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Spin Module Versions of Weyl’s Reciprocity Theorem
for Classical Kac-Moody Lie Algebras
—An Application to Branching Rule Duality—

By

Koji HASEGAWA*

Abstract

We study tensor products of the spin modules (i.e. the Fermion Fock space representations) for classical
(simple or affine) Kac-Moody Lie algebras. We find out that there are mutually commutant pairs of classical
Kac-Moody algebras acting on the spin modules, and describe the irreducible decompositions in terms of
Young diagrams. As applications, we obtain a simple explanation of Jimbo-Miwa’s branching rule duality
(i.e. isomorphisms between coset Virasoro modules) [JM], generalization thereof and the duality of the
modular transformation rules of affine Lie algebra characters.
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§0. Introduction
0.0. The purpose of the paper

The Goddard-Kent-Olive construction, or the coset space representation, plays a
significant role in realization of the irreducible unitary Virasoro modules in the discrete
series ([GKO]). In connection with this method several authors ([GKO], [JM],
[JM1], [KW], [TK1], [Ya]) have noticed that there exists a kind of duality among the
branching rules. Such duality interchanges the roles of the “rank parameter” and the
“level parameter”, as we will review in §0.2.

One of the purpose of this paper is to show that such duality is obtained as
a reflection of “dual pairs on the spin modules”—mutually commutant pairs of (affine)
Lie algebras which act on the Fermion Fock spaces.

In our main results, Theorems AFF and FIN in §0.1, we get the spin module
versions of the dual pair (S,, GL(n, C)) on the module (C")®™ (Weyl’s reciprocity
theorem [W]), where &,, denotes the m-th symmetric group. They are dual pairs
consisting of two affine (or finite dimensional) classical Lie algebras which act on the
spin modules. Here spin modules are the o(N)-modules that correspond to the end
points of the Dynkin diagrams and its affine analogues ([F1], [KP1]).

The fact that the spin modules admit various dual pairs has two applications.

Firstly we give a simple explanation of the duality among the branching rules
through the method which is called “seesaw pair” by S. Kudla ([Ku]) in the finite
dimensional theory (§0.2(i), §5). For example the coset Virasoro modules associated to
the two pairs

diagonal
(1) D) @ sp2)* > sl(2r)
(level 1) (level I') (level 1 + 1)
and
) sp(2l + 2I')" = sp2D)" @ sp(2')"

(level r) (level r)  (level r)

turn out to be mutually isomorphic, where g" denotes the affinization of a simple Lie
algebra g. In this case, the pair of dual pairs (both acting on the o(4(l + I')r)"-spin
module)
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3) {(SP(Zr)“ @ sp(2r)", sp(2)” @ sp(2l)7)
(sp(2N) ", sp(21 + 21')7)

is a seesaw pair. See Proposition I in §0.2 and Tables 5.2 ~ 5.3 for further examples.

The other application of dual pairs on the (affine) spin modules is the “duality” of
modular transformation rules of affine Lie algebra characters. It is based on the fact
that some of the characters for the spin modules are invariant under the S-transformation
(§0.2(ii), §6).

While the spin representations are constructed on the exterior algebras, there is
the symmetric algebra analogues, namely, so-called Segal-Shale-Weil modules or the
oscillator representations ([FF]). There are also dual pairs on these modules in the
finite dimensional case ([Ho]), but their affine correspondents are no longer dual pairs

§0.4,§7).

In this introduction, we shall summarize the contents of this paper as follows.
§0.1 Main theorem
§0.2 Two applications of the main theorem
(i) Derivation of the branching rule duality
(i) Derivation of the S-transformation rule duality
§0.3 How we obtained the main theorem
§0.4 Are there affine Segal-Shale-Weil versions?
§0.5 Notations and conventions in this paper
§0.6 Acknowledgement

0.1. Main theorem

For a finite dimensional reductive Lie algebra g over the complex number field C,
let

1) g" =g®cC[t,t"]®Cc

be the corresponding affine Lie algebra (§1.2.1). Suppose W = W, is an N-dimensional
vector space with a non-degenerate symmetric bilinear form { , }, then put

@ WEH = WE™ = Wy ®c t"C[t, t 1]

for h = 0 or 1/2 and define a bilinear form on W%** by

A3) Wt , w®t"} = {w,w}diyo-

Let WZ**~ be the maximal isotropic subspace with respect to this inner product which
contains W ® t *C[t ], and let /\ (W%*"~) be the exterior algebra endowed with the
spin module structure over o(W)" ([F1], [KP1]; §2.4). In the physicists’ terminology,
WZ+h~ is the space of Fermion creation operators in the quark model construction and
the spin module /\ (W%*"~) for h = 0 (resp. 1/2) is nothing but the Fermion Fock space
of the Ramond sector (resp. the Neveu-Schwartz sector).

Then our main result is the answer to the following
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Problem 0.1. Let us define the Lie algebra pairs (g.,ag) and their embeddings
ar @ gr < o(W) as follows.
(44) gL ® gr = gl(V}) @ sl(V2) [ = gl(V; ® V2)] = o(W),
where W=, ®V,)®(V; ® V,)*.

(CO) 9@ g :i=5p(V)Dsp(V)) > o(W), W=V, QV,.
(00) gL @ gr == 0(V}) @ o(V3) = o(W), W=V QV.

Then decompose the o(W)"-spin module /\(WZ“"_) (h =0, 1/2) with respect to the
subalgebra (g, ® gg)" <> o(W)". -}

We need a definition.

Definition 0.1a (LZ<%"(4;1)). Let = be a group consisting of outer automorphisms
of an affine Lie algebra g” that preserve the canonical triangular decomposition

§1.2.1.(4)).
Then for an weight 4 of g”, denoting the corresponding irreducible highest weight

g”-module by L8" (), we put
4 L2 (4) = Bosee frutoen) L ()

(§81.3.2 ~ 4). Here o(*) is the adjoint action of ¢ € .
For a weight 4 of g and [ € C, we put

5 LE%8"(4; 1) == LEXS" (A + I4,),
where A, denotes the O-th fundamental weight of g* (§1.2.3(1)). B
Now the statement is as follows.

Theorem AFF (Theorem 4.2.). As a g @ gg-module ((AA), (CC) or (OO0)), the
o(W)"-spin module )\ (W *"~) (h = 0, 1/2) decomposes as follows.

(6) NWEh=) ~ @y L& %8 (I (Y); R) ® L¥ XS (fg(Y); L)

See Table AFF for X", ¥¢'; iL, ik; R, L and where Y varies.
List 4.2 gives the complete list of the highest weight vectors with respect to g @ a5 .

Table AFF
i, 8k glh)*, sl(r)* sp(2D)*, sp(2r)"
0, 2R o5e>, {id} {id}, {id}
R, L 1l rl
N =dim W 2lr 4lr
- _ t t
T S 11 LA
Y runs over Ye% , Ye%,,

List of HWV’s List 4.2.AA List 42.CC
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Table AFF Continued

ars Or o2l + ), o(2r + )" o(2D)*, o(2r + 1)* o(2)*, o(2r)*
X0 xR 001, {001 601, 61-1,10 Go1 (G015 01-1.05 Oo15 Op—1,r)
R, L 2r+ 1,21+ 1 2r + 1,21 2r, 21
N = dim W @1+ 1D)@r + 1) 202r + 1) alr
. R h=0 Y+4,Y +4, Y + 4, Y Y, vt
A, i“(Y){h =1 {Y, ty {Y, ty {Y, ty
Y runs over Ye%, Ye%,, Ye%,,
List of HWV’s List 4.2.BB List 42.DB List 42.DD

Notations for Table AFF

(i) ° o0;; the automorphism induced by the symmetry i«>j of the Dynkin
diagram (§1.5),
« o2 an infinite order automorphism of gl(/)® whose restriction to sl(/)" =~
g(4{Y)) is the order I cyclic diagram automorphism o, (§1.3.4, §1.5.2).
(ii) - %,,: the set of Young diagrams contained in the [ x r-rectangle,
- 'Yed,, Yt €Y, [YleZ,, for Ye&,,: respectively denotes the trans-
posed, the complement, and the size of Y (see §1.4.1).
(iii) ¢ A Young diagram is identified with a weight as usual. (see (3.3) of
§§1.42 ~5).
o A;: the I-th fundamental weight for 0(2]) or o(2] + 1) (not the fundamental
weight A, for o(21)" or o(2] + 1)*, but its classical part).
« For the case of affine Lie algebra gl(I)", (4, a) denotes the weight for gl(l)
whose restriction to sl(l) coinsides with A and a = {(4, a), 1,> € C, where
1, € gl(l) denotes the identity matrix. |

The finite dimensional version of this theorem is also obtained. For a group
¥ consisting of diagram automorphisms and for a weight A, denoting by L3(1) the
irreducible highest weight g-module, we put

(7) szg(’l) = @A’e{a(l);o‘sz} Lg('ll) .
We also employ the notation specified in the above. Then we have

Theorem FIN (Theorem 3.2). As a gy @ gg-module ((AA), (CC) or (0OQ)), the
o(W)-spin module /\ (C™®) (N := dim W; §2.3) decomposes as follows (see Table FIN for
Zp, Xg; A, AR):

8 N\ (C) = Py cqy, L0 (A(Y)) @ L™ (Ag(Y)) .

List 3.2 (AA-DD) gives the complete list of the highest weight vector of each
irreducible component with respect to g @ gg.

For a given classical simple Lie algebra gg, all its irreducible modules appear in the
above decomposition (8) as we vary the counterpart g .
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Table FIN
9L> Or gl(?), sl(r) sp(20), sp(2r)
20 2k {id}, {id} {id}, {id}
N 2Ir 4lr
A(Y), A(Y) (Y, [Y]—1r/2),'Y Y, v
List of HWV’s List 3.2.AA List 3.2.CC

Table FIN Continued

SLs Or o2l + 1), 0(2r + 1) o(2]), o(2r + 1) 0(21), o(2r)
I {id}’ {id} <01—1,1>a {id} <01—1,n>s {01,
N Q@I+ 1)@Er+1) 2l2r + 1) 4ir
AY), A(Y) Y+4,Y +4, Y+4,Y Y, Y*
List of HWV’s List 3.2.BB List 3.2.DB List 3.2.DD |

These results can be summarized by using the notion of “dual pair” due to
R. Howe, and it turns out to be useful in explaining the branching rule dualities to do
so. Let us recall

Definition 0.1b (Dual Pair [Ho]). For an associative algebra 4, let us denote by
Irr(A) the isomorphism classes of irreducible A-modules and by L4, a representative for
A€ Irr(A).

For two algebras 4 and A’, which act on the same vector space V with satisfying
[4, A”] = 0, we say that the pair (4, A’) is a dual pair on V if the following condition (9)
is satisfied.

) There exist some index set I and injections
A1 - 1Irr(A4), AT - Trr(4")
such that ¥ is decomposed as follows.
V= @ier L0 @ L%
(that is, A(z) determines A'(z) and vice versa). =

A g-module LX*%(1) appearing in Theorems AFF and FIN gives rise to an
irreducible module of the algebra C[X] x U(g), which is defined by the natural action
of £ on the enveloping algebra U(g) (§1.3.2). (Also note that LU#*s(1) = L3(1))
Therefore Theorems read as

Corollary to Theorems AFF and FIN.
(1) In each case of Theorem AFF, the pair

(CIZ{] % Ugl), C[Zg] x Ulgg))
of algebras forms a dual pair on /\ (WiF+" ™).
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(ii) [Hol] In each case of Theorem FIN, the pair

(C[ZL] x U(ar), C[Zx] % Ulgr))
forms a dual pair on )\ (C™"2)). [}

0.2. Two applications of the main theorem

(i) Derivation of the branching rule duality

Here we wish to show in a typical example how Theorem AFF works in explaining
the branching rule dualities. We need a definition.

Definition 0.2 (Branching module). Suppose that A4, is an algebra and A4, its
subalgebra, then put

1) B(4; > A,); == Hom,,(L*2,, L))

for AeIrr A, and pelrr 4,.
Assuming the complete reducibility, we have an isomorphism

)] L4, ~ @u B(4, > 4,); @ L%,

as an A,-module, and we call B(4, > 4,); the branching module associated to the
inclusion (or restriction) A, > A,.

(In other words, branching module is the space of “highest weight vectors” in L#:;
with respect to A, whose weight is p). [ -]

Recall a branching rule duality

Example 0.2 (A branching rule duality [GKO] [JM] [KW] [TK1, 2] [Y]). There
is an isomorphism between the coset Virasoro modules

3) B(sl(2)" @ sI(2)" ’

iagon;

al “ -
AU—@)do+ga,
> sl2) )(l—l—p)/io+p21,/ir

~B(sp2])" > 5p(2l — 2" @ sp(z)A)ﬁg’jr
(1=23..,0<p<I-1,0<q<0<r<,
where /Tj denotes the j-th (affine) fundamental weight. ]

Now we can deduce this duality from our viewpoint, by realizing these branching
modules in the spin module with the help of Theorem AFF.
In fact, consider the pair of Lie algebra pairs

{(91, g1) = (sl2)" @ sl(2)", sp(2l — 2)" ®sp())")
(32, 82) = (s1(2)", sp(2]) ")
acting on the o(4l)"-spin module A\ (W5*" )~ \(WEH")® N\ (WE") through the

embedding 0.1(2). They satisfy the following inclusion relations (the seesaw pair prop-
erty [Ku]) in End A (W5*"").

)
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sl @ sl)" =g > gy =sl2)"

(level I — 1) (level 1) (level I)

©)
spQl—2)" @ spD" =g, = g =sp2)"
(level 1) (level 1) (level 1)

On the other hand, due to Theorem AFF for (g;',gi)=(sp”,sp”"), the pairs
(U(a:), U(g}) (i = 1, 2) form dual pairs, that is, roughly speaking, the module A (WZ*" ")
is decomposed as follows.

{/\(W‘tzzﬂl’—) >~ @lellclrrgl Lo, @ L%, ;
= @ﬂelzclﬂ'gz ng# ® Lg,z#' .

Let us decompose /\ (W5*" ") as a g} @ g,-module in two ways:
{/\(VV‘%”‘") =~ @}. (@u B(g; 2 9,4 ® ngu) ® Lg").' 5
=~ @u ngﬂ ® (@l‘ B(QIZ > grl)i ® Lgll') ’

then we find an isomorphism B(g, > g,); ~ B(g; > g})f. Writing down A’s and u’s
explicitly, this gives Example 0.2.

(©)

™)

From our viewpoint in the above, it is straightforward to generalize this duality (3)
for the pair of 0.0.(1, 2).

Generally speaking, one seesaw pair, that is, a pair of dual pairs that satisfy the
property (5) (§5.1), provides one duality of branching rules (Proposition 5.1). Theorems
AFF and FIN yields various seesaw pairs and hence the corresponding dualities
(88§5.2 ~ 5.4): it turns out that the branching rule duality already exists in the finite
dimensional theory. In particular, intertwining the homogeneous picture representations
and the principal picture representations ([F2]) we deduce

Proposition I. (Another type of duality, Cor. 5.4.2). There is a “duality” between the
restrictions associated to the inclusion

®) CKa4e>] x U@@l() ® C[t, t 7] @ Cc)

& CKa3>] % Ugl(h) ® CLt™, ™1 @ Co)
(See “Notation for Table AFF” for o},) and that to the invariant subalgebra with
respect to the cyclic diagram automorphism
9) sl(mr)™ & (sl(mr)")e>>  [~sl(r)*, Prop. 54.2],
in the sense that they yield mutually isomorphic branching modules: for any y € %, ,_, and
Ye® .1 we have

(10) BOE ~ B

,[yl;r)

as the coset ¥ ¢z-modules.

(ii) Derivation of the S-transformation rule duality

As a next application of Theorem AFF, we shall deduce a “duality” concerning
with the modular transformation rules of characters. It is based on the fact that the
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character of the Fermion Fock space ch A (W#*Y*~), which is essentially an N-fold
product of

(11) q—1/48 H;o=1 (1 + qn+1/2) , q= eZnir ,
is invariant under the “S-transformation” on the upper half plane
(12) S:t—> —1/t.

For example, let us apply this transformation to the following “character bilinear
identity” which is equivalent to Theorem AFF for (g7, gg) = (sp(2))", sp(2r)"), h = 1/2:

(13) ch A\ (Wi 7) = Zycqy, aF8"" 185",

where x7?"" denotes the normalized character (§1.2.3) of the module L¥CY(Y;r).
Then the above mentioned invariance of the spin module character ch A (Wi ")
yields the following “duality” of the S-transformation rules:

Proposition II (A duality of transformation rules, Cor. 6.2a). Let (M{")), , ., be
the scalar matrix of the S-transformation rule for level r characters of sp(21)":

(4 PRSI D)) MDD

v e, Ky

Then there is a relation M{")) = M$:), for y, y' €%, ,, where the bar denotes the complex
conjugation and 'Y € %, , denotes the transposed diagram for a Young diagram Y € %, ,.
il

0.3. How we obtained the main theorem

Let us sketch the way how we find the dual pairs. Our motivation is to get
a better understanding of the Jimbo-Miwa’s branching rule duality. Keeping in mind
that the Weyl’s dual pair (S,,, GL(n)) on (C")®™ provides close relation between the
S,,-modules and GL(n)-modules ([R, Chap. 3]), which can be recognized as a duality in
the sence of Jimbo-Miwa, we posed the following

Problem 0.3. Describe the commutant algebra of the o(L)"-action on the tensor
product /\ (W= ")®R of the spin module \(WZ*"~) and decompose it into irreducible
components.

In our consideration, important is the following isomorphisms of vector spaces
(in h = 1/2 case).

@ N WEHR)BR = \ (@R WET) = \ (W™

In other words, the module A (W/*"~)®® has the o(LR)"-spin module structure and
hence we can introduce an o(R)"-action on it. We hope that o(R)" generates the
commutant algebra of the o(L)"-action. Is it right? Thus we are lead to Problem 0.1
for the case (OO) itself.

For the algebras g; @ gz = o(W¥) in Problem 0.1, first we can show (Propositions
1.2 and 1.4) that any irreducible g/ @ g -modules appear with finite multiplicities in the
o(W)"-spin module A\ (W%*"~). This is due to the central charge identity
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)] Z°M" = 780 + 7%,

cdimg .

where Z9" = is the Virasoro central charge for the Segal-Sugawara operators

c+g
associated with g” (1.2.2(3)), denoting by c (resp. g) the level (resp. the dual Coxeter
number) of g*. For example, (2) turns to the identity

L-R _R-L(L—1)2 L-RR—1)2
2  R+4+(L-2  L+R-2

)

for the pair (g, gg') = (0(L)", o(R)"). Here we must note that [GK O] first recognized
the importance of computation of central charges.

To get accurate decomposition of the spin modules, we must compute their char-
acters as (g, @ gg)”"-modules and obtain “character bilinear identity” like 0.2(13). We
get explicit form of the character identities due to the Weyl-Kac formula and its
application “complementary decomposition formula” of Jimbo-Miwa [JM]. Thus we
obtain exact forms of dual pairs as in Theorem AFF.

After obtained Theorem AFF, we obtained Theorem FIN as its finite dimensional
version. Indeed, in terms of character identities we can obtain Theorem FIN as the
“classical limit” q —0 of Theorem AFF for h =0 (however in this paper we derive
Theorem FIN independently to Theorem AFF, for the clearness of discussions).

0.4. Are there affine Segal-Shale-Weil versions?

Thus we have succeeded in explaining the dualities, by constructing and using the
dual pairs of affine Lie algebras on the spin modules. Our construction of the dual
pairs was quite similar to that of dual pairs on the Segal-Shale-Weil modules (or the
oscilator representation) over the finite dimensional algebra sp(W¥), which is treated by
Howe’s paper [Ho] and references therein. It is natural to seek the possibility of the
affine Segal-Shale-Weil analogues.

But the central charge calculation shows that the answer is negative.

Proposition [T (There are no affine Segal-Shale-Weil versions, Proposition 7.1). Let
& be the affine Segal-Shale-Weil module over sp(W)" [FF], and consider & as a module
over the algebra

(1) sp(V1)" @ o(V2)"
(resp. gl(V})" @ sl(V,)") according to the inclusion
2 sp(V)@o(Vz) csp(W), W=WQR®WK

(resp. gl(V) @ sl(VL)[=gl(V; ® V;)] = sp(W), W:=(V, @ V,)® (V; ® V,)*). Moreover
assume that

3) dimV, +2#2dim¥, and 2dimV,#dimV, -2

(resp. 2dim V; # dim V, and dim V; # 2 dim V,). Then the pair (sp(V})", o(V,)") (resp.
(gl(V))", sl(V,)")) does not form a dual pair on &. -]
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0.5. Notations and conventions in this paper

Throughout this paper, we fix the conventions on classical Lie algebras (such as
the choice of Chevalley generators, parametrization of weights via Young diagrams, etc)
as in Sections 1.4 and 1.5.

The Virasoro algebra #7 is usually defined by

1 Vi = (‘Bmez Clim)® Cz,

3

[lm), l(n)]:=(m —n) I(m + n) + m—lg—mé,,ﬁ,,,oz , [V64,2]:=0.

In this paper, we will use the following basis of 74

3
@ [d(m). d()] = (m = n) d(m + 1) + T Opanoz,  [#40,2]=0.

Note the base d(n) is obtained as d(n):=I(n) — J, 0z/24 from I(n) in (1). By this
basis ¥7z-characters Tr ¢*® appearing in this paper enjoy the modular transformation
property without the fractional power factor =24 (§1.2.2 ~ 3; see also Example 5.3).
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§1. Preliminaries for Classical Lie Algebras

1.0. Here are brief summaries on affine Lie algebras and their outer automor-
phisms. We also list basic data and fix the notation for the classical simple Lie algebras
and the classical affine Lie algebras following mainly [B] and [JM].

1.1. Conventions

Throughout this paper we work over the complex number field C. We denote by
Z (resp. Z.y, Z.,, ...) the set of rational integers (resp. positive, nonnegative, ...
rational integers). For a real number r, [r] € Z is the maximum integer that does not
exceed r. We write S, (ne Z,,) for the symmetric group of n letters. By Mat(m, n)
we denote the set of all m x n-matrices, and E'; (1 <i<m, 1 <j <n) the matrix unit.
If m = n they satisfy E',E, = 6}E’;, where 6} = 6, = 67, is the Kronecker delta, and act
on C" = (-, Cv* by E'p* = v'6}. We write gl(n) for the Lie algebra Mat(n, n) with
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the bracket [A, B] := AB— BA. We put 1,:= X" E/;,, When we have to deal with
several Lie algebras g, f, ... at the same time, we often use the notation such as
L8(A), Li(p), ...; 1%, xfn, ...; D%(n), D¥(n), ... etc., to distinguish the notions accordingly.

1.2. Affine Kac-Moody Lie algebras

We will follow Kac’s book [Kac] for general terminologies.

1.2.1. Affinizations

Let g be a finite dimensional reductive Lie algebra and B( , ) a non-degenerate
invariant symmetric bilinear form on g. Then the affinization g* = g5 of g is the Lie
algebra defined by

(1) g"=g®C[tt']®Cc,
[x(m), ym)]:= [x, y1(m + n) + mép1n0B(x, y)-c,  [c,"]:=0,

where x(m) denotes x ® t™. We put g(n):={X ®t"|X e g} and identify X eg with
X(0)eg(0)=g”. There is an extention ¥%z x g" of the Virasoro algebra ¥%: by
g”", where

() Vir = Phez Cdn) @ Cz,
3

[d(m), d(n)] := (m — n) d(m + n) + ';'—25,,,+,,,0z . [z741]:=0,

and the action of ¥%z on g” is defined by
3) [dm), x(n)]:= —n-x(m + n) and [z,6"]:=[7%2c]:=0.
(See 0.5 or 1.2.3 for the reason why we take m3/12 in (2) instead of (m> — m)/12.)

Suppose that g is simple and of type X,. Then the subalgebra §:= Cd(0) x g"
of ¥7%2x g” is isomorphic to the affine Kac-Moody Lie algebra of type XM. Its
canonical central element (resp. scaling element d) is given by c¢ (resp. —d(0)). Here
and after we choose the normalization B(6, ) = 2 for a long root 6 of g, and such B’s
will be given in 1.4. Taking a triangular decomposition g=n_ @ h@ n, of g, we can
give and fix a triangular decomposition § = fi, @ § @ fi_ canonically by

@) h=b@®Cc®Cd and fi =@ tT'CHH]) D ny .
Define A, and 6 € h* = (h @ Cc @ Cd)* respectively by
©) Aolyeca=0, Ap()=1 and  blyec.=0, 8@)=1,

and extend each Aebh* to b by Alccaca =0. We have b*=p* @ CA, ®Co. We
extend B to h* by the formula

B(A + 14y + s6, u + mAy + t6) := B(A, p) + It + sm

for L, uebh*and L m, s, teC.
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Let 4; and a; be the fundamental weights of g (not g*) and the dual labels of XV
respectively (see 1.4 and 1.5 for their tables). Then the fundamental weights of g" are
given by

(6) Ay and  Ap=aydo+ 4, (1<j<7),

and the set of dominant integral weights is given by P, + C§, where P, := j’=0Z20/T
We put P,(l):={4eP,|4(c)=1}. Also we put p:= 2l 4;ebh* and p:= X] A
p + gA,, where g is the dual Coxeter number g = p(c) = Za.

If g is abelian, then in what follows we regard h =g, p =0, ) =0and g = 0.

1.2.2. The Segal-Sugawara operators

Assume that g is simple or abelian, and that V is a g”-module that satisfies the
following two conditions.
(1) For any v e ¥, there exists an integer m e Z.., such that g(n)v = 0 whenever
n>m.
(2) c¢=1-idy, for some [ € C such that [ + g # 0,
The scalar [ is called the level of V. Then it is well known that the following
Segal-Sugawara operator D3(n) € End V gives a (#% x §)-module structure on V:

B) V45 dm)— Di(n) LS s oxmnd(n —mye — 9™ 5
2 n = ox;(m)x!(n — m): — ———9,.0idy ,
‘ 20+ 9) =t mez 24(+g) "
s l-dimg,
z+z8 = I+ g idy, .

Here ({x;}, {x’}) is a dual basis of g with respect to B and

x(m)y(n) ifm<n
) sx(m)y(n): = < {x(m)y(n) + y(n)x(m)}/2 ifm=n.
y(m)x(m) ifm>n

If g = @ g; with each g; is either simple or abelian, then we put
5 DS(m):=3%,D%m) and Z8:=%, 7%,

1.2.3. Irreducible modules and characters

An irreducible highest weight module of g” with the highest weight vector v, is
characterized by (4; I) e h* x C such that

) h(ve) = AWve "heh)  and  c(vy) =1 v, .

We call A (resp. I) the classical part (resp. level) of the highest weight and denote such a
module by L3(4; I). Provided that [ + g # 0, then L3(4; ) satisfies 1.2.2(1)(2) and admits
a (¥%+ x g”)-module structure. In particular we can (and do) fix a §-module structure
canonically. Namely, for Aebh* and I(# —g)e C we will identify L3(i;[) with the
g-irreducible highest weight module:
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5 a - I-di A 2 _ 2
@ Lg(/l;l)=L9(z+le+< img |4+ pl” — ol >5>

24(1+ g) 2(1+9)

according to the fact

Indimg |4+ p]* — lplz>
- 0

3) dvo[:= —Dﬁ(o)vo] = <24(l +9) 211+ 9)

From the famous strange formula it follows that

Ldimg |2+ pP = Ipl* _lpl? 12+ pl?

4 = .

@ 24(1 + g) 2(1+g) 29 2(l+g)
Suppose V is a diagonalized Cd(0)-module, that is,

3) V=PBnV,, dim¥,<ow

where V,,:= {ve V|d(0)v = mv} for me C. Then for 7€ C and an operator ue End V
that satisfy [d(0), u] = 0, we define the character of V formally by

(6) chy,(td(0) + w) := chy(r, u) := I, e[m1] Trace,_e*™,

where e[+] := e2™*, and put x8, ,:= chysg;,;y for short. According to our choice of the
cocycle in the definition 1.2.1(2) of ¥4, we have (2) (3) above and hence 8 2,1 is nothing
but the so-called normalized character. It converges for te C,Im7>0and ueb.

If g is simple, then for a dominant integral weight A+ I4,e P, we have the
celebrated Weyl-Kac formula

@) ot W) =y, 14, (T, W), (T, 0).

Here denoting by W (resp. M) the Weyl group of g (resp. the lattice part of the affine
Weyl group W=Wx M), we put

)] 02(t, u) == Z, s €Lp@) + 7|pl3/21]
and
) ;1= Z,ew (sgn W)O»%n,z .

For the latter purpose we also put
(10) Ca=r, 6N =06 and A=y,
for a weight 4 € §* of the form

A=A+1dymodCs, 1>0.

The denominator formula says that ./, , = </, has a product form %, which is given
explicitly in 1.5 for the classical non-twisted affine Lie algebras.
If g is abelian, then for [ € C* and 4 € g* we have ([FK])

(11) 2w u) =e[A@]n() 4" (ueg),
where 7 is the Dedekind eta (1.5.1(14)). See also 1.3.3.
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1.2.4. Complete reducibility and the coset ¥ z-modules
The following lemma ensures complete reducibility throughout this article.

Lemma 1.2(i) [Kac, Theorem 10.7a]. Suppose g is simple and e; € fi, denotes the
Chevalley generator of g”. Let V be an integrable g”-module which satisfies that
for any veV, there exists me Z,, so that e; ...e; v =0 whenever n>m. Then V is
isomorphic to a direct sum of L3(A) for A e P,.

(ii) [Kac, Lemma 14.4b]. Suppose g is abelian, and §* < g" the subalgebra
8" =g" " @Cc®g"*, where g"* :=g@t*'C[t*!]. Let V be a g"*-module that
satisfies 1.2.2(2) and for any v eV, there exists m > 0 so that g(n,)...g(n;)v = 0 provided
that n;>0 (1 <i<j) and Zn;>m. Then V is isomorphic to a direct sum of the
irreducible module U(g"*)/U(g"*)(g"" @ C(c — 1)) for le C*. ]

Let g¢* be an affinization of a reductive Lie algebra g and let = and =’ respectively
be representations of ¥%z and g” on the same space V. Suppose that their central
elements acts as 7(z) = z"*id, and 7'(c) = I-id, for some z", | € C, and that

1) [n(d(m), ' (x(n))] = —n-7'(x(m + n))
holds for any m, ne Z. This means
@ [n(d(m)) — D%"(m), "] =0

and D*(m) := n(d(m)) — D%"(m) again defines a representation of ¥+ on the branching
module (Definition 0.2)

3) B := Hom,.(L®"(4), V)

“4) ~ {ve V|(fi*)v = 0 and v is of weight 4},

if we assume the complete reducibility

(5 V> @aecrro B @L(4).

This is the Goddard-Kent-Olive construction of the coset #"cz-modules.

Proposition 1.2. We retain the above situation and moreover assume that the character
chy (1) converges for Im t > 0. Then the following three conditions are equivalent:

(i) Vs finitely reducible as a g" -module,

(ii) z"=2",

(iii) 7(d(m)) = D(m) for allme Z.

Proof. Consider the coset representation D*(m). Then (i) — (ii) follows from the
fact that any finite dimensional #%s-module must be trivial. Similarly (ii) — (iii) follows
from that any unitarizable highest weight module with the central charge (=the eigen-

value of z) zero is trivial. For (iii) — (i) we consider the character. Using (iii), we
obtain

(6) 00 > chy(n(d(0)) = = 4. ps oy(dim B?)x8,(zD3(0)),

which shows dim B? < oo for each 4. ]



756 Ko HASEGAWA
1.3. Modules which admit actions of outer automorphisms

1.3.1. Diagram automorphisms

Let g(X) be the derived algebra of the Kac-Moody algebra g(X) for a generalized
Cartan matrix X = (X; j)o<; < Then g(X) has the Chevalley generators {e;, f;, h:}o<i j<i
that satisfy the following defining relations:

(1) [hn ]] - 0 [hn e] = xl] j o [hnf;] = _xij Jjo [ew f] 1] 1 )
(ad ;) "ve; = (ad f;)' f;=0 @i #j).

Suppose (x;) is invariant under a permutation w of indices, that is, w is a symmetry of
the Dynkin diagram of X. Then w induces an automorphism o,, of g(X)' by

@ 6y g guy  for g=efih  (1<i<l),

since this assignation preserves the defining relations. We call the automorphism thus
obtained a diagram automorphism. Note that o,, preserves the triangular decomposition
of g(X). Note also that (the adjoint of) o, acts on the roots and their linear
combinations by

3 Oyl 0> Oy for a simple root «; .

Lemma 1.3.1. Suppose X is of affine type. Then the above a,, has a unique lifting
to the automorphism of g(X) and B* (also denoted by o,) that satisfies the following
conditions.

4) owlg(x) and o, |y+gcs are given respectively by (2) and (3),
5) o, c < b and (o,(2), o, (h)) = <o, h) for any a e I)* and h eb
(6) the order of o, is equal to that of w.

Proof. As usual we assume that 0 is the index of affine point in the Dynkin
diagram. Recall that 6 =X!_ga;0; and ¢ =Z!_,d;h;, where a; (resp. d;) is the
i-th label (resp. dual label) for X ([Kac]). Therefore h* = @P'_,Co; @ CA, and
h =P, Ch;® Cd. It suffices to determine o,(d) € b so that (5) and (6) holds, since
then (5) defines o,(4,) and the o, thus extended automatically gives rise to an
automorphism of g(X). Since g; = a, it holds that ¢,(6) =J and hence we can
assume
(7 0,(d) = d + Zi_q s;hy;
with s;€ C. The condition (5), <o,'(x;), d) = {a;, 6,,(d)), then reads as &, ,)a0 =
8000 + Z;8;x;;, OF
®) 28X = 061(5.-,w<0) — 0:0) O=<i<l]).

T Pitii

Similarly (6) reads as
©) M s =0 (0<i<l).

Now our task is to solve (8) and (9), and the case checking shows that there exists
a unique solution {s;} for them in each case. i3}



WEYL RECIPROCITY FOR AFFINE LIE ALGEBRAS 757

For X = A", BN, C™ and DY, we give in §1.5 the formulae of actions of the
diagram automorphisms on § and h*.

Remark 1.3.1. (i) The condition (6) is not redundant.
@) If w()#0, then the equality aw(/Ij) = /iw(j) is not always true (however
0,(4;) = 4,3, mod C5). On the other hand, it holds that ,(p) = . &

1.32. Z x g(X)-modules

Let X be a generalized Cartan matrix and X < Aut;,;, g(X) be a group consisting
of diagram automorphism (1.3.1).

Definition 1.3.2. (ij We say a g(X)-module (rn, V) is a £ x g(X)-module if there
exists a projective representation 7’ of £ on ¥V which satisfies the compatibility condition

¢y) ' (o)n(g)n'(0)™! = m(a(g))

for all 0 €X and g€ g(X). (The notation X x g(X) is justified if we think it as an
abbreviation of the semi-direct product algebra C[X] x U(g(X)) which is generated by
Z and g(X).)

(i) For a weight A4, we define a g(X)-module

(2) LEKQ(X)('I) = (‘Dus)}l Lg(X)(u) 5

where X-1 denotes the Z-orbit of A. This module gives rise to an irreducible
2 x g(X)-module by defining

©) n'(0)|u> = |o(u)>  forany oceX,

where |1) denotes the highest weight vector of L3X)(y).
We also define the character

) bl g(x)z =2iexa Xg(x)u
accordingly.

Remark 1.3.2. (i) The module L**%%)(]) does not always coincide with the module
Do cs Lo (2).

(ii) For the Cartan matrix X of type D,, g(X) ~ 0(2n) holds and the group of
diagram automorphisms is generated by the element ¢ = o, , (1.4.5(0)) or order two.
In this case the module L**%*)(]) for a dominant integral weight A is nothing but
a finite dimensional irreducible Pin(2n)-module, while L3*)(1) is an irreducible Spin(2n)-
module. Here Pin(2n) and Spin(2n) denotes the double covering of the orthogonal
group O(2n) and SO(2n), respectively.

Lemma 1.3.2. Suppose that a X x g(X)-module V is completely reducible as a
g(X)-module, and X is abelian. Then V decomposes into a direct sum of LE*3®(A)s, that
is, there are modules B*’s such that

V> @, B @LF* (1)
as a ¥ x g(X)-module.



758 Koi HASEGAWA

Proof. A X x g(X)-submodule of V and a (Z,h)-submodule of HWV(V):=
{ve V|(n,)*®y = 0} are in one to one correspondence with each other, where (n,)3®
denotes the subalgebra of g(X) generated by the Chevalley generators {e;}. Since
HWV(V) has a weight space decomposition and X is a finite group, HWV(V) can
be decomposed into a direct sum of irreducible (X, h)-modules. Then each of the
irreducible component is restricted its form as @P),.5.; Clpu) under the assumption that
Y is abelian. Accordingly, the corresponding irreducible £ x g(X)-submodule of V is
of the form L**%¥) (1), which completes the proof. i3

1.3.3. Review on Heisenberg systems [FK]

Let a be an abelian Lie algebra, B the non-degenerate symmetric bilinear form
on a and a” =aj the corresponding affinization (1.2.1(1)). Then the subalgebra
a™* := @pnroa(m @ Cc is an infinite Heisenberg Lie algebra and we have a direct
sum decomposition a” = a @ a”* as a Lie algebra. Let I = a* be a lattice, then each
ye I'act on a” by
(1 @0 +ay):=ae + a, —y(ay)c

for any ajea and a, ea™”. We call this system I x a” =(I,a") a Heisenberg
system. An a”-module is said to be a " x a”-module if there exists a projective action
of I' satisfying the compatibility 1.3.2(1).

A typical I" oc a”-module is the Boson Fock space

) L™ (25 1) i= (BaersirCe”) ® (U@ *)/U@"*)(Clc — h @ a"*))
~e*CUIMN® S(a”7),
where Aea*, [eC*, a**:=a®t*!C[t*!] and C[-] (resp. S(-)) denotes the group
algebra (resp. symmetric algebra). For each cocycle
©) el'xI'>C", &l Be(a + B, y) = &0, B+ 7)e(B, ),
the corresponding I" x d-action on LI™%(1;1) ~e*C[II'T1® S(a”~) is given by the
following way:
4) I'sy- T = {e* @ pre(y, fe* " ® p},
asar>0/0a:= {e*® pr>a(a)e® ® p},
a"sa(—m)—a(—m) = {*®@ pr—e* @ a(—m)p},
@ 3 a(m)—Im-0/0a(—m) = {e* ® pr>e* ® (Im" dp/da(—m))} ,

where a =A+1fe A+ I, peS@™), aca, meZ,, and d/6a(—m) is the derivation
defined by a'(—n)— 6, ,B(a, a’).

If [ #0, then as is well known L7*%"(4, 1) is irreducible ([FK, Proposition 2.4]).

By the definition (2) and the relation D*"(0)(e*) = (B(4, A)/21)e* (1.2.2(3)), its character is
formally given by the theta series
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erz,z(f, a)
ﬂ(T)dima 2

where a = a(0) € a and 7, (resp. (7)) is given by 1.2.3(8) (resp. 1.5.1(14)).

(5) Cthb(aA(}"l)(TDaA(O) + a) =

1.34. gl(/)"-modules

For gl(l)* we need the notions similar to that for g(X) in §1.3.2, namely
(o> % gl(l)"-modules and Z!x gI(/)"-modules. Here and after, by gl(l)" we mean
the affinization of gl(/) associated to the invariant symmetric form B(x, y) := Trc: (xy).

Definition 1.3.4a (67, € Aut,;, gl(/)*). We put

(1) Gcﬁc(Eij(n)) = Ei+1(l)j+1(1)(n — 05+ 5,'1) - 5n05ij5j1 °C
o-cfc(c) =c

where i + 1(I) means i + 1 mod [. [ |
It holds that
2 00 clsiyr = 0oyt the diagram automorphism of g(A4{Y))
associated to the cycle cyc:=(0,...,1— 1),
and
) 05(1(m) = 1(n) — 80",

where 1=1,:=X)_ E/;egl(l) and 1(n) is an element of the Heisenberg algebra
(C1)" = gl(l)*. From the latter it follows that ajfc is of infinite order.

Definition 1.3.4b ({s2.> x gl(I)"-modules).

() Let (m, V) be a gl()*-module. We say (n, V) a {a2,> x gl(l)"-module if there
is a projective action n’ of {o2,» with the compatibility 1.3.2(1).

(i) For (u t;r)eh* x C x C, we define a gl(l)"-module L3'®"(u,t;7) to be the
irreducible gl(l)"-module with the highest weight vector |u, t;r) # 0 that satisfies the
followings:

@ O iy = u®)m t;r>  for he @ CE, — Ey,,),

LO)w t;ry =t t;ry, clpt;ry=rip t;r)

and
Eimipt;r>=0 if n>0 or (n=0,i<j).
(iii) Putting
©) ol (A, 557) := (0oyc(A), s + 15 7)
we define

# ()" e " :
(6) L8280, 5:1) = Blustine cotor-sin L (W £57)
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and we endow a <g/.> x gl(l)"-module structure to this module by
@ el 557 1= 05(A, 53 7)) . L

Definition 1.3.4¢ (Z' x gl(I)"-modules).
(i) We define an action ¢ of Z! on gl(!)" as follows.

(8) t: ZM = @)=y Ze, — Auty,, gl(D” (group hom),
tak(Eij(n)) = Eij(" — i + Oj) — 6400407 €
t,(0)=c ’
@) A gl()*-module (r, V) is called a Z'x gl(I)"-module if there exists some
projective action n’ of Z! that satisfy 1.3.2(1) for any ¢ € Z' and g € gl(})".

Sublernma 1.3.4. Let V = (rn, V) be a gl(I)"-module which is integrable as an sl(I)"-
module. Then the following two conditions are equivalent:

(i) VisaZ'x gl()"-module.

() Visa ol x gl(l)"-module.

Proof. By the integrability there is a projective action of the Weyl group
W" ~@ x Q on V, where Q ~ {In;5; € Z'|En; = 0} denotes the root lattice of 4;_;
([Kac, §3]). Let r"; ,ecAutV be such an action of the cycle (1,...,l)e &;. For
(1) — (i1), the following formula gives the action of ajfc:

) n’(oc;fc) = 75,(81)"”(1...1) .
As for the converse (ii) — (i), we can define the ¢,-action by
(10) m'(e;) = n’(acfc)(rn(l...l))—l

This induces a Z' x gl(I)"-module structure on V, since there already exists a Q-action.
]

Put 1* := Zi_, ¢;€ Z' = (C1)* and define its action on C1" by the restriction of (8),
and let Z1* x C1” be the corresponding Heisenberg system (1.3.3(1)).

Lemma 1.34. (i) Suppose that V is a Z'x gl(l)"-module which satisfies the
assumptions in Lemma 1.2(i) as an sl(l)" -module and in Lemma 1.2(ii) as a (C1)"- module.
Then V is completely reducible, i.e. decomposes into a direct sum of

(11) LEX90% (), 55 1) 1= LS X8O (4 g5 s .

(@) If reZ., and (4;r) is dominant integral as an sl(I)"-weight, then we have a
(Z1* oc C1") @ sl(I)" -module isomorphism

(12) L2080, 53 7) > @y LAV (s + 0 1%/1; 1) @ LV (0, (2); 1) -

Proof. (i) This follows from a similar consideration as in the proof of Lemma

1.3.2 with using Sublemma 1.3.4. Regard V as a (acf) x gl(l)"-module and consider

the (g%, >-orbit of a highest weight vector with respect to gl(/)".
(ii) Consider the ac#yc-action in the left hand side of (12). It acts on the sl(/)"-
components as an o,,. and the action of (agf,c)’ coinsides with that of 1* on the whole
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module. Hence recalling the representation theory of the Heisenberg system [Lemma
1.2(ii); FK, Proposition 2.4] we have

Lz xgl(l)A(A’ s;r) = L(afycwgl(l)A(,L s;7)
= @1t Bz LIO (62" (A 53 1))
= @ict Brcz LY ((0,,) (), s + (j + Im)rs 7)
~ @y LA (s + jn1*/1; 1) @ LYY (0, /(A); 7). 2

In view of 1.3.3(5), the statement of (i) above can be interpreted in terms of
characters as follows. Put

(13) AHHIO" = ch LZ %902, 55 r)

(1.2.3(6)). Then we have

(14) #2907, o @DION0) + ul + h) = Ty (D) 0 e ) 1O (T B)
for h e {Z£a,E'|Za; = 0}, u, 1 € C and Im t > 0, where

(15) 0%, m(T, ) i= Zyeysmz e[ pu + p’1/2m]

(1.5.1(0)) and # denotes the Dedekind eta function (1.5.1(14)).

Remark 1.3.4. The character (14) is essentially introduced by Jimbo and Miwa
first. See [JM, p. 34] for its further formulae. |

1.4. Notations for classical simple Lie algebras

In 1.4.1 we give some definitions on Young diagrams.

We give the following data in 1.4.2 ~ 1.4.5.

(0) Dynkin diagram;

(1.1) Realization, (1.2) the Chevalley generators, (1.3) commutation relations;

(2.1) a Cartan subalgebra, (2.2) Simple roots, (2.3) positive roots and the root
spaces, (2.4) the highest root;

(3.1) Fundamental weights, (3.2) half sum of positive roots, (3.3) dominant integral
weights and their parametrization via Young diagrams;

(4) Character formula in terms of determinant;

(5.1) Normalized invariant symmetric form and (5.2) the induced bilinear form
on h*.

1.4.1. Young diagrams

A sequence of nonnegative integers Y = (y;)i-, with y; >+ >y, >0 is called
a Young diagram. The set of all such Y’s are denoted by %, We put %,:=
{(y;) e %|r > y,} and call its element a Young diagram contained in the ! x r rectangle.
The size of Y = (y;) is [Y]:=Z;y;€Z,,. For Y =(y;)€%,,, its complement (in %, ,)
Y = (y{)j-1 € %,,, is defined by y;:=n —y,_;. The transposed of Y is denoted by 'Y; it
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is defined by folding along the diagonal in the graphical expression and belongs to %, ;.
Also put YT = (y;f, =1 =(Y) = (Y)e%,, for Ye%,, Forexample,

r4\ — 5 - rsﬂ — 5 -/
" ([oooo= '[ooooo
ifY=|y,| = |3| =3/oooee|€%; s then Y= |2 | =3|oosas|e%; ;,
| EEmEE : R=CCCD ’
V3 LY < J
[2) 3 3] 3o
2| _ [[ee *| _[[es8
'Y= |2| =5|ooe |€%s 5, Yi=|1| =5|omm|c%,,.
OEE : [ 1] ’
1 (| === 1 Q=
\OJ \IJ

14.2. Type A,_;

0) o—o0— '+ —0—0
1 2 - r—=2r—1

(1.1)  g(A4,-) = sl(r) == {x € gl(r)|tr x = 0}
(12) e E
}S'(_’Ejﬂj
heoE,—E*,.,,  (1<j<r-1).
(13) [E, E%] = 8'E, — 6/EF,.
@1) b=3%C(E,— E) = {SwE L u= 0} < a:= @, CE, .

(22) a; =7 — %4, , where {g}j-; = a* is the dual basis to

{E/}}i<y and =g, —r ' X ¢; .

23) 4, ={&-75li<j}. 6, =CE;.

4 0=t —%.

Bl =g, ++5 (A<j<r-1).

(B2 p=(r—Dg, + - +28_,+7%_,.

(33) %,_,3Y = (y;)j={ — T2 y;E; € P, is bijective .

(3.3) %, 3Y =(y))i-1—Zj-; yjg;€ P, is surjective. The image of Y will be also
written by Y.

(4 ForYeP, and z;eC(1 <j<r)suchthat[[;z=1,

oo detlz s,
Trom([ ;2% = ﬁ (ZI_SZJ)S
i ‘j

1<i<j<r




(5.1)
(52)

1.4.3.

©)

(1.1)

(1.2)

(1.3)
@.1)

(2.2)

(2.3)

(2.4)

(3.1)

(3.2)
(3.3)

)
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B(a, b) = Tr¢-(ab) for a, b e sl(r),

B(a, p) = (a|B) for o, p € b* ~ {T a;¢; € a*|X a; = 0} , where (g¢;) == J;; .

Type B,

o—©o0——0— - —0=0
1 2 3 «r—1r

g(B,) ~ o(2r + 1) := {x e gl(2r + 1)I'xJ, + J,x = 0} , where
1...r 0 — - _1

0 A 1
Jy = Lo ) = [5i+j,O]i,j=0,il,...,ir-

Putting B, = B> 7 = B_, ;== E'; — E7_,, the isomorphism is given by
g J 2 J J

ejHBjo \/EB'O
fioB*Y,  (1<j<n; /2B, (j=7).
thBJ] _ Bj+1j+1 2Brr

[B, B*] = 6B, — 6 B"; + 6\ B'_, + 6'_ B7,.

h=PDCH;.
Jj=1
aj=8j_8j+1 (1S1<r)! <xr=8r’

where {¢;}}-; < h* is the dual basis to {B/;}]_,.
4, ={e+gll<i<j<rjU{gll <j<r},
8e+s, = CB'3;, g, =CB,.
0=¢;+¢,.
Adj=¢e; ++g (1<j<r), A, =%+ +e¢).
p=@—2e + 436, + 3.
P, = P[] P}, where
PO:=XlZ oA, +2Zyod, and  Pl:i=PO 44, .
¥, >Y =(y)—Z yjg€ Py
is bijective. The image of Y will be also written by Y.

Trogaesa, ([1;2%) = det [z DR — 2707 TOTORY, e
sA,. = —1_—1y °
7 H (21_1/2 -z 1/2) H (z: — Zj)(l —Z lzj 1)

1<j<r 1<i<j<r

for YeP,s=0,1and z;e C(1<j<r).

763
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(5.1) B(a, b) = % Trear+1(ab) for a,beo(r+1).
(5.2) B, &) = (&lgj) == 0y -

1.4.4. Type C,

(0)] O—O0— '+ —0—0<0
1 2 - r=2r-1r

(1.1) g(C,) = sp(2r) := {x € gl(2r)|'xJ;, + J;px = O} , where
1. ey —f e — 1

—17

Jop = = [sgn()0i4j,0i j=+1,.... 4 -

(12) Putting C¥; = C> = C_; ;:= E'; — sgn(ij)E™_; , the isomorphism is given by
e Clhyy 3C_,
feCMy (l<j<n; 3CT, Gj=1).
hjo Cl— O, c,
(1.3) [C, CK] = 6}C' — 64,C; + (sgn jk)(67,C'_, + 6°_,C).
@1) b=@- CC.
(22) oj=¢ — gy 1<j<n), o, = 2¢,,
where {¢;}}-, < b* is the dual basis to {C/;}}-,.
(23) 4, ={etgll<i<j<riU{2gl <j<r},
Gee, = CClg;s G5 =CC;.
2.4) 6 =2, .
Bl dj=e++g (1<j<n).
(32) p=re;+--+2_, +e,.
(3.3) %, >3Y=(y)—Zy;eP,
is bijective. The image of Y will be also written by Y.
(4 ForYeP,andz;eC l<j<r),
det [zt 417 — 2,70, e

[l G-z I @G-z0-z'7"

1<j<r 1<i<j<r

Trvy ([1; 2% =



(5.1)
(5.2)

1.4.5.

©)

(1.1)

(1.2)

(1.3)
2.1)
2.2)

2.3)
(2.4)
(3.1)

(3.2)
(3.3)
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B(a, b) = Trcar(ab) for a, besp(2r).

B(e;, &) = (&ilg;) = 36

Type D,

1 2 3 wr—2 r—1
g(D,) ~ o(2r) := {x € gl(2r)|'xJ, + J,x = 0}, where

Loy —peee —1
. 1
J, = Lo 70 = [Oi+j0dijm 1, 4r -

Putting D}; = D>/ = D_, ;:= E'; — E7_,, the isomorphism is given by
ej"”Djj+1 Dr—l,r

Sy DM (1<j<n; Doy, Gji=n.
hj DI, — DIt D, — D,

(D', D*] = 6}D", — 6", D% + 6 9,D"_, + 6'_, D7, .
b = @f-.CD’; .
o = & — &4y 1l<j<n, o, =¢&_1+6&,
where {¢;}}_; = b* is the dual basis to {D’;}}_;.
4, ={g+egll<i<j<r}, Ge,xe, = CD' ;.
0=¢; +¢,.
Aj=¢e 4+ 1<j<r-2),
Ay =3+ 6y — &), A, =3E ++e +e).
=(r—1De +-+26_,+¢&_ .
P, =(P2Ua(P)]]P+]]o(P})  (disjoint union).

Here PQ2:={A=XAgeP.|VieZ,,}, Pl:=P°+4, and o:h*3¢>
(1 — 25;)¢; € b* is the action of the diagram automorphism o,_, , := 6,,_, ,. The
map

%.35Y =(y)—>ZyeP?

is bijective. The image of Y will be also written by Y.
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(4 Fori=ZXAegeP,and z;e C(1<j<),

Troa([ ;2™ = z det[z5% ] <1<

- _ 2
o spe{+1}[Irs=1 H (zi —z)(1 — z 1Zj Y
1<i<j<r

o det[zMtr 4 AT L
Troe([1;277) £ Trueay( 1277 = ' = el
()H] J (a(4)) Hl J H (Zi_zj)(l_‘zi 12,- 1)

1<i<j<r

(5.1) B(a, b) = L Trcar(ab) for a, beo(2r).

(5.2) Ble; &) = (&lg) := 0y .

1.4.6. A convention for o(n)
Put o(1y) := {X € gl(N)|X + 'X =0} and

. N
Here the indeces i, j run over —n, —n+ 1, ..., n — 1, n, where n:= [7] (we assume

that i, j do not take zero if N is even). Then the isomorphism o(ly) ~ o(N) can be

given as follows.
(i) Caseof N=2n+1. Fori, j>0,

Y
0" >N~ (B + B, ~ BY + By).

—i
0% L (B, — B), 1 BY
,“"’”2‘( i— B+ B+ By),
—i 1 o i ii
0 —jHE(Bj—Bi_‘B - By),

1
0°,;>—=—=(B% £ B°_).

/o

(i) Case of N =2n. Fori, j>0,

; -1 . ,
0l (—)T(Dlj -+ D]i _ DU + Dij) 5

i
i 1 i J ij

IR
075 (D~ DYy — DY~ D).

Then we introduce and fix a root basis of o(ly) by this isomorphism. We also
denote them by {B’;} or {D';}, respectively.
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1.5. Notations for classical affine Lie algebras

In 1.5.1 we summarize some theta functions and their formulae.

In 1.5.2 ~ 1.5.5, following the notation in 1.4 we give

(0) Dynkin diagram (of classical nontwisted affine type), the dual label 4; and the
dual Coxeter number g;

(1) parametrization of the dominant integral weights mod C6;

(2) Weyl group W x M;

(3) the numerator &, ; and the denominator & (1.2.3(9)); and

(4) actions of the diagram automorphisms defined in 1.3.1.

For the sake of completeness, we list the rest of affine Dynkin diagrams and their
dual labels in 1.5.6.

1.5.1. Theta functions

Let leR.y, jeR, 1eC,:={reC,Im7>0}, ueC and put e[*]:= exp(2mix),

i:=./—1. We define

(0) ez'ij,l(r, u) = 2:neZ (i- 1)ne I:(] + ln)u +

(j+ In)? .
21 )

Then 6%7;, =6%, and 0%, (t, u) = e[ —j/2116% (v, u + 1/2]), where 0% is as in
1.3.4(15). We have the following formulae.

(1) 9Zj+1,l = 9Zj,1 > sz,t(fa —u) = ez—j,z(fa u), sz,z(‘f, u) = GZj/l,l(h’ lu)

() 9Zj,t('f, u)gzk,m(’fa v)

lu + mo u—v
V/ YA
= EMERde I(1+m) 0 ul+m <T3 0 mp—(1+m)k, Im(I+m) | T (la me Z>0)

j=j+kmod I+m T+m
3) 0%, (t,u + 1) = e[—(u + %) l:l 0%, ,(, u)
@) 0Z,, (r, u+ %) = e[—(ig + %) z] 0%, 1s.(T, 1)
) 0%, (v, u + 1) = e[ j16% (t,u)  (ifleZ)
For j, l € Z, we also have
(6) 0% (t+ Luy=e[j(j — l)/zl]elj,l(r, u+ -i—) ,
™ 0% ipa(x + 1, u) = e[1/8 + j(j — /21167 (z, w),

and the following transformation rules by Poisson’s summation formula [Se].

Iu? 1 —jk/l
®) e[——%] 91,-,:(—;, g) = /-t %, e—[\}%@zk,z(ﬁ u)
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Iu? K/l 1
©) el:—;_"jl 0% 1. 1< ) V=it Ty ! \]// L 0%, 1( 2)
Iu? 1 K/l
10 o <2 on (L E4g) - v a, TR T i

u? 1u 1 - . e[ —jk/1] 1
(11 e|:—“2?:| 0Zj+1/2,1<—? T + '2‘> = —l"-'(_l)l Z;(=1 —\/Z_BZH”“ T, U+ 3
Here we choose / —it such that Re ./ —it > 0.

In the case of [ = 1, we use following notations after [JM].

(12) 0(z, u):= —ib%,, , <r, u+ %)

=2,z (—1)e I:l (n + ;)21 + (n + %)u:l
= ¢ = 27 [[hay (1 — )1 — 24" (1 —27'q")

= —0Ot,u+1)= —0(r, —u) = —zq*?0(t,u + 1)
=e[1/4 — u?/21]\/ —it'0(—1/z, u/7),

(13) O(z, u) == 6%, , (r, u+ %)

=2,z (—1)e I:ln T+ nu]
= HnZl (1 —g"( — zg" V)1 — z71g"12)

=0t u+1)=0@ —u= 2“1/2q1/80<r, u— %)

= e[ —u?/21]/ —it "10(—1/7, uj7),

where q := e[1] and z := e[u].
Recall the Dedekind eta function and its transformation rule,

(14) (1) =g [[71 (1 = q") = Zyez (= 1)7g V724 =/ —ic 'n(—1/7).

1.5.2. Type 4D,

©)
é-—cf——o—é 11 - 11; g=r.

2 - r=2r-—1
(1) There is a surjection

¥, 3Y(Y;)=Y|y+14,€ P, (l).
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2 w=~g¢g,, M = Q= {Z mg; € -, Zg)|Z; m; =0} = h*.

(3) For an r-vector u= (4;)}-;, put [u]:=2Z_,u and u;:=u;— [ul/r. By 4k
(0 <k <r—1) we denote the classical part of the (affine) fundamental weight A,
(1.4.1(3.1)). Then

r—1 i [u]
_ Z Z
z 'Qfl/lk+):’]3=l A,E,,z(‘fa Zj"=1 quJj)e [Al+1k, Ir (Ta T> = det[0 z,,z(T, uj)]l <ij<r

k=0
for £ A¢; € 0* (1.4.1),

(e, Ty HEG) = n@ D2 [] 66w — ).

1<i<j<r
0 1 o r=2 r—1
4) Putcyc:=(0,1,...,r—1), w:= <0 Py r 5 ’ 1 ) and let o,, and o,
respectively be the corresponding diagram automorphisms. Then o,0,,.0, " =

0. ', and we have
Ouye(sc + 1d + X5y w;EY))
=(s—1(r— 1)/2r —u)c + td + Zi_; (uj—y + (6, — 1/N1)E7;,
Opye(50 + 4, + o1 Vi)
= (s — I(r — 1)/2r — y,)8 + 1Aq + Ziey (3= + (61 — 1/9Dg;
and
o,(s¢c + td + Zjoy wE) = sc + td + i) (—uppy)E;,
0,(s8 + 14, + X0 yE) =50 + 4, + X (= Vr+1-)8 >

r — r p—
where we assume XJ_; u; = 0 and Z}_; y; = 0.

1.5.3. Type BV

0 1
0) Z>o—%---—o=o; 2 2 - 2 1, g=2r—1.
1 2 3 «r—1r 1

L .
E_mm(yl,L—yl)ZyzZ“'Zyrzo,
&

(Vi ¥)E@ +sy, s=0or1/2
Q W=& x {1}, M={Zmge@), Zg|Zme2Z} <bh*.
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(3) Foru=3,_, uB;ehand A =13}, Ageb*
_ 7.7
&{AHZO(T, u) + "dam(}&lﬁo)(‘r’ u) = det [9Z’+A,-,1(Ta “j) -0 +—zl,1(T, uj):IlSi,er >

D, u)=n@) " [] 0@ u—u)b(t,u+u) [] 0z, u).

1<i<j<r 1<j<r

(4) The diagiam automorphism ¢, = a,; that corresponds to the permutation (0, 1) is
given by

o1(sc + 1d + Ty wB’}) = (s — t/2 + uy)c + wd + (v — uy)BYy + Zf_, w;B’;,

G01(s8 + LAg + Zjey yj&)) = (s — L/2 + y1) + LAg + (L — y1)er + Ziey vyt -

0, 1): I::>o——<>—---—o=o

It holds that 6o, =t, o7, € Aut b*, where t, (resp. r,) denotes the translation (resp.
the reflection) associated to a: for 4 € h*,

t(A) =4 + A(c) o + {B(4, a) + %A(c)-B(oc, a)}d,

B(4, «)
A)y=4-2 .
D Ba) "
15.4. Type CV
0 oo—o——0—o0<«o0; 1 1 1 -~ 11 1; g=r+1.
0 1 2 r=2r-1r

(1) There is a bijection
¥, 3YZS(Y;l)=Y + 14y e P()
2 W=~& x{x1}, M=), 2Zsch*.
(3) Foru=ZX;_ uC’;ehand 1 =2, Ageb*,
o, (1, u) = det [0%, (7, 2u;) — 6%_; (v, 2u)]1<ij<r »
D, u) =07 [ 0, u,— u)0(z, u; + ) ) [T 0@z 2u).

1<i<j<r <j<r

4) Put w:= (r r { S) and let ¢, be the corresponding diagram auto-

morphism. Then
o,(sc + td + iy w;Cl)) = (s — rt/4 + Zjy wp)e + 1d + Zioy (t/2 — upyy ),
Gu(s8 + 1o + Zj-y yjg)) = (s — Ir/4 + Ejoy yi/D)6 + o + ey (1 = Yre1-))5 »
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In particular

o, (Y +14,) = Y + 14, mod C§ for Ye%,,.

d Y J

0=>0—0—:+—0—0<0

1.55. Type DOV

1
H < 22 - 22 5 g=2-2.
1

5>mm(y1,L V1) Z Y22 2y 2020,

() Pu(L)= LA, + Vi€

T

J

Yis--> V) E@ + 5), s=0or1/2
2 W~G x {1}, M= {Zmpge@), Ze|Zm;e2Z}.
(3) Foru=ZXi_, uDjeh A=3_, Agebh*ands, s’ = +1,
2 p=0,1 5 Ma‘m“ar L ,b(HzZo)(T, u)
= det[§%* (T w) + SIGZ’SSI—AA.I(Ta u)li<ij<r

D(t, u) = y(r)7C=2 H 0(t, u; — u;)0(t, u; + u;) .

1<i<j<r

(4) The diagram automorphisms g,, 0, = dy; and ¢, = 0,_;, that corresponds re-
spectively to the permutations w:= <(: ¢ I ! 6), 0,1) and (r — 1,r) are
given as follows.

o (sc + td + X, uD')) = (s — rt/8 + Ti_y u;/2)c + td + T, (t/2 — Uy, ;)DY;,
0u(s6 + LAg + iy yje;) = (s — Lr/8 + iy y;/2)0 + LAg + Zicy (L/2 — yyu1-))8; -
In particular ¢, (Y + 2I4,) = Y* + 2l./10 mod Cé for Ye ¥, ,.

[ W 1

Oo1(sc + td + Zf_, ;D)) = (s — t/2 + uy)c + 1d + (v — u;)D'y + Z,'-=2 u;D’;
001(55+LA0+ i=1 Vi 1)—(S_L/2+Y1)5 +LA0 + (L —y1)e; + i=2 Vi&j -

R
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Opy,,(s¢ + td + Zj_y wD/}) = zc + td + (T2 wD’)) — u, D',
r1r(S(5+LA0+E’1y])—5(5-1-L/10-+-( zyj Vier

e e

It holds that 6y, =t, or, and 6,_;,=r, as an automorphism of b*, where t., and
r,, are as in 1.5.3(4).

1.5.6. Other affine diagrams and their dual labels [Kac]

1 2 1 1 2
G’ o—o=o0 (g=4 AP  o<=o (g=13)
1 2 3 2 1 1 2 2.2 2 2
FY o—o0o—o0o=0—o0 (g="9 AP o<«o—o0--0—o0<0
(g=2r+1)
1
¢ 1
EY o—0—0—0—0 (g=12) AP :>O_O;...—oco
1 2 3 2 1 1 2 2 - 2 2
(g =2r)
2 1 2 222 2 1
EY o—o0——o0 i———o o—o0 D® o«o—o0--0—o0=0
1 2 3 4 3 2 1 (g =2r)
(g =18)
3 1 2 3 4 2
E) o—o0—o0 —0o——o0 i——o o EY o—o0o—o0o<o0o—o0
1 2 3 4 5 6 4 2 (g=12)
(9 = 30)
1 2 3
D o—o<o (g=06)

§2. Clifford Algebras and Spin Representations

2.0. We will briefly summarize about the spin representations ([B], [F1], [FF],
[KP1]).

2.1. Clifford algebra C(W)

Let W be a vector space with a non-degenerate symmetric bilinear form { , }.
Then the algebra
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(1 CW)=TW){v@wW+wQv — {U, W}>twosidedideal

is called the Clifford algebra associated to (W, { , }). Here T(W) denotes the tensor
algebra over W. We write uv {or the residue class of u ® v in C(W). When dim W < oo,
as a C-algebra

) (W) ~ {Mat(z"’ ) . if dim W = 2n

Mat(2",2") @ Mat (2", 2"): ifdim W=2n+1"

2.2. The spin module /\ (W) of C(W)

First, suppose there exists an isotropic decomposition W= W* ® W™, that is,
{(W*,W*} =0 and {, }|ly+xw- is nondegenerate (if dim W < oo, this means W is
even dimensional). Then the exterior algebra /\ (W™), viewed as a /\ (W~)-module by
the left multiplication, gives rise to an irreducible left C(W)-module by defining

1 wr-1:=0 for 1e /\(W7)and any w" e W*.

This module is isomorphic to the quotient module C(W)/C(W)W™ by the corre-
spondance 11+ C(W)W™, and its element is called a spinor. We denote the
representation C(W) S End A\ (W™) by oy

Next suppose W = W’ @ Ce be an orthogonal direct sum with {e,e} =1 and W’
has an isotropic decomposition W' = W* @ W~ (in the following, we refer this type
of decomposition to a quasi-isotropic decomposition). Then a C(W’)-module A (W")
becomes an irreducible C(W)-module by defining

) ﬁe-v:= +(=1Pv  for ve A\P(W7).

We denote this representation C(W)— End /\ (W™) by e
In both cases, we call an element of W~ (resp. W*) a creation operator (resp.
annihilation operator).

2.3. The spin module /\ (W) of o(N)

Suppose W = W, is of finite dimension N, and {e;}}-_, is an orthonormal basis of

Wy: {e;, ¢} = 6.

(0) (Notice: Here and after we put n:=[N/2] and regard that the indeces —n <
i, j, -+ < n do not take zero if N is even.)

Then the following map is a Lie algebra monomorphism.
n B:o(ly) 3 O';:= E'; — E/ ;> ee;€ C(Wy) .

Taking a (quasi) isotropic decomposition of W and considering Sy := a%’ o f, we get
the spin representation of o(N). (In case of odd N, a3, o f ~ gy o f holds and we can
write it Sy.) Put

o [ ) e
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(1 <j < n) to fix a (quasi) isotropic decomposition

(3) Wy~ Wy @ Wy (®Cep), where Wy :=@PNACYy*/.
Then for i, j, k= —n,...,nand X = B or D, we have

@ SW(X') =i and  [Sy(X%) ¥4 = Y — 5y

for the root basis X*; (1.4.3 ~ 4, (1.2)), where : : is the normal product defined by
(5 :ab: := (ab — ba)/2 for a,be Wy.

Moreover the isomorphism A (Wy) ~ K)i-; /\ (Cy;) as a (@);CX’;)-module yields the
following character formula.

Proposition 2.3. Putting w; := e for u; € C, we have
Tracep gwy) eXp [Zf=; ;X7 ] = [Th=y W/ + w12). |
There is a Hermitian form H on /\ (Wy') uniquely defined by
6) HlL1)=1 and H(e;-u, v) = H(u, ¢;-v)
(w,ve \(Wy),j=+1-+n. Wehave H{' u,v) = H(u, ;).

Theorem 2.3 [B]. (i) The Hermitian form H is positive definite and contravariant
with respect to the o(N)-action.
(1) If N=2n+ 1, then as an o(2n + 1)-module

N\ Wapiy) = L2C*0(4,) .

The highest weight vector is given by 1 € )\ (Wy,4,).
(iii) If N = 2n, then as an o(2n)-module

AT W) = LC0(4,), A°94(Wy,) =~ 1OV (4, ),

where \"():= @pezz \P() and N() = Dpeszas \2(). Hence \ (W) gives
a {0,-1.,) % o(2n)-module by 1.3.2(9) and we have

/\ (Wy,) ~ L(an-l,..>xo(2n)(A") .

The highest weight vector of /\**"(W,,) (resp. /\°*¢(W5,)) with respect to o(n) is given by
1 (resp. Y,) € \ (Wy,). B

2.4. The spin modules A\ (W,%“*"~) of o(N)"

We retain the notation in the previous paragraph. For h =0 or 1/2, we define
a vector space with the inner product

8y WyZth = W, @ t"C[t, t™1] with  {a(p), b()} := {a, b} 6,40 »

where a, be Wy, u, veZ + h and a(y):=a®t*. Given a (quasi) isotropic decom-
position Wy = Wy @ Wy (@ Ce,) of Wy, (2.3(3)), we choose an (quasi) isotropic
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decomposition

) WNZ+h - WNz+;.,+ ® WNZ+h’_ (@ Ce),

where

® W {WN@ cEenty ik,
Wy @ tH'C' ) @ (My* ®1°) ifh=0,

and

¢ S o

We define the normal product for a(y), b(v) € WyZ*" by

—bWv)a(p) fu>0>v
©) :a(Wb): := < {a(Wb() —ba(W}/2 fp=0=v
a(u)b(v) otherwise .

There is a Hermitian form H on /\ (Wy“*" ") determined by

(6) H(l,1)=1 and H(ej(v)-u, v) = H(u, e,(—v) v).

Theorem 2.4a.(i) [F1]. The following map is a Lie monomorphism:

) SE = 501 0(1y)" 3 0)(m)> X, 4 ei(W)e,(v): € End \ (WZH07),
c—id.
(if) For x(m)e o(N)" and Y € Wy,
@ [S% (x(m), Y (k)] = [Sw(x), Y1(m + k)~ on N\ (W>™7).

(iii) Let D,:=D°™"(n) (ne Z) be the Virasoro operaters associated to the rep-
resentation SZ*" (1.2.2). Then

n
&) [D,, ¥(K)] = —(5 + k>¢(k +n)
Jor Y e Wy
(iv) The Hermitian form H (6) is positive definite and contravariant with respect to
the o(1y)"-action in (i). |

The sum X :e;(u)e;(v): above should be understood as X o)(:e;(p)e;(v):), where o'+
denotes the spin representation of C(WZ**). As is similar to §2.3, + give equivalent
representations in case of WZ_, 5 e® = ¢4(0) # 0.

The representation S = SZ*" is called the spin representation.

Put

(10) ChNi’Z-H‘ = Ch/\ev:n(WNZ+h.—) + Ch/\oda(WNz+h.~)

(see 1.2.3(6) for ch,). As in §2.3 we have the followings.
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Proposition 2.4a [F1]. The characters chi*Z*" have the following formulae:

. 1+1
—lB(r, uj+—4—>

n(z)

R 1+1
. 9<r,uj+—4—>

hi,Z+1/2 D, b Dj —
C 2n (T 0 + ‘j=1 u] ]) ]_1:! 1'](1')

. 1+1
—l@(r, uj+T)

n(7)

R 1+1
. B(T,uj+'4—>

chf; ZH2 1Dy + hy wB') = HE12(x) []

(11) chi;? (tDg + Zj-; wDY) =

.
Il l B
ft

chiyZ (xDy + Iy u;BY) = H*°(x) [‘[1
=

j=1 n(z)
where 0 (resp. 0, 1) is given by 1.5.1(12) (resp. ibid. (13), (14)) and
12 +.0(7) == n(27) H12(g) = 7’](‘[)2 ,
1 e O = e
—0(7) — —azg . NE/2)
H™%%1):=1n(), H™ (1) = D
(e. H*°)=¢"* L2110 £¢"), H¥P@)=q " [[2:(1£q"?) with q:=
exp (2zit)). =

Theorem 2.4b [F1]. Suppose N > 2.
(i) If h=1/2, then

/\even (WNZ+1/2,—) ~ LD(N)A(O; 1) — LO(N)"(;I“O) ,
N\ (WREH27) > Lo (451) = L™ (4,).

The highest weight vector is respectively given by 1, Y*(—3)- 1.
(@) If h=0and N = 2n, then

A (W, B7) = L2CP" (4, 1) = LW (4,,),
N\ (W, B7) = L2C"(4, 13 1) = L°CP(4,).

The highest weight vector is respectively given by 1, ,(0)- 1.
@iii) If h=0and N =2n+ 1, then

N Wy ™7) > LCm0 (4, 1) = LD (4,).
The highest weight vector is given by 1. |
Following the notation of 1.3.2(2), we therefore have

(13) N\ (W2t =) o L% o™ (0; 1), et
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On /\(WNZ”‘") there are two actions of Virasoro algebra: one is the Segal-
Sugawara operators D,, = D°™"(m) (1.2.2(3)) obtained by Sy, and the other is what
defined by

(14) V¢4 > d(m)— D (m) , ZHgid € End A\ (Wy2"7);

where

(15) Dy = — P =2 ..o Nid Ly s - v):e(We;(v):
48 4 Jj=1 p+v=m

which satisfies the followings ([FF, (5.17)]).

(16) [D (m), a(v)] = —<%'- + v) am+v)  (ae W)

17 [P (m), X(n)] = —nX(m + n) (X € o(N))

Proposition 2.4b [FF, Proposition 13]. For N > 2, we assert
(18) DM (m) =D % (m) forallmeZ.

Proof. In view of Proposition 1.2 and the above commutation relation (17), the
assertion follows from the central charge identity

(19)

dimo(N) N(N—1)2 N
_ =3

1+g 14+(N-2

Remark 24. (i) In the case of N = 1, the spin module /\ (W,%*"7), viewed as
a Virasoro module by (15), decomposes as follows.

(20) /\even (W1Z+1/2,—) ~ L”Vt'z(o’ 1/2)
/\odd (W/ll+1/2,—) ~ L”Vz'z(l/z, 1/2)
N\ W %7) = L7(1/16, 1/2)

See Example 5.3 for the definition of L”“(h, ¢), where we also review their character
formula (5.3.(6)). These facts are shown by the character identities

(21) H*°(t) = ChL*’“(x/xs, 12)(7)
and
(22) H* (1) = chyra, 112)(%) £ Chpyaip, 112)(7) 5

all of which follows from the celebrated Euler identity (1.5.1(14))
@3) w1 (1= g") = T,z (—1)gCm "
or

@4) [Tt (1= (=) = Zpeg (= 1y 2gmeni
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(i) In the case of N = 2, putting & := 1/2 — h we have the following isomorphism,
which is equivalent to the Jacobi triple product identity (1.5.1(12 ~ 13)) in terms of
characters.

(25) I\ (W2 7y o 12X (g, 1)
Here Z x o(2)" = Ze x (CD',)s denotes the Heisenberg system (1.3.3(1)) defined by

1 0
(26) 1)11:=[0 _J, B(D',,D';):=1 and (DY) =1,

and LZ%°®"(1, I) denotes its Boson Fock space representation (1.3.3(2) ~ (4)). See also

§8.
(iii) To calculate the relations such as (7), (8), (9), (16), (17) and (18), the method of

operator product expansion and the so-called Wick’s theorem are quite useful. See e.g.
[FF] for them. |

§3. Dual Pairs of Classical Lie Algebras

3.0. In the following paragraphs 3.1 ~ 3.2 we state our main result in finite
dimensional cases. We give their proof in 3.3.

3.1. Definition of representations
Here we define the representations of some pairs of Lie algebras, which turn out to

form dual pairs (§0.1).

31.1. Case AA. (gr, gr) := (gl(}), sI(r)) on A\ (W)

Let ¥, and V, be vector spaces of dimension ! and r respectively and put
V.=V, ®YV, We have the following three Lie algebra monomorphisms.

) L:gl(W)ax—x® 1, egl(V;,)
@ R:gl(V) o x—1,® x € gl(V;,)
) i: gl(V,) > x> diag(x, —'x) € o(Wyy, { , })

Here W,,:=V,® V¥ and {, } denotes the inner product induced by the pairing
between V,, and its dual Vj¥. Clearly it holds

“ (L6, R'@glr)]=0 and  L'(gl())NR'(sI(r)) = 0.

Hence we get mutually commuting representations of gl(l), sl(r) by composing the
maps L:=ioL’, R:=ioR’ and the spin representation S of o(W,,) ~ o(2lr) (2.4(7))
respectively:

) SoL:gl() > End A\ (Ws,),  SoR:sl()—End A\ (Ws).
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We shall describe these representations explicitly. Take a basis {v;}/; of W*
(resp. {v,}p=; of ¥;*) which is dual to the basis {v/}}_; of V] (resp. {v?},—, of V) (§1.1),
and put Y? =0/ Q% ¥; ,:=0;®v, 1 <j<L1<p<r). Then {y”?}U{y;,} gives
a basis of W,,, that satisfy

(6) {l//j,ps lpk,q} = 5jk6pq and {!//j,p, l//k,q} = 0 = {‘/Ij,p’ l/Ik,q} .
We fix an isotropic decomposition W,,, = W,i, @ W, given by
(7) I/VZ-'l—r =Vp= @ C‘pj’p and WZ—l_r = Vl;k = C—B C‘//j,p

and put y > 7P:=1; ,. Recall that :ab: = (ab — ba)/2 (2.3(5)).

Proposition 3.1.AA. We have the following formulae.
(@) SoL(EY) =Z Y P, i€ C(Wyy,) = End A\ (Wy,) for E’yegl(l) = gl(V),
and
(R) SoR(E?) =X, )Py - € C(Wy,) >~ End )\ (Wy,) for EP, € sl(r).
() [SoL(E), y*?] =" — 8" p, [S o R(EP), Y*°] = 65y%? — 67 _,.
|

Remark 3.1.1. Consider the case r = 1. Let v, ..., v* be a basis of C' in §1.1 that
satisfies E ;p* = v'6;* for Eij egl(l). The isomorphism

8) NV oy, ..., ovirvxe A (C)
between vector spaces induces that of their endomorphisms
) I: End A\ (Wy) S End A (€Y,

and we have the following commutative diagram.

sl(l) —2£» End A\ (Wy)
(10) l ® J
sl(l) —— End A (C")

Here we denote by C (resp. m) the Chevalley involution X+ —'X (resp. the exterior
product representation). In fact, using the formula 3.1.AA(ii) we have the following,
which shows that S o L coinsides with n o C as representations of sl(l).

(11) (S o LB Wi, %) = — sy, - ¥
= (=¥’ + 6/, ... ¥,
=/ 2, -V, + Zgey Yy L=, ¥ T, Y,
= @/, - W, + Do iV (S WV, -

It also holds that A (Ws,) =~ A\ (W5)®" (resp. A\ (Wap,) =~ N\ (W5,)®) as a gl()-
(resp. gl(r)-) module. This isomorphism is given by the assignation

(12) AW)® 3aV® - ®a"Sal A na’e \Wa),
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where for & =y A== A Yl e /\ (Wy)® (the p-th copy) we put
(13) aP =P A A e N\ (Wa).

3.1.2. Case CC. (g, 8g) = (sp(2]), sp(2r)) on /\ (Wy3,)

Let V,, and V,, respectively be a 2] and 2r dimensional vector space with an
alternating bilinear form (, ) of maximal rank. Then W,, =V, ® V,, has a non-
degenerate symmetric bilinear form {u® x,v® y} := (4, v)5;" (X, ),, and we have the
following Lie algebra monomorphisms.

(1 Lisp2) 3 x—>x® 1y, € 0(Ways { 5 })
(2 R:sp(2r)ax—1,, @ xe oWy, { , })

We have [L(sp(2l)), R(sp(2r))] = 0 and L(sp(21)) NR(sp(2r)) = 0. Therefore we obtain
mutually commuting representations

3) SoL:sp(2l)—>End A\ (W,,) and  SoR:sp(2r)— End A\ (W)

of sp(2l) and sp(2r) respectively, where S is the spin representation of o(W,,,{ , }) ~

o(4lr) on A\ (W) 2.4(7)). .
Explicitly these representations are given as follows. Choose a basis {v/ = v_;}7__,

of (Vams (5 )am) =~ C?™ such that (v/, vy)ym = — V4, )y = 6%, (m =1,7). Then we have
a basis (Y :=y_; _,=v/@v?|j=+1,..., £ p= +1,..., £r} of W, that satisfy
(4) {l//j’p, lpk,q} = 6jk5pq 3 Where lpj,p = ll’—j’ P 9

and an isotropic decomposition
®) Wi = Wi, @ Wy, where Wi, := @j>0,p Cy*ir.,
Proposition 3.1.CC. For C/y e sp(2]) (1.4.3(1.2)) (j, k= *1,..., £I),

@ SoL(Ch) = é W P, — sgn(jRY " 0 € End A\(Way)

p=1

and for C?, e sp(2r) (p,q = £1,..., £r) we have
1
(R) SoR(CP) = _21 WYh Y — sgn(p@y” ;i € End (W) - L
j=
As in Case AA, \(W,) ~ /\(C*)®" as an sp(2r)-module.

3.1.3. Case 00. (g, gr) := (0(L), o(R)) om /\ (W)

For M =L, ReZ.,, let W, be the M-dimensional vector space with nondegenerate
symmetric bilinear form { , }. There are following Lie algebra monomorphisms (See
§1.4.6 for o(1,)).

@) Lio(W) >~ o(1L) 3 x—x ® Ig € o(W, ® Wg) ~ 0(ILg)
2 R:o(Wg) ~ 0(lg) 3 x> 1, ® x € o(W, ® Wg) ~ o(l.g) -



WEYL RECIPROCITY FOR AFFINE LIE ALGEBRAS 781
We have [L(o(1.)), R(o(1g))] =0, L(o(W.)NR(o(Wg)) =0. Putting W g:= W, ® Wy
we obtain mutually commuting representations
(3) SoL:o(L)—>End A(Wx) and  SoR:o(R)—End \(Wg),
where S is the spin representation of o(Wg).
Put m:= [g} and let {¢;}™_,, be the orthonormal basis of W, such that O'e, =

€;0; — €;0; (M = L, R), then we have an orthonormal basis {¢; ,:=¢;®e,| -1 < j<|,
—r < p <r} of Wyg (we consider j (resp. p) does not take 0 if L (resp. R) is even). By
(j, p) >0 we mean j> 0 or (j =0, p > 0), and put

g el P B VA

for (j, p) > 0 so that {Yy?, y ,} =847, (-1 < j k<l —r<p,q<r).

©) Wig = Du.p>o Cy+itr (and € = Y% = Y0 := €go)
give a (quasi) isotropic decomposition of Wy z:
(6) Wir= VVL-;{ @ WL_R(@ Ceo) .

Proposition 3.1.00. For —1< j,k<land —r <p, q <r, we have
7 SoL(0%) =320 _, ¢ e, SoR(0%) =Xi__,:¢ ,€ .-
As for the root vectors X7, X, (X = B, D; §1.4.6),
8) SoL(X%) =X _ pi?y, 1, SoR(X%)=Xl_, ny, ;. &

3.2. The irreducible decompositions

Now we describe our result in the finite dimensional case, the irreducible decom-
position of the o(N)-spin module /\(Wy) as a g; @ gz-module.

The pair (g;, gg) is defined by 3.1.1~3, and then N is given in Table 3.2. For
each case the space of creation operators Wy is respectively chosen as 3.1.1(7), 3.1.2(5),
3.1.3(5), and the representation of g; @ gz on /\(Wy) is given by Proposition 3.1.AA~
0O0. We fix the Chevalley generators as in §1.4 so that we can talk about highest
weights, which are parametrized by Young diagrams as in §1.4. Recall Definition
1.3.2(2) of LEX8(A).

Theorem 3.2.

(@). As a g, @ gg-module (§§3.1.1~3), the o(N)-spin module /\(Wy ) decomposes as
follows.

©) AWy) = Dyeg,, LX(A(Y) @ L**((Y))

Here I, r, Z;, Zg, Ay, Ag are given by Table 3.2 below and %, denotes the set of all
Young diagrams in the | x r-rectangle (1.4.1.).
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List 3.2(AA-DD) is the complete list of the highest weight vector of each irreducible
component with respect to g @ gg. All finite dimensional irreducible modules of classical
simple Lie algebras appear as an irreducible component of a suitable /\(Wy ).

(i) [Holl In particular, /\(Wy ) admits a Z x Zg-action (1.3.2(4)) and each pair

(C[ZL] x U(gr), C[Zg] % U(gg)) forms a dual pair (Definition 0.1b) on /\(Wy ). B8
Table 3.2
Case AA CC
9Ls 8r gl(l), sl() sp(21), sp(2r)
N {id)}, {id} {id}, {id)}
N 2lr 4ir
A(Y), Ag(Y) (Y, [Y] = lr/2)®,'Y Y, Y*
List of HWV’s List AA List CC
Subcases of QO**) BB DB DD
9L, OR o +1),0Q2r+1)  oQl),0(2r + 1) o(21), 0(2r)
DI IN {id}, {id} {o1-1.1, {id} 012110, Op=y.1)
N @+ 1D@Er+1) 22r + 1) 4lr
A(Y), I(Y) Y+A4,Y +4, Y+4,Y Y, vt
List of HWV’s List BB List DB List DD

Notation for Table 3.2. (*): In Case AA, by L%®(4 a) we denote a gl(l) =
sl(l) ® C1,-module L*®(J) ® C,, where for ae C, C, is a one dimensional C1,-module
defined by 1,(1):==a- 1.

(*+): In Case OO, 0;_, , is the diagram automorphism of D, (§ 1.4.5). =

List 3.2.AA
We identify Ye %, with the data (17;-,1,)1 <j<ii<p<r DY

4 —r— JA\p 1 r
Y1 ([Coooa- 1 | oooos
¥ sy |: 3 ;|oogs- - . | ooom- - s
L= 1 = 1a2] = 5= © o | COE-- = (Yp)i<j<ni<p<r-
Vi ) L = [ B

Then the highest weight vector or weight (Y, [Y] — Ir/2),'Y) with respect to (gl(!), sl(r))
is given by

(6,07, -0 ¥i,0) 1 € AWss) -
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List 3.2.CC
We identify Y € %, , with the data (f;, p) as follows:
—Tr— j\p 1--.r —r...—1
( noooe - 1 |o.--oO 'Elél]_lar;!—!—:j _
@ . sY=1ggm. | & | ... 'BaE--={F ) -
’ HE- - - ‘..' e | J,p';=+1...+r
L — 1 Oe-:0 | ---H =iz

Then the highest weight vector of weight (Y, Y1) with respect to (sp(2l), sp(2r)) is given
—
by ([1z, ,=u Vi)' 1€ AWaz).

List 3.2.BB
Under the identification
Jj\p 1 r —r...—1
—7 O---0
[ [Bgaa": t |a--.0 HoEel|_ g
R CEE B I - el
Y | . ]

Ilo---o | ---m,
the highest weight vector of the weight (Y + 4,, Y + 4,) with respect to (o(2] + 1),
—

o(2r + 1)) is (]_[y”=. Y0 1

List 3.2.DB®

We make the identification

—Tr— j\p 1-.-.r 0 —r...—1

A R R = Lo
Y,3Y=1\gom | o - jgget = Foimso-

L — | lo---0 DO LS

and put §(Y) := (Y, , + 6;,0y

2P

- — - e
1Y>:=(1s,=a¥ip)'1 and  |6(Y)):=(]s,,=a ¥
respectively give the highest weight vector of the weight

,,n)(j.p)>0- Then

(Y + 4, YT) and (01-1,(Y + 4)), YT)
with respect to (o(2[), o(2r + 1)).

List 3.2.DD®
We make the identification
—r— ]\p 1.-..r —r...—1
(legga™] ! |°::© iBggem
Y,oY=1\gon" | o | e oeEn = ()
L R ! {o---0 LY




784 Kot HASEGAWA

and put
E(1));.,:
@ (¥, :

i}; ,1517, _r,néf’, r,néff, SppD
i gn(p)éll’l "5}'” 51’1 - 5 Y@ *

Then the vector

—
(0L, ,=s .1 for (y,,) =¥, &4(¥) and 6%(Y)
respectively gives the highest weight vector of weight

(Y, YY), (oY), YD) and (Y0, (Y").

=
Notation for List 3.2. Here and after we denote by ]| the product in the exterior
algebra which defines a element up to the sign +1. Moreover,

(4): In these case we identify o =0 and m=1, hence o+ 1 =m, etc (see also
“Notations for List 4.27). @

Example 3.2. Here we explain the above results in Case AA.
(i) First suppose r = 1. In this case Theorem 3.2 reads as

SV N\ W) = @lpmo LYY (p), p - 1/2)
= @imo LSW)(A,-;) ® Cp—l/Z .
Y(p);
Here Y(p)e®,, is the Young diagram of p nodes, 4;
Y(p),

(1 <j <1—1)is the fundamental weight and we put 4, =0 = A4,. For each component
that corresponds to the Young diagram Y(p), List 3.2.AA gives its highest weight vector
as

(2) ﬂj; Y(p);=m Wj’ 1= *//p+1 T ‘//z € /\l_p(Wz_z) .

We can say, “to give the highest weight vector of each Young diagram Y, just think Y
as the Maya diagram ([KNTY], [SN]) of the same form”. That is, let us introduce
the set of Maya diagrams (of finite size, [ x r-component)

|m; , =0 or m}

&) = {(m,

1<j<t
1<p<r
and define a pure spinor |M) for each M € M, , by

) Wy, 2 M = (m )y, = M) = ﬂ Vipe \ (Wa).

mj.p=

Then in this case of r = 1, we can write the above highest weight vector (2) as

(5 1Y(0)> = I(Y(p))j=1> -
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To see that this vector (2) or (5) is actually of weight 4, and is a highest weight
vector, use 3.1.1(11) as follows.

. 1 .
(6) So L(Ejj)(l//p-Fl Wz) = §|pp+1 lpl + Z.li=p+1 ¢p+1 t !/ls—l(—Wjéjs)l//s+1 T Wz
1 )
SVpr e (1<j<p)

_1 _
_2‘//p+1""p1 (p<j<),

@] So L(Ejj+1)(l//p+1 ) = Zi=p+1 l//p+1 e l//s—1(—‘//j+1 5js)¢s+1 o'z
=0 l<j<i-1).

Noting that the sl(l)-action preserves each /\*(W,;) (Remark 3.1.1), we find that
(1) is nothing but the decomposition into the homogeneous parts,

@®) /\(Wz_l) = C‘Dp /\p(Wz_t) s /\l_p(Wz_z) =~ LSl(l)(Ap) ® Cp-l/Z -

Hence together with the sl(l)-module isomorphisms /\(Wy;) =~ A(C)* (3.1.1(10)) and
A\P(CH* ~ A\FP(CY, we also get

©) AC) =D, \?(€),  AYC)=L"PU4,)®C, .
This corresponds to the identity of symmetric functions
(10) [Toes (14 tx,) = g tP5,(Xq,..., %)),

where s, stands for the p-th fundamental symmetric function.

(ii) Next suppose that /=3, r=2. In this case the components are param-
etrized by the set of Young diagrams

00 OO0 OO0 OO OO0 O OO0 O O
(11) %, , = {00, 00, oo, Os, Of, O, B, N, mm and ll—¢ .
: OO OW @R’ OB’ B8 OF BE

Hence, for example, /\*(W,;) (2Ir = 12) has two components

(12) Lo <E".j: 4 — 3.2/2) ® LSI(Z)(S: )
and
(13) Lgl(s)(gj 4 3,2/2> ® le(z)(?l?: ) ‘
The highest weight vector for the latter component is
! iz
(14) 2 E'=> =V1,2¥2.2¥3.1¥5,2 € \*(W12),
3

and has weight O-e;, +0-e; +(—1)-e5=04, + 14, (resp. (—1/2) e, +(—3/2) ¢, =
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24,) with respect to sl(3) (resp. sI(2)), where {g;} is the dual basis to {E’;} (§1.4.2):

o F12=12= 0
(15) o8- +12-12= 0,
-5 —12-12=—1

oom—  12+12-12= 1/2
EEE_, 12 1/2—12=—3/2"

3.3. Proof of Theorem 3.2

3.3.1. Except for the Case BB, the proof owes to Lemma 3.3 below. Letg=n_@&
h @ n, be a simple Lie algebra and its triangular decomposition, and g, be the maximal
reductive part of a maximal parabolic subalgebra containing §). We denote the set of
positive roots of (g, ) (resp. (g0, ) by 4% (resp. 4¢), and the Weyl group by W
(resp. W,). Then there is a Z,-gradation g = g, ® g,, where g, := g7 @ g; and g, * =
@Prca\4: G-q called a Cartan decomposition. In particular ad(go)(g;) = g;. Let K be
the Killing form of g. Then K|g; % g, is non-degenerate and ad(gy)-invariant. Hence
we have an inclusion

1) go < 0(g;, K) .

According to this inclusion we restrict the spin representation of o(g;, K) to go. We fix
the isotropic decomposition g; = g7 @ g7.

Lemma 3.3. [P] As a go-module, the following decomposition holds.
(2) A" (81) = Dwew, sgnw=1 L¥W(p) — po)

(3) /\Odd (g;) ~ @we W, sgnw=—1 Lgo(w(p) - Po)

Here Wy := {we W|w(4g) = 4"} and p (resp. p,) denotes the half sum of positive roots of
A% (resp. 4%).

Proof. Because of the linear independence of characters, it suffices to prove the
corresponding character identity. Put

) ch A" (g7) =T, m; chL¥(1),  ch A\°*(g7) =X, m; chL%(})
with mf € Z,,. First we assert
) mf=0 if mf>0.

Indeed, if not there is an equality 1 = u of weights for some A € P(/\***" (g7)) and
peP(/\° (7). Here P(-) denotes the weight set. Putting 4*\4§ = {By,..., B.},
A = u means

© SOuBu+ b S B) =SB+ + )

with s;, s;=+1 and s,...s,=1, sj...s,= —1. By our assumption for g, there is
only one simple root a;e A*\45. We have A4"\4g = {Znjaje 4" |n, = 1}. Hence
expanding f;’s in simple roots and comparing the «; coefficient, we have a contradiction
and therefore the assertion.

Next we compute the alternative sum of characters,
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(7) ch A" (g7) — ch A°* (a7)
=[Taesaz 1 — e (A@©7) = Kiuesrraz /\(Cs-,) ® C1 as a h-module)

_ e’ Haed" (1 - e—fl)
ePo ]___[aeA:y‘ (1 - e—a)
5 w(p)—po
_ Swew (sgn w)e (Weyl denominator formula)

naeda' (1 - e—a)

w e, (580 W) (P =Potpo)=po
H«xeAg (1 - e“‘)
= Z,cw, (sgn w) ch L¥%w(p) — po) (Weyl character formula).

z
= ZIweW1 (Sgn W) (W = WO Wl)

In the last equality we used the fact that w(p) — p, is dominant integral with respect to
go for each we W,. If we put this

=3, nf chL%(1) — X, n; ch Ls°(4)
with nf > 0, now we have only to show mf = nf. Note that nf =0if nj >0. Then
from this property and (5), m¥ = ni follows. [ |
Proof of Theorem 3.2, Cases AA, CC, DB and DD. We put

sl(l +r) :in Case AA,
(8) g:= < sp(2l + 2r) :in Case CC,
o(L+ R) :in Case OO .

Then in these cases we observe that the inclusion g; @ gz = o(N) in 3.1 coincides with
what introduced in (1): if we take g, = g;, @ gg, then g; ~ C¥ ~ W,. Hence thanks to
Lemma 3.3, we only have to describe the coset W, explicitly in terms of Young
diagrams to get the irreducible decomposition. We can consult [JM, Proposition 1.1]
for this procedure; the idea is to use the following bijections.

Fact 3.3.1. We have the following commutative diagram of bijections of sets.
Y= (J’j);=1 =0+j— W(j))5'=l €Y,
©9) S1r/@ % S,3w () 1*

Yh= (ij);=1 =r+p—wl+Dp)p-1€%,,

Here the representative w is assumed to satisfy the conditions

(10 w(l) <w(2) < < w(l) and wil+ D) <--<w(l+r).
Under this bijection it holds that sgn(w) = (— )"\ As a corollary, it holds that *%,, =
!
ry,, = LD ]
’ I'r!

Together with this statement and the description of the Weyl groups given in §1.4
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we obtain the desired description of the coset W;, and this is what we can find in

[JM]. The statement for the highest weight vectors can be verified directly. B
Remark 3.3.1. (i) The above correspondance (9) is nothing but the graphical

execution of the subtraction w(p) — p, for Case CC.
(i) In the case AA, Lemma 3.3 specializes to the identity

[ [
HiEjSl (1 + wjzp) = ZYE@/,‘,. X%m(wh R WI)X‘QY(,.)(ZD LR ] Zr)
<p<r

of the gl-characters yy, which is also appear in [Mac, p. 35(4.3')].

(iti) Lemma 3.3 is a result of Parthasarathy [P, Lemma 2.2]. This type of
application of the character formula is independently noticed in [JM], which is our
startpoint of the present work. [Has].

(iv) Theorem 3.2(AA, CC, DB, DD) can be elementarily shown by the Laplace
expansion formula of determinant (of course with the knowledge of character formula),
as we will do in the next paragraph for the case BB.

3.3.2. Proof of Theorem 3.2, Case BB. Since g, = 0(2] + 1) ® o(2r + 1) does not
contain a Cartan subalgebra of g = 0(2! + 2r + 2), Lemma 3.3 does not work in this
case. But then instead of 3.3.1(7) we consider
(1) N/ii)ffrl+2r+l)/D0(21+1)DD(2H—1) ,
where D* is the Weyl denominator and N} := D"-ch L’(4), to deduce our result.
Namely, we have

1 r
(2) Tracepw- ;. 1xare1) CXP (151 ;B + ,,>=:1 o BPP>
x D@ D(w, L o w)DPE (2, z,)
=[T5= 00" + w7 2) [15m1 @2 + 2,72) [ et [ 1=t O + 2,701 + w7 '2)
x H§=1 (ij - Wj_l/z)' Hxsquz (w; —w)(1 — Wj—lwk_l)
X H;=1 (Zpl/z - Zp_llz)'HISp<qu (Zp - Zq)(l - zp—lzq_l)
= (=100, N, @i, -1

-1
> Wi, _zl seees —Z, )

I+r

w T — w,t — w, !
— (a2, wHr —w w!l—w !
=(—1) det ~1-r I+r -1 1
—zy) —(—z,) cee (=2)7 = (—2zy)
(—Z )—l—r (_Zr)l+r (—Zr)—1 - (—zr)l_
— ZY&@“ (_ l)l(l+1)/2+[YT]

X det[w/*1 K% — w1 HRon] det[(—z,) Y — (—z,) el

+ +
— I(1+1)/2+[Y 1+ I+1—qg+
ZYG@,',.(_ 1)+ +HY] Y g+1—g+yl)

r+i—k+y —r—1+k— —1-1+g-y} I+1—g+y}
x det[w; K —w; »] det[z, TV — 7, 7174

21+1 2
= 2"Ye{7/1_,. N}‘”Si-AT )(WI, ] Wl)' N}%J/-ltl)(zla R Z,)
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for u;, {, € C, where w; = exp n; and z, = exp {,. Here we used the Laplace expansion
formula of determinant in the following form, which is a consequence of Fact 3.1.1.

+
(3) det[xj,k]lsj,ksHﬂ' = EYs@,,, (=13 det[xj,k+r—yk]1Sj,kSl det[xz+p,1+q—y;]15p,q5r .

Now dividing both sides by D*?*VD°2r+1) ywe get the desired identity

1 r
j P
“4) TraceA(W7(21+1)(2r+1)) exp(,z ’7ij + CPB p>
j=1 r=1
_ 0(21+1 . ch%@r+1) z
= Zyea,, ChEGIR)We - W) chpe (@100 2)) -

§4. Dual Pairs of Classical Affine Lie Algebras

4.0. This section is the main part of this paper. In 4.1 we give a generalization of
Yamanaka’s result ([Ya]) by using central charge calculations. In 4.2 we describe the
main result for classical nontwisted affine Lie algebras. We prove them in 4.3~4.4.

4.1. Definition of representations

We retain the notation in Section 3. The inclusions
] Lig.—»o(Wy) and  R:gg—o(Wy)
(3.1.1~3, (1)(2)) induce inclusions
2 L*:gf »o(Wy)" and  R%:gg —o(Wy)"

respectively defined by the formulae

3) L* (X (m)) := L(X)(m) and R™ (X (m) := R(X)(m)
L"(c") :== Re*™” R"(cR):= L™ 7
where ¢®™" (resp. cb, c®) denotes the canonical central element of o(N)" (resp. g{, gx )

and R (resp. L) is the positive integer given in Table 4.2. (The number R, as well as L,
is the ratio R := B*™(L(x), L(x))/B*(x, x) which does not depend on xeg;, x #0,
where B® denotes the normalized bilinear form of g (1.4).) For h =0 or 1/2, let WZ*"~
be the space of creation operators given by 3.1.1(7), 3.1.2(5), 3.1.3(5) and 2.4(1 ~4), and
let S* = S%*" be the spin representation of o(Wy)* on A\(W,%“*"~) (2.4(7)).

Then our interest is in the representations S” o L" and S" o R" of g and gy,
respectively.

The representations So L, S o R of g;, gg are given by the formulae in Propositions
3.1.AA ~ OO, which are of the form

4) SoL(X)=Z:ab: and SoR(X)=X:wa'b":,

with a, b; a’, b’ € Wy. Then the representations S o L", $" o R" of g, g5 are given
by the following formulae
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$% o LN(X(m)) = 2 Zyymp a(W)bO):
5) PO
oL"c")=R-id
and
{SA oR™"(X(m)) =Z X 1, :a'(W)b'(v):,

S"oR"(®) =L-id
in End \(W#*"~). For example, Proposition 3.1.AA yields

(6) S*oLMNEYm) = Ty r(uy,0)
p=1 p+v=m
for the representation S” o L” of gl(l)*. Here x and v run over Z + h (h = 0, 1/2) and
we followed the notation in §2.4.
Both §" o L* and S* o R" define Virasoro module structures on A\(W@&*"~) by
1.2.2(3). We observe

Proposition 4.1. (i) [Ya]. Let D“(m) and D®(m) are Virasoro operators obtained by
S" oL" and S" o R" through the Segal-Sugawara construction (1.2(8)). Then we have

(7) DL(m) + DR(m) — DD(N)A(m) — DClif(m) e End /\(WNZH'")

for allme Z.
(i) As a gi @ gg-module, \(W¥*"~) decomposes into finitely many irreducible
components.

Proof. In view of Proposition 1.2, this follows from the central charge identity
2% + z% = N/2, or
Rdimg; L dim gy

8 = N/2
®) R+g@) T Ltge

for each case (in case of (g{,ar) = (gl()",sl(r)"), read the left hand side as 1+

r(12—1)+l(r2—1) ‘ n
r+1 l+7r

Remark 4.1. The central charge identity (8) plays an essential role in the above.
The identities (7) of operators can be also verified by a direct computation, which will
be found in [Ya] for the pairs (g7, gz ) = (sp(2D)", sp(2r)") or (gl(1)", sl(r)"). To show
(7) Yamanaka calculate there the Virasoro operators with using the Wick’s theorem and
the operator product expansion. |

4.2. The irreducible decompositions

Now we are in a position to describe the irreducible decompositions of the o(N)"-
spin module /\(WNZ“‘"), viewed as a g* @ gg -module through 4.1(4~5). Using the
notation in §3.1, we fix the space WZ*"~ (h=0: Ramond sector or h = 1/2: Neneu-
Schwarz sector) of creation operators as stated in §4.1 and the triangular decom-
positions of g and gg by 1.2.1(4). Recall the definition of L**8(4,[) (1.2.3(1~2),
1.3.2(2), 1.3.4(4~6)).
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Theorem 4.2. (Main Theorem.)
As a g{* @ gg -module, the o(N)"-spin module /\(W¥*"~) decomposes as follows:

) ANWE=) > @@y LA 8 (A (Y); R) ® L3 % (Ig(Y); L) .

Here h=0 or 1/2, and X}, X%, /TL, /TR, R, L and where Y runs over are given by Table
4.2. The complete list of the highest weight vectors with respect to g @ gy is given by
List 4.2.

In particular, \(W¥&*"~) admits an action of ZI{ x L¢ (1.3.2(4)) and each pair

E) x g, Zg X gg ) forms a dual pair. [ ]
Table 4.2.
Case AA ¢c
90, 8k gl()*, sl(r)" sp(2])", sp(2r)"
I, Zg o>, {id} {id}, {id}
R, L rl rl
N 2r 4lr
_ _ ¢
L W
Y runs over Ye%, Ye%,,
List of HWV’s List AA List CC
Subcases of OO BB DB DD
ar, ot o2l + 1)*, 02r + 1) o(2D)*, o(2r + 1)* o(21)*, o(2r)*
X0 IR 601, 001> {Oo1> O1-1.17> 001> {Oo15 O1-1.1)> Oo15 Op—1.r”
R, L 2r+ 1,21+ 1 2r, 21+ 1 2r, 21
N @+ 1)@r+1) 22r + 1) 4ir
. . h=0 Y+A4,Y + 4, Y+ A4, Y Y, Yt
AT, AR(Y){h =1 {Y, ty {Y, ty {Y, ty
Y runs over Ye%,, Ye%,, Ye%,,
List of HWV’s List BB List DB List DD

Notations in Table 4.2. For ¢, and (Y,a) in Case AA, see 1.3.4(1 ~6). 0o,
01,0 1.53 ~54). 4;:143~53.1). %, [Y], Y', *Y: 1.4.1. Identification of Young
diagrams with weights: 1.4.2 ~ 5(3.3). |

List 4.2.AA

Let ¢, (1<j<l,1<p<r) be the orthonormal basis of the lattice Z" =
@;.p Ze;, , = (5°?M))* that are dual to D7, e h°?™ (1.4.5(2)), so that we have
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g ,(LEY)) =5 and ¢ (R(EY)=46,1.

Put h:=1/2—h For each element y=Elsjsl,lspsryj,psj,pel”+ﬁl*, where
1*:=%, ¢, we can assign a vector |y)e A\(WhA™") defined by 8.1(5). Then

— “ip%.p>
gl()® @ sl(r)"-highest weight vectors are spanned by the set

v Vip= =2y ,=2y,,—1 forl<p<r
3. . MNe. P »P P ,
{i Y4 (yJ,P + )EJ,P> yj,l Z Z yj,r Z yj,l — 1 fOI' 1 S] S l

and the weight of |y + h1*) = 1Z;, (vp + ﬁ)sj’p> is given by
(o1 Ehmt Vip + P (Tpey (Bt Vjp + P)E,)l)

for (gl(1)", sl(r)"), respectively (see also Example 4.2).

List 42.CC
(h = 0): Under the identification
—Tr— j\p 1--.r —r...—1
[ BB i AR == L
% ,>Y=1|0om- . o coo loomes TN =(F )i ,
’ BE- - - T O S et
L -~ ! |g..-0 R p=ximx

the highest weight vector of weight (Y, Y7) is given by

=
([1#, ,=a ¥;.,0)-1.
(h =1): Under the identification

—F— j\p 1 ...r —r...—1
([gBga=:] _ ! |iBgge™:i ==
%,32Y=1|oom- - o 'Bom- . ! = (Y ,)i=1.- ,
' E- - - T OrE Jp=1 ol
L -1 ! L % B .. =@ p=t1-tr
the highest weight vector of weight (Y, 'Y) is given by
= . 1
()
P 2
List 4.2.BB*
(h = 0)**: Identify Y € %, with ¥ e Mat(2l + 1,2r + 1) as
j\p 1t ... r 0 —r...—-1
—I[a o o o o
—Tr— .
( gooos- —1|o o o o o _
% ,.>Y=1|\oom- > g .- 0 O O o | =(,),
’ EHEB. - - —_— ’
L Y| 1| o o o oooom -1
. - |0OO0s |
.  ODE
: | mm-. |
llo o o | ce- B
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and define G5, (Y), 6%, (Y) e Mat(2l + 1, 2r + 1) by

(5'31(?))1,;, = l71',1: + sgn(j)9,1 67, . >

(&gl(?))j,p = Z‘,p + 511,—1517”1,1,'3 °

N
Then the vector** (Hy”:. ¥ »(1o)) 1 for each of the matrices

(yj,p) = i;’

respectively gives the highest weight vector of weight

(Y+ A4, Y +4,),

(

6—81(?) 9

(Y + Al)a YT + Ar) 9

(Y + 4,

6. (Y),

(h =1%). Identify Y e %, with Y e Mat(2l + 1,2r + 1) as

—Fr—
ooooE -
O00 & - -
OO: - -
BE. -

% ,3Y =

=T

and put

J\p
1

O

g 8] moool —~

—r...—1
@ ® |
= =
W oc @
[ B
@ |

@ (V= Tp — 8,107, e »

793

683 (YT + 4,)) .

(&gl(?))‘),p = Yj,P - 5P,15f;‘j|,1». :
= .
Then the vector ([],, -5 ¥”?(—3))- 1 for each of the matrices

=Y. @®, &d), HEs(D),
respectively gives the highest weight vector of weight
(Y'Y), @MY, (¥,

(Y)),  (B(Y), 6§(Y)).

List 4.2.DB*
(h = 0)**: Identify Y € %, with Y e Mat(2, 2r + 1) as

Ap 1

=~
o

—Illo -+ O O 0O -« O
—r— . .
AEEEER ilc.o-0 6 0.0
% .>5Y=I|oom-- | < Zn =(Y
Lr EE- - - 1lo ««- o o looocoe 1 (Yi.p)
L . . - |OoOmE. -
oo - -
: . @@ - |
g <« o o [ |

and define 65, (Y), 6=, (¥) and 6%,(Y) € Mat(2], 2r + 1) by
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(&%1(Y))j,p = f,J",l’ - sgn(j)ém,1517,__,,.57_1__1,.35?,.,,,- ’
(&IL—LI(Y))j,p = z',P + 5131571.—,”-'3 ’
(&gl(y))j,p = Y;,p + 5}1,-15171,—1sﬂ5‘}7—1.—1,|35‘};|j|.—1’ﬂ ’

respectively. Then the vector **

-
(Hy,-,,,=- j,p(.uo))' 1
for
(y1.p) = )7, 501(?)» &01(?%
G, L@ (),  aLEs(T)
respectively gives the highest weight vector of weight
(Y+4,Y", @& +4)Y"), (Y+4,65(0"),
GRAY +4) YY), GBERY + 4)), Y, (™Y + 4),8(Y").
(h=1): Identify Y e %, with ¥ € Mat(2], 2r + 1) as

]\p 1 ... r 0 —r..._l—
1[fcgoom - ®@ ® --- ®
—TIr— . lBBE-. oy e
[ (58" =il e e w |
% ,2Y=1 oom - - o L 222 =),
' Lll- ‘m =l = E E B L >P
-1 = B B B = |
and define

@51 (N)yp=T,, ~ 6,167, .0
(&{‘—1,1(17));',,; = Y},p + Sgn(]')éljl,t‘si,_,,néi_,,,,uéf’,_p,n >

(&gl(i))j,p = ?j,p - 5p,15f1.1,l57—1,1"5i'|j|.1v'

o)

(yj,p) = Ya &IL—I,I(’Y-)’ &gl(?)»

& (Y), k@), ah@ER(Y),

Then the vector

for

respectively gives the highest weight vector of weight
(Y, tY) ) (&I(I—(;.,I(Y)a lY) ’ (Y’ &(()L,‘)l (IY)) )
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List 4.2.DD*
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(h = 0)**: Identify Y e %, with ¥ e Mat(2l, 2r) as
A\p 1 ro—r-..—1_
—I[lo --- o o u)
—Fr— .
Me2eg®:]  _i|lo ..o o...o| o
Yo Y=1 R < 1lo --- 0 oooom- ! =(%p)
L ---= . |oOOE- - |
: oom
|mm- |
I_D ceem | eeemy |
and define
65:(V))p = ¥, , — sgn())81,1 67, _,.a07., 007, ,.m »
(&I—I,I(Y))j,p = f’; + 51,15&_,,m‘sf,,,,néil,,u,,,u >
@8, (V)),=Y,,+0 p,-197, 007, 007, 0>
( Or—1 r(Y))j,p = z +s gn(p)alpl.réf,',,D‘Sil‘_,.,léij‘-,.,l .

Then the vector**

(Hy,.,,=- 'ﬁj,p(#o))‘ 1

for
=Y, &), &),
da(¥),  E@5(T), e u(E8(Y).
o (1), 657, R 68:(Y)),

respectively gives the highest weight vector of weight

(r,Yh, @R, YH, (Y,

GELM YD, @RL6RO) YD, 6B(Y), 68(YT)
(65,.(Y), YT,

GG, Y, (6B (), 86 (Y).

(h=1): Identify Y € %,, with ¥ e Mat(2], 2r) as
b 1 .o —r...—1
1|Moooom -7 = =
—— aageT
( [oooom- | e
% . a3Y=1 EEE!-' “— (I = =(i7)
Lr HE- - - —1| = E = - - jsp) >
L 2.
—1| = BE = m |

and define
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(6{)‘1(?)»,1’ = ﬁ',p - 51',15i’~1.r,56f'1.»n'35i1,|p|v5‘ ’
(&1‘“—1,1(?'))1',1; = Yj,p + Sgn(j)5|j|,1517,‘l,uéf_,.l,u‘s}’,‘p,n >
(~R

(&t]-(—l,r(i;))j,p = P + Sgn(p)5|p|,réi,_,,n(sflﬁ,,uéfj'r,m .

(Tl o 27 =3)) 1

(yj,p) = Y9 6%)‘1(Y) s &F—l,r(?) E]
&), KT, ek, (D),

G (7)), 65 (F), 6k ER, (),

OI(Y))j,p = };'yp - 5Py15i1.1,557—1,1"35}7|J|.1»D 4
Y,

Then the vector

for

respectively gives the highest weight vector of weight
(L,7Y), @RUN,TY), (Y62 ,(7),
(Y, 664(Y)),  (@§(Y), d§(Y)), (Y. 67465, .(Y)),
@)Y, @RE6RT))LY),  (6E(Y), 62 (Y)).
Notations for List 4.2. [] As in List 3.2 we use the notation ﬁ, and identify

o=0,8=1sothat o + 1 =, etc. For example, read List 4208, h = 1/2 as follows:
for the diagram

\p 1.-.r 0 —r.—1
— T/ 1| Mooooe! @ oemeo
[oooom || COBBE, & Bosss | o
% ,>Y=I|oooRm| < == 7 =Y e Mat(2l, 2r 4+ 1),
’ JIEECEE —|| oEEER B =E@EG
l o®m B RDERED
—1 B BEERE | (I=3,r=5)

65.(Y), 6, (Y), 68,(Y) € Mat(2l, 2r + 1) are respectively given by

'oooog! EEERD oooos!

0 OBEESs Moooos! o =
ID00EE| B BESBE | DOOEE | BEEEBE |DO0EE| 8
|O0E8E | & BEESS |OEEEH| § ESEED 5|
BAERER [ DBESEE | OopEs EERED |
BEEDE § [REEED oEE ag 3
FEEEE ¢ HEEEEE OEBEE [ BERES ERED 3

(unchanged)

The weight (rather, its classical part) of each vector in the list is given in the
manner: (weight for g{*, weight for gg).

[=] We also use:

(*) In these cases, for a diagram automorphism o € Autc b* §§1.52 ~ 5) and
le Z., we define ¢7: h* — h* by

o(A+14,) =6P() + 14, modCs  for Aeh*.
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(+x) In these cases (h = 0), we define y; ,(u,) as follows.

~ L if |
Uypio) == {41,,,,(0)  5,(0) € W,

Y; ,(—1) : otherwise

Remark 4.2(i). In contrast with the finite dimensional case, there are some ir-
reducible integrable highest weight modules that does not appear in our module
/\(WZ“' 7): L°@7%(A, + 4,) for example. We have to consider then the tensor module
A WET)® N\ (W 7) to obtain all such representations of o(n)".

On the other hand for sl(r)® and sp(2r)” it is remarkable that all level ! irreducible
highest weight modules appear in /\ (W™ ) and /\ (W™ ™) respectively.

(ii) By the well-known linear independence of characters [Kac, Proposition 13.97,
Theorem 4.2 is equivalent to the character identity

(1) chp wzen(TD% (0) + L(w) + vD%(0) + R(¥)) = Zy 1; (;)g; (c, w): Xi m S % (V) |

(iii) The explicit form of decomposition (0) in Theorem 4.2 for (Case AA, h=0)
appears in [JM, Proposition 2.5] as the character identity (1). For (Case CC, h=0),
(0) is given in [KP1], to which we partly owe the simplification of the proof of Theorem
4.2 in this paper.

Example 4.2. Here we will explain the highest weight vectors for Case AA, h = 1/2
in a graphical fashion. As in Example 3.2 we consider the case of I =3, r = 2.

Let us first introduce the set 9 = MZ 2 of Maya diagrams of (I x r)-components
and the assignation M>M—|M)e )\ (W) from M to pure spinors in the
Fermion Fock space as follows: we put

m; ,(vV)=0oO or &,

M {( p(v))ii%?z/zmpgr m; ,(vV)=0 (v«0), m; ,(v) = (v > O)}

and

(2) MM =(m; ,(v)—|M) :=( ﬂ ; ,,(V)) ( H ,/,j,p(_v)) 1e \(WE2-
(20 my o720

The set {{M)|M e M} forms a basis of /\ (W5> 7). For example,

oo oo oo EE

o8 B BEEE)-cAw

=52 —3/2 —1/2 1/2 3/2 5/2-- >

| J\p 12
oo oo oo BE 3 _
@88 } 38 88 828 >—i‘/’2,1<—5>'1eNWw>’

52 =32 —1/2 12 3/2--
12 112
O |~ B 28 B BB - (D) e,

[mm] oo 3EE| B

52 =32 —1/2 1/2 3/2+

W NI =
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and so on. Hereafter + means that we will forget the information of the ordering of
fermion operators y, ;(v) in the expression.

Now we can express the highest weight vectors graphically. We consider the
highest weight vector [(y;,)> 1= |3, V;.081.,> € /\ (WET27) (12 = 2Ir) given in List AA
that corresponds to the data

\ 1

1 [m+1
3=2 m+1
2 3 m

(6) (yj,p)if (meZ),

<
<

I T T

for example. Forgetting the sign =+, the definition (8.1(5)) of |(y;,,)) reads as follows:

for m > 0,
m+1 m M 1
(7N ||m+1 m >:= +ytt m——> |p“< m——>]—[1_[¢j"’<—,u+—>-1,
m m J.p u=1 2

and for m < 0,

m+1 m . 1
(8) m+1 m >_+|//12<m+ >l//22<m+ >1//31<m+ )t//32<m+2)

m m
-m-—1
- = 1
XH H wj’p<_ﬂ+§>'l.
jip p=1
Formulae (7) and (8) are easily interpreted in terms of Maya diagrams, and we have
the following expression (9).

m+1 m
o) m+1m>-+ 9. 83 gE  mm > (mez)
E|E| [m]m] BE i) ] mE
m m

With the help of Maya diagrams, the action of the auxiliary automorphism
62, € Aut(\ (Wi 7)) to the highest weight vector can be also described as follows.
(See §8.2 for the definition of 67.. Similarly to 1.3.4(9) it is defined as a composition
of some “translation” 7, and “index changing” (1,...,1)~ associated to the cycle
(1,....H)e s,

m+1 m m+1 m

(10) 6%|m+1 m >=T crein (Lo, D7 [ m+ 1 m>
m m m m

- ~ oo og O EE ==
=+T7, 4..0(1,2,3)7|---00--- OO0 O @8 - B8 -
1t oo oo BE BEE B8
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m—3 m+3

—+7~, , |-B3..8% "= ==---==-.->

1,1 71,2 oo oo [m] | [ ]| [ ] |

m—3 Ll m+3

og []m} [m]m} HE HR >
=+|---oo0--- OO OB EE oEE

oo oo [m] | EE [ |}

m+1 m+1
=+||m+1 m >

m+ 1 m

For other cases (CC, OO) of Theorem 4.2, we can similarly express the highest
weight vectors by Maya diagrams. The graphical data (Y;7,) of highest weight vectors
given in List 4.2 are then interpreted into the (—h)-mode part (m; ,(—h)) (h =0 or 1/2)
of their Maya diagram expressions

(11) |(mj,p(v))j,p;veZ+h> - =

4.3. Proof of Theorem 4.2; in cases of h =0

43.1. Let g=g,® g, be a simple Lie algebra and its Cartan decomposition in
Section 3.3. Putting

86 =g ®C[t,t7']®Cc and g :=g¢,®C[5,t'],

the affinization g” also has a Z,-gradation g" =g§ @ g and g4 acts on g; with
preserving the standard form ( | ) ([Kac, §6.2]). Choosing an isotropic decomposition
g{ =" @g{" given by

/\,i . — A ~
g1 =gy Nn3,

we consider the Clifford algebra #(g{,( | )) and its spin representation on A\ (g7 ")
Then o(g,)" acts on /\(g{'") as in Section 2. On the other hand there is a Lie
algebra monomorphism

I":g¢ —»o(g;)" induced by I"(x(k)):= I(x)(k),

where I: g, — 0(g,) is the inclusion map (3.3.1(1)). Composing these maps we obtain
the representation of g¢ on /(g1 7).

Lemma 4.3 [KP1, Proposition 1]. A4s a g4 -module,
AT @1 7) = Duwewtsgnw=1 LEW(P) — fo)
and
A" 67 7) = Buwewssgnw=-1 LEW() — po),

where W} := {we W"|w(4$) = 4%}, W* denotes the Weyl group of g", and p (resp. po)
the sum of fundamental weights of g" (resp. g3).
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Proof. We can prove this similarly to Lemma 3.3, if we suitably modify the

e

notions there. £g

Proof of Theorem 4.2, Case AA, CC, DB and DD for h=0. In these cases we
can derive the theorem similarly to Theorem 3.2 for the Case AA, CC, DB and DD,
using Lemma 4.3 above. The fact that List 4.2 actually gives highest weight vectors is
straightforwardly verified. ]

4.3.2, As for the remaining case of Theorem 4.2 we prove them by case-by-case
verification of corresponding character identities. For that purpose we will utilize the
“complementary decomposition formula” obtained by Jimbo-Miwa [JM, Proposition
2.4 and Table IT].

Proof of Theorem 4.2 for Case BB, h = 0. We have
(1) chfii1yar1)TDY(©0) + L(w) + R(v))  (see 2.4(15) for D/ and 4.1 for L(u), R(v))
n(21) o, 0w+ %) o, —i0(T, 0, +3)
2@ Lm0 [T n(z)
0(t, u; + v, + 30, u; — v, + %)

<Al 1P
0(z, v, + %) ) .
= ﬂp -1 o, P i) X q(21+2 +1)/24 Ch%l+2r+1 (TDO + (u @ (v + E)))

x 90(21+2r+1)" <T, u @ <‘V + %))/QD(ZH—”A(T, u)90(2r+1)" (‘L’, v + %)

_ 0(t, v, + 3)
[T5- o, v, + 1)

N

a A a, r A ]1
X Ty eay, (— DTSR 500D o, w) {00y 02D ( v ‘>
(Complementary decomposition formula [JM, Table I, (6)7°] for A= /iH, = (4., 1)
XY+A, 2r+1 t+A4,+p,214+1+g

0t 0, +3) | pn 1
HF 1 _‘EQIET Up; /@(2) (TV+ )ﬂp 19<190P+2>

— ZYE@” (_ 1)2([)' J+r+r@—1)/2)

22}’5@ (_I)IY'] <601)KD(21+1)"( u)_dy(am)xo(bﬂ)" (T V+§)
Lr >

N

X Ay iA2rt1 Y'+A,+p, 2141 +g

Ve W e W2 (1, 1) [T 6(z, v,)
p

_ {ag1) X 0(21+1)" ., Lo01) Xo(2r+1)A
=Zyewm, Ayidparrr GO Apig e (B )

forw=X u;B’;, v= X v,B?,, where we put 1:=X B?,,
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e@vi=2, B, + I, uB e,
and ;[0 =0 X DS =3, 5058, (123(7 ~ 9), 1.3.2(3)).
Now (1) implies the desired identity

(2) Ch(Z21+1)(2r+1)('CDL(0) + L(u) + 7D*0) + R(v))

_ {o01) XD(21+1) L Lo01) X0(2r+1)
=Zyew, Xyad, 241 (G0 Ayt by (Th V),
1 -

where we abbreviate D“(0), DR(0) for D (0), D% (0) respectively. [

4.4. Proof of Theorem 4.2 continued: in cases of /o = 1/2
We need the following formulae for the cases of h = 1/2.

Lemma 4.4. The foliowing identities hold for I, r, ke Z.,, YE%,,, 1€ P.(r), 1, u.
ujeC,Im7>0, u=3%_,u,X/; and 1:=2}_, X/, (X = B, C, D according to the formula
(B), (C), (D))

(A) 02, (1:, i — %) = e[lu/2 — It/816Z 5 (1, w)

) A + 1
® e (z, —u-2 1)
N

\ ! 0(z, w) 1oy
= (— 1)V "2'*“/8e[—<r+—>2u] [ S LA <<:ol>><o(2 ) T,u
(=0T ) %4 ey i Y
© B (5 ) = g% lZ ru 1 ( —Gl * “))
(@) B () = q"’seB z u,] 100 (n —Gl + ">)

Proof. (A) follows from the definition (1.5.1(4)). As for (C) and (D), together with
the Weyl group invariance, the diagram automorphism covariance

) ChL(A)(h) = ChL(aw(A))(O'w(h))
0 “es P
for the choice w = (l o J i (l)) yields these formulae. Use the formulae for
o,1in 1.54 ~ 5.
w

[ w 1 0 : : [

0=0—0——0—0<0 :>o—<k~<>—o<;7

0 1 I—-11 1 2 30 .- -2 I—1

Case (C) Case (D)

Proof of (B) is complicated a little. We write the diagram automorphisms (§ 1.3.1,
§1.5) of D{V (resp. B{V) as of := 6¢,1, 0 = 0,_y,, O = 0, (resp. 6 =0, ,). Fixing
reZ,, and writing (4, k):= A+ kA,, for 6? =062 and oP we define ¢2=g2,
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°oD. 0(21 o(21
6 -b*( )_,b*( )by

P24, 2r+2)=

2 B. [ #0(21+1 o(21+1
GB: pro@ltl) _, pro2ltD) by

and also define

cd(4, 2r

+1)

Ko HASEGAWA

(6P2(A),2r +2) mod C6 (Aeh*@),

=(68(1), 2r +1) mod C§ (4 e ph*°CH+),

We identify the weight spaces and lattice parts of affine Weyl groups for o(2]) and
o(2] + 1) by employing the expressions in §1.5.3 and §1.5.5: §°2) = p°@+1 pe@h —

MO

the disired identity as follows.

{agyyoco(2l+1)"
Y,2r+1

o(21+1)"
= Xy, 2r+1 <T,

n(z)

<t, T

T+ 1

T+ 1

2

1
Il
ol

(2"
+ XoB v, 2e41)+ 4,

=l

T+ 1

<T, —u -

1(z)

o(2h*

T+ 1

+

Then putting [£ 4¢;] == £ 4; and noting 6" =

)
)-

o(21+1)"
XoB(y,2r+1) <T’ —u-—

X(y 2r+1)+A,

—2[Y+A4,],,002))"
x {\/ — LA ar+2

—1- 2[65(V)+4,] o(2))*

-1 —2[a";’(1/+/1,)]xo(21)A

1)-

—1 —2[6P(e5(Y)+ 4], 02D "

I

j=1

<q—1/8e[_

x{\/T

— 12—

2[Y]+l o(2n”

po D(Y+4,,

2-1,02)"

1 — D106, —u;— 3)
2r+2)(1 ll) + AV 1
w)—./—1"

a® (6P(Y+4,),2r+2)

(@

™™™ (1.2.3(8)), we deduce

T+ 1

)

T+ 1
—u———-I1
(et
2n° T+ 1
:f’((l)’2r+1)+/11)< —u— 5 1)

o(2D)"
xd"(a”(Y 2r+1)+4,;

(n—u-
-1
et
et
o)

> x gl B[ _(r + 1) T u]

A8 B(Y)+A5,2r+2
GP(Y+Ay),2r+2
GP(3B(Y)+4y), 2r+2

2[Y]-2— l o(2h”

Aqgp (a”(Y)+A,,2r+2)(T, u)

2[r]-1,02)"
Xon D (@2e§(N)+4)), 2r+2)(r9 “)

(Lemma 4.4(D))
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2r+ 1

= g ler+ieg [ _

3 uj:|(_ 1)[Y ]f[ é (T)

Tu+2)

o(2n" o(2))"
X {XY¢+A,,2r+2(T’ u) — X&f(Y°+A;),2r+2(T’ u)

o(21)" o(2h"
+x GB(Ye)+ Ay, 22T W) — 15 FPEE(YO)+Ay), 2ri2(T “)}

(1.5.3~5(4))

_ 2r+1 LooO(r, u;)
— l(2r“-l)/8e _ Z u'jl _1 [Y] J
1 l: 2 ! (=D J-Ul 0(z, u; + 2)

B2 0+ £
(1.5.3~5(4))
= (the right hand side of Lemma 4.4(B)) . [ |

Proof of Theorem 4.2, Case AA, h = 1/2. Theorem 4.2 of Case AA (h = 0) means
that the following identity holds,

. 1
—19<r, u; + v, + f)
(2) Hls]S

151;Sr 1(7)

Z! x gl(n” sl(r)»
= Z){e@,,,,1 Xy,mg—(lz/z;r(f, u)yey;; (7, V)

[u]
9[Z1/]+kr—lr/2,lr (T, —l l 1
1 rn”*
z z Lortron (T ulg) e (3, ¥)
Ye@ -1 1<k<l n(z)

@l, and v=Xv,E?, is

where ¢ = o, (1.5.2(4)), u=ZwE/;, [u]:=Zu;, ulpr:=u— l

assumed to be Trv=ZXv,=0. Substituting u; by uj—%, Lemma 4.4(A) and the

formula 0(1, u— %) = e[u/2 — t/810(z, u) (1.5.1(13)) yield the desired identity for the
Case h = 1/2,

R 1
9(1:, u; + v, + 5)
3 [Li<i<i

lgz;?.r n(z)

Z! x gl())» sl(r)”
= EYE@L,. L XY, [';]g.sl) (t, “)Xﬁy;rz (T, v)

[ul
e[ZY]+kr,lr <T’ l
- ) 3 sl(nn

[ A
Xa'"(Y r)(T “|b*)X?Y(,rg (Tﬂ V) . B
Ye®, , 1<k<l 1(7)
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Proof of Theorem 4.2, Case CC, h=1/2. Theorem 4.2 of Case CC (h = 0), and
Lemma 4.4(C) yield the required identity as follows:
4) chZi?(zDY(0) + L(u) + R(¥))

A 1\ A 1
= Hlstl,lSPSr <9(T, uj + Up + '2‘>9<T, uj - Up + E)n(r)_z)
i

1 T 1 _
=ILi» (‘11/4@[—“1']9(?, U=t t §>9<T, w5 = o+ 5)’1(75) 2)

A 1 . r A
= qh./‘te[_z ruj] ZYE@,, XSY%'ZI) (T, z <uj - 5) CJj) X;Eff ) (T, v)

sp(2)* i \.,50(2r)"
= ZYsJy,, Xye,r (T, —Z ul+1—jcjj)XY* ()]
bl
sp2h” sp(2r)” 1 j -
= ZYE@,“ Xy.r (T Wxy, (V) (@=2; u;Cv=2]v,C").

Proof of Theorem 42, Case BB, h=1/2. For any u=ZX uB/, v=2,0v,B",
we have

&) Ch(lznllz)(zwn(chw(o) + L(u) + R(v))

n (%) ’7(2‘5) Jj=1 T](T) p=1 ”(T)
A 1 é 1
0 r,uj+vp+§ T, UY; vp+2
Mg 0y

é( u; + 1)
T, —U; —
1 ! T2
— (_ l)l(r+1)ql(2r+1)/8e |:<r + _) Z uj:] ﬂ

2 Jj=1 9(‘[5 - uj)

a2 é<t,—<r+1 +uj)+l> é(r,vp+l)
n(t) ﬁ 2 2 ].L[ 2

T =1 n(t) p=1 1(z)
n (5) 1(27)

é( u; + 1)
T, —U; —_
1 L 2
— (_ l)l(r+1)ql(2r+1)/8e [(r + 5) 3 uj:| [‘El

ji=

0(z, —u)

Z 2 sapsy X O(21+2r 1) T+ 1
xxﬁi’r“‘ (r,(— 3 I—u)®v
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1 1 1 1 (1)
X _OZB(“)'(t, _(1: ; 14 u)@v)/@m’)(n —T; 1+ u>93r (t,v)
N 1
0<T, _u]+§>

i 1
— (— 1)+ gl2r+1)8 Nz u
A (GO e

A A T+ 1 A A
iyt 25, X0(21+1) T, X0(2r+1)
X Zyeq, (—1) ]XY?12r1+1 <T= T 1- “) Xy 3141 (t,v)

([IM], Table I1(6)7° for A = A, and A,)

22 XO(214+1)A T2 KOQ2r+1)"
=2ycq, Xyi'ohi (T, Wy 311 (z, v)
(Lemma 4.4B)
_ T X0(21+1)A T XO(2r+1)A
=Zyea, Lo (T, W30 (wv),
where & denotes the normalized denominator (1.5.3(3)). ]

Proof of Theorem 4.2, Case DB, h=1/2. By the h =0 case and Lemma 4.4(D),
we have

(6) ch3i32 (DY (0) + L(u) + R(¥)

R 1 R 1\ A 1
0<r,uj+§> 9<r,uj+vp+§>0<t,uj—vp+§>

“lhas g g n’
T 1
9(1, —<u- + —) + —>
~Trejerae| —(u+ 1 - 2) 2
e 2\7 "2 n(7)
T 1 T 1
—9<r, —(uj + 5) — v, + —2—>9<r, —(uj + 5) + v, + 5)

. Vdaly.
* gy 0] o,

p=

= q'CTUBe[(2r + 1) X, ;]

2 Ko(21)A T £2 ., Ko(2r+1)"
X Zyew;, Xy'hr1 <T! "(“ + 51>> Xy¥ 31 (w. V)

_ =N Ko(2l)A hoby
=Zyeq, Xy'heer (T W55

><D(2r+1)"(1 V)
b
. .
for any w = i u;D’; and v = Z' v,B?,. B

Proof of Theorem 4.2, Case DD, h=1/2. The result for the h=0 case and
Lemma 4.4(D) yield the desired identity
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(7) chZr(zDY(0) + L(w) + R(¥))

N 1\ A 1
=Tli<i<ii<p<r| Ol Uy + v, +5 )0 45— v, + = |1(1) 72
2 2

T 1 T 1 N
=1, <—q1/4e[uj]9<t, —Uj =50, + §>9<T’ —u=5 + v, + 5)11(1) 2)
= q"“e[Z ru]] Ty ey, Ly (r, = (u,- + %) Df,-) Kt (@)

_ TN Ko(2)A T2 K o(2r)"
- ZYe?!/,‘, Xyzfz,- (T’ u)Xyg,zz (To V) >

where u = X4 u;D/;, v =X 0,DP,. ]

§5. An Application to the Duality of Branching Rules

5.0. In the context of seesaw pair (§5.1, [Ku]), we give a simple explanation and gen-
eralizations of Jimbo-Miwa’s duality in §§5.2 ~ 54. In §5.4 we find a relation between
the diagram automorphisms and the inclusion g ® C[t,t 1] @® Cc > g ® C[t™, t™™] @ Cc.

5.1. Seesaw pairs and dualities

Definition 5.1 (Seesaw pair [Ku]). Suppose that there are two dual pairs (§0.1)
(4,, A}) and (A4,, A,) acting on the same module V. After Kudla [Ku], we say the pair
((4,, A}), (A5, A3)) of dual pairs form a seesaw pair if they satisfy the inclusion relations

0) A, > A, and (hence) A] < 4
in End V. We will write this situation as follows.
A, o A4,
(1) + +
Ay < A, ]

As we shall see below, one seesaw pair provides us one duality of branching rules,
i.e., an isomorphism between branching modules.

By Irr A we denote the totality of isomorphism classes of simple A-modules, and by
L# the representative for A € Irr A. Recall the definition

() B(4, > A4,)) := Hom,,(L{? Lj")
of a branching module (4 € Irr 4,, 1 € Irr 4,; 0.2(1), 1.2.4(3)).

Proposition 5.1. Assume the complete reducibility in the above situation (1), and
write the irreducible decompositions of V as a A; ® Aj-module (j = 1,2) as

() Ve @uer, Ly ® LY, »
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where I; (resp. A;IL;—1Irr A;, A:I;—1Irr A)) are suitable index sets (resp. suitable
injections).

Then for o€ I, and B € I, we have the following isomorphism between the branching
modules (“duality”):

@) B(4; > 4,)28) ~ B(4; = 4));) -

Proof. Consider V as a A; ® A}- (resp. A, @ A)-) module, and then decompose
it with respect to the subalgebra A, @ A} = A; ® A (resp. <A, ® A,). Under the
assumption of the complete reducibility we respectively obtain the followings:

®) V>~ @ier, Liln ® L:’j(a)

=~ @ae[l @uelrrA; (B(Al > Al)l;.l(:z) ® sz) ® L[:'l‘l(a)
and
(6) V> @per, Lizp ® L3,

= @ﬂelz @ve[rr Aj szz(p) ® (B(4; > Arl);.’z(ﬂ) ® LY.
Now we compare the coefficients and get

7 B(4; 2 4,);, ® 43,y ~ B(End V 2 4, @ 4}

= A‘}‘.Z(ﬂ) ® B(g; o 9/1)71'2(/;) s

C (fi=p

. This impli tion.
0 (otherwise) his implies the proposition -

where 44 := {

5.2. Finite dimensional case

We will present some typical ones of seesaw pairs on spinors and the corresponding
dualities.

From now on, we abbreviate the dual pair (C[Z] x U(g), C[Z'] x U(g’)) as
(X2 xg,X xg)(or(g,g) when X and X’ are trivial).

(a0). (gl(}), sI(2r)) and (sp(21), sp(2r)) on /\ (Way,)-

Theorem 3.2 says that these two pairs form dual pairs in C(W,,) ~ End /\ (W,;,).
Moreover they form a seesaw pair:

sl(2r) o sp(2r)
(1) + +
gl(l) < sp2]).

After the notation in 3.2 these inclusion relations are realized by the following embed-
dings (see [JM §1, (1.3) and (1.4)]):
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(2) sl@r) = {Z o, CYP, it} pact 1 tr
> {Zjl'=1 C:l//p’jlpq,j - Sgn(PCI)W—q’j‘P—p,ﬁ }p,q=j1-'-ir =~ SJP(ZV) H]
(3) al()~{Z-_, C:lpp’iwp,j:}i,j=1---l
< {Zf= Cy?i, ; — Sgn(ij)‘pp’_jl//p,—i:}i,j=il“-il ~ sp(2l).

Associated to this seesaw pair, we obtain the following duality as a direct consequence
of Proposition 5.1.

Corollary 5.2a ([JM, Proposition 1.3]).

For Ye%, ,, and y € %, ,, we have

B(s1(27) > sp)h = Bp(2l) > gl .

(b0). Next we consider the pairs
(4) (gl(m +n),sl(l))  and  (gl(m) @ gl(n), sl() ® sl(]))
acting on  /\ (Wamsn) = /\ (Ws1m) ® A\ (Wap,). Each of them forms a dual pair on

/\ (Waim+n), as for the latter pair which fact is easily seen as follows.

m-1l
5) A W) (69@ L (Y, - m) ® Lskn(rn)
® 6_) Lsim n_'l —yl® ]le(l)(t )
ye ¥, Ys ) y y
m-1 n-l
~ e x (ILQ“'"’ (Y - | Yl) ® Lo (y, 5 - m))

® (L) @ LO(y)) .
They form a seesaw pair
glim +n) > gl(m) @ gl(n)
(6) + +
sl(l) < sl() & sl() (: diagonal embedding),
and Proposition 5.1 yields
Corollary 5.2b. For ye%,,, €%, , and Ye%, ..., the following isomorphism
holds.
B(gl(m + n) o gl(m) @ gl(n))y™" ~ B(sl(l) @ sl(l) = sl())},,
We present other examples of seesaw pairs in Tables 5.2a and 2b. If a seesaw pair

include o(2n) as its constituents, then we have to take the diagram automorphism
2, = €0,- ,» into consideration.



(al).

(a2).

(a3).

(ad).

(a5).

(b1).

(b2).
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Table 5.2a
sif) > Z, x o(r)
+ +
al() = Ty x 0(2)
Zy X 0(4r) > sp(2r)
+ +
T, xo(l) < sp(2l)
sim) > @rsl() > sl()

+ + +
glln) = @ glln) = gl(mn)
sp(2im) > @ sp(2)) > sp(2)
+ + +
sp(2n) = P sp2n) < sp(2mn)
T xolm > @rE ko) o I, xo()
+ + +

Z,xo(n) < @I, xom < Z,, X o(mn)

Table 5.2b
sp(2m + 2n) > sp(2m) @ sp(2n)
+ +
sp(2l) < sp(2) @ sp(2)
(on A Wagmsnm) = N\ Waim) ® A\ (Warn)

Zyen X 0(M + N) > (Zy X o(M)) @ (Zy X o(N))

+ +

Z, x o(L) c (Zxo(l) @ (BL % o(L))

(on /\(MIIIM+N)) x> /\(Wﬁu) ® /\(WL_N))

809

(on A\ (Wa))

(on A\ (W)

(on A\ (Wiimn)

(On /\ (W47mn))

(on A\ (Wy,n))

Notation for Table 5.2. Here we put Z,, := {0,_ ,»> (1.3.1, 1.4.5), Z,,,, := {id}. ]

Remark 5.2. The versions of Corollary 5.2b for the above seesaw pairs show that

the works [Ko], [KoT1] and [KoT2] are mutually in the same depth in the sence that
if we know the branching rules of the tensor product representation ([Ko, Theorem 3.1],
[KoT1, Cor. 2.5.3]), it also means that we know the branching rules with respect to the

restriction to the reductive subgroups of maximal rank ([KoT2, Theorem 2.5]).

For

any type of classical Lie algebras Koike and Terada generalized there the celebrated
Littlewood-Richardson rule, which gives an exact algorithm to compute the multiplicity
dim B(gl(n) @ gl(n) > gl(n)); in terms of Young diagrams. To consider their affine
versions will be an interesting problem.
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5.3. Affine case ()

The seesaw pairs we present in §5.2 have their affine versions. They explain so
called “rank-level dualities” concerning with the coset Virasoro modules.
For example, as an affine version for (a0) there is a seesaw pair

sl(2r) o sp2n”"
(level 1) (level 1)
(@d)”. + + (on /\ (W)
Z! oc gi()® <= sp2D)”
(level 2r) (level r)

Here the inclusions sl(2r)" > sp(2r)" and gl(l)" = sp(2])" are what induced by 5.2(2)
and 5.2(3) respectively, and Z' stands for the lattice part M of the Weyl group of
sp(2D” (1.5.4(2)), which act on gl(l)* = sp(2])* as the automorphism given by 1.3.4(8).
This seesaw pair yields

Corollary 5.3a. (i) For Y, y € %, ,, we have the isomorphisms of coset ¥ ¢z-modules
B(sl(2r)" = sp(2N™)&H) ~ B(sp(2)® = ZF x gl(l)" )k i+
~ (Y, [Y]=1r/2; N
B(sp(2)" = Z! % gl(1)")1.r

(i) For 0<p<r, let A, = A, + A, be the fundamental weight of sp(2r)" =~ g(CV)
(1.2.1(6)). Then the sp(2r)"-module L¥CN"(A,)=L®@""(A,; 1) is irreducible as a
7! x gl(l)"-module.

Proof. (i) The complete reducibility for the above restrictions are ensured by
Lemmata 1.2(i) and 1.3.4(i) (at this point we need §1.3). Hence in view of Proposition
5.1 the problem is that whether this is a ¥ z-module isomorphism, which is guaranteed
by Proposition 4.1(i). Indeed we have (denoting D%"(x) = D%")

DSI(Zr)" _ Dsp(Zr)" — (Dgl(l)A + Dsl(Zr)") . (Dgl(l)’\ + DSD(Zr)")
— DD(4lr)" _ (Dgl(l)" + Dsp(Zr)")
= (st(ZI)A + st(zr)A) _ (Dgl(l)A + Dsn(zr)A)
= psPeh” _ psldv”
(ii) Letr=11in(i). Noting sp(2) ~ sl(2), we have

g

4y = B(sl2)" = sp)MED

~B(sp2D)" o Z! x gl(1) ")k kD

for any Y, ye%,, (see 5.1(7) for 4%). Since (y;1) ="'y + 4, (ye%,,) exausts the
fundamental weights Ap (0 < p <), we conclude (ii). ]

See Table 5.3 for other examples of affine versions. As in the above Corollary, the
complete reducibility for the seesaw pair there is ensured by Lemmata 1.2, 1.3.2 and
1.3.4.
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The duality associated to the seesaw pair (b1)” is the following, whose special case
n =1 1is known by [KW] and [Ya].

Corollary 53b. For ye¥, ,, V' €¥Ypn YE Y imn and h=0 or 1/2, we have an
isomorphism of coset ¥ ¢i-modules

B(sp(2n)" @ sp(2n)" > sp(2n)")nt:(3oe,m)
~ B(sp(2l + 2m)" o sp(2)" @ sp(Cm)")F D

(y,n),(y",n)

where we put yh:=yt (h=0); 'y (h=1/2), etc.

(al)”.

(a2)”.

(a3)".

(ad)".

(a5)".

(b0)*.

(b1)*.

b2)".

Table 5.3a

sl(r)* > XM xo(r)"
+ +
Z' % gl()* <= T4 x o2
Zi X o(dr)® o sp2r)”
+ +
) xo()r < sp2D)”
sl(lm)» o @ slinn ) sl()”
+ + +
Z" x gln)" = PrZ" xgln)* = Z™ x gl(mn)"
spim)* > @Prsp2)" o sp2)*
+ + +
sp2n)" < @ sp2n)* < spimn)*
X o(lm)® > @"Ef xo()* o I x o()
+ + +
I} xom* < @I, xom" < T, X o(mn)"

Table 5.3b
" x glm +n)" > (Z" x gl(m)*) @ (Z" xgl(n)*)
+ +
sl(1)® S (- T (%

(on A\ (Wiiehim) = A Winb7) @ A\ (WH"7)
sp(2m + 2n)* o sp(2m)* @ sp(2n)”
+ +
sp2)” < sp2D)" @ sp2)”
(on A\ (Wiietin) = NWEm ") ® A\ WE™T)

Zien Xo(M + N)* o (Zy X o(M)*) @ (Zy X o(N)")

+ +
I X o(L)" c (L xo()") @ (L xo(L)Y)

(on A (Wiin) = AWix" ) ® A(WE™7)

(on A\ (W5™7))

(on A(WE™7))

(on \(Wimr"))

(on A\ (Wian ™))

(on A\ (Win™"))

Notation for Table 5.3. Here we put the group X3 of diagram automorphisms

(1.3.1) as T2+ == <0p,1y (1.5.3(4)) and X3, := {0y 1, Gp—y,n) (1.5.5(4)).
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Example 5.3. The seesaw pair (b0)" and (b1)" yield the dualities
©) B(Z' x gl()" > (Z'" x gl(l — 1)) ® (Z x (CEY)"))iz 32

diagonal

~ Bl @Sl o sIQ)™NEA Yy eann
~ B(sp(2))" > sp(2l — 2)" @ sp()" )/i: v
(1=23..,0<p<I—-1,0<g<l0<r<l1and 4,:=0).
These branching modules are known to be isomorphic to

L hysy gaa (D), c())) :ifr=p+ gmod 2
|0 : otherwise

¢Y)

as ¥%s-modules ([GKO], [KW], [TK1, 2]). Here L”/(h, c¢) denotes the irreducible left
v¢+-module with the highest weight vector |h, ¢) (h, ¢ € C) that satisfies

2 (d(0)+ >|h ¢y = hih, c) zlh, ¢y =clh, c), dm)|h,c> =0 (m>0),

(see Notice 0.5) and we put

{p(+2)—q(l+1D}*—1
40+ DI +2) ’

6
I+D(I+2)°

) hpgD) = hiop,1i1-4(D) =

4 c)=1-—

Then it is also known that L”“(h, ¢)’s for the parameter
(5) (h’c)’__(hp,q(l)sc(l))s lEZ225 ISP<QS1+1, P, qu

exhaust the discrete series unitarizable 77%z-modules ([GKO]), whose characters are
given by the following ([FFu]; see 1.5.1(0) for 6%):

(6) ch L”(h, (), c()) = n(f)'1{9zlz+1 pp (1+1 —1-1,(, 0) — 0

l+2q!’|l+2 1+2 |l+2 ql’

Z
I+1 —p| 1+1 -1 |(T, 0)}

+2 I+2

a
where

Zl = ad — bc.
From (1) (2) we can also recover the following result in [TK2].
(7) B(sl( + 1)" > sl()" @ (Ze, x CEL))§3)kett+.2)

L by sl + Dy e +1) 2 p=I[Y] =+ 1D[y]
> <L Mgy + D, e+ 1) if p=I[YT =+ DIyI - 10+ 1)
0 : otherwise

(Ye 5y €W, 0<pu<2(+1).
Here we regard sl(l) as

5[(1) = {Elsi,jslﬂ aijEij € 5[(1 + 1)|al+1j = 0 = ai,+1}
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and define the Heisenberg system (1.3.3(1)) (Ze, x CE{) = (Ze, x (CE});) by
e =%, ¢—ley,, E =3%X_ E;—IE™",,
(where ¢; € (P CEX)*, ,(EY,) .= 6),
and B(E, E|):=I(l + 1), and put
s(Y)y:="y, ="y, €Zs, for Y="(y,,"v2)e%.,.

Remark 53. (i) For a classical affine Lie algebra X{» and its invariant sub-
algebra (X{¥)° with respect to a diagram automorphism ¢, see [JM, Table IV] for many
examples of B(X® o (X)?)4 (unfortunately with some “extra factors”™), for small level
A. In the next paragraph § 5.4 we will deal with such a restriction.

(i) As for the so-called branching coefficient

diag
chB@@" ®g" > g")i,
that arises as the character of the coset Virasoro module associated to the tensor

product representation, we can calculate it from the knowledge of string functions. See
[KP2, §4] and [DJKMO, Appendix C] for this point. [ ]

5.4. Affine case (IN)

In the previous section we deal with the dualities that arise as affine analogues of
the finite dimensional ones in §5.2. Now we introduce a new type of seesaw pairs
(§5.4.2. (6, 7), §5.4.3. (1, 2)) and the corresponding dualities (Cor. 5.4.2, 5.4.3) that do not
have their finite dimensional versions. We will derive them by intertwining between
the homogeneous picture representations (our constructions) and the principal picture
representations ([F2]).

5.4.1. The twisted construction of the Virasoro operators

In the sequel we need the following twisted construction of the Virasoro algebra
due to Kac-Peterson [KP2, §2.5].

Let g be a simple Lie algebra of type X,, ¢ an automorphism of g of order N which
preserves the normalized bilinear form B, and

1) 6= Djeznzg  where g;i={x e glo(x) = &~/ 1iNx)

the corresponding gradation. Let §°° be the fixed point subalgebra of § = §z with
respect to the automorphism ¢” defined by

) o™ (x(n)) := e~ 2™ "1"N(5(x))(n) and o™c)=c.

Then §°° realizes the Kac-Moody Lie algebra g(X®), where k is the least positive
integer that ¢* is inner ([Kac, §8]; in the following of this paper we only need the case
of k = 1.), and the canonical central element is given by Nc. Let g be the dual Coxeter
number of g(X®).
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Lemma 5.4.1 [KP2, Appendix 3]. Let {e;,} be a basis of g that satisfies e;, € g,
and B(ei,,, ej,s) = 5i,j57+s,0' Then
dim g,

U 1
©) D(k) = D% (k) := g+ D) ZZ Z_:l o€i,r(r)e;, —(Nk —r)

I (dimg . .
— 5k,0m<7 — ZJN=1 ](1\‘] —])(dlm gj)/4N2>

defines a representation of ¥+ on any §° -module that satisfies 1.2.2(1) and (2) (see also
1.2.2(4) for ;- 3): on such a module we have

@) [D(m), x(n)] = —%x(Nm +n)

for x(m) e §°", and

m? ldim g

(5) [D(m), D(n)] = (m — n)D(m + n) + 5'"+"‘°El—+g_l

5.4.2. The restriction (sl(mr)")<?>”> < sl(mr)”" and its counterpart
gl()® C[s,s1]1@® Cc > gl(l) ® C[s™, s ™] @ Cc

We go back to dual pairs. Fix [, m, re€ Z.,. This time we remark that there is
an algebra isomorphism

(1 CWSH?) = C(Wim?)

induced by the isometry given by the assignation

@ WH 22 P+ mu = 3) o o+ §) € W
Ui p(— o +mu+ )oY, (1 —3)

forl<j<l l<a<m 1<p<r, ueZ. Here Yy*v) and ¥,(v) (a = (j, p) or (J,, p),
veZ + 1/2) are the basis of W22 such that

) W), o)} = 0%0,4v0  and (), Y°()} = 0 = {Wuln), ()} -

The isometry (1) preserves the isotropic decompositions (2.4(2)) and hence induces the
following Clifford algebra module isomorphisms

@ N (W) = A\ (a2
and
©) o: End A\ (WE™™") 5 End A (W77).

Theorem 4.2 says that in the left hand side of (5) there is a dual pair

(6) @' x gl(1)y", sl(r)y") »
level r  level |
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while in the right hand side so is a pair

(7 (Z' x gl(l), sl(mr),) .
level mr  level |
Here and after we write gl(I)? = gl(l) ® C[s, s 1] @® Cc, etc in order to distinguish the

mutually isomorphic algebras according to the spaces that they act on. Moreover we
observe that

Proposition 54.2. (1) Under the isomorphism (5), the following inclusion relations
(8) and (9) hold.

®) Z' x gl(l)) = Z' x gl()
(level r) (level mr)
) sl(r); < sl(mr),

(level 1)  (level 1)

i.e. the two dual pairs (6) and (7) form a seesaw pair.
(ii) More precisely, (8) and (9) are respectively given by the following:

@) Z' w gl() 3 (my, x ® s™) S (3, x ® t*) € Z* x gl(l))
mc<— ¢,
) Olgga:  SIO)S S sl(mr);®
w w

EP, @ 5™ (S5, EP, iy o ® EP) @ 11
+ (X Ef . Q@ EP) @1
Cc = C
l<pqg<rl<a<myveZyelZ).

Here we identify E*; ® EP, € Mat(m, m) ® Mat(r, r) with E**™;, e Mat(mr, mr) (1 <o,
B<r;1<p,q<m)

(i) In particular, the image of the latter coincides with the fixed point set
(sl(mr) )<< < sl(mr) of the order m cyclic automorphism (0.,c), where o, denotes the
order mr cyclic diagram automorphism (1.5.2(4)) of sl(mr),*.

Proof. On \(WEH27) > \ (WhiN2~), we have
EP @™ =X T,z W P (1 — D q(0 + mn — p + 3):
=T Zyez Zhoy WIP(B + my — )Y (e + mn— B —my + 3):
et Zyez Zhger WP + DY oo (m(n — v) — 3):
+ 2y Zyez Ziay YIPPO + DY posim,g(mn — v + 1) — 3):

since (2) preserves the normal products. Together with verification of the corre-
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spondence of Chevalley generators, this proves the claim (8). The statement (9) is
obtained similarly. i}

Remark 5.4.2. In case of |=r =1, the homogeneous picture representation of
gl(m)" on A (W V") induces that on /\ (Wi*'2:7) through the isomorphism (1) ~ (5),
which is nothing but the so-called principal picture representation ([Kac, §§ 14.7, 14.13]).

To obtain the coset ¥s-operators associated to the inclusion (9'), we shall clarify
the graded structure of its image. Let o be the inner automorphism of sl(mr) defined
by

(10) ox®y)=ExE"'®y  (xeglm),yeqlr),
€ 0

where E := 62.- , E1= ez"\/:”", and
0 .s"'

(11) (sl(mr) )" = (@:;ﬂf," CE®E’, @u™) @ Cc

cslmr) ® Clu, u"!]1@® Cc

the associated affine Lie algebra (§5.4.1). We have an isomorphism

(12) @:sl(mr) 3 E% Q@ E?, @ t" = E*, ® EP, @ u™** # € (sl(mr)))°"
crmc
0 1
1 -, 0
where 1<a, f<m, 1<p, q<r and neZ. Put P:= - € sl(m). Then
0o - .
10

from Proposition 5.4.2 it is easy to see
Lemma 5.4.2. We have

@ow(lEr,®s")=P"QE’,Qu", @ o w(c) = mc
and
@ 0 w(sl(r)y") = (sl(mr) )" AUPB < (sl(mr)0)"

where Ad(P) ® 1 denotes the automorphism of (sl(mr)})°" given by
(13) AAP)®1 : x®@Yy@u"—PxP'®yQ®@u", cr—c,

and (sl(mr))<?"A9P®Y srands for the fixed point subalgebra of sl(mr)] concerning with
" and Ad(P)® 1. i

Thanks to this lemma we can introduce a ¥7z-module structure into the branching
module

(14) B(sl(mr) o (sl(mr))"5)gh ~ B~ ((51mr),0)°") = (1))
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by the difference of the twisted Virasoro operators
(15) d(k) D) = ¢~ (D™D (k) — (DN (K)) ,

and

Im*r* — 1) I@?—1)\.
— — id .
I+ mr I+r

(In (15), we extend the isomorphism ¢! (12) of Lie algebras to that of (formally
completed) enveloping algebras.) Note that the branching module

B(Z! x gl > & ™M (Z! x gl())ETIm ~ B(Z! x gl()} > Z' x gl(l) o)Lk

.

associated to (8') also admits the #%s-action defined by

(16) d(k)— DUO(k) := %Dgl(w(mk) — 0~ YDV (k)

zt—-»(m(l +r-(12 — 1)> _mr(lz — 1)>id.
I+r mr + |

Now the seesaw pair (8, 9) yields the following duality (i).

and

Corollary 54.2.(if For Ye %, ,,_, and ye %, ,_,, we have the isomorphism
B(Z! x (gI(l) ® C[s, s 1@ Cc) > mZ' x (gl(1) ® C[s™, s ™] @ Cc)){L-¥limn
= B(sl(mr)" > (sl(mr))C7=)p)

of the coset ¥si-modules defined by (16) and (15) respectively, where we parametrize
(sI(mr) ") -modules by ‘y € %,_,., according to the isomorphism (Prop. 5.4.2(iii))

©)
sl(r)" 3 (sl(mr) ™)< .
(ii) The matrix of the branching modules
B(sl(mr)" > (1,, ® sl(r)") := (B(sl(mr)" > (1, ® sl ") v ear, vyt ,
associated to the inclusion in Table 5.2.a3 factors into the form
B(sl(mr)" = (1, ® sl(r))")
=B(Z' x (sI() ® C[t,t '] ® Cc) o mZ' x (gl(l) ® C[t™, t™™] @ Cc))
®@BEI(N®CL ] @ Ce o sl @ CLt™, ] @ Co)) .

Proof. (i) Our task is to prove the equality D*3)(k) = DU®(k) of the coset ¥7z-
operators for any k € Z, which is valid similarly as in Corollary 5.3a if we can show the
identity

A 1 A A A ﬂ/\
(17) w(l DYO% (mk) + ;DSI"’S (mk)) — (DY (k) + @ (D™D (k))) = 0.
m

To prove (17), we have only to show that the left hand side above commutes with
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gl())* @ sl(mr),”, because Proposition 1.2(ii)—(iii) works then since

2 _ 2 2,2 2 __
m 1_l_r(l 1)+l(r 1) I =1 +l(m r 1)+mr(l 1)
I+7r r+1 I+ mr mr + 1

holds. Using Proposition 4.1(i) we have

L DYD2 (mk) + D% (mk) + l—rak 0
m 24"
1 . Ir
= ;n-(DC“f“'(mk) + ﬂ(;k’o)
Lo mk —2u .
=2 X - YR (Y, p(mk — w):

|

j=1 p=1 peZ+1/2 2m

rom k+2 -1/72) . 1 1
S T S T 20+ my /).'l//”"<a+mv——>t//jp<mk—a—mv+—>:
j=1 p=1 a=1 veZ 2m 2 ’ 2

o Lorom k+2v a—1/2Y hap 1 1\,
l'—)’z Y 2 Z ( ) + m )l// V+§ lpj,a,p k—V—‘E :

j=1 p=1 a=1 veZ

a—1/2
m

. l m
= DCUTamr(l) 4+ 2 5 o+ %
a=1

% LOE,®1)(0).

This expression enables us to compute the commutator in problem. Together with
Lemma 5.4.1 and (11) we know that the left hand side of (17) actually commutes with
gl() @ sl(mr),”, proving the statement.

(i) Discussions in this paragraph (5.4.2) can be summarized as the following
diagram.

[}

End A(WE%7) —=End \(WEi12~)

U U
Zhx gl(De - Z'x gl(), sl(mr)2
1E* Q(S) + (7) U
Z' & gl()y sl(mr), —=  (sl(mr)0)”
©6) + ©0) %* Q) ]
sl(r)y" —— (lmr)} ) L (slmr) )AL
;o ] o ]
SI(r)m = (1, ®sl()})  —=- (sl(mr)) ) AR

((*): “="" means the isomorphism in Cor. 5.4.2(i).)

Here sl(r)) =sl(r) @ C[s,s ']@®Cc, etc. and AdP and ¢- denote the auto-
morphisms defined by (11) and by x ® s*+—x ® (es)f, &:= e2™™ respectively. Now
using (i), the assertion follows as
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B(sl(mr) > (1, ® sl(r)),")
= B(sl(mr), > (sl(mr))¢"><7) @ B((sl(mr) )" > (1,, ® sl(r))")
= B(Z' x gl()} > mZ' x gl()2) ® BEI(r), o sl(r)p) . &

5.4.3. The restriction sp(2]) ® C[t,t 1@ Cc 2 sp(2) ® C[t™, t ™1 @ Cc
and the diagram automorphism of C%),,.

We can apply the method in the previous paragraph (5.4.2) to other types of
classical affine Lie algebras. For example, here we will deduce the type C{!) version for
Cor. 54.2.

We start with the isometry WZ2 ~ WZ+12 which is similary obtained as in
54.2(2). Tt induces the algebra isomorphisms C(WZ+?) ~ C(WZ1?) and

(1) End AW 7) ~ End AWJimt® 7).
Theorem 4.2 yields the following seesaw pair of affine Lie algebras.
2) sp(2D” > sp2DH*
(level r)  (level mr)
+ +
3) sp(2r)" < spmr)”

(level I)  (level I) .
Then the corresponding duality is the following
Corollary 5.4.3 [Has, §3]. (i) As coset ¥¢+-modules, we have
B(sp) ® C[t, t '] ® Cc 2 spR) ® C[t™, t "] ® C- me)el:mm

(ty,r)
~ Bsp@mn)" S spAGY (Y e, veD,),

where 1 is the Lie algebra homomorphism defined as follows.

sp(2r)" 2 CPh(a + km)> £ CPP, o (k+ 1)+ X CPP 4 (k)  esp(2mr)”
p=1 =q+1

B

CPio + km)—> T CPPasPi(e 4 1) 4 3 Crhamtapo()
p=1 p=a+1

Cp;q(a + km)Hﬁ§1 Cp,ﬂ;q. —a—ﬂ+1(k) + g= 2’1_ Cp,ﬂ;q,2m—a—ﬂ+1(k + 1)
cHc Il<a<mkeZand1<p,g<r)

Here we put
Cp,aq,ﬁ = C‘H—maq*—mﬂa Cp,a;q,ﬁ = Cp+mnz,q+mﬁ and Cp,u;q’ﬁ = Cp+ma’q+”lﬂ € 5p(2mr) .

(ii) When m=2, 1(sp(2r)") = {x € sp(4r)" |0, (x) = x}, where o, is the order 2
diagram automorphism of sp(4r)" = g(C,,V) (§1.5.4).

! W 1

0=>0—0—+—0—0<0
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Proof. Together with Theorem 4.2 (Case CC, h=1/2) and Proposition 5.2, (i)
immediately follows from the explicit description of inclusions (2) and (3). (The linear
map ¢ is just the inclusion (2) and coincides with the restriction of the homomorphism
(5.4.2(9)) to sp(2r)*.) The proof of (ii) is given by the straightforward verification of
correspondence of the Chevalley generators. v |

From (ii), we can recognize Jimbo-Miwa’s result [JM, Proposition 3.11, Case (5)] as
a special case (m = 2) of (i).

§6. An Application to the Duality of Meodular Transformation Rules of Characters

6.0. In 6.1 we summarize the S-transformation rules of spin module characters.
They are applied to deduce some “duality” on the transformation rules of affine Lie
algebra characters in 6.2. The author owes the contents of this section to Professor
Tsuchiya.

6.1. S-transformation rules of spin module characters
Recall the definition of chi*Z*" in §2.4:
(1) Chﬁt’z-\Lh = Ch/\cven(W%-f—h,') + Ch/\vdd(WhZ,-‘-h.—) N

and the definition of the modular transformation for the function on § = h*™ @ Ce @
Cd:  yo A(h) := x(A(h)),

2) Al—td+1c+u)= -2 F Py <t Blu, u) > u

YT+ 0 2(yt + 9) c+yr+5

o
0, 6 and 7 (§1.5.1) yields

(A = [Z ﬁ:’ eSL(22,Z),1,teC,ue b). Then the well-known transformation rules for

0 —1
Proposition 6.1. Under the transformation by S = [ O:l, the character chy Z*"

1
(h=0,1/2; N = 1, 2) of the spin modules transforms as in Table 6.1.

Table 6.1.
N=1 N=2
case | h | + chi-Z+h chiZ*ho§ case h + n(t)chE 2+ chiZtos
n(2)* R 1
(a) 1 + r/(_Zr)m x 1 (e) ) + 9(1, u+ f) x1
2 2
1(t/2) o
b - — —
© 1) ><>< 1/4/2 @ b 1) ><x 1
1(27) x/2 ) 1 x 1
(©) . + ") (g . + —if <T, u+ 5)
d) — n(7) X/ —it (h) — —i6(t, u) X (—1i)
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Namely, case (c) of Table 6.1 tells that

3) ch}"Z(—%D(,) = ﬁ" x chy*Z*12(1Dy) ,
and case (h) tells

1 2
@) ch;’z<—;D0 + ngl + f’r—c> — (—i) x ch*Z(@D, + uD',),

i 1 0
where Dy := D?V(0) (2.4(15)) and D', = [0 = 1] e,

6.2. A duality of transformation rules of affine Lie algebra characters

In Theorem 4.2 we obtained the identities of following type:
1) Ch/\(Wﬁ*’"")[—TDo + L(w) + RW)] = % XLXL(Y),R(T, u) XRiR(Y),L(T, v)

(Remark 4.2(ii)). Here we use the notation in Table 4.2 and for simplicity write x“,,
xR, for 3 X9, y% X9 respectively.

It is well known that the vector space spanned by normalized characters for
integrable highest weight modules is stable under the modular transformation (see e.g.
[KW, Lemma 2.1]). As is easily seen from the fact #(X;) < oo (that is, we can
consider the mean with respect to the Haar measure of Z*) this is also true for our
characters x“, for the system X x g of Case CC, BB, DB and DD in Table 4.2. Let
mt = (m"y ,)y,yes,, and m® =(m®y )y , 4, respectively be the scalar matrices of the
S-transformation rules of the characters x"; v, r and x*; ., . in such cases, that is,

L, _ L L,
)] X iR © S= zg;/ M=y yX i.0)R »
YT,
R R R
X inL°S = %’1 My, yX dx)L -
YET 1 r

Note that these definitions of m" and m® depend on the choice of h(=0, 1/2), since AL
and iR depend.

In view of Proposition 6.1, the identity (1) gives the following information on the
transformation rules of characters.

A

Corollary 6.2a. For the pair (g, gs) in Table 42 (h = 1/2) CC, BB, BD and DD,
there is a “duality”

(3) , Zoy mbty mRy =9, for y,y' e, .
€Jr

Proof. Remark that chi*Z*2 is invariant under S (Table 6.1(a), (¢)). Hence
together with (1) we have the following,

4 Ch;’ZH/Z = % XLi,_(Y),RXRiR(Y),L = Ch;rl'ZH/z oS = % (XL/TL(Y),R o S) (XR/TR(Y),L N

= % <Z mLY,YXLiL(}’),R> <Z’ mRY,y'XRjR(Y')-L>
y y
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as a function on (h% @ h* @ Cc @ Cd) =, h°™". The claim now follows from the
linear independence of characters. ]

The group of auxiliary automorphisms %; x Zp in (1) is trivial for the Case CC.
Therefore the well known unitarity of the matrices m* and m® ([KW, Lemma 2.1])
allows us to write (3) as m"y , = m®y , in this case, where the bar denotes the complex
conjugation.

On the other hand, in the Case AA, unfortunately the space spanned by xily'j‘y%f?A
(1.3.4(14)) is not stable under the modular transformation. However a similar result
associated to the triple C1” @ sl() @ sl(r)” is of course available as follows. Note
that the functions sz.,,(r, u)/n(t) (0 <j < n) again spans a invariant subspace of the
S-transformation (1.5.1(8)).

Corollary 6.2b. Define matrices m<y, m*, ;. and m*, , by

(5) (sz,lr/ n)oS= 2i’=1 mjcl%(ekz W/,
(6) Xi[.(f)A oS = zﬂ.'e@,_l . m" AA Xim.)- >
(7) Xisll,(lr)’\ °oS§= EM'E@r—l.lmRﬂ u Xi[(r)/\ ’

then it holds that

@®) 2yew,, mCI[Y]+kr, zrmL&‘k(y),ymRrY,ry' = 5j[y] mod r0” Guu-s0ir(y)
forye®, .,y e, and 1 <j<r, where for Y € %¥,,_, = h*'© we define 5(Y) by
¢(Y) +rdy = 0, (Y +rd,) mod Cs.

Proof. Note that the character identity of Theorem 4.2 for Case AA can be
rewritten as the followings (4.4(3)):

1
Z+12 _ Z S
) chyy, ! EYG@ _ (‘9 [Y]+lk,lr) Xa'g(y)c(y ) XtYr >
1<k<rt \y

and then apply the argument in the proof of Cor. 6.2a. ]

Remark 6.2. Besides the above results Cor. 6.2a, 2b which are based on chy:Z*12,
we can also obtain a similar results from ch3;%: Table 6.1(h) says

(10) ch;;Z0 8 =(—i)ychy;Z.

Here we apply this to the character identity of Case CC (h =0) of Theorem 4.2, for
example. For that purpose we read from List 4.2 the information that wheather
each component LD (Y, r) @ L®"" (Y1, ) belongs to A"(WZ™) or N\(WE "),
and obtain

- Z _ 1 A A
(11 chgi” = Zycq, (= DI R

Now we apply the S-transformation to both hand sides and use (10), to deduce the
following: for y, y' € %, ,,
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(12) Zyea,, (— DM MG = (=) (= 10182, = (= D),
where M{'}) := mY ,, that is,

sp(20)° — (Lr) ., sp(21) "
(13) XY?S— "o S = Zye@,‘,.MY,; Xy,r . B

§7. Are There Affine Segal-Shale-Weil Versions?

7.0. Here we seek the symmetric algebra analogues of our dual pairs and obtain a
negative answer.

7.1. We have shown the spin module versions of Weyl’s reciprocity theorem—
dual pairs on spinors—for classical, finite or non-twisted affine type Kac-Moody Lie
algebras (Theorems 3.2 and 4.2). As an application, the duality of branching rules,
or coset Virasoro modules, are explained from the viewpoint of seesaw dual pairs
(Section 5).

Now we consider the problem, whether there is a Segal-Shale-Weil analogue of our
results. Namely, if whether there are dual pairs of affine Lie algebras on affine Segal-
Shale-Weil module & = %, of sp(2n)”, which is constructed by Feingold-Frenkel [FF]
on the symmetric algebra % of a certain infinite dimensional vector space. Since our
picture is quite similar to that of [Ho] and the literature cited there, which concern with
dual pairs on the Segal-Shale-Weil modules over sp(2l), it is natural to seek such
possibility. As in the finite dimensional case, we will consider the module & = %, as
the module of the following subalgebras of sp(2lr) " :

(1) sl @l = spin™
) sp2D N @ o(r) " < sp2l) " .

What we have to check first is whether the central charge identities, which play an
essential role in our previous consideration on the spinor cases (§0.3), are satisfied for
the above pairs (1,2). Let us denote by z8" the central charge of the Virasoro
operators associated to the representation of g™ on &, (§1.2.2). The answer is then
the followings:

Lemma 7.1. There are no positive integer solutions (L)€ Z .o X Z. (resp. Z .o X
Z.. ) for the following equations (3) (resp. (4)).
(3) Zsp(21r)’\ — Zgl(l)A + zsI(r)“
(4) Zsp(ztr)A — zsp(zt)’\ + Zo(r)’\

Proof. Recall that the module & is of level (—1) as the sp(2n)"-module

(therefore it is not integrable [FF, (6.1)]). Taking the ratios of the normalized bilinear
forms of sp(2lr) and that of sl(I) and sl(r) into consideration, (3) reads as

—LhrQ@r+Y _ (L (2 —1)\ =200 1)
—14@0r+1 —2r+1 —2l+r

>
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which reduces to
Afr =12 =3 —1/Ir.

Then noting (1/r — 1/I)? < 1 for (I, r) € Z. o> we assert the statement for (3).
As for (4), the equation is equivalent to
—1-IrQlr +1) —rREP+10)  —4l-(r*—1)2
—1+Ur+l)  —r+(d+1) —d+e-2°

which reduces to
Gr+20—r+2)QL+1)r—1)=0.

Then we solve 3lr + 2] —r +2 =0 and get r = —2(I + 1)/(3] — 1), which is impossible
for (I,r) e Z. %

Therefore we consider the coset Virasoro operators and conclude (unfortunately)
Propesition 7.1. For the pair

(1) @UD", sl()")  (resp. (2): (sp(2)", 0(r)"))

of Lie algebras, assume the following condition (5) (resp. (6)). Then there are non-zero
Virasoro operators (i.e. a non-trivial action of the Virasoro algebra) which commute with
the algebra pair (1') (resp. (2')) acting on the affine Segal-Shale-Weil module <, ((1), (2)).
In particular, (1) (resp. (2')) does not form a dual pair on &,.

(5) 2r #1 and A0#r.
(6) r#l+1 and 41 #r—2.

Proof. Under the above assumption (5), the coset Virasoro operators D*?""(n) —
(D92 () + D *(n)) (n € Z) are well-defined and cannot be zero because its central
charge does not vanish. This proves the proposition for the pair (gl({)", sl(r)*). The
statement for (sp(2])", o(r)") can be obtained similarly.

If (5) or (6) is not satisfied in each case, the Sugawara form does not define a
representation of the Virasoro algebra. See also [KK] or [Hay] for such a case.

§8. Appendix: The Fermion-Boson Correspondence

8.0. In this appendix we review the Fermion-Boson correspondence ([DJKM],

[F2]) and give an explicit description of the action of the outer automorphism ajfc in

the Case AA of Theorem 4.2.
8.1. The Fermion-Beson correspondence

We follow the notations in 1.3.3, 1.3.4, 1.4.5., and 2.3 ~ 4. Consider the homo-
geneous Heisenberg subalgebra

(1) H” = (Bh=1 Pmez CDM(m) ® Cc
of o(2n)™ and the lattice Z" = @};1 Zg; < h*. Each y e Z" acts on f) by
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) £,(x(m)) = x(m) — 8, 07(x)c  (x(m)eh) and 1) =c,

and the pair Z" x ) forms a Heisenberg system (1.3.3(1)). Let & Z" x Z" > {+1} be
the 2-cocycle defined by

1 if j<k

(3) (e, &) = {_1 i >k and e(x + B, 4 + ) = &, A)e(a, we(B, e, 1) .

Then for each 1 e bh* an irreducible representation of Z" f) associated to ¢ is defined
on the Fock space [FK]
4 LZB(0; 1) ~ e*+ Ry Cle™, e7%, x,(1), x,(2), ..

by the formulae 1.3.3(4).
On the other hand, putting h:=12—-h((h=0,1 /2), for each y € Z" we can define a
vector |y + h1*) e A\ (W4A*"") inductively by the rules

5 |h1*) := |vacy :== 1 e \ (WER")
ly + & + hI*) = e(er, W T(F0ler) — R F By + h1*),

where (g;]g;) := &, 1* := T ¢; = 24, and Y **(u) = Y 1,(n) are the basis of WA*" given
in §§2.3 ~ 2.4 that satisfy the canonical anticommutation relation

(6) {'//j(ﬂ)a Y(v)} = 6jk5u+v,0
{W(w, ¥ M)} = 0 = {Y;(w), ¥V}

for 1 <j, k<n and p, veZ + h. Similarly to (5) we define a vector (y + h1*| of
AW ) by

(5) (ﬁl*[ =<(vac|:=1¢€ /\ (WzZn+h,+) ,
£ & + R =y + R1*e(e DY sr(£(lE) + b £ B).

From now on we identify A\ (WA*™*) with the right C(WZ™-module
WL = C(WEM\ C(WE*") as in §2.2. Then there is a non-degenerate pairing

™ > AW x N> C
which is uniquely determined by {1|1) := 1 and
®) Cupalu_y = Quglau_)(=:<u.lalu_y)

for any u, € /\ (W4*"¥) and a e C(WE™™).
Now we have the following Z" oc h-isomorphism, which is equivalent to the Jacobi
triple product formula.

Theorem 8.1. (The Fermion-Boson correspondence [DJKM7) Put
Hx):= X X mx(mD"(m).

meZ.o 1<k<n

Then we have the following b-isomorphism.
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9) B: |\ (WE™=) S L2 0(R1, 1)
w w
[v) X e’ ® (ylefP|v).
yeZn+h1*

Moreover % gives rise to a Z." x B-isomorphism if we define the projective action T,” of
ae Z" on N\ (WE™™) by

(10) T (Z, Plv):=Z, Pe y)la+ 9> (P,eUH®CLt]). L
This isomorphism leads to the “vertex operator representation” of ¥ ,(v). Put
d(z):= X a()z "2 for ae W,,.
veZ+h

Proposition 8.1 ([F2] p. 77).
lﬁ + k(Z) =e * QE(Z)e * Q{(Z) T"_:Ekz + Dkk 9

z
F

where QF(z) :i= T
n=1

S

8.2. An explicit description of the automorphism g/,

An index changing induces the action of w e S, on Z" and (X—; C[x(1),...] by
(11) W) i= &y and w(P(..., x(m),...)) == P(..., Xppy(m),...),

where P e (X), C[x,(1),...] and 1 <k <n. We will twist this action to have desirable
commutation relations with T,’s. Fix we &,, and give ¢,(g;) € {+1} for 1 <j<n. We
can extend ¢, inductively and uniquely to a map ¢,: Z" — { £ 1} by the following:

(12) e,0):=1 and &,y £ &) = e(W(e), w(»))e(er, V)ew(E)en(?)

forany ye Z" and k =1, ..., n. Using this ¢, we can define w € Aut(LZ"”‘B(l, 1)) by
(13) W(e* ' P(x)) = ,(y)e" - w(P(x))

for e**’P(x) € LZ"“B(A, 1). Then the following formulae follows by the definition.

Lemma 8.2. For any yeZ", neZ., and k=1, ..., n, WTY”W—I = £,() T(y)»
W(0/0e )Wt = 0/0€ 4y, WX (M)W = x4, (m) and W(0/0x, (M)W~ = 0/0%,,q,(m). ]

These projective actions for M = Z" (M denotes the root lattice of o(2n), 1.5.5(2))
and &, can be identified with that of the Weyl group of o(2n)", which is defined
through the integrable representation [FK].

Now we will give the projective action 6%, of the outer automorphism ¢, (1.3.4(1))

of gl(l)* on /\ (WZ*"~) that appears in Case AA of Theorem 4.2. We put n = Ir and
use the index (j,p) (1 <j<L1<p<r)instead of 1 <k<n. Puty =%} ¢ ,and
let T,” be the corresponding twisted translation operator associated to the cocycle &
(8.1.3)) and (1, ..., )~ the twisted action (13) of the cycle

(14) S,2,...,) :(j,p—(j+ 1modl p)
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(any &, will do). Then identifying the Fermion Fock space /\ (W4 ") and the Boson
Fock space L% "‘5(51] * 1) by # in Theorem 8.1, we define

(15)

&jfc =T"-(1,...,1)~ € Aut /\ (W/2Z1r+h,—) .

"1

Proposition 8.2. For any g € gl(l)", 6%, satisfies

(16)

G*-SoL(g)- 6% =50 Lisk(g)

on \(Wh"). It also satisfies

17)

~4 N ~
(acyc) - i-T (ZJ‘sz,p) .

Proof. Apply Lemma 8.2 to the vertex operator representation given by Propo-

sition 8.1.
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