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The Super-Toda Lattice Hierarchy

By

Kaoru IKEDA*

Abstract

The super-Toda lattice (STL) hierarchy is introduced. The equivalence between the Lax representation
and Zakharov-Shabat representation of the STL hierarchy is shown. Introducing the Lie superalgebra
osp(oo | 00), the ortho-symplectic (OSp)-STL hierarchy is defined as well. These equations are solved through
the Riemann-Hilbert decomposition of corresponding infinite dimensional Lie supergroups. An explicit
representation of solutions is given by means of the super-t field.

§0. Imtroduction

In this paper we consider the super-Toda lattice (STL) hierarchy. This paper is a
complete version of our previous announcement [4], containing some new results.

The STL equations are considered in several ways. V. A. Andreyev [1] and M. A.
Olshanetsky [9] classified the STL equations according to Lie superalgebras and solved
them by inverse scattering method.

Inspired by the studies of the super-KP hierarchy by Yu. I. Manin and A. O. Radul
[7], M. Mulase [8], K. Ueno, H. Yamada and K. Tkeda [12], [13], [14], [15], we try
to investigate the STL equation by a method which is different from [1] and [9].
We extend the Toda lattice (TL) hierarchy, which is introduced by K. Ueno and
K. Takasaki in [11], to a supersymmetric one. Considering the STL hierarchy, we can
naturally extend several concepts in the theory of soliton equations, namely, the tau (1)
function and the reduction of solutions.

We first define the STL hierarchy through the Lax representation and show the
equivalence with the Zakharov-Shabat representation. From the STL hierarchy, we
derive the STL equation,

Di D7 u(s) = exp(u(s) — uls — 1)) + exp (u(s + 1) — u(s)) ,

where D are certain odd derivations. Introducing an infinite dimensional Lie super-
algebra osp(co|oo) (cf. [5], [6]), we define the ortho-symplectic (OSp)-STL hierarchy.
The STL equation derived from the OSp-STL hierarchy, the OSp-STL equation,
reduces to the STL equation studied in [1] by adding the condition of “4N-periodicity”.
Putting N =1 the OSp-STL equation is simplified to the super-sine-Gordon equation.
To solve a Cauchy problem of the STL hierarchy, we consider a Riemann-Hilbert (R-H)
decomposition of the Lie supergroup SGL(S), where S is an algebra of superfields.
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Through the R-H decomposition we represent components of the wave matrices of the
STL hierarchy in terms of the super-t field. Considering the R-H decomposition for
constant matrices of the Lie supergroup OSp(S), we solve the OSp-STL hierarchy. In
his recent paper [10], Takasaki determines the equations satisfied by the super-t field of
the super-KP hierarchy in terms of the differential algebra generated by the coefficients
of the wave operator of the super-KP hierarchy. It is an interesting problem to find
out the equations for our super-t field, applying his idea.

This paper is organized as follows. In Section 1, we review shortly the theory
of the TL hierarchy according to [11]. In Section 2, we define the STL hierarchy
and show that the Lax representation of the STL hierarchy is equivalent to that of
Zakharov-Shabat (Z-S)s. We discuss the STL equation derived from the STL hier-
archy. We also derive the ordinary TL hierarchy by taking the body part of the
STL hierarchy. In Section 3, we introduce an infinite dimensional Lie superalgebra
osp(oo | 0) and define the OSp-STL hierarchy. We consider several equations reduced
from OSp-STL hierarchy. We derive the BTL and CTL hierarchy [11] by taking the
body part of the OSp-STL hierarchy. In Section 4, we solve the STL hierarchy by the
R-H decomposition and give a representation of the solutions in terms of the super-t
field. We also discuss the R-H decomposition of the OSp-STL hierarchy.
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§1. Review of the TL Hierarchy
Let 4 = (0;11,):jcz be the Z x Z shift matrix. We denote by diag[a(s)] the

a(—1)
diagonal matrix a(0) . Consider a Z x Z matrices of the
a(1)

form 4 = Zz diag[a;(s)]4’. We define (4), and (4)_ by
je
(), = ¥ disg 4914, () = ¥ diagla (9]
iz <
We call (4), and (4)_ the plus (+)-part and the minus (—)-part of A, respectively.

We introduce infinitely many time variables t* = (¢, ¢;,...) and ™ = (t], t3,...).
Put 4 be the quotient field of C[[t*,t™]]. The Toda lattice (TL) hierarchy is defined

as follows. Let L and M be Z x Z matrices of the form L = ) diag[u;(s)]4'7,
I=)

M =Y diag[v;(s)147*/, where u(s), vj(s) € A, uo(s) =1 and vo(s) #0. The TL hier-
j=0

archy is the system of infinitely many Lax equations:
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at;L = [Bm L] > at;M = [Bm M] >
o.L=[C,L], 0.M=[C,M],
where B, = (L"), and C, = (M")_.

Theorem 1.1 ([11]). The TL hierarchy (1.1) is equivalent to the following system of
the Zakharov-Shabat (Z-S) equations.

at;Bm - 61‘,‘;‘Bn = [Bm Bm] >
at;Cm - 6t,‘,,Bn = [Bn’ Cm] ’ (12)
at;cm - 61,—"Cn =[G, G - A

Put m=n=1 1in the second equation and put B, =4 + diag[b(s)],
C, = diag[c(s)]47!. Let u(s) be a function such that b(s) = Oru(s) and c(s) =
exp(u(s) — u(s — 1)). Then we have the two dimensional Toda lattice equation

Oy; Or;u(s) = exp(u(s) — u(s — 1)) — exp(u(s + 1) — u(s)) .
From (1.2), there exist

W, =Y diag[w/(s)]477, W_ =Y diag[w; (s)]47,

=0 f=
with wi(s) € o, wg (s) = 1 and w; (s) # 0, satisfying
3. W, = B,W, — W, A", 3. W._ = C,W.,
(1.3)

oW, =CW,, O.W.=CW.—W.A",

where B, = (W, A"W.),, C, = (W_AT"W-')_. Conversely the existence of W, satisfy-
ing (1.3) implies (1.2) as a compatibility condition of (1.3). We call (1.3) the Sato
equations and W, the wave matrices of the TL hierarchy.

To solve the TL hierarchy we introduce an infinite dimensional Lie group
GL(00; A') as follows.

GL(0; #) = {A € Mat(Z x Z; A")| A is invertible.} .
Note that W, e GL(c0; ). Put &, =&, (t7)= exp<z tj’"Af> and &_(t7) =
j=1

exp(Z tj‘A'f>. We denote by GL(o0; C) the subgroup of GL(c0; ") consisting of
=1

constant matrices.

Theorem 1.2 ([11]). Suppose that, for A € GL(c0; C), the following decomposition
with W, is satisfied:

D AP = WW_ . (1.4)
Then W.. are the wave matrices of the TL hierarchy. A

We call (1.4) the Riemann-Hilbert (R-H) decomposition. Put H =@, AP_ =
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(hi)i jez- From (1.4) we see that (W, H). = 0. This induces the linear equation
(... w3 (s), wi(s), )M(s) = (...0,0, 0)

for all s e Z, where M(s) = (By_i41,5-j)i,j<0- Put t(s) = det(h,_; ;—;); j>o- Then we have
the following explicit representation.

Theorem 1.3 ([11]). () wj+(s)=£’i(‘_£.s+))ﬁ,
p(=3)1(s +1)

7(s) ’

i) w(s) =

Ms

where pi(ty,ty,....) is defined by exp( tjkj> =Y pilty, ta,....)k7 and 0, =
J=1 Jj=0
Oz, 2_16,;:, 3_16,31, cee) A

We define the matrices J = ((—)'0; —;); jez and K = 4J. We introduce the infinite
dimensional Lie algebras

o(c; )= {AeMat(Z x Z; #)|J'A + AJ = 0},

Il

sp(oo; ) = {Ae Mat(Z x Z; A)| KA + ‘AK = 0} .
The corresponding Lie groups are
O(o0; #) = {AeMat(Z x Z; #)|J'AJ = A7},
Sp(oo; #) = {A e Mat(Z x Z; H)|'K'AK = A7'}.

Put t¥,,=0 for n=1, 2, ... in (1.3). By adding symmetry conditions to the wave
matrices so that W, e O(co; ) (resp. Sp(co; #')), we obtain the BTL (resp. CTL)
hierarchy.

Remark. Assume that W, are the wave matrices of the BTL (resp. CTL) hier-
archy. Then B,= (W, A"W. '), and C,=(W_A"W>')_ € o(o0; A") (resp. sp(co; A"))
for odd n.

Theorem 1.4 ([11]). Let t*,,=0 for n=1, 2, ... . Assume that A e O(c0;C)
(resp. Sp(oco; C) in (1.4). Then W. € O(co; A) (resp. Sp(co; X)), namely W, are the
wave matrices of the BTL (resp. CTL) hierarchy. A

§2. The STL Hierarchy

Throughout this paper, k denotes the modulo class of k by Z,. Let o = o/, ® o,
be an arbitrary supercommutative superalgebra. The body map is the canonical pro-
jection &: of — o/ [(f,), where (#,) is the ideal generated by «/,. Fora=a, + a, € ¥,
a; € o;, we denote a* = ag — a;. " The body map ¢ and the opErator « can be nat_urally
extended on the superalgebra of matrices with entries in /. Namely, for 4 = (a;); j(a; €
), €(A) = (e(ay));,; and A* = (af For ke Z, put A*® = A(k=0), =A%k =1).

i, je
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Moreover we put, for n>1, A% = A*""VA5, AL =A. If D is an odd derivation
acting on .7, then it satisfies the super-Leibniz rule:

D(ab) = (Da)b + a*(Db), a,be .

Let V be the Grassmann algebra A(C*®) with infinitely many generators, ey, e,, ... .
Let t* =(tf,t5,...) and t~ =(t],t;,...) be infinitely many Grassmann variables.
Here t3; are even (commutative) variables and t3;_, are odd (anti-commutative) ones.
Let 4 be the quotient field of the C-algebra C[[tF,tF,...]]. The supercommuta-
tive superalgebra § = S, @ S; is now defined by

S=A QC[[t:, tF,...]11® V.
We define the super-vector fields, acting on S,

+ _ + — + i
Dzj = at;‘:] 3 D2j—1 = atf,—l + kzl tZk_lat;iJ+2k>2 9 J > 1 .

These super-vector fields satisfy the (anti-) commutation relations
[Dji$ Dki](_),kﬂ = 25&,1Dj-i%—k > [Djis DE](—)JIM =0,

where [ ], =[ ], (=anti-commutator) and [ ]_; = [ ] (=commutator). Now we give
the definition of the super-Toda lattice (STL) hierarchy. Define the matrices L and M
as follows:

s

Il
o

L= diag[us)]4*~7, with ug(s)=1 and wu(s)€eSs;.

J

M:

s

diag[v;(s)]47*/, with (v(s)) #0 and vys)€S;.

j=0

We put B, =(L%),, C,=(M%)_. The STL hierarchy is a system of equations of the
Lax type,

DL =(—)"BfL — L*™B, + 26, L1, @.1)
DiM = (—)"BXM — M*™B, 22)
D;L = (—)"CXL — L*™C,,, 2.3)
Dy M = (—Y"CiM — M*™C,, + 25, ,MT™" . (2.4)

Theorem 2.1. The STL hierarchy (2.1) ~ (2.4) is equivalent to the system of the
Zakharov-Shabat (Z-S) type:

b;C, — (=)"D,B, = (—)"Bf™C, — C}"B,. (2.5)
Dr:Bn - (_)mnD:Bm = (___)mnB::(n)B" - B:(M)Bm + 26@,_1Bm+n > (26)
D,C,— (=)D, C, = (—)"Ci"C, — CF™Cpp + 20pn,1 Cn - 2.7

Proof. First we show that the Lax type system ((2.1) ~ (2.4)) induces the Z-S type
system ((2.5) ~ (2.7)). We can easily see that
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D}Li = (—)"Bi®LL — LI*™B, + 26, LT, (2.8)
DM = (—)™BX"M — MI*™B,, , (2.9)

D, L% = (—)"C:™L1, — L*™C,, , (2.10)

Dy M7 = (=)™ CE™M, — MI*™C,, + 20,1 MT*". 2.11)

mn=1,2,3,...)
Taking the (+)-part of (2.8), we have

D, B, — (=)"Dy B, = 2(—)"Bj"B, — 2B}™B,, + (—)"(B"(L})-)+
— (LYX™B,). — (BF™(LY)-)+

+ (=)"((LY)*™B,)+ + 40n,1Bmin - (2.12)
Using the identity
LFWLY — (= )"Ly*™LY, = 20, , L™, (2.13)
we have

(BE™(LT) ) + (LYX™B,), — (—)™(BE"(LL)-), — (=)™ (L*™B,),
= —B}™B, + (—)"Bx"B, + 20,1 Bnn -
Then (2.12) reduces to (2.6). From (2.9) and (2.10), we have
D Mj, = (—Y"Bi"Mj — M*™B,, (1)
DLy = (—)y™"Crm™Ly — L7*™C, . (YY)

We denote by (Y)_ and (YY), the (—)-part of (Y) and the (+)-part of (YY). By taking
the difference (Y)_ — (— )™ (YY), we obtain (2.5). We obtain (2.7) similarly.
Now we show the converse.

Lemma 2.2. The matrices L, M satisfy the following equations:

Dy L% — (—)™B¥™L: + L*™B, — 25, Lm*" (2.14)
_ n—il (_)(1+n+1)ML£k*(m+n+l)(D;L _ (__)mB:L + L*(m)Bm _ zém,iLr;+l)*(l+n+1)Lr;‘—l—l ,

L" _( )mnC'::(n)L:;= + L';*(m)cm (215)

*
n—
Z )m(l+n+1)L£k*(m+n+l)(D’;L _ (_)mch + L*(m)cm)*(l+n+1)Lr;—l—1 ,

D, My — (=)"Bx"M} + M*™B, (2.16)
n—1

— Z (——)m(l+n+1)M,Ik*(M+l+")(D,:M _ (—)mB::M + M*(M)Bm)*(’+"+1)M;—l_l ,

Dy My, — (=)™ Cr" My, + My*™Cpy — 28, My*" 217
= nil (_)(1+n+1)mM=lk*(m+n+l)(D;M _ (—)"'C:M + M*(m)Bm
=0

+1)k(+n+1) pgn—1-1
— 23, Mgy OMETLT
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Proof. First we show (2.14) by induction. It holds trivially for n =1. Forn >0,
Dy Lyt — (=) mBre DLt 4 LP* B, — 26,41y, 1 Ly
= (=)D L — (—)"BEL + L*™B,, — 25, ,L3*}*"L}
+ L*™ (DL — (—)™Br™LY, + Ly ™B,, — 26, 1 LY ™)
+ 2((=)"0m,1 + Omn,1 — Omuany, ) L2

Notice that (—)™6,,1 + Omn,1 — Om@w+1y,1 = 0. By the induction hypothesis we have the
conclusion. We can show (2.15) ~ (2.17) similarly. A

We define ord 4 and coord A4 for 4 = ) diag[a;(s)]4’ as follows:
jeZ
ord A = inf{j € Z| diag[a;(s)] = 0, for i > j},
coord A = sup{j € Z| diag[a;(s)] =0, for i <j}.

Lemma 23. Suppose that D) L—(—)"BL+L*™B,—26,, L} =diag[a(s)]4"+
lower order, for some r and diag[a(s)] # 0. Then

lim ord(Dj L% — (=)™BX™L% + Li*™B,, — 25, LT*") = + 0 .

n— o

Proof. By using Lemma 2.2, we see that the highest order term of the left hand
side of (2.14) is

n—1
diagliZ (—)HHm DA +ng(s 4 l)] ATl (2.18)

1=0

Fact A. For any ne N, there exists n' € N such that n’ > n and
n'—1
diagl: Z (—)‘”"'“)(”’)a(s + l):| #0.
1=0
Proof of Fact A. Suppose that there exists N € N such that

N-1
Y (—)ENDA*g(s + ) =0  and
=0

N
Y (—)HV0Egs 4+ 1) =0, forall seZ.
=0

From this we have a(s + N) =0 for all seZ. This contradicts the assumption of
Lemma 2.3. A

By Fact A the highest order term of the left hand side of (2.14) never vanishes as
n— oo. This completes the proof of Lemma 2.3. A

On the other hand we see the following fact.

Fact B. The order of the left hand side of (2.14) is less than m.



836 KAORU IKEDA

Proof of Fact B. From (2.6) we see that
DLy — (—)"Br™L, + Ly*™B,, — 20, ,Ly™" (2.19)
= D (L3)- + (=)"Dy By — (—=)™BF™(LY)- + (LYF™)_B, — 20,1 (LY™)- .
The order of the right hand side of (2.19) is less than m. A
From Lemma 2.5 and Fact B, we can conclude that
DyL —(—)"BiL + L*™B, — 26, ,L3*" =0.
Secondly we show (2.2).

Lemma 2.4. Suppose that DM — (—)"BXM + M*™B, = diag[b(s)]A" + higher
order terms for some r and diag[b(s)] # 0. Then

lim coord(D;f M% — (—)™B¥"M. + M*™B,) = —0 .

Proof. From Lemma 2.2 we see that the lowest order term of the left hand side of
(2.16) is

n—1
diag [ (=) ey (). vg(s— T4+ Dvo(s+7—1)...vo(s—n+2+7r)b(s — 1):| AT
=0
Fact C. For any ne N, there exists n' € N such that n’ > n and
n'—1
diag[ Y (=)D Dy o(s). L ve(s — 14+ Dvg(s+r—1)... vp(s — n’+2+r)b(s—l)] #0.
=0

The proof is similar to that of Fact A. By Fact C, the lowest order term of the left
hand side of (2.16) never vanishes. This completes the proof of Lemma 2.4. A

Fact D. The coorder of the left hand side of (2.16) is positive.

Proof of Fact D. From (2.5) we see that
D My — (—Y™"BE®M}, + M*™B,
= D (M3), + (=)™D; B, — (—)™BE®(M3), + (M} )3™B, .
This assures the claim of Fact D. A
From Lemma 2.4 and Fact D, we see that
DiM — (—)"B¥M + M*™B, =0.
The equations (2.3) and (2.4) can be shown similarly. Q.ED.

We define Dff, B, and C, as the restriction of Df, B, and C, to the sector
t3+41 = 0,j > 1, respectively. Accordingly let

Df = O + t;—”a,; .
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From (2.5), we get
DiC, + DyB, = —B*C, — C¥B, . (2.19)
Substituting B, = A + diag[b(s)] and C, = diag[&(s)]4~" to (2.19), we have
Dib(s) = —&(s) — é(s + 1), (2.20)
Dy &(s) = (b(s) — b(s + 1))&(s) . (2.21)
Let u(s) € Sy be a superfield such that
b(s) = Dy u(s),
é(s) = exp(u(s) — u(s — 1)).
Then one can see that (2.20) and (2.21) reduce to a single equation
D Dy u(s) = exp(u(s) — u(s — 1)) + exp(u(s + 1) — u(s)) . (2.22)

We call (2.22) the STL equation. The body part f(s) = e(u(s)) satisfies the ordinary TL
equation,

O;; Or; f(s) = exp(f(s) — f(s — 2)) — exp(f(s + 2) — f(5).
Let W, and W_ be matrices such that

W, = i diag[w; (s)]477, W._ = i diag[w; (s)]4,
j=0 j=0

where wg (s) = 1, e(wg(s) # 0 and w(s)e S;. From (2.5) ~ (2.7) we can conclude the
existence of W, satisfying the equations )

D W, = B\W, — Wx® " D W_=B,W_,
(2.23)
D, W, =CW,, Dy W_=C,W. — W*nr—,
where I = ((—)'0;44, ;)i jez- Conversely the existence of W, of (2.23) implies (2.5) ~ (2.7)
as a compatibility condition. We call (2.23) the Sato equations and W, the wave
matrices of the STL hierarchy.
Finally we mention a relation with the ordinary TL hierarchy. With 4 = (a
we associate a matrix

A“_liAoo Aoy
Ao An

i,jli.jeZ>

] s where A= (auv)g=i-!=f :
. Wgs
Put &(W,) =[ (;’°

Wi are the wave matrices of the ordinary TL hierarchy.

0 . +
W“‘jl for the wave matrices of the STL hierarchy. Then Wy; and
11

§3. The OSp-STL Hierarchy

In this section, we investigate the OSp-STL hierarchy. Consider the Lie super-
algebra gly(oo|oo) = gly(oo| o) @ gl (c0|0),
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Ay O
glo(oojoo) = {| 7 %° ; Agos Ay € Mat(Z x Z.:C)p |
0 0 Ay,

gl,(c0|o0) = {[ 0 A‘”]; Aoy, Ao € Mat(Z x Z:C)} )
1 Ay, O

Next we define gl(S) = glo(S) @ gl,(S) by

gli(S) = @D glu(0|0)® S, .

utv=i

The Lie supergroup SGL(S) is defined by
SGL(S)

Age A . .
= {A = [AOO Am]; Ay = @) jez> af" € Su4v» €(Ago) and &(4,,) are 1nvert1ble} .
10 11

Substituting V for S, we can similarly define SGL(V). We define two operators “st”
and “§t” on gl(oo|o0) and gl(S) respectively by

stA — sr|:A00 A01:| - [ tAOO tAlo:I
AlO All _tAOI tAll ’
ip 5’[300 Bo1:| _ [ ‘Boo  (-) 'Bm}
BIO Bll (_)Hl tBOI IBII ’

for 4 € gl(oo]o0) and B € gl;(S). Note that

“(AB) = (~)I*B%A,  %(CD) = (~)I¥D¥C
for A egli(o|0), Be gll-(ooloo), Cegli(S) and De gli(S). We introduce a Lie super-
algebra osp(oo|oo) (cf [5], [6]). Put P = [J 0 ] € gl(oo|oo), with J and K defined in

0 —-K
§1. The Lie superalgebra osp(oo|o0) is introduced as

osp(oo|0) = {4 € gl(co|o0); “P¥AP = — A},

with the Z,-gradation of gl(oo|oo). Define osp(S) = ospy(S) @ osp; (S) by
0sp;(S) = @ osp,(0|0)® S, .
etv=i

We introduce a Lie supergroup OSp(S), which is generated by exp(4), 4 € ospy(S), as
follows: .

OSp(S) = {4 € SGL(S); *P¥4P = A7'} .

We define OSp(V) similarly. In the rest of this section we impose the restriction ;" = 0
for j=0,3 (mod 4). Put §=Sk+_5 ;=03 (moa 4

The OSp-STL hierarchy is a system of the Sato equations with a condition of
symmetry:
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D W, = BW, — W¥®A"  DiIW.=C,W.
D;yW,=CW,, D;W.=CW.—W*orr, (3.1)
W, e0Sp(S), n=1,2(mod4),

where W, = Y diag[w(s)147, wi(s) € S}, wg(s) = 1, e(wo (5)) # 0 and D = D 5.
i=0 -

Theorem 3.1. If W, are the wave matrices of the OSp-STL hierarchy, then B,,
C, e ospg(§) for n =1, 2 (mod 4).

Proof. We see that
EtP §t(Wf(")A"W+_1)P — (—)"("_1)/2(Wf(")A"W+_1)*(") (32)

by an easy calculation. Notice that ¥(4*@) = (—)**4, where 4 €gl(S),. Hence we
have

szP st(Wj(n)AnW+—1)P — (_)n(n+1)/2(W+*(n)AnW:1) . (33)

Taking the (+)-part of (3.3), we see that B, e osp(§)E for n=1, 2 (mod 4). For C, the
proof is similar. Q.E.D.

. Wsgs O
Let e(W.) =
ot e(W2) [ 0 Wi
hierarchy and the CTL hierarchy respectively for time evolutions Dz, ,(n > 0). 5
. Put ?1 = BlltJt=0,j>2 and 61 = C1|If=0,j>2‘ SinCC él’ él € OSp(g)i, one has El’
C, e osp(S);. Therefore the solution u(s) of the STL equation (2.22) can be accom-
panied with the constraint

}. Then W5 and W§ are the wave matrices of the BTL

u(s) = —u(—s) + log(— 1), (3.4)

where exp(log (—1)°) =(—1)°. We call the STL equation with the symmetry (3.4)
the OSp-STL equation. Furthermore imposing the constraint u(s + 4N) = u(s), (2.22)
reduces to the following equations:

Dy DTu(1) = exp(u(1)) + expu(2) — u(1),
Dy Dy u(s) = exp(u(s) — u(s — 1)) + exp(u(s + 1) — u(s)), 2<s<2N—2,
D{ D7u(2N — 1) = exp(u(2N — 1) — u(2N — 2)) + exp(—u(2N — 1)). (3.5)

These equations coincide with the supper-Toda lattice equations corresponding to the
Lie superalgebra su(2N|2N + 1) which are discussed in [1]. Putting N =1 in (3.5), we
obtain the super-sine-Gordon equation

Dy D7u(1) = 2 cosh u(1) . (3.6)
The body part f(1) = e(u(1)) satisfies the ordinary sine-Gordon equation
030, f(1) = —2 sinh 2f(1) .
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§4. An Explicit Representation of Solutiens of the STIL Hierarchy

0 0
Put @, = exp(Z t;’Af> and @_ = exp(Z tj'.l"'f> .
=0 =0

Proposition 4.1. According to the R-H decomposition
D AP = WIW_ 4.1)
for A e SGL(V), the STL hierarchy (2.23) is described by
B, = (WFOA"W 1), and C,=Wx*mr—"w-1)_.
Proof. From (4.1), we have
W =W, & AP " . “4.2)
Note that @, satisfy the equations
Dfd, = A"®, and D, ®d_=T""D_.
Operate D,/ on (4.2). Then we have
DIW_ = (D} W,)®, AP ! + WrOAD, AD' . 4.3)
Multiply W_! each hand side of (4.3) from the right. Then we have
(D W)Wt = (D W)W, + WEOAW . 4.4)

Taking the (—)-part of (4.4), we obtain D] W, = B,W, — W*"A". We can get other
equations of (2.23) similarly. A

Consider a matrix
A — (AOO A01>
AlO All ’

where A4; € Mat(N° x N°: §;,;), and 44, and A, are invertible. Recall the definition
of the superdeterminants of A4:

sdet A = det(Agy — Ag1 AT1 A 0)/det Ayy,
sl det A =det(4;, — A;0AdgaAo1)/det Ay -
It is known that (s det A)(s™* det 4) = 1 (cf. [3]).

Theorem 4.2. Put H= &, AP=" =(h;;); jcz for AeSGL(V). And put (s) =
s det (H(s)), where H(s) = (h; ;); j<s- Then, for the solution of the R-H decomposition
(4.1), we have

(i) wi(s)=Df log(s),

(i) wo(s) = 1/(x(s)t(s + 1)),

(i) wi(s) = (="' (Dre(s + D)/rls + 1)*2(s) -

Proof. Let take the (—)-part of (4.2). Then we have (W.H)_ = 0. From this we
get the linear algebraic equation

'W_,_(S)H(S) = _( . hs,s—Za hs,s-—l) ’ (45)
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where 'W.(s) = (... w5 (s), wi(s)). Take the check (%) of (4.5). Then we have

w050 T = 0. R, “9)
where W) (s) = (... wi (s), w3 (5)), Wy (5) = (... w3 (5), Wi (), Tiols) = (... By g5 B s—2), Tip(s) =
(- Buscss ues) 800 Hy) = (heomcy . Multiplying ((1) —Ho-ol(:)Hm(S)) o
both sides of (4.6) from the right, we have

W)V (s) = —" (a0, (5))j<0 » 4.7)
where

V(s) = ((8))i, j<o = Hi1(s) — Hyo(s)Hog () Ho (5)
and

t(‘ij(S))j<0 = tﬁo(s) - tT{e(S)Ho_(} (8)Hg1(s) -

By Cramer’s formula, we obtain a solution of (4.7),

wi(s) = —0,(s)/0(s), (4.8)
(aij(s))i<—1 : :
where o, (s) = det . j<o0" | and o(s) = det V'(s). We rewrite (4.8) in such a way that
(@05(8))j<o0
—(gy(s)/det Hy(s))
wi(s) = . 4.9)
{0 = o(9/det Hogls) (
Lemma 4.4.
a1 (s)/det Hoo(s) = Dy (a(s)/det Hoo(s)) - (4.10)
Proof. From the construction of H
DfH = AH , 4.11)
we have the following relations:
Di Hyo(s) = Hyo(s)
Di Hy,(s) = Hy4(5),
Df H,o(s) = AneHoo(s) + 0
1 f110\8) = ANeldgg 'Tfe(s) s
DfH,,(s) = Anc-Hp,(s) + 0 4.12)
1 H111\S) = ANellpy '71:,(5) s .

where Ane = (J;41,;)i,j<o- Notice that o(s)/det Hyo(s) = det (Hoo(s)P(s)). From (4.12)
we have

D{ (Hoo ()7 (s)) = HS&(S)( (4.13)

)
t(an(S))j<0 '
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Put ({;(5))i, j<o = Hoo(s). Then one gets
Df det (Hod ()P (s)) = Z det y.(s), (4.14)
k<0

where
{Ci-1(8)xj(8))j<o \ - " k-th row

n(s) =\t .
(Z Cip(s)apj(s)> ---i(#k)-th row
p<0 j

<0

Expanding each determinant of (4.14) along the k-th row, we have

Df(Hoo ()P () = 3, 2, (=) "oy (8)t;(8) () , (4.15)

k<0 j<O

where 4,,(s) is a (k, j)-th minor determinant of y,(s). One sees that

kZ.o '<Zo (=) (8)at;(8) dii(s)

<z<Zo Cil(s)“ln(s)) . (£i-1(9)i<o0

n(#j)-th column j-th column

=Y ag,(s) det

j<o

i<0

n(#j)-th column j-th column

= oo;(s) det (kz_l Luls) oz,,,(s)> (£i-1(8))i<o

(O (8)m<—1 G _)
z an(s) det(cw(s)),‘,Ko det 0 > i,—1)i<0

i<0 n(+#j)-th column j-th column

= det(Cuv(S))u,v<0 ;) (—)j+1a0j(s) det(amn(s))m,n<—1 n#j
= det(Cij(S))i,jm det(“ij(s));‘_<é,i9_e—1 .
Jj<

This completes the proof of Lemma 4.4. A
Let us return to the proof of Theorem 4.3. We see that

Df (det V(s)/det Hyo(s))
(det F(s)/det Hyo(s))

wi (s) =

Noting that t(s) = (det ¥ (s)/det Hyo(s))™*, we get (i).
Let us show (ii). From (4.2) we have (HW '), = 14, where 1z is the unit matrix.

We denote W-! = )" diag[u; (s)]4’. Then one gets the linear equation
=0

V(s + 1)1 (s) = (J;,-1)i<o> (4.16)

where %, (s) = (uZ5;—,(s + 2j + 2))j<o- By Cramer’s formula, we get
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&(s + 1)/det Hyo(s + 1)
det(a(s + 1););, j<o/det Hoo(s + 1)

ug(s) = (4.17)

where G(s + 1) = det((oi(s + 1))i<o (9;,-1)i<0)- We can easily verify that &(s + 1)/
j<—1
det Hyo(s + 1) = t(s). From thejfact that

det (s + 1)/det Hyo(s + 1) = 1/z(s + 1),

we have ug(s) = 7(s)t(s + 1). This completes the proof of (ii).
For a matrix 4 = zzdiag[aj(s)]Aj, we put (4),, = Y. diag[a;(s)]4’. From (4.2)
je j>0

one gets (HW.!),, =0. Then we have the linear equation
V(s)T, (5) = — g (s)(hy(s) — Hio(s)Hoo (5)Re(s)) » (4.18)

where R, = (hs—2i+1,5)i>0 and h(s) = (hs—2i,s)i=0- We note that (a;(s))i<o = R (s) —
H,o(s)Hod (s)h,(s). By Cramer’s formula we see that

—uo(8)(8, (s)/det Hoo(s))

urls —1)= o(s)/det Hoo(s) ’

(4.19)

where 6, (s) = det((@(s))i<o (%i0(8))i<o)- To show (iii), we prove the following lemma.

j<—1 (—1)—thcolumn

Lemma 4.5.
Dy (a(s)/det Hoo(s)) = (=) (61 (s)/det Hoo(s)) - (4.20)
Proof. From the equation DT H = H*I' !, one gets the following relations:
Dy Hoo(s) = (—YHo,(5) ,
Dy Ho,y (s) = (= (Hoo(s) ANt + [0, B (9)])
Dy H,o(s) = (=) Hyy(5),
D; Hyy(s) = (=) (Hyo(9)4Ant + [0, F,(5)]) - (4.21)
Notice that a(s)/det Hyo(s) = det (F(s)Hga(s)). Then we have the relation
Dy (V(s)Hoo () = (=Y [0, (:0(5))i<0] Hoo (5) - (4.22)

Let us calculate Dy det {(V(s)Hgg (s)}. Let (Bio(5))i<o = (=) (%:0(5))i<o- Then we have

<Z “iu(s)cuj(s)> > (Bio () -1,k(8))i<0
Di det{V(s)Hoa(9)} = ¥ det| ¥=° . i<0 : (4.23)
j(;ék)-tl'; column k-th c;>1umn

Expand each determinant of (4.23) along the k-th column. Then we have
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the right hand side of (4.23) k;o C_1.x(8) _;) (=) B0 (5) A3 (s)
= . Bols) det (Eo ak#(s)cui(s)>j<o -+ k(#i)-th row

= ‘Cf<o | -i-th row

l( > aku(s)Cyj(s)> -+ k(#i)-th row

u<-1 j<0
"(€-1/(9)s<o0 --+i-th row

Y (=) Bio(s) det(“k!(s));czgfc#i det(£,,(5)),,v<o0

i<0
= det[(“ij(s))i_<ol, (Bio(5))i<0] det(cij(s))i,j<0 .
Jj<—
This completes the proof of Lemma 4.5. A

Y. Biols) det

i<0

By Lemma 4.5, u,(s — 1) is represented as

(=) uo(s) (D1 (a(s)/det Hoo(s))
o(s)/det Hyo(s) '

us—1)=

Noting that ui(s) = —wy (s)/(wg (s)wg (s + 1)), we have (iii). Q.ED.

Proposition 4.6. Put tjir =0 for j=0, 3 (mod4) and let A OSp(V) be decom-
posed as (4.1). Then W, in the right hand side are the wave matrices of the OSp-STL
hierarchy.

Proof. Note that exp< t]-+/fJ'>, exp( Y tj’f _j> € OSp(S). From
Jj=1,2 (mod 4) j=1,2(mod 4)

the assumption of the Proposition 4.5, we have
CtPSW . P) (P ¥W_P) = exp ( y tf/ff) A exp ( Y t;f-f> .
j=1,2 (mod 4) / j=1,2 (mod 4)

By the uniqueness of the R-H decomposition, we have W: e 0OSp(3). A
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