 2(yi + 5)J yi + 5

H; e SL(2, Z), T, t E C, u e I) 1. Then the well-known transformation rules for

0, 0 and *7(§ 1.5.1) yields
TO - ll

Proposition 6eL Under the transformation by S '-= t n L ̂  character ch^'z+ft

(ft = 0, 1/2; N = 1, 2) o/£/ze spin modules transforms as in Table 6.1.

6.1.

(a)

(b)

(c)

(d)

x l
1

-N = 1-
ch±-z+*

»7(2T)ij(T/2)

_ ^?IV^

, x IL/2

ch±,z+ft case

(e)

(0

(g)

(h)

h

1
2

0

±

+

-

+

-

— w — ̂

eUu + ?)
\ 2/

0(T, ||)

/ j\

-ioir,u + -j
^ /

-i0(T,M)

chJ-^oS

x l

x l

Xx,

x(-i)
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Namely, case (c) of Table 6.1 tells that

1,
(3) d* v T

and case (h) tells

( 1 2 \
--Do + "D1! + ̂ c\ = (-0 x ch+'z(iD0 + uD\),

where D0 := Dai/(0) (2.4(15)) and D\ = P _°1 6 t)0(2).

6.2. A duality of transformation rules of affine Lie algebra characters

In Theorem 4.2 we obtained the identities of following type:

(1) ch/\(WrZ+h.-)[ — iD0 + L(u) + R(v)] = S XLAL(y),tf(?5 u) #RAR(y),L(T> v)
y

(Remark 4.2(ii)). Here we use the notation in Table 4.2 and for simplicity write XL*>
#R.J. for x^ XSS Z*1 X9R respectively.

It is well known that the vector space spanned by normalized characters for
integrable highest weight modules is stable under the modular transformation (see e.g.
[KW, Lemma 2.1]). As is easily seen from the fact #(L£)< oo (that is, we can
consider the mean with respect to the Haar measure of E£) this is also true for our
characters ^ for the system ££ K QL of Case CC, BB, DB and DD in Table 4.2. Let
mL = (mL

Yfy)Y,yeyir and mR = (mR
Yty)Yiyewir respectively be the scalar matrices of the

^-transformation rules of the characters XL^L(Y),R an(^ ZRAR(y),L in such cases, that is,

Note that these definitions of mL and mR depend on the choice of fc( = 0, 1/2), since AL

and AR depend.
In view of Proposition 6.1, the identity (1) gives the following information on the

transformation rules of characters.

Corollary 6.2a. For the pair (g£ , g£) m Ta^/e 4.2 (fc = 1/2) CC, BB, BD and DD,
is a ""duality"

(3) Z m\yr#i.y> = &ytj> for y, y'
Ye®^

Proof. Remark that ch^'Z+1/2 is invariant under S (Table 6.1 (a), (e)). Hence
together with (1) we have the following.

(4) chj'z+1/2 = Z xLiLm,RX\m,L = ch^'z+1/2 o S = Z (x\(y),R o S)(/4(y),L o 5)
y y

= Z
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as a function on (f)9L© l)9R 0 Cc© Cd) ci*i)0(jV)A. The claim now follows from the
linear independence of characters. H

The group of auxiliary automorphisms EL x 2R in (1) is trivial for the Case CC.
Therefore the well known unitarity of the matrices mL and mR ([KW, Lemma 2.1])
allows us to write (3) as mL

Y,y = ^Rr,y in this case, where the bar denotes the complex
conjugation.

On the other hand, in the Case AA, unfortunately the space spanned by $*•$$ A

(1.3.4(14)) is not stable under the modular transformation. However a similar result
associated to the triple Cl A © sl(/) A © sl(r) A is of course available as follows. Note
that the functions Oz

jtn(i;, u)/n(i;) (Q<j<n) again spans a invariant subspace of the
S-transformation (1.5.1(8)).

Corolkry 6e2b. Define matrices m™, mL^^ and m*^^ by

(5) (Pj.Jl)°S = Zt,1m%(%l,h),

(6) zt('r°S = Zr^ |_irm\A.^r,

then it holds that

(8) ^Ye^i,.-! m

l<k<l

for y € ̂ -i,r, y' e 9ltr^ and 1 < j < r, where for Y e 9ltr^ c ^*sl(0 we define a(Y) by

ff(Y) + rA0 = acyc(Y + rA0) mod O .

Proof. Note that the character identity of Theorem 4.2 for Case AA can be
rewritten as the followings (4.4(3)):

(Q\ rhZ+1/2 —
- et,,-! [Y] + lk,lr

and then apply the argument in the proof of Cor. 6.2a. H

Remark 6.2. Besides the above results Cor. 6.2a, 2b which are based on ch^'z+1/2,
we can also obtain a similar results from ch^z: Table 6.1(h) says

(10) ch^zoS = (-Onch^z.

Here we apply this to the character identity of Case CC (h = 0) of Theorem 4.2, for
example. For that purpose we read from List 4.2 the information that wheather
each component LS^)A(7, r)® L**(2r}*(Y\ I) belongs to /\™n(W%n or /\M(W&-)9

and obtain

Now we apply the S- transformation to both hand sides and use (10), to deduce the
following: for y, y'
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(12) *,.*,.,(- l)[yt]M<',f

where Mj^'J? := m\^y, that is,

§ 7. Are There Affine Segal-Shale- Weil Versions?

7.0. Here we seek the symmetric algebra analogues of our dual pairs and obtain a
negative answer.

7.1. We have shown the spin module versions of Weyl's reciprocity theorem —
dual pairs on spinors — for classical, finite or non-twisted affine type Kac-Moody Lie
algebras (Theorems 3.2 and 4.2). As an application, the duality of branching rules,
or coset Virasoro modules, are explained from the viewpoint of seesaw dual pairs
(Section 5).

Now we consider the problem, whether there is a Segal-Shale-Weil analogue of our
results. Namely, if whether there are dual pairs of affine Lie algebras on affine Segal-
Shale-Weil module £f = £fn of sp(2n) A, which is constructed by Feingold-Frenkel [FF]
on the symmetric algebra £f of a certain infinite dimensional vector space. Since our
picture is quite similar to that of [Ho] and the literature cited there, which concern with
dual pairs on the Segal-Shale-Weil modules over sp(2/), it is natural to seek such
possibility. As in the finite dimensional case, we will consider the module £f = Sflr as
the module of the following subalgebras of sp(2/r) A :

(1)

(2) sp(2/)A 0o(r)A c=5p(2/r)A .

What we have to check first is whether the central charge identities, which play an
essential role in our previous consideration on the spinor cases (§0.3), are satisfied for
the above pairs (1, 2). Let us denote by ZQA the central charge of the Yirasoro
operators associated to the representation of gA on £flr (§1.2.2). The answer is then
the followings:

Lemma 7.1. There are no positive integer solutions (/, r) 6 Z>0 x Z>0 (resp. Z>0 x
Z>i) far the following equations (3) (resp. (4)).

(4)

Proof. Recall that the module £f is of level (—1) as the sp(2/t)A -module
(therefore it is not integrable [FF, (6.1)]). Taking the ratios of the normalized bilinear
forms of sp(2/r) and that of sl(/) and sl(r) into consideration, (3) reads as

- 1 - lr(2lr + 1) _ / -2r(P - 1)\ -2l(r2 - 1)
i l l ]T " ~, I I

- !+(&•+!) V -2r + l J -21
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which reduces to
(1/r - I//)2 = 3 - 1/fr .

Then noting (1/r — I//)2 < 1 for (/, r) 6 Z>0
2 we assert the statement for (3).

As for (4), the equation is equivalent to

- l - / r (2t r+ 1)_ -r(2f2 + l) -4l-(r2 - r)/2
-1 + (Ir + 1) " -r + (I + 1) + -41 + (r - 2) ?

which reduces to
(3/r + 21 - T + 2)(2I + l)(r - 1) = 0 .

Then we solve 3/r + 21 - r + 2 = 0 and get r = -2(1 + l)/(3/ - 1), which is impossible
for (J , r )eZ > 0

2 . •

Therefore we consider the coset Virasoro operators and conclude (unfortunately)

Proposition 7.1. For the pair

*l(r)A) (resp. (2'): (*p(2f)A, o(r)A))

o/ Lie algebras, assume the following condition (5) (resp. (6)). Then there are non-zero
Virasoro operators (i.e. a non-trivial action of the Virasoro algebra) which commute with
the algebra pair (!') (resp. (2')) acting on the affine Segal-Shale-Weil module £flr ((1), (2)).
In particular, (!') (resp. (2')) does not form a dual pair on £flr.

(5) 2r^l and 21 + r .

(6) r 9* / + 1 and 41 ± r - 2 .

Proof. Under the above assumption (5), the coset Virasoro operators D5p(2lr)*(n) —
(DQl(2l]\n) + DsI(r)A(?i)) (neZ) are well-defined and cannot be zero because its central
charge does not vanish. This proves the proposition for the pair (gl(/)A, sI(r)A). The
statement for (sp(2/)A, o(r)A) can be obtained similarly. IS

If (5) or (6) is not satisfied in each case, the Sugawara form does not define a
representation of the Virasoro algebra. See also [KK] or [Hay] for such a case.

§ 80 Appendix^ The Fermion-Boson Correspondence

8Ja In this appendix we review the Fermion-Boson correspondence ([DJKM],
[F2]) and give an explicit description of the action of the outer automorphism a*c in
the Case AA of Theorem 4.2.

§8lo The Fermion-Boson correspondence

We follow the notations in 1.3.3, 1.3.4, 1.4.5., and 2.3 ~ 4. Consider the homo-
geneous Heisenberg subalgebra

(1) i) A = (©2=i ©.6z CD\(m)) ® Cc

of o(2n) A and the lattice Z" = 0;=1 Ze,- c \f. Each y e Zn acts on $ by
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(2) ty(x(m)) = x(m) - dm^y(x)c (x(m) e f)) and ty(c) = c ,

and the pair Z" K $ forms a Heisenberg system (1.3.3(1)). Let e: Z" x Z" -* {±1} be
the 2-cocycle defined by

(3) e(ej9ek):=\ ] * { ~ f and fi(a + ft ^ + /x) = e(o, A)e(a, ^)e(/J, A)e(/J, /i) .
/ i H j ^ /c

Then for each let)* an irreducible representation of ZM K $ associated to e is defined
on the Fock space [FK]

(4) Lz" **(A; /) =* ^ • (X)^ CIV**, e-**, xk(l), xt(2), . . .]

by the formulae 1.3.3(4).
On the other hand, putting h := 1/2 — ft (ft = 0, 1/2), for each y e Zn we can define a

vector | y + fcl*> £ /\(W^n
+h'~) inductively by the rules

(5)

\y ± 8k + W*> := fife, 7)^±fc( + (y|efe) - h + «)|y +

where (eylefc) := (5^, 1* := S"=1£j = 2An and ij/±k(fj) = ^+k(^) are ^e basis of W^+h given
in §§2.3 — 2.4 that satisfy the canonical anticommutation relation

(6) (<

{^J(AiX ^4(v)} = 0 =

for 1 < j, fc < « and /x5 v e Z + h. Similarly to (5) we define a vector <y + hi* of

(5') <W*|:

<y ± sk + W* := <y + M*|8fe, y)^± k(±(y|fik) + h ± K ) .

From now on we identify /\(W^n
+h'+) with the right C(W^h)-modu\Q

W?n
+h'-C(W?n

+h)\C(W?n
+h) as in §2.2. Then there is a non-degenerate pairing

(7)

which is uniquely determined by <1|1> := 1 and

(8) <i.+ a |u_> = <tt+|aiO(

for any u± £ /\(W?+h>+) and a
Now we have the following Z" oc $-isomorphism, which is equivalent to the Jacobi

triple product formula.

Theorem 8.1. (The Fermion-Boson correspondence [DJKM]) Put

H(x):= Z Z nTlxk(m)D\(m) .
meZ> 0 1 <

we /zaue t/ie following ^-isomorphism.
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(9) 0: A (Wfn
+h'-) Z Lz"**(fa*, 1)

(1) (1)

Moreover 0& gives rise to a Z" ix ̂ -isomorphism if we define the projective action T^ of
aeZ" on f\(W?n

+h>-)by

(10) rr(2yPy |y»:=ZyPy-fi(a,y) |a + y> (Py e t/ft ® CEr1])) . P

This isomorphism leads to the "vertex operator representation" of ^+k(v). Put
d(z) := Z a(v)z~v-1/2 for a e W2n.

veZ+h

Proposition 8.1 ([F2] p. 77).

8.2. An explicit description of the automorphism o*c

An index changing induces the action of w E ®n on Z" and (x)k=i C[xk(l), . . .] by

w(ek) := ew(fe) and w(P(. . . , xfc(m), ...)):= P(. - - , xw(k)(m), - - •) ,

where P e (X)k C[xk(l ),...] and 1 < k < n. We will twist this action to have desirable
commutation relations with Ty's. Fix w e Sn, and give £„,(£/) e { ± 1} for 1 < j < n. We
can extend ew inductively and uniquely to a map ew: Z" -> { + 1} by the following:

(12) ew(0) := 1 and ew(y ± sk) := e(w(ek),

for any 7 e Z" and k = 1, . . . , n. Using this ew we can define w e Aut(Lzn*^(/l5 1)) by

(13) w(eA+yP(x)) := ew(7)ew(A+y) • w(P(x))

for e^yP(x) e Lznx^(A, 1). Then the following formulae follows by the definition.

Lemma 8.2. For any y e Z", ?ieZ> 0 anrf fc = 1, . . . , n, wT^w"1 = ew(y)Tw'J'y),
w(d/dxk(m))vTl = d/dxw(k}(m). m

These projective actions for M c Z" (M denotes the root lattice of o(2n), 1.5.5(2))
and ®n can be identified with that of the Weyl group of o(2n)A

? which is defined
through the integrable representation [FK].

Now we will give the projective action £c*c of the outer automorphism <jc*c (1.3.4(1))
of gI(/)A on /\(W?n

+h*~) that appears in Case AA of Theorem 4.2. We put n = Ir and
use the index (j, p) (1 < j < /, 1 < p < r) instead of 1 < k < n. Put y1 := SJ,=1 e l j /7 and
let Ty~ be the corresponding twisted translation operator associated to the cocycle e
(8.1. (3)) and (1, . . . , /)~ the twisted action (13) of the cycle

(14) S t e3(l, . . . , /) :(7,p)^(j +
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(any £w will do). Then identifying the Fermion Fock space f\(W^ht~) and the Boson
Fock space Lznx6(M*? 1) by @ in Theorem 8.1, we define

(15) ac* :=ry--(l , . . . , /r

Proposition 8.20 For any g e cjl(/)A, <rc*c satisfies

(16) ffe* • S o L(0) • 5*,-1 = S o Lfa* (g))

on /\(W?l*
h-~). It also satisfies

Proof. Apply Lemma 8.2 to the vertex operator representation given by Propo-
sition 8.1. M
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