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The Super-Toda Lattice Hierarchy
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Kaoru IKEDA*

Abstract

The super-Toda lattice (STL) hierarchy is introduced. The equivalence between the Lax representation
and Zakharov-Shabat representation of the STL hierarchy is shown. Introducing the Lie superalgebra
osp(oo | oo), the ortho-symplectic (OSp)-STL hierarchy is defined as well. These equations are solved through
the Riemann-Hilbert decomposition of corresponding infinite dimensional Lie supergroups. An explicit
representation of solutions is given by means of the super-r field.

§ 0, Introduction

In this paper we consider the super-Toda lattice (STL) hierarchy. This paper is a
complete version of our previous announcement [4], containing some new results.

The STL equations are considered in several ways. V. A. Andreyev [1] and M. A.
Olshanetsky [9] classified the STL equations according to Lie superalgebras and solved
them by inverse scattering method.

Inspired by the studies of the super-KP hierarchy by Yu. I. Manin and A. O. Radul
[7], M. Mulase [8], K. Ueno, H. Yamada and K. Ikeda [12], [13], [14], [15], we try
to investigate the STL equation by a method which is different from [1] and [9].
We extend the Toda lattice (TL) hierarchy, which is introduced by K. Ueno and
K. Takasaki in [11], to a supersymmetric one. Considering the STL hierarchy, we can
naturally extend several concepts in the theory of soliton equations, namely, the tau (T)
function and the reduction of solutions.

We first define the STL hierarchy through the Lax representation and show the
equivalence with the Zakharov-Shabat representation. From the STL hierarchy, we
derive the STL equation,

DfDiu(s) = exp(w(s) - u(s - 1)) + exp (u(s + 1) - u(s)),

where Df are certain odd derivations. Introducing an infinite dimensional Lie super-
algebra osp(oo|oo) (cf. [5], [6]), we define the ortho-symplectic (OSp)-STL hierarchy.
The STL equation derived from the OSp-STL hierarchy, the OSp-STL equation,
reduces to the STL equation studied in [1] by adding the condition of "4]V-periodicity".
Putting N = 1 the OSp-STL equation is simplified to the super-sine-Gordon equation.
To solve a Cauchy problem of the STL hierarchy, we consider a Riemann-Hilbert (R-H)
decomposition of the Lie supergroup SGL(S), where S is an algebra of superfields.
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Through the R-H decomposition we represent components of the wave matrices of the
STL hierarchy in terms of the super-t field. Considering the R-H decomposition for
constant matrices of the Lie supergroup OSp(S), we solve the OSp-STL hierarchy. In
his recent paper [10], Takasaki determines the equations satisfied by the super-t field of
the super-KP hierarchy in terms of the differential algebra generated by the coefficients
of the wave operator of the super-KP hierarchy. It is an interesting problem to find
out the equations for our super-i field, applying his idea.

This paper is organized as follows. In Section 1, we review shortly the theory
of the TL hierarchy according to [11]. In Section 2, we define the STL hierarchy
and show that the Lax representation of the STL hierarchy is equivalent to that of
Zakharov-Shabat (Z-S)'s. We discuss the STL equation derived from the STL hier-
archy. We also derive the ordinary TL hierarchy by taking the body part of the
STL hierarchy. In Section 3, we introduce an infinite dimensional Lie superalgebra
osp(oo I oo) and define the OSp-STL hierarchy. We consider several equations reduced
from OSp-STL hierarchy. We derive the BTL and CTL hierarchy [11] by taking the
body part of the OSp-STL hierarchy. In Section 4, we solve the STL hierarchy by the
R-H decomposition and give a representation of the solutions in terms of the super-T
field. We also discuss the R-H decomposition of the OSp-STL hierarchy.
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§ 1. Review of the TL Hierarchy

Let A = (di+lj)ijez be the Z x Z shift matrix. We denote by diag[a(s)] the

diagonal matrix a(0) Consider a Z x Z matrices of the

form A = Y diag[o/(5)]y4j. We define (A)+ and (A), by
je"Z

(A)+ = X diag [o,(s);M' , (A). = £

We call (A)+ and (A)_ the plus (-h)-part and the minus ( — )-part of A, respectively.
We introduce infinitely many time variables t+ = (tj", tj, ...) and t~ = (t^9 i^ , . . .) .

Put tf be the quotient field of C[[t+, r]]. The Toda lattice (TL) hierarchy is defined
00

as follows. Let L and M be Z x Z matrices of the form L = £ diag^s)]^1"-7",
j=o

M = £ diag[Vj(s)']A'-1+s, where u/s), Vj(s) e Jf , u0(s) = 1 and v0(s) ^ 0. The TL hier-
j=o

archy is the system of infinitely many Lax equations:



THE SupER-TooA LATTICE HIERARCHY 831

dt+nL = \Bn9 L] , dt,M = [£„, M] ,

dt-L = [Q, L] , dt-M = [Q, M] ,

where Bn = (Ln)+ and Cn = (M")_.

Theorem 1.1 ([11]). The TL hierarchy (1.1) is equivalent to the following system of
the Zakharov-Shabat (Z-S) equations.

dt+nBm - dt+mBn = lBn, Bm~] ,

dt+nCm - dt-Bn = lBn, Cm] , (1.2)

dt-Cm - dt-Cn = [Q, Cm] . A

Put m = n = I in the second equation and put B^ = A + diag[fe(s)]5

Cl = diagKs)]^!"1. Let u(s) be a function such that b(s) = 8t+u(s) and c(s) =
exp(w(s) — u(s — 1)). Then we have the two dimensional Toda lattice equation

Stldt-u(s) = exp(w(s) - u(s - 1)) - exp(w(s + 1) - u(s)) .

From (1.2), there exist

W+ =
j=0 j=0

with w/
±(s) e Jf , w^"(s) = 1 and w^(s) ̂  0, satisfying

dt+W+ = BnW+ - W+An , dt+W. = CnW_ ,
(1.3)

dt-W+ = CnW+ , dt-W_ = CnW. - W_A~n ,

where Bn = (W+A"W+1)+, Cn = (W.A^WJ1),. Conversely the existence of W± satisfy-
ing (1.3) implies (1.2) as a compatibility condition of (1.3). We call (1.3) the Sato
equations and W± the wave matrices of the TL hierarchy.

To solve the TL hierarchy we introduce an infinite dimensional Lie group
GL(oo; jf) as follows.

GL(oo; JT ) = [A e Mat(Z x Z; jf)\A is invertible.} .

/ 00 \

Note that W± e GL(oc; jf). Put 0+ = <2>+(t+) = exp £ tfAs and <P_(r) =

_ _

exp I £ t- yl J ). We denote by GL(oo; C) the subgroup of GL(oo; Jf ) consisting of
V=i /

constant matrices.

Theorem 1.2 ([11]). Suppose that, for A e GL(oo; C), t/ie following decomposition
with W+ is satisfied:

= W+1W. . (1.4)

T7ien W^± are t/ie wave matrices of the TL hierarchy. A

We call (1.4) the Riemann-Hilbert (R-H) decomposition. Put H = &+A<P_ =
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hij)ijez- From (1.4) we see that (FF+H)_ = 0. This Induces the linear equation

= (... 0,0,0)

for all s e Z, where M(s) = (hs-i+ljS-j)ij<0. Put T(S) = det^-^.jX-jx). Then we have
the following explicit representation.

Theorem 1.3 ([11]). (I) w/(s) = W"" +MS)>

( 00 \ 00
y tjkj I = y Pj(tl, t2, )kj and d± =

7=1 / 7=0

We define the matrices J = (( — y^-jkjeZ an(i ^ = ^^- We Introduce the Infinite
dimensional Lie algebras

o(oc; $T)={A£ Mat(Z x Z; jf)|JU + ^J = 0} ,

sp(oo; jf) = (A e Mat(Z x Z; Jf)|K^ + ^K = 0} .

The corresponding Lie groups are

O(oo; Jf) = {A e Mat(Z x Z; ̂ )|J^J = ^l""1} ,

^(oo; Jf) = {A e Mat(Z x Z; JT^^AK = A'1} .

Put t±
2n = 0 for n = 1, 2, ... in (1.3). By adding symmetry conditions to the wave

matrices so that W± e 0(oo; JT) (resp. Sp(oo; jf )), we obtain the BTL (resp. CTL)
hierarchy.

Remark. Assume that W± are the wave matrices of the BTL (resp. CTL) hier-
archy. Then Bn = (W+AnW+l)+ and Cn = (W.A~nWIl). e 0(00; $T) (resp. sp(oo; jf))
for odd n.

Theorem 1.4 ([11]). Let t±
2n = 0 /or n = 1, 2, ... . Assume that AeO(oo;C)

(resp. 5p(oo; C) in (1.4). TTien FF± e 0(oo; jf) (resp. Sp(oo; Jf )), namelj; FF+ are tfce
wave matrices of the BTL (resp. CTL) hierarchy. A

§ 20 Tie STL

Throughout this paper, k denotes the modulo class of k by Z2. Let <$/ = j^0 © j/1

be an arbitrary supercommutative superalgebra. The body map is the canonical pro-
jection e: j/ -> j//(j/!), where (j/x) is the ideal generated by j/^. For a = ao + a± e j/?

a^ e j/i, we denote a* = a0 — ax. The body map e and the operator * can be naturally
extended on the superalgebra of matrices with entries In s/. Namely, for A = (fly)i,/fly E

(e(fl0-))i.7
 and A* = (a*)itj. For k e Z, put A*(fc) = A(k = 0), =^*(fc = 1).
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Moreover we put, for n > 1, A\. = A*(n~l)An^1, A\ = A. If D is an odd derivation
acting on j/, then it satisfies the super-Leibniz rule:

D(ab) = (Da)b + a*(Db) , a, b e st .

Let V be the Grassmann algebra yl(C°°) with infinitely many generators, el9 e2, ... .
Let t+ = (tj, tZ, ...) and t~ = (t^, tj, ...) be infinitely many Grassmann variables.
Here f|y are even (commutative) variables and t^-i are odd (anti-commutative) ones.
Let jf be the quotient field of the C-algebra C[[tJ, t}, ...]]. The supercommuta-
tive superalgebra S = 5g © St is now defined by

We define the super-vector fields, acting on S,

D± = a± , Df, i = 3f± 4- V ti_i5f± , 7 >
2J t2j ' ZJ X *2j-l ^-* ZK l l2j+2k-2 ' J —

K > 1

These super-vector fields satisfy the (anti-) commutation relations

(_vk« = 0 ,

where [ ]i = [ ]+ ( = anti-commutator) and [ ]-i = [ ] ( = commutator). Now we give
the definition of the super-Toda lattice (STL) hierarchy. Define the matrices L and M
as follows:

L = f; diagO/s)]^1--7' , with HO(S) = 1 and w/s) e 8j .
j=0

M = diag[^(s)]vi~1+J" , with e(v0(s)) ^ 0 and Vj(s) E Sj .
j=o

We put Bn = (LJ.)+J Cn = (MJ)_. The STL hierarchy is a system of equations of the
Lax type,

+ 2^iL;+1 , (2.1)

m , (2.2)
m, (2.3)

Cm + 2a2SiiAfJ+1 . (2.4)

Theorem 2.1. TTie STL hierarchy (2.1) ~ (2.4) is equivalent to the system of the
Zakharov-Shabat (Z-S) type:

®:Cm - (-)mnD-Bn = (-)-B*^Cm - C^Bn . (2.5)

D*BH - (-)mnD:Bm = (-)mnBn - B^Bm + 25m,ABm+n , (2.6)

D^Cn-(- )mnD~ Cm = (- TnC*^Cn - C*™cm + 2dm^ Cm+n . (2.7)

Proof. First we show that the Lax type system ((2.1) ~ (2.4)) induces the Z-S type
system ((2.5) - (2.7)). We can easily see that
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l = (-rB^Ml - Ml^Bm , (2.9)

l = (-PC*<">L» - L«*(m)Cm , (2.10)

r"C*™Ml - Mr(m)Cm + 2dm,AM-+" . (2.11)

(m, n = 1,2,3,...)
Taking the ( + )-part of (2.8), we have

+ 4Sm,ABm+n . (2.12)
Using the identity

L"*(m)Ll - (-rnL™*™Ll = 25m^Ll+n , (2.13)
we have

Then (2.12) reduces to (2.6). From (2.9) and (2.10), we have

D^Ml = (-r-B*<">M« - M»*<ffl'Bm , (T)

D^LI = (-)mnc*(m)L™ - L™*(n)cn .
We denote by (Y)_ and (rr)+ the (-)-part of (r) and the ( + )-part of (YT). By taking
the difference (r)_ - (-)m"(rr)+ we obtain (2.5). We obtain (2.7) similarly.

Now we show the converse.

Lemma 2.2. The matrices L, M satisfy the following equations:

Ll*^Bm - 2dm,,L-+" (2.14)

+"+/)(D+L - (-)mB*L + L*(m)Bm - 25m>1L™+1)*(i

;=o ~'~

Z (-)m(^n+1)L^(m+M+0(D-L - (-)mC*L + L^
1=0

l - (-TnB*™Ml + M;* (m}Bm (2.16)

1=0

X + M«*^Cm - 2dMl+n (2.17)

= Z (-)(Z+n+1)mMi*(m+R+i)(D-M - (-)mC*M
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Proof. First we show (2.14) by induction. It holds trivially for n = 1. For n > 0,

Notice that ( — )mn^m>1 + <5mM,i — <5m(n+1)>1 = 0. By the induction hypothesis we have the
conclusion. We can show (2.15) ~ (2.17) similarly. A

We define ord A and coord A for A = ^ diag[aj-(s)]ylj as follows:
jeZ

ord A = M{j e Z| diagOj(s)] = 0, for i >j} ,

coord A = sup {7 e Z diag[flt-(s)] = 0, for i <j} .

Lemma 23. Suppose that !)+L-(-
lower order, for some r and diag[a(s)] ± 0. Then

Proof. By using Lemma 2.2, we see that the highest order term of the left hand
side of (2. 14) is

r«-i n
diag V (-)(i+w+1)(1+r)

fl(s + /) \Ar+n~l .
LI=O J

(2.18)

Fact A. For any n e N, t/iere exists n' e N such that n' > n and

diagPy1 (-)(/+"'+1)(1+r)a(s + /)] ^ 0 .
L'=o J

Proo/ o/ Fact X. Suppose that there exists AT e N such that

N£ (_)(«+^+i)(i+r)fl(s + /) = o and
*=o

X ( _ )(' +")<! +')a(s + /) = 0 , for all s e Z .
1=0

From this we have a(s + N) = Q for all s e Z. This contradicts the assumption of
Lemma 2.3. A

By Fact A the highest order term of the left hand side of (2.14) never vanishes as
n -> oo. This completes the proof of Lemma 2.3. A

On the other hand we see the following fact.

Fact B. The order of the left hand side of (2.14) is less than m.
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Proof of Fact B. From (2.6) we see that

(2.19)

The order of the right hand side of (2.19) is less than m. A

From Lemma 2.5 and Fact B3 we can conclude that

Dm
+L - (-TB*L + L*^Bm - 2^,aL;+1 = 0 -

Secondly we show (2.2).

Lemma 2.4 Suppose that D+M - (-)mB%M + M*(m)Bm = dmgl_b(s)]Ar + higher
order terms for some r and diag[fe(s)] / 0. Then

Mm coord(D+M^s - (-)mnB*(n)Ml + M£*(m)BJ = -oo .
n-* oo

Froo/. From Lemma 2.2 we see that the lowest order term of the left hand side of
(2.16) is

-)(l+"+1^^^
Ji=o

Fact Co For any n e N, there exists n' e N swc/z t/sat ri > n and

Vp"'^^

The proof is similar to that of Fact A. By Fact C, the lowest order term of the left
hand side of (2.16) never vanishes. This completes the proof of Lemma 2.4. A

Fact D. The coorder of the left hand side of (2.16) is positive.

Proof of Fact D. From (2.5) we see that

This assures the claim of Fact D.

From Lemma 2.4 and Fact D, we see that

Bm = 0 .

The equations (2.3) and (2.4) can be shown similarly. Q.E.D.

We define Uf, B± and Cl as the restriction of Df, B1 and Cl to the sector
*2}-+i = 0, 7 > 1, respectively. Accordingly let
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From (2.5), we get

5+Q + D^B, = -BfC, - CfB, . (2.19)

Substituting 5X = A + diag[£(s)] and C1 = diagfcfc)]/!"1 to (2.19), we have

5r5(s)=-c(s)-c(s+l), (2.20)

D7c(s) - (6(s) - S(s + l))c(s) . (2.21)

Let w(s) e S0 be a superfield such that

b(s) = Dfu(S) ,

£(s) = QXp(u(s) — U(S — 1)) .

Then one can see that (2.20) and (2.21) reduce to a single equation

DfDiu(s) = Qxp(u(s) - u(s - 1)) + exp(w(s + 1) - u(s)) . (2.22)

We call (2.22) the STL equation. The body part /(s) = e(u(s)) satisfies the ordinary TL
equation,

d^dt-f(s) = exp(/(5) - f(s - 2)) - exp(/(s + 2) - /(s)) .

Let FK+ and W- be matrices such that

W+ = diag[w/(s)]^^, W_ =
j-o j=o

where WQ (s) = 1, C(WQ (s)) / 0 and w/
±(s) e Sj. From (2.5) ~ (2.7) we can conclude the

existence of W+ satisfying the equations

D+ W+ =BnW+- W*(n)An , Dn
+ W. =BnW,,

(2.23)
D-^+ = cnw+ , Dn-^_ = cnw. -

where F= (( — )%+! j)ijez- Conversely the existence of W+ of (2.23) implies (2.5) ~ (2.7)
as a compatibility condition. We call (2.23) the Sato equations and W± the wave
matrices of the STL hierarchy.

Finally we mention a relation with the ordinary TL hierarchy. With A = (<zfi _/),-,_/ 6z»
we associate a matrix

_
\_A10 ^iij

where

Yw± o 1
Put s(W+) = \ for the wave matrices of the STL hierarchy. Then W^ and

- I 0 WiTJ
Wfi are the wave matrices of the ordinary TL hierarchy.

§ 3. The OSp-STL Hierarchy

In this section, we investigate the OSp-STL hierarchy. Consider the Lie super-
algebra 0/0(001oo) = 0/o(oo|oo) © 0/^oolao),
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<7/o(oo|oo) = |K°° ® 1 Moo, Alt e Mat(Z x Z : C)| ,

401?^10eMat(Z x Z:«
J

Next we define gl(S) = gl0(S) © gli(S) by

rL(cx)|oo)(8)Sv.

The Lie supergroup SGL(S) is defined by

SGL(S)

= \A = Pi™ I01!' 4/ = (Ouez, < e 5,,+v, fi(A00) and e(All) are invertiblej .
I LAio An_l )

Substituting V for S, we can similarly define SGL(F). We define two operators "st"
and "st" on 0/(oo|oo) and gl(S) respectively by

stA = S\ ^°° ^01 = ^°° ^10

\_A10 Allj L"~^oi ^iij
f^oo (—y^ioi

-) l+l tfloi %i r
&n _

"
for A e gf/(oo|oo) and B e gl^S). Note that

st(AB) = ( - f stBstA , St(CD) = ( - f StDStC

for A eg/i(oo|oo), B E glj(ao\co\ C e glt(S) and D e glj(S). We introduce a Lie super-

algebra osp(oo|oo) (cf [5], [6]). Put P = I e 0!(oo|oo), with J and K defined in
|_0 -A.J

§ 1. The Lie superalgebra osp(oo|oo) is introduced as

osp(oo|oo) ={Ae flf/(oo|oo); stPstAP = -A} ,

with the Z2-gradation of gf/(oo|oo). Define osp(S) = osp0(S) © ospi^^) by

ospi(S)= 0 ospM(oo|oo)(x)S, .
)U + V = t

We introduce a Lie supergroup OSp(S), which is generated by exp(v4)3 A e ospo(S), as
follows:

OSp(S) = {A e SGL(5); *P*AP = A~1} .

We define OSp(F) similarly. In the rest of this section we impose the restriction tf = 0
for; = 0, 3 (mod 4). Put § = Slt±=OJ^3(mod4).

The OSp-STL hierarchy is a system of the Sato equations with a condition of
symmetry:
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>: w+ = Bnw+- W*™A" , D; w_ = cn w_
- w+ = cnw+, D- w_ = cnw_- w^r-n , (3.1)

W± e OSp(S) , n - 1, 2 (mod 4) ,

_

where W± = £ diagLw^s)]^", w,±(s) e S,, w0
+(s) = 1, B(WO (s)) * 0 and D± = AT Is-

j=o

Theorem 3.1. // W± are the wave matrices of the OSp-STL hierarchy, then Bn,
Cn E osp5(S) for n=l,2 (mod 4).

Proof. We see that

~stP~st(W*(n)AnW-^P = (-)»(n-vi2(W*(n)AnW+1)*(n) (3.2)

by an easy calculation. Notice that %4*(fl)) = (-)astA, where Aegl(S)a. Hence we
have

stPst(W*(n)AnW+l)P = (-)n<n+vi2(W*(n)AnW-1) . (3.3)

Taking the ( + )-part of (3.3), we see that Bn e osp(S)5 for n = 1, 2 (mod 4). For CB the
proof is similar. Q.E.D.

r^± Q -i
Let e(VF^) = I °° , . Then W& and W£ are the wave matrices of the BTL

L ° ^iij
hierarchy and the CTL hierarchy respectively for time evolutions D}n+2(n > 0).

Put Bl = B1\t±=OJ>2 and Cl = C1|f±=0jJ>2. Since Bl9 C1 E osp(S)i? one has Bl9

C1eosp(S)1. Therefore the solution u(s) of the STL equation (2.22) can be accom-
panied with the constraint

u(s)=-u(-s) + log(-l)s, (3.4)

where exp(log (— l)s) = (— l)s. We call the STL equation with the symmetry (3.4)
the OSp-STL equation. Furthermore imposing the constraint u(s + 4AT) = w(s), (2.22)
reduces to the following equations:

Dl5;u(l) = exp(ii(l)) + exp(W(2) - ii(l)) ,

51
+Dru(s) = exp(w(s) - u(s - 1)) + exp(w(s + 1) - u(s)) , 2 < s < 2JV - 2 ,

- 1) = exp(w(2AT - 1) - u(2N - 2)) + exp(-u(2AT - 1)) . (3.5)

These equations coincide with the supper-Toda lattice equations corresponding to the
Lie superalgebra su(2Af|2AT + 1) which are discussed in [1]. Putting N = 1 in (3.5), we
obtain the super-sine-Gordon equation

(l). (3.6)

The body part /(I) = e(w(l)) satisfies the ordinary sine-Gordon equation

3,jfl, ;/(l)=-2smh2/(l).
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§ 40 An Explicit Representation of Solutions of the STL Hierarchy

/ 00 \ / 00 \

Put 0+ = exp £ tfAj and #_ = expl £ t]T'j .
V=o / V/=o /

Proposition 40L According to the R-B decomposition

W.^.STi.yt'— vv^. rr— \j~f. Ajf

for A e SGL(V), the STL hierarchy (2.23) is described by

Bn = (WfwAnW+1)+ and Cn = (W*(n}F~nWIl)_ .

Proof. From (4.1), we have

W- = W+0+A0I1 . (4.2)

Note that 0+ satisfy the equations

D*@+ = An$+ and D~0_ = F~n0- .

Operate Dn
+ on (4.2). Then we have

Multiply W~l each hand side of (4.3) from the right. Then we have

Taking the (-)-part of (4.4), we obtain D+W+ = BnW+- W?WA". We can get other
equations of (2.23) similarly. A

Consider a matrix

where Atj e Mat(Nc x Nc:Si+J-), and A00 and All are invertible. Recall the definition
of the superdeterminants of A:

s det A = det(^oo - A01A^A

s'1 det A = dQt(All - ^10^oo^

It is known that (s det A)(s~1 det A) = 1 (cf. [3]).

Theorem 4.2. Put H = 0+A®!1 = (hitj)iJeZ for A e SGL(F). And put T(S) =
s det (H(s)\ where H(s) = (hij)ij<s. Then, for the solution of the R-H decomposition
(4.1), we have

(i) w+(s) = D+logr(s)9

(ii) w0- (s) = I/(T(S)T(S + 1)) ,
(iii) wr(s) = (-)s+1(Dri(s + l))A(s + l)2t(s) .

Proof. Let take the (-)-part of (4.2). Then we have (W+H)- = 0. From this we
get the linear algebraic equation

-(...fcJiJ_2,fcJiJ_1), (4.5)
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where *\v+(s) = (... H£(S), w^(s)). Take the check (v) of (4.5). Then we have

=-(7Te(s),7ro(S)), (4-6)

where <w?(s) = (... w+(s), w2
+(s))9 *v£(s) = (... w3

+(s), w+(s)), <he(s) = (...\s_4, hs^2\ %(S) =

(...haia-3As-i) and HMV(S) = (^-i.s-A=M • Multiplying ( oo s 01 M to

both sides of (4.6) from the right, we have

(W0(s)^)=-t(a0»)j<o, (4-7)

where

P(s) = (a0.(s))u-<0 = Hn(s) - H1C

and

By Cramer's formula, we obtain a solution of (4.7),

(4.8)

where 0^(5) = detl y j<o I and cr(s) = det F(s). We rewrite (4.8) in such a way that

(4'9)l - (a(5)/detH00(S)) '

Lemma 4.4.

ffl(s)/det H00(s) = ^(^(sVdet H00(s)) . (4.10)

Proof. From the construction of H

D?H = AH, (4.11)

we have the following relations:

. ,

(4.12),
no(S)/

where >iNc = (Si+1J)itj<0. Notice that (r(s)/det H00(s) = det (H^(s)7(s)). From (4.12)
we have

(4.13)
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Put (C0-(s))u<0 = #00 (s). Then one §ets

D!+ det (Hoo(s)F(s)) = £ det yk(s), (4.14)
fc<0

where

• • • fc-th row

I £ £ip(s)&pj(
s)) I • • • i( 7^ fe)-th row

Expanding each determinant of (4.14) along the fe-th row, we have

(s)a -(s)A -(s), (4.15)

where dkj(s) is a (/c, j)-th minor determinant of yk(s). One sees that

z z (-
k<0 j<0

J<0

k A** \ L*i *il\"Jwln\"/ I (Ci-l(s))i<0
I UCL \i<o /i<0

n(^= j)-th column j-th column

det

= X a0/s)det(CMV(s))MfV<odet

^(^j)-th column j-th column

Q

!i column j-th column

- det(CMv(s))MiV<0 ~

= det(£0-(5))u<0
J<0 *

This completes the proof of Lemma 4.4. A

Let us return to the proof of Theorem 4.3. We see that

+ D1
+(detP(5)/detH00(s))

Wl(5) (det F(s)/det H00(s))

Noting that t(s) - (det F(s)/det Hoo(s))"1, we get (i).
Let us show (ii). From (4.2) we have (HW~1)+ = lz, where lz is the unit matrix.

00

We denote W~l = £ diag[wj~(5)]yl-/. Then one gets the linear equation
J=0

where ~u~(s) = (uI2j-2(s H- 2j 4- 2))7-<0. By Cramer's formula, we get
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d(s + 1)/det HOO(S + !) (4 17)
' l ' jdet(a(s + iyu<0/det H00(s + 1) '

where a(s + 1) = det((a£j-(s + l))i<0 (dt _1)f<0). We can easily verify that &(s + I)/
j<-i

det H00(s + 1) = T(S). From the fact that

det V(s + l)/det H00(s + 1) = I/T(S + 1) ,

we have UQ (s) = T(S)T(S 4- 1). This completes the proof of (ii).
For a matrix A = Y diag^s)]^-7, we put (A)>0 = £ diag[flj(s)]y4J. From (4.2)

jti j>0

one gets (H W~1)>0 = 0. Then we have the linear equation

where /T0 - (hs-2i+i,s)i>o and 7Te(s) - (fts-2i fS)i>o- We note that (<*io(s))i<o =
H10(s)//oo(s)/ie(s). By Cramer's formula we see that

l-- «r(5)/det H00(S) '

where a^s) = det((a;j-(s))i<0 (ai0(s));<0). To show (iii), we prove the following lemma.
j<—l (-l)-thcolumn<—l (-l)-thcolumn

Lemma 4.5.

H00(s)) = (-)s+1(^(s)/det H00(s)) . (4.20)

Proof. From the equation D±H = H*F~l, one gets the following relations:

[0,7T.(s)]) ,

+ [0, 7T0(s)]) . (4.21)

Notice that <7(s)/det H00(s) = det (F(s)HoJ(s)). Then we have the relation

D: (PtsJHoo1 (s)) = ( - )s+1 [0, (aIO(5))l<0] Hoc1 (s) . (4.22)

Let us calculate Dr det {(7(s)H^(s)}. Let (ft0(s))i<0 = (-)s+1(ai0(s))i<o- Then we have

. (4.23)Df det{F(s)#oo(s)} = £ det

j( =£ fc)-th column fc-th column

Expand each determinant of (4.23) along the fc-th column. Then we have
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the right hand side of (4.23) = £ C_ltt(s) £ (-)'+%0(s)Aik(s)
k<0

'/ \
- V ft MA* » ̂  -*.w»«v/i •••fe(^i>throw
— 2j PiOl5-' ael

i<0 '" '-" -z-throw

= X Ao(s) det

= Z (-)l

• k( 7^ 0-th row

• f-th row

= det[(a0.(5)X-<0 ,
j<-i

This completes the proof of Lemma 4.5.

By Lemma 4.5, M I(S — 1) is represented as

= (-
WliS J <r(s)/det H00(s)

Noting that u^(s) = — wf(s)/(wo (S)WQ (s + 1)), we have (iii). Q.E.D.

Proposition 46, Put tf = 0 /or j = 0, 3 (mod 4) and let /eOSp(F) be decom-
posed as (4.1). Then W± in the right hand side are the wave matrices of the OSp-STL
hierarchy.

Proof. Note that exp ( Z t/^'Lexpf Z tjf ~j\ e OSp(S). From
\ j=l ,2(mod4) / \ j=l ,2(mod4) /

the assumption of the Proposition 4.5, we have

(srp stw-ip)(Stp stw.P) = exp f Z t/yp ) A exp ( ^ t7^~J J •
\ j=l ,2(mod4) / \ j=l ,2(mod4) /

By the uniqueness of the R-H decomposition, we have W± e OSp(S). A
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