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Lower Bounds for Order of Decay or of
Growthln Time for Solutions to Linear

Non-linear Schrodinger Equations

By

Tohru OZAWA* and Nakao HAYASHI**

Abstract

We study lower bounds of decay (or of growth) order in time for solutions to the Cauchy
problem for the Schrodinger equation:

idtu=-Au+f(u), (f,jt)eJ?xjr (n>l) ,

«(0)=tf, x<=R",

where /is a linear or non-linear complex-valued function.
Under some conditions on /and 0, it is shown that every nontrivial solution u has the

estimate

lim inf | / 1 n'2' n'q\\u(t}\\ EffCui<*i/ i5>0*->±«»

for sufficiently large &>0 and for any #e[2, oo].
In the previous work [12] of the first named author, we imposed on the assumption

that u is asymptotically free. In this article, however, we shall show the assumption is, in
fact, irrelevant to the results.

§ 1, Introduction

In this paper we consider the asymptotic behavior in time of solutions to
the equation:

idtu =

where / describes a linear or non-linear perturbation and 0 is a given initial
data.
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More precisely, we deal with the following three types of equations.

(1) Non-linear Schrodinger equation with power interaction:

idtu = -Au+l\u\p-lu,

where ^>0 and \<p<a(n) with a(n) = oo (n = l9 2), a(ri)=(n+2)/(n—2) (n>3).

(2) Non-linear Schrodinger equation with non-local interaction:

idtu= ~Au+(V*\u\2)u ,

where V=V(x)=l\x\"* with *>Q and 0<r<min(45 ri).

(3) Linear Schrodinger equation with long-range perturbation:

where H0 is the self-adjoint realization of — A in the Hilbert space L2=L\Rn}

and the long-range perturbation Fis assumed to satisfy some conditions specified
later.

Concerning the asymptotic behavior in time of a solution u for (1.1), it is
possible to distinguish between the following two cases (a) and (b) in the cate-
gory of L2-scattering theories.

(a) There exist some (or equivalent^ unique) states u+^L2 such that

(1.2) li

where {e itH<>; t^R} is the free Schrodinger evolution group. In this case, we
call a solution u asymptotically free.

(b) There do not exist any states u±^L2 satisfying (1.2).

In the case (a), it has been proved in [1] that every non-trivial solution u

has the estimate

(1.3)

for some 0</c/ <k and for any gef2, oo]. In view of the proof, it is clear that

k and kf in (1.3) depend on the momentum support of u±, i.e., the support of
the Fourier transform. Therefore, the argument in [12] only gives rather
implicit relations between the pair (&', k) and the initial data 0.

We now state our main purpose in this paper, which is twofold.

One is to obtain similar lower-bound estimates as in (1.3) even when (1.2)
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do not hold. To be more specific, we show that the following estimate slightly
weaker than (1.3)

(1.4) liminf \t |w/2-^WOIL*ci,i<*m)>0
f-*±oo

holds for non-trivial solutions to the equations (l)-(3).
The other is to give explicit lower bounds of k in (1.4) in terms of the

given initial data 0.
As corollaries to main theorems proved in this paper, we see that //-decay

or growth estimates obtained by many peoples (see [1], [3], [4], [7], [8], [10]
and [1 1]) are optimal.

Finally we list some notations which will be used in the sequel.
2] denotes the Hilbert space

2 = iutEL2(Rtt); djU, XjUEEL2(Rn) (j = 1, -, n}}

with the norm

\\-\\p denotes the usual jL*(JB*)-norm and (•, •) denotes the L2(JSw)-scalar
product. H\Rn) denotes the usual Sobolev space of order one. For an interval
JdjR and a Banach space E, C(I ; E) denotes the space consisting of ^-valued
continuous functions on / and || • \\J%E) denotes the operator norm on the space
of all bounded linear maps from E into E. For a self-adjoint operator H in
the Hilbert space L2(Rn), Mcorit(H) denotes the continuous spectral subspace of
H. —IV and x also denote the momentum operator and the position operator
acting on the Hilbert space L2(Rn)®Cn, respectively. Different positive con-
stants might be denoted by the same letter C, if necessary, by C(*, •••,*) in
order to indicate constants depending only on the quantities appearing in
parentheses.

§ 20 Non-linear Schrodlnger Equations with Power Interaction

In this section we consider the equation of the form :

idtu = -
(2 I)

1 11(0) = 0,

where l<p<a(ri). By a mild solution of (2.1), we mean a function
C(R; L2) satisfying the integral equation
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(2.2) u(t)=e-iiH^-i e-i(t-r^(\u(T)\p-lu(r))dr in L
o

for any /eJB. We summarize the results concerning mild solutions of (2.1).

Lemma 1. Let $ e ]>]• Then there exists a unique mild solution u^

C(R; I]) of (2.1) satisfying

(2.3)

and

(2.4) \\?u(t)\\l

/or £ e R. Furthermore, u satisfies

(2.5)
P+l

P+l

/>+!

(2.6) \\u(t}\\p+l<C(n, p,

and

(2.7)

a(p) = l—n(p — l)/4 if l<p<r(n)=(n+2+

(n2+l2n+4)1/2)/2n, a(p)=0 ifr(n)<p<a(n).

For Lemma 1, see, e.g., [1], [3] and [15].
We now have :

Theorem 1. Let 0eS\{0} and let u^C(R; S) be the solution given by

Lemma 1. Then for any

(2.8)

ive

(2.9) lim inf { \ u(t9 .T) 1 2dx> 0 .
*->±«» J U K A l f l

Proof. We assume
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(2. 1 0) lim inf ( | u(t, x) \2dx = Q
*->~ J\x\<kt

for some k>k0 and we deduce a contradiction. From the assumption (2.10),

there exist a sequence {^-;j>l} in R such that 0 <tl <t2< ••• <,tj \ oo as
j-»oo and

(2.11)

(2.7) and (2. 11) give

f
J l x

< 2
|*K«y 2lt \*\<ktj 2 f t j

2

from which we get

2l7,; ' 2

2-*o

(2.12) lim \7u(tj9 x)\2dx
J+™ J\X\>ktj

p+l p+l

Here we have used (2.4) and (2.6). Similarly, by (2.3) and (2.11) we have

(2.13) lim
y->~

A simple calculation leads to

(2.14) ( \7u(tj9
J\X\>ktj

We take the limit 7^00 in (2.14) and apply (2.12)-(2.13) to (2.14) to conclude

^
p+l
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This contradicts the fact that k>k0.
The case f <0 can be treated similarly. Q.E.D.

Remark L (2.9) gives a propagation property of quantum particles obey-
ing non-linear Schrodinger equations with power interaction. We also have
from (2.6) that for any R>Q,

Mm ( \u(t,x)\*dx = Q.
*-*±~ Ji*i<*

Compare (2.9).

CoroMary I. Under the assumptions of Theorem 1, the unique mild solution

2) has the estimate

(2.15) Mm inf 11 \ n/2~nfq\

for any k>kQ and q^[29 oo].

Proof, (2.15) is an easy consequence of (2.9) and the Holder inequality.

Q.E.D.

Remark 2. Lower-bound estimates for the case l-i-2/n<p<a(ri) have been
obtained in [12].

§ 30 Non-linear Schrodieger Non-local

This section deals with the following Hartree type equation:

idtu = — Au+(V*\u\2)u, (t,

where V=V(x)=\x\"f with 0<r<min(4, n).
By a mild solution of (3.1), we mean a function u^C(M; L2) satisfying

the integral equation in L2 associated with (3.1).
We state the results corresponding to Lemma L

Lemma 2, Let 0^2- Then, there exists a unique mild solution
C(R; S) of (3.1) satisfying

(3.2)

and

(3.3)
for t^M, where
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2

Furthermore, u satisfies

(3.5)

(3.6) P(w(0)<C(K,r,

(3.7) \\(x+2itF)u(t)\\2<C(n, r,

where 6(r) = l-r/2, if 0<r<4/3 (w>2) or 0 < r < l (»=1), owrf 6(r)=0 i/
4/3<r<min(4, /i) (n>2).

Proof. For the case 4/3<r<min(4,«), see [4], [5] and [8]. For the cases
0<r<4/3 (n>2) and 0<r<l (» = 1), see Appendix in § 5. Q.E.D.

Since we have Lemma 2, in the same way as in the proof of Theorem 1

we obtain:

Theorem 2. Let 0e2\{0} and let u^C(R; 2) be the solution given by
Lemma 2. Then for any

we have

(3.8) lim inf f | u(t, x) \ 2 dx> 0 .
/•>±~ J\x\<k\t\

Remark 3. When w=3 and r = l, Glassey [6] has proved that for any

(3.9) lim \u(t, x)\2dx = Q.
f->±~ JI*KJ?

Since we easily obtain L^-decay (2<p<a(n)+l) estimates by applying the

Gagliardo-Nirenberg inequality to (3.7), we find that (3.9) holds when n>l

and 0<r<min(4, n).

Corollary 2. Under the assumptions of Theorem 2, the unique mild solution

i 2) has the estimate
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liminf |r|«^-^||ii(OllL'(i,i<*i
/-*±oo

for any k>^ and q^[2, ex?].

Remark 4. From the Theorem 3.1 in [8] and the same argument as In
[12], we have the following assertion:

Suppose n>2 and I <r <min (4, n). Assume 0 e 2\ {°} • Let u e C(R ; S)
&e £/2e solution given by Lemma 2. Tfcew £/zere e.xw^ 0<fc'<fc satisfying

liminf ( | ii(r, ;c) 1 2*c> 0
*-^±~ J ^ I / K U K A U I

and

lim inf | r | */2-^| WOILvui<i,K.ui)> 0
f-j.±ea

/or aray q^[2, oo],

Corollary 3. C/flrfer r/ie assumptions of Theorem 2, P(u(t)) has the estimate

(3.10) liminf |f | yP(u(t))>Q .
f~^.±oa

Proof. We first prove (3.10) in the case l<r<min(49 n). Let
Then, \x\9 \y\<k\t\ implies | x— y \ v<(2fc | r | )Y. Consequently,

from which (3.10) follows.
We next assume 0 <r < 1 . Let k> 2fcj and fc | / 1 > 1 . We estimate P(u(tJ)

from below as follows :

P(u(t))

± f f
2 JJl

L f f \u(t,X)\*\u(t,y)\*
2 JJu-*i<i \x-y\~1

-j-K*ltl^4(rrr)V \ \2 ^ f c | f | / JJl*-

\u(t, x1~ 2\k\t\

Since Ar/2>/c1, we obtain (3.10) for 0<r<l. Q.E.D.
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Remark 5. (3.6) and (3.10) completely characterize the large time behavior
of the so-called direct potential energy P(u(tJ).

§ 48 Linear Sdtrodieger Equations Long-range Perturbation

In this section we freely use the operator theoretic language (see, e.g.,
[9] and [14]). We consider the symmetric form

(4.1) h = /JO+AI (as a form sum) ,

where A0 is defined as A0[0, ^]=(F0, F^) with form domain O(h0)=H1(Rn)
and //! is assumed to be a closed symmetric form relatively bounded with h0-
bounded less than one.

By the KLMN theorem [14] we see that h is a lower-semibounded closed
symmetric form with domain Q(h)=Q(hQ) and that h has a unique self-adjoint
operator H with domain D(H) satisfying

(4.2) D(H)dQ(h)

and

(4.3) (H*9 0) = hW, <t>]

= (PV% F0)+ *i W% 01 , for V" e £(# ) and

Moreover, for some j>0,

(4.4) Q(h) =

and

(4.5)

Thus, we conclude by the closed graph theorem that (Jff0+j)1/2(/f+j)~1/2 is a
bounded operator defined on L2.

We need the following lemma.

3. Lei H be as above. Then we have:

(1) e~itH maps H\Rn) into Hl(Rn} continuously and furthermore, there exists a

constant a>0 such that

\\e-itH^\\H\R^<amy(R^ , (t, f)GRxH\lf) .

(2) e~itn maps 2 into 2 continuously and furthermore, there exists a constant
such that
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(3) h[t, 0] = h[e~itff^ e-itff<f>] , (t,

Proof. (1) and (2) have been proved by Radin and Simon [13]. We
prove (3). Let 0 e Hl(Rn} = Q(h0) = Q(h) and fix t<=R. We set Rx =

for ;i> 0. It follows that

and that

h[RKe~itH<!>,

Since h is a lower-semibounded closed form, we have the assertion if we prove
that for any ^^H\Rn)9 {h[Rx^, Rrf]l ^>0} is a Cauchy sequence in R.
From the assumption on hl9 it suffices to show

> 0 as ^ fJL ~> oo .

We now do this. Letj'X) be as in (4.4)-(4.5). Then,

(^, jtt -> oo) ,

which proves our claim. Q.E.D.

We now state the assumption on H.

(H) For any 0 e= 2 n Mcont(H\ we have

(4.6) Urn ?-itH«

By virtue of Lemma 3, the conditions given by Enss [2] are sufficient for (4.6)
to hold. They cover the case where h^ is obtained by the following perturba-
tion V\

Kis decomposable as V=^Vs+Vh where Vs is a short-range potential and
Vl is a multiplication operator by a continuously differentiable real-valued
function Vt satisfying

VJ(x)9 x-rVtW-^Q as \x\ -> +00 .
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Theorem 3. Let H be as above. Assume that (H) holds. Let $ e

. Then for any

we have

liminf ( \(e-*'*j)(x)\2dx>0 .
*-^±oo J \ X \ < k \ t \

If in addition, there exist ?0>0 and q^[2, oo] such that

*-«*#€= Z^OR"), \t\>t0,

then,

liminf \t | » / 2 - w / 1 k - ^ I L * < * > 0 .

Proof, Proof is immediate since we have Lemma 3-3) and (H). Q.E.D.

§ 5e Appendix

In this appendix, we prove Lemma 2 in the cases 0<r<4/3 (n>2) and

0<r<l (n=l). For T>0, we introduce the following Banach psace BT by

BT = C([-r, 71; S) with the norm ||w||B2T - sup |

and the closed ball BT(p) (p>0) by

Note that H - l U r i§ an equivalent norm to the usual norm on C([—T, T];

We are now in a position to complete the proof of Lemma 2.

Proof of Lemma 2 in the cases 0<r<4/3 (n>2) and 0<r<l (n = l).

Let w<=BT(p). We define ^w by

(5.1) (Sw)(0 = e~itH^

In the same way as in the proof of Theorem 4.1 in [8] we get

(5.2) |k^o((^k|2)w(r))|U<C(«? rMr)||e^oH;(r)||s , |r| <T ,

where g(r) = ||w(r)||2+||w(r)||2+E+||w(r)||2_s with sufficiently small e>0 and

For 0<r<min(2, ri), we have by the Gagliardo-Nirenberg inequality
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(5.3) Mt)\\,<ZC(n,

and

(5.4)±
where

(5.2)-(5.4)± imply

(5.5) ii
<C(n, r)p2-

<C(n,r)p3, fe[-r, 71,

from which it follows that

SweCff-r, 71; S)

and

(5.6) Ik'̂ o

This gives

(5.7)

We also have for vt?
ls w2^BT that

(5.8) l|Sw1-S
fw2|U

If p and r are chosen to satisfy

and

then (5.7) and (5.8) allows us to conclude that S is a contraction mapping from

BT(p) into itself. This implies that there exists a unique mild solution u^

BT(p) for sufficiently small T>0. Furthermore, along the line of the argu-

ment of Ginibre and Velo [4] it is easily verified that LI satisfies (3.2), (3.3) and

(3.5) for any t, stE[-T, T]. Then, by virtue of (3.2), (3.3), (3.5) and the

Gagliardo-Nirenberg inequality we have

(5.9) l



LOWER BOUNDS FOR THE SCHRODINGER EQUATIONS 859

and

(5.10) \\xe^oU(t)\\2<C(n, r, IMIsHl+l ' l )

for any / e[—T, T]. From (5.9) and (5.10) it follows that for any J>0 there
exists a unique mild solution u^BT of (3.1) satisfying (3.2) and (3.3) for
any t^R and that u satisfies (3.5) for any t, s^R. Therefore we have
u^C(R; 2). In the same fashion as in the proof of (5.9) and (5.10) in [8],
we observe that u satisfies (3.6) and (3.7) with b(r) replaced by l—r/2. This
completes the proof. Q.E.D.
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