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Scattering Theory for the Elastic
Wave Equation

By

Yoshihiro SHIBATA* and Hideo SOGA**

§ 0. Introduction

Let us set

Lu(x) = ±di(aij(x)dju(x)\ d> = d/dxt, u = '(i/lf -, WJ,

where afj(x) are nXn martices of real- valued functions ejS%KM)(=

C°°(/OI sup | 0;/(jc)|< oo for any multi-index a}). Let Q be an exterior
XELR"

domain in Rn whose boundary dQ is a compact and C°° hypersurface contained

in {x^Rn\ \x\ <r0}. We consider the elastic wave equation:

f (d2
t — L)u(t, x) = 0 in jRx£ (dt=d/dt), Bu(t, x') = 0 on

( w(0, x) =f1(x) in Q, 9X0, A') =/2(x) in ^2 .

Here the boundary operator B is of the form

(0.2) Bu = u\BD9 or

(0.3) Bu= ± vi(x)aji(x)dj u\ao,
i,j = l

where v(x)=(v1(x), • • • , ^w(x)) denotes the unit outer normal to dQ at

Lax and Phillips [6, 7] formulated the scattering theory for the scalar-valued

wave equation. The purpose of this paper is to make an analogous formula-

tion for the elastic wave equation (0.1).

Throughout this paper, we assume that the space dimension n^3. Further-

more, it is assumed that

(A.I) aipjq(x) = apijq(x) = ajqip(x) , i,j,p,q=l,—9n (hyperelasticity),
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(A.2) ± fl,,yf(*>yt^; ̂  «, S K>l2 (stability),
i,j,P,q = l i,P = l

where a^ denote the (p, q) components of the nxn matrix aij9 (etp) is any
nxn Hermitian matrix and 61 is some positive constant independent of sip.

Lax and Phillips [6, 7] employed the following energy for the data

/=(/!,/.):

This played an essential role on their formulation. For the elastic equation,
the energy is defined (in physics) by

~

where/, = '(fa, ».,/J, i=l, 2, and «,//,) = yO^+^/i.O called the stress

tensor. By (A.I) we see that this energy is equal to

From (A.2) it follows that

I/Hi.*2 -^ * X1 IIl Z^ II
i,P = l

and then the energy is non-negative for any f=(fi,fy- However, it does not
mean that \\f\\Et0 is a norm equivalent to H^i/J^+U/J^^ (djy- = '( r,/u, — ,

^xfin))- To prove this equivalence, we need to verify the inequality:

(0.4) S ||
i,P = l

where ^2 is some positive constant independent of f^ The estimate (0.4) is
the key to the construction of the scattering theory for the elastic equation.
When the domain Q is bounded and the boundary condition is the displace-
ment one (the case (0.2)), (0.4) is well-known as Korn's first inequality (cf. § 3
of Duvaut and Lions [1]). We shall give the proof of (0.4) in § 1 below. K.O.
Friedrichs [2] also proved Korn's first inequality in the exterior domain. But
the function spaces are quite different? and our result cannot follow from his.

We introduce the Hilbert space H of the data f= (flt /2) defined as the com-
pletion of {/eC°°(iS)| J?/i = 0 on 6>J23 supp [/] is bounded} in .the norm \\f\\Et0.
This space H coincides with Hl

B(@)xL\@\ where H1
B(Q) is defined by
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) , lim R'2 { \ u(x) \2dx = 0 ,

u\dQ = 0 on d@ only when Bu = u\ do}- .

HB(£) is complete in the norm \dl
xu\L2(Q) (cf- Corollary 1.6 and Theorem 1.9

in § 1 below). We define

), Bu=0 on

Set

~u(t, •)
(0.5) A= v =

^LL O

Then the equation (0.1) is transformed into

(0.6) =Av(t)9 v(0)=/.
dt

The domain of X is defined by D(A} = Hl(Q}^(Hl
E(Q}^\L\Q}\ Then, A is

a closed operator in H; furthermore, A is skew self-adjoint in H (cf. Theorem
1.11 in § 1 below). Therefore, by Stone's theorem (cf. Appendix I in Lax and
Phillips [6]), we see that A generates a group {U(t)}t^R of unitary operators on
H, and that for any/eD(/i) v(t) = U(t)f becomes a //-valued C1 function and
the solution of (0.6).

Using the Radon transformation: u(x)-*u(s, o>), Lax and Phillips [6,7]
constructed concretely the translation representations for the scalar-valued
wave equation. In § 2, we shall construct the analogous representations for
(0.1) in the unperturbed case (i.e., @=Rn, and aij=a°ij are constant) and
study their properties under an additional assumption :

L°(f) = 2] a°ij£i( j has eigenvalues of constant
(A. 3) '•,/=!

multiplicity for £eJ2K— {0} .

In the elastic wave equation case, there exist waves of the different modes (i.e.,
L°(<?) may have different eigenvalues). We need to notice this phenomenon
when defining the translation representations and studying their properties;
however, in this process we do not encounter a serious difficulty caused by that
phenomenon. The idea of our methods is essentially the same as in Chapter VI
of Lax and Phillips [6], which deals with the scattering for symmetric hyper-
bolic systems of first order.
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In § 3, assuming that the coefficients of L are constant, we shall consider

the scattering for (0.1). Set

D± = {fGH\*upp[U(t)f(x)]c:i(t, x)|±*f-hr0:g|x|} if ±00} ,

where rj2 (77 >0) is the minimum of the eigenvalues of L°(o>) (o)^Sn~1). Then

it is seen from the discussion in the unperturbed case (in § 2) that D+ (resp. D_)

has the properties of the outgoing (resp. incoming) subspace for U(t\ except

(0.7)

By this equality we can construct the translation representations for U(t)9 and

also can derive the completeness of the wave operators in the same way as in

Lax and Phillips [6,7]. Thus; the main task in § 3 is to prove (0.7). The proof

of (0.7) can be reduced to verifying non-existence of the point spectrums of

A (cf. § 2 of Chapter V in Lax and Phillips [6]), and therefore we have only to

show that there exist no eigen-functions of A in the domain D(A) (cf. Theorem

3.5 in §3 below). The key to this show is to prove that iff^D(A) satisfies

(A—ia)f(x)=Q for every large \x\, then/(x)=0 for every large \x\. The

methods in Lax and Phillips [6] are not applicable to this proof in our case.

Multiplying A—ial by its cofactor, we transform it into a diagonal operator and

carry out the proof by means of a uniqueness theorem for single equations of

higher order obtained in Littman [8], Hormander [4] and Murata [10].

Yamamoto [14] makes a related study. He considers the isotropic equa-

tion in three dimensional space (i.e., aipjq(x)=fi(dpqdij^rdiqdjp)+Adipdjq9 dip

being Kronecker's delta; A and A being the Lame constants, and n = 3) with

the displacement boundary condition (the case (0.2)). which is contained in

our case. And then, he obtains the same results as ours. But it seems difficult

to apply his methods to the traction boundary condition case (the case (0.3)).

For, he does not derive the estimate (0.4), which is essential in the traction
boundary condition case.

We note that Iwashita and Shibata [5] investigate the analyticity of spec-

tral functions of L+a2/ and the rate of the local energy decay of the solutions
to (0.1).

§ 1. Spaces of the Data and Properties of the Generator A

In what follows, the Roman letters w,v,w and the Greek letters <f>, -fr are used

to denote ^-dimensional row vector and scalar-valued functions, respectively.
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For any domain G in Rn, C%(G) denotes the space of all C°° functions on Rn

whose supports are compact and lie in G. C%(G) denotes the space of all
functions in C°°(G) whose supports are compact. In particular, functions in
CJT((j) vanish near the boundary of G. By Hm(G) we denote the Sobolev space
of order m on G; put H?oc(G) = {(t>\^(t>^Hm(G) for any ^^Co(Rn)}. Set
@R = {X^£ | | x\ <R} (R^r0}. For any space F of scalar valued functions we
abbreviate the product space F x ••• xF by also F. X(x) will always refer to a
real and scalar valued function in Co(Rn) such that 0^#f£l, x(x) = l for

\x\^l and =0for |*|^2.
As is stated in § 0, the purpose of this section is to discuss the skew self-

adjointness of the operator A given in (0.5). Set

Hm(Q) = {wetfJUW \ d*xu^L2(£) for any multi-index a with l^\a\^

(1.1) limR-2 { \u(x)\2dx = Q} .
R-+<*> J

R^\x\^2R

Put

(K, v)mtQ = 2 2 Kuj(xWvj(x)dx, \u\2
m,0 = (w, u)mtQ

i^|fl»l^»i y = i JQ

for any u=*(ul9 • • • , un} and v=*(vlf • • • , vje^m(^) (m being integers ^1).

Theorem 1,1. Let m be an integer ^1. Then, Hm(£) is a Hilbert space

equipped with the innerproduct ( , )MtG. Furthermore, C%(£) is dense in Hm(Q).

To prove Theorem 1.1, we need the following three technical lemmas.

Lemma 1.2. For any u^Hm(@) (w^ 1) and R^rQ, there exists a sequence

£) such that

\ uk,R—u\m,Q ~^ 0 and \ukiR—u\L2(QR} -> 0 as k -> oo .

Lemma 1.3. For any u^H\Q) and ̂ r0+l,

(1.2) J \u(x)\2\x\-*dx^4 J \dlu(x)\2dx.
\x\^R \*\£R

Lemma 1.4. There exists a constant C>0 independent of R^r0 such that

(1-3) \\u\\L^(o^CR\\dlu\\L^ for any u^H\Q) and R^r, .

Deferring the proofs of Lemmas 1.2-1.4, we give

Proof of Theorem 1.1. From Lemma 1.4 we see that if (u, «)«i,£=0»
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w=0. Thus, we can easily check that (u, v)mt0 Is an inner product In view of
Lemma 1.2, for any u^Hm(Q) we can choose a sequence {uk}ro}k=li2i...c:C%(@)
so that \uktrQ—u\mtQ-+Q as &->oo3 from which it follows that C~(&) Is dense in
Hm(Q). The rest of our task is to prove the completeness.

Let {uk} k=li2i... be any Cauchy sequence in Hm(Q}. Since

II uk -u, ||L2toa) ̂  CK I 0i(i/ft -if,) ||L2to) ̂  C* I K, -w, 1 Wif l

as follows from Lemma 1.4, {24} becomes a Cauchy sequence in Hm(@R) for
any J?^r0+l. Let UR denote the limits of {uk} in Hm(@R) and set U(X)=UR(X)

for x^.@R. Then, M(X) is well-defined as a function on Q and
It is easily seen that 5J«(x)eL2(^) for l^\a\^m and that

(1.4.b) \uk— u\\L2(QR -> 0 for any ^^r0+l

as &-»oo. We must prove that u(x) satisfies (1.1). Noting that
by Lemma 1.3 we have

(1.5) I 1/2

r~l 1/2

Letting k-*oo in (1.5) and using (1.4), we have

(1.6) R~2 i u(x)\2dx^\6 { \ d l
x u ( x ) \ 2 d x ,

Since we already know that \dl
xit(x)\ eL2(^)5 it follows from (1.6) that u satis-

fies (1.1), which completes the proof of the theorem.

Now, we shall prove Lemmas 1.2-1.4.

Proof of Lemma 1.2. Set xr(x}^^x(r~lx). Then, it follows that for some

constant C|^rw--w|2,ffl^C(/1/(r)+/2fr)) where

1 95(1 -ZM)9S u(x) | V* ,

= 23
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Since d*u(x) e L2(£) for | p \ ̂ > 1, it is seen that I±(r) -> 0 as r-> oo. Noting that

/2(r) fg ]TJ SUP I ®*% I ~2'*' I I u(x) 12rfr ,

by (1.1) we have also that 72(r)-^0 as r-^oo. These imply that for any integer
k^l there exists a vk^Hm(&) satisfying

(1.7) \u-Vk\m.Q^lk and VA(A-) = u(x) for

As is well-known, €%(&) is dense in Hm(Q). Thus, we can find uksR

such that

(1-8) 21l%(^-v,)l|L2(^^l//c.
|a»l^«i

Combining (1.7) and (1.8), we see easily that the sequence {uk^} has the desired
properties.

Proof of Lemma 1.3. First, we shall prove that

(1-9) J i^)|2Ur2^A^{-rJ-— I' j
^ Wl71))

for any 0eC^(^), ^^/'0
 an(i l<n/2. We use the polar coordinates: r = |,v

!

°° /-̂
— [ | <t>(sa)) 1 25r""2/]^si, we have

r 8s

(1.10)
T? /?

+ 21
J R

By integration by parts we have

H J R

(1.12) n-l 2'2l-l

n

By Schwarz's inequality we have

1.11)
f (* °°

{j J

Combining (1.10) -(1.1 3) implies that

the right-hand side of (1.11)
( 1 1 3^ O if f9 °° ^ 1/2 f (* °° "\ 1/2

- - - -
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l{2«o

n

Since 1— (2//ft)>0, (1.9) follows immediately from (1.14). In particular, if
we take 1=1 (note that n^3), from (1.9) we have that (1.2) is valid for any

Now, using Lemma 1.2, we shall prove that (1.2) is also valid for any
l(Q). Let R' be any number >R. By Lemma 1.2 we know that there

exists a sequence {uk}R'}k=1)2)...c:C%(@) such that

(1.15) IK*,*'— "lu>-*° and \\ukiR'—u\\L*(0s,)-+0 as k-+oo.

On the other hand, we have

(1.16) { \u(x)\

Letting fc-> oo in (1.16) and using (1.15), we have

The arbitrariness of the choice of Rf>R implies the lemma.

Proof of Lemma 1.4. In view of Lemma 1.3, it suffices to prove that there
exists a constant C>0 such that

(1-17) Nl^ro+1) ^ CflSiii^^+llii^fe,}

for any u^Hl(tiro+l) where G-{*ejr | r0^ |^| ^r0+l}. In fact, if (1.17) is
valid, then we have
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for any u^.H\@) and R*£rQ+l, from which the lemma follows.

Now5 we prove (1.17). Suppose to the contrary that for any integer k^

there exists a uk^H\QrQ+l) such that

(1-18)

(1-19)

Since {uk} is a bounded sequence in Hl(@YQ+^) as follows from (1.18) and
(1.19), {uk} is weakly compact in Hl(£rQ+1). Furthermore, since £ro+i is
bounded, by Rellich's compactness theorem we see that {uk} is strongly compact
in L2(&rQ+1). By passing to a subsequence if necessary, we can conclude that
there exists a v^H\£rQ+1) such that

(1.20) W j k - > v weakly in H\a,0+1) ,

(1.21) uk -> v strongly in L\£rQ+1) ,

as fc-> oo . It follows that from (1.19) and (1 .20) that

which implies that v=0. In fact, the fact that dlv=Q implies that v is a con-
stant vector. Thus, | v | 2 x (the Lebesgue measure of (?) = 0, from which we

see that v=0.
On the other hand, (1.18) and (1.21) imply that the L2 norm of v on «0ro+1

is equal to 1, which contradicts the fact that v = 0. Thus, we have seen that
(1.17) is valid, which completes the proof of the lemma.

Now, let us introduce the spaces and bilinear forms connected closely with
the operator L and the boundary condition. We define

CS(fi) = {u<^Cv(®)\BLku = 0 on dQ for any £^

Hg(Q) = {u^nHm(G)\BLku = 0 on dG for any Ar^

{u^Hl(Q)\u =0 ono>£} when Bu = u\w,
.

H\Q) when Bu = ^ vi a{j dj u \ w ,
i ,y=i

H2
B(Q) = {u^H\Q}\Bu = 0 on

H r
<X v\,o = S \ ^ipjq(x)dj

i,J,P,9 = l JO
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where u=t(ul, •••,«„) and v=\vlt ••- , vn) and ( , )L
2^ is the usual Innerproduct

of L2(£).

First, we would like to prove that <X "X0 *s ^e equivalent norm to
(u, u)ltQ. To do this, we need

Theorem 1.5 (Korn's first inequality). There exists a constant C>0 such

that

i ,y=i

/or 0fly u=*(ulf •••, w

When (j is a bounded domain in Jg^5 the following estimate is well-known
as Korn's second inequality (cf. §3 of Duvaut and Lions [1] or Nitsche [11]):

(1.22) | \dlu(x)\*dx^C{± ( |£f
JG i ,y=i JG

for any u^H\G). Friedrichs [2] also derived Korn's first inequality in the
unbounded domain for the functions u in the different classes. But, Theorem
1.5 does not follow directly from [2]. To prove Theorem 1.5 we need other ideas.

Proof of Theorem 1.5. It is trivial that the second part of the inequalities
holds. Thus, we prove only the first part. Since C%(&) is dense in H\Q) as
follows from Theorem 1.1, we may assume that u^C^(S). Since by integra-
tion by parts we have for any

it follows immediately that

(1.23) 2] ( \eu(u)\2dx^—( \d\u\2dx for any
*•,/=! JRn 2 JRK

Using (1.22) and (1.23), we can prove that there exists a constant Q>0 such that

(1.24) iSinl

for any u^C%(@). In fact, if we choose real-valued C°° functions 0, ifr on Rn

so that 0(x) = 0 for | x | ̂  r0+ 1, ^) = 0 for | x \ ̂  r0 and ̂ (x)+^\x) = l, then
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where C= sup 1 7x<t> \ 2+sup | V & \ 2. Applying (1.22) and (1.23) and noting that

I^<*«)I2+I*.-/^^ we have

(1.24).
In view of (1.24), to complete the proof we have only to prove that there

exists a constant C2>0 such that

(1.25) | | w L « t o r + 1 ) ^ C 2 l ^ ( « ) l 2 ^ for any

Suppose to the contrary that for any integer k^l there exists a

such that

(1-26) KL«toro+1) = l >

(1.27) S ( \eii(uk)\*dx<Ilk.
i.y=i J0

Combining (1.24), (1.26) and (1.27), we see that {uk}k=li2t... is a bounded set
in ff\&rQ+i)- Thus, by Rellich's compactness theorem we may assume that
{uk} is a Cauchy sequence in L2(£rQ+1). Applying (1.24) to uk—Ui and using
(1.27), we have

This implies that {uk} is a Cauchy sequence in H\Q). By Theorem 1.1 we see
that there exists a w='(M> l f • •• , wn)&H\£) such that |%— w|1>i0->0 as k-*oo.

(1.27) implies that

(1.28) 9,- w/A;)+0y Wi(x) = Q in ^ for any j, ./ = 1, — , » .

Since didjwk=^—didkwj=dkdjwi = —didjwk as follows from (1.28), we see that
&idjWk = Q. These mean that w& are polynomials of order at most 1. Noting
that F^eL2^), we have that wk are constant. Then, we have

R~2 ( | w(x) 1 2dx = | w 1 2^~2cK(2n-l ,

where rM is the Lebesgue measure of the unit ball. Since ^3, by (1.1) we
have that w = 0. Namely, we can conclude that | uk \ l t £— > 0 as k— >oor

On the other hand, by (1.26) and Lemma 1.4 we have

which leads the contradiction. Thus, we have proved (1.25), which completes
the proof.
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Corollary 1,6. Assume that (A.I) and (A.2) are valid. Then, there exists
a constant C>0 such that

C-l\u\liQ^<u,uyijQ^C u \ 2
l j } for any

Proof. By (A.I) and (A.2) we have

«, «>f.fl= S

Combining this and Theorem 1.5 implies that the first part of the inequalities
is valid. The second part is trivial. The proof is complete.

When getting fundamental properties of the spaces Hl
B(ti) and H2

B(@) and
proving the skew self-adjointness of A, the existence theorem of the solutions
to the following problem plays an essential role :

(1.29) Lu = v in Q, Bu = 0 on d£ .

To solve (1.29), first we consider the variational equation:

(1.30) <u, w\Q = -(v, w)L»(fl) for any w€=jyi(0) .

By Theorem 1.1 and Corollary 1.6 we see that H1
B(Q) is a Hilbert space

equipped with the innerproduct <( , yijQ. It follows from Riesz's representa-
tion theorem that for any v eL!(£)-{veL2(£)| v(x) = 0 for |x|>J?} (R>r0)
there exists a unique u^Hl

B(£) satisfying (1.30). Since

as follows from Lemma 1.4, putting u = w in (1.30) and using Corollary 1.6,
we have

(1.31) \u\ < CjR||v|| 2,

Theorem 1.7. Assume that (A.I) and (A.2) are valid. Let R be any
number >r0. If veL|(<0), then (1.29) admits a unique solution u^H2

B(@). In
addition, we assume that v<=Hm(£) (m^l). Then, u<=Hm+2(£).

Furthermore, there exists a constant C>0 independent of R, u and v such
that

|«[=2

Gilberg and Trudinger [3] obtain the same results as in this theorem in
the case where Bu = u\w (cf. Theorems 8.8, 8.12 and 8.13 of [3]), and Shibata
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[12] in the case where Bu=^viaijdju\aQ (cf. Theorem 3.4 of [12]). Since,
in the above discussion about the variational equation (1.30), we have got a
unique u in HB(&} satisfying (1.30), the main part of the proof is to show that
6>*w<EL%0) for any a with \a\ =2. For detailed proof, see [3] and [12].

Using Corollary 1.6 and Theorem 1.7, we can prove

Lemma 1.8. Assume that (A.I) and (A.2) are valid. Then, there exists a

constant C>0 such that

C-l\u\ltQ^<u,uy2iQ^C\u\2
2,Q for any u^H2

B(®) .

Proof. The second part of the inequalities is trivial. Our task is to verify
the first part. Choose 0 e C^(Rn) so that <f>(x) = I for | x \ ̂  r0+2 and == 0 for
\x\ ^r0+3. For u<^H2

B(Q), put v1 = -<f>Lu, v2 = <t>Lu-L(<t>u). Then, v1, v2e
L2

0+3(J2)? and by integration by parts we have

<0w, w\Q = (v*+v2, w)La(0) for any we HB(£) .

The uniqueness of the solution of (1.30) and the estimates (1.31), (1.32) yield
that

(1 .33) | 0W 1 2,^ C1(r0+3)(flv1 |L»Cfl) +l|v2 ||L»(fl))

Next let us estimate v = (l— 0)w. Noting that supp [v]c{x| \x\ ^r0+2}, by
Corollary 1.6 and integration by parts we have for z = l,2, ••• , /7,

= C3{(Lv, 9?v)L«Cfl,+ 2
k,l,ptq = l JO

t
rO + 3 |OJ|=2

From this it follows that

(1.34) I(1-^|2,^C5{||L^^

Combining (1.33), (1.34) and Lemma 1.4, we obtain

From this and Corollary 1.6 the lemma follows.

Now, we summarize fundamental properties of the spaces H1
B(&) and
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Theorem 1.9. Assume that (A.I) and (A.2) are valid. Then, HB(@) and

H2
B(@) are Hilbert spaces equipped with the innerproducts <( , \tQ and <( , ^2ffl,

respectively.

Furthermore, HB(£) and CB(@) are dense in H^(@)for k=l9 2.

Proof. The first assertion immediately follows from Theorem 1.1, Corol-

lary 1.6 and Lemma 1.8. Our task is to prove the seocnd assertion.

At first, we shall prove that HB(@) is dense in H1
B(@). Suppose to the

contrary that there exists a non-trivial u^Hl
B(Q) such that

(1.35) <u, v\Q = 0 for any v<=HB(®) .

By Theorem 1.7, for any H>eCJT(.0) we have a solution v^HB(&) of the

equation: Lv = w in Q. By integration by parts we obtain

(1.36) ± \
*»J»P*4 = 1 J

= -(x( • IR)u, Lv)L*(& - S R-1 \ (dj
it3>P»Q = ~L *Q

for any R>rQ. Noting that u satisfies (1.1) and letting R->oo in (1.36), we

get

(1-37) <u,v\0= ~(u, w)Lite).

Combining (1.35) and (1.37) yields that (u, w)L2(j3) = 0 for any weCJT(^), which

leads the contradiction. Thus, H^(Q) is dense in H1
B(&).

As is easliy seen, proof of the fact that C^(S) is dense in H1
B(Q) can be

reduced to verifying that for any ve#S(0) |(1— X(°/R))v\1>Q->0 as

This follows from the inequality:

\v\*dx,
R^\x\^2R

since v satisfies the condition (1.1).

Next, let us prove that HB(^) is dense in H2
B(Q). Suppose to the con-

trary that there exists a non-trivial u^HB(@) such that

(1.38) <X v\Q = 0 for any ve#S(0) .

Introducing the innerproduct <w, v\tQ-\-(w, v)jL2(^) instead of <^wf v\tQ, in the

similar manner to the proof of Theorem 1.7 we can prove that for any

there exists a v(=HB(&) satisfying
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(1.39) -Lv+v = ir in £ , Bv = 0 on 6>J2 .

In the same way as (1.37), (1.38) and (1.39) yield that 0 — — <«, v\Q =
(Lu, w)L2(j?) for any w^C%(£). This implies that Lu = Q in £. Hence, by the
uniqueness of the solutions stated in Thoerem 1.7 we have u(x)=Q in £,

which leads the contradiction. Hence HB(£) is dense in H2
B(Q).

The fact that CB(@) is dense in H2
B(@) can be proved in the same way as

in HB(@), Thus, we obtain the lemma.

When proving that A is a skew self-adjoint operator, we need the follow-
ing lemma which follows from Theorems 1.7 and 1.9.

Lemma 1.10. Assume that (A.I) and (A.2) are valid. Let veL2(«G).

If u^H}i(Q) satisfies

(1.40) <w, w\D = (v, ii')L*to) for any weCS(^) ,

then u belongs to H2
B(@).

Proof. Put XR(x)=x(x/R) for R>r0. Then, it is obvious that XRu-+u
in the disrtibution sense as R->oo. Therefore, if {XRU}R>YQ is a bounded set
in the Hilbert space H2

B(@), u has to belong to H2
B(@). For, there exists a

subsequence of {XRu} converging weakly in H2
B(&) and this limit coincides with

the limit in the distribution sense.
Let us prove the boundedness of {XRU}. By (1.40) and integration by

parts we have

(1.41) <XRU, w\Q = (xRv-t-v'R, M')L2(fi) for any >t>eCS(S) ,

where vR = —^di(aij(dJXR)u)—3:]aij(diXR)dju. It is easy to see that XRu<=
H1

B(Q} and XRv+v'R^L\R(Q) for any ^>r0. Since CS(fi) is dense in H1
B(Q)

(cf. Theorem 1.9), (1.41) is valid for any we#i(£)- Therefore, from the uni-
queness of the solution of (1.30) and Theorem 1.7 it follows that
and —L(XRu} =XRvJrv'R for any R>rQ. By Lemma 1.8 we have

where the constants Q and C2 are independent of R>r0. Hence, by (1.1) we
obtain the boundedness of {XRU} in HB(@}. The proof is complete.

From now on, we return to analysis of the operator A (defined in (0.5))
and the equation (0.6). Put
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H = J5riWxL»(0) and (/, g)E>Q = y

for any f = ( f l f /2) and g — fe, g^^H, As the Innerproduct of #, we adopt
( , )EiQ. It is easily seen that H is a Hilbert space. We introduce the follow-
ing space as the domain of A :

D(A) = Hl(Q) X

whose innerproduct is defined by

(f> g)D(A).Q = — {</!> £l>29/

for /=(/,/2) and g = (gi, g2)eD(y4). For the notational convenience, we
define Af by Af=(f2, L/) for f=(fl9f^&D(A). It is obvious that ^4/eff if

f^D(A). D(A) is a Hilbert space, and then, noting that (/, g)D^ta
==(f> S)E,Q

+(Af, Ag)EjQ, we see that A is a closed operator on H. Furthermore, it is
seen from Theorem 1.9 that A is densely defined in H.

Under these preparations, we shall prove the main result in this section.

Theorem 1.11. Assume that (A.I) and (A.2) are valid. Then, A is a skew

self-adjoint operator in H with domain D(A).

Proof. Let us recall the definition of the adjoint operator A* of A and
the domain D(A*):

(1.42) D(A*) = {g^H | there exists anh<=H such that

(& Af)BtD = (hJ)E>Q for any/€EDG4)} ,

and then for g^D(A*) A*g is defined by A*g = h. Since integration by parts
yields that (g, Af)Et0=-(—Ag,f)Et0 for any/, g^D(A\ we know that D(A) c
D(^*). Our task is only to prove that D(A*) C D(^).

Let g = (gi, g2) and h=(hlf h2) be the elements in (1.42). Then, choosing

/=(/!, /2) so that/iGJ^SC^) and/2-0, by (1.42) we have

(1.43) <&, /!>!.„ - fe, L/^te) for any

From Theorem 1.7 it is seen that for any v eCiT(0) there exists
such that

(1.44) I/i - v in «S .

Employing the same arguments as for (1.37), we have <A19 /iX&—
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Combining this, (1.43) and (1.44) implies that

(a+*i. ^2o» = 0 for any

which shows that g2 = —

Next, choosing f = ( f i 9 f 2 ) so that./i = 0 and/2eCS(£), we have

<&. /2>i,s = (A2. /2)L»u» for any /2e CB(G) .

Since ^eH^) and A2eL2(#), by Lemma 1.10 we see that
Accordingly, we have proved that g^D(A)9 which completes the proof.

By Theorem 1.11 and Stone's theorem (cf. Appendix I in Lax and Phillips
[6]), we have

Theorem 1.12. Assume that (A.I) and (A.2) are valid. Then, there exists
a one parameter group {U(t)}t(ER generated by A and having the following
properties:

(i) U(t) is a unitary operator from H to itself for any t EE/2.
(ii) U(t)fis an H-valued continuous function in t eJ? for any f^H.
(iii) U(t\fis an H-valued C1 function in t <=R if and only iff^D(A).
(iv) U(t) is a unitary operator also from D(A) to itself for any

(v) Whenf^D(A\ — U(t)f= A U(t) = U(t)Affor any t e JR.
dt

From this theorem we see that for any/= (fl9f2) eD(A) u(t, x) = (U(t}f\(x)

;he first compo

and satisfies (0.1).

(-the first component of U(t)f) belongs to R Cj(R; H2
B-J'(G)) (H°B(Q) = LZ(Q))

j=0

§ 2. The Problem in the Free Space

In this section we consider the unperturbed problem under the assump-

tions (A.I), (A.2) and (A.3) stated in § 0:

f (d?-L>(f. x) = 0 in R xRn ,
(2'1} 1 w(0, x) =fl(x), 9X0, x) =/2(x) in Rn

where L°= 2 cfijdidj- Obviously, for this problem we can obtain the same
'./ = !

result as in § 1. We employ the same notations as in § 1, and particularly we
denote the space H and the operators U(t) for (2.1) by H0 and U0(t), respec-
tively.
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By (A.I) L°(f ) is a symmetric matrix. So? all eigenvalues of L°(f ) are real
Let N denote the number of the distinct eigenvalues lj(S) of L°(f ). Then, by
(A.3) ^is independent of £ ejR*— {0} and it can be shown that the ^-(£) can
be enumerated so as to form JV distinct and analytic branches in the following

way : ̂ (f ) < ^2(f) < — < ^(£). Since JL°(/f ) = /2L°(f)5 / e!25 with the enumera-
tion used above the eigenvalues ^-(f ) are C°° functions homogeneous of order 2

in £€=«". If we put *,-,= (£tf,+£,?,) for f = (fls-, £„) and ? =0^ -, ?„)

, by (A.1) and (A.2) we see that

^ ^ 23

where a?^,/g are the (p, q) elements of the matrices a?/. Since 5]
1

— I f 1 2 1 ^ 1 2
? we see that there exists a 5 > 0 such that

37L0(£)'fl^*|£|2M2 for any f and^e l2 K .

From this we see that J/£)^fl | f | 2 for any f e Rn. Let P/f ) be the orthogonal
projection into the eigenspace of each ^-(f)* which an n xn matrix of C°° func-
tions on Rn — {0} homogeneous of order 0.

The Radon transform g(s9 co) of g(x)^<S(<S is the Schwartz space of
rapidly decreasing functions) is defined by

(s, o>)eJ2xS'"-1 ,
X»U> = S

where -S*""1 denotes the n—l dimensional unit sphere. We denote the Fourier

transform of g(x) (x<=l$n) by £F[g](f) =^(f) (= f e-fa'*s(jc>ic, i = V/^TI), and

the one of fc(j) (j <=R) by F[fc](«j) (= f e~is&k(s)ds). Let their inverse transfor-

mations be denoted by f?"1 and F"1, respectively. Then, it follows that

(2.2) g(x} =

(2.3) $(ffa>) =

Set

l^La1/2 for a>0,
\/2

l f f l for o<0.
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Then, we see that supp [Z+(Ds)k] c (— oo, SQ] (resp. supp[A_(Ds)k] c [sQ9 oo))
provided that supp [fc] C (— oo, ,v0] (resp. C[j0, oo)) and that (A±(DS))

2 = —ds9

where /U(Ds)/c = /r~1^±(a)/7c((j)] (cf. Lemma 1.1 of Soga [13]). Setting

-d,)'"-1"2 for odd /i,

-8.)(H/2)"^±(A) for even 77,

for the dataf=(fl9f2)^S in (2.1) we define It/ by

(2.4) r?/fo G>) - fj
y=i

Then, /(x) e <5 is reconstructed with T&f(s, co) as follows :

Theorem 2.1 . For anyf= (/15 /2) e <5 u'

(2.5)

(2.6)

The above formulas are corresponding to Theorem 2.2 in Chapter IV of
Lax and Phillips [6] (cf. Proposition 1.1 of Soga [13] also). Noting that P;-(<y)
are the orthogonal projections, we can derive the above theorem from (2.2)
in the same way as in [6] and [13].

For any k(s, ̂ ^S^xS11'1) we define

(2.7) (e?

(2.8)

Obviously (Q±k)(x) belong to C°°(Rn); Theorem 2.1 means that
for any/^cS. Furthermore, we obtain

Lemma 2.2. Set <S = {k(s, G))^S(RxSn"l)\Fk(a, o))=0 in a neighborhood
ofo=®}. Then, for anyk^S we have (Q^^x) e S and T%Q±k=k.

Proof. For k(s, co)^S set

Then fe(a, co) belongs to S(RxSn~l) and is equal to 0 in a neighborhood of
o=0. Furthermore, it follows that

(2.9) (efA:)(A-)=2-1ff-1[{A:( |f | ,f / | f | )+fc(- |f | , -f/|f I)} |f T^IW ,
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which yields that (Q±k)(x)^S.

Combining (2.3), (2.9) and the definitions (2.7), (2.8) and noting that
4

Pj(co) are the orthogonal projections, we have T^Q±k(s, o>)=2 ®j(s, co) where

ifo *>) = y 2 J/

fa co) = k(o9 co)\a\ l-niaj

= y 2 ̂ •(

K3(a, oS) = k(-a, -a>)

= y 2

l~n iaj±(o) .

Noting that Ffdr1./ Jfc](ej, Q>)=(^)"1^±W[^](^J ®) and that J±(o)f^a)= \ o \ n'\
by the change of the variable: ^/(fc>)1/2 a -> o1 , we have

Using the fact that the PJ(G>) are the orthogonal projections again, it follows that
®i(s, °>} = 1~lk(s, co). In the same way, we also obtain @2 = 0l and ®3 = —®4.
These prove that (T&Q±k)(s, <o)=k(s, &), which completes the proof of the
lemma.

Lax and Phillips [6] say that a unitary operator T$ (resp. T^) from HQ to
L^RxS*'1) is the outgoing (resp. incoming) translation representation if there
exists a closed subspace DO (resp. Z>^) in H0 such that

(2.10) Tf map Z>? onto l£(R xS"~l) = {k(s, co) e L2(ig x 5»-1) | fc(j, o>) = 0

for

(2.11) Ut(t)D$dD$ fo

(2.12) n U0(t)D£ = {0} ,

(2.13) ~\
tz=R

and rf satisfy
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where (3tk)(s)=k(s—t). And, DO (resp. D^) is called the outgoing (resp.
incoming) subspace. The operator TQ (resp. TV) denned by (2.4) becomes the

outgoing (resp. incoming) translation representation:

Theorem 2.3. (i) The operators T& (in (2.4)) can be extended as unitary

operators from H0 to L2(RxSn~l).

(ii) Let us denote these extentions of Tf also by rf. Set Df=
rjr/(s, o))=0 when ±s<0}. Then, TQ (resp. TQ) is the outgoing (resp. in-
coming) translation representation, and DQ (resp. DO~) is the outgoing (resp.

incoming) subspace (i.e., all the conditions (2.10)-(2.14) are satisfied).

Proof, (i) Noting that PJ(G>) are the orthogonal projections, for any

- ! i£

Therefore, using the facts that Pj(co) = Pj(~o}\ Fg(a, co) = Fg(—a, — CD) and
N

that 2 o2Aj(G))Pj(G))=L0(aoi>), we have
y=i

II n/lli^xs-i) = ^)n-l\\f\2E,R« for any /e^ .

Let us take 2-1(27r)(1-^2|^||L2(12xsM-1) as the norm of k^L2(RxSn'1). Then,

!Tjf can be regarded as isometric operators from HQ to L2(RxSn~l), because
<5 (ID Co(Rn)) is dense in ^ (cf. Theorem 1.9). Lemma 2.2 yields that Q^SciS

and SdTfS. Hence, the (extended) operators T& map H0 onto L2(RxSn~l)

since (5 is dense in L2(J£ xS""1). Thus, (i) of the theorem is proved,
(ii) From (i) of the theorem we see easily that the spaces DJ are closed sub-
spaces in #0 and mapped onto L2

±(R^Sn~l) by Tf (i.e., (2.10) is satisfied).
Let us check (2.14). Assume that the data f = ( f i 9 f 2 ) in (2.1) belong to

C^(Rtt). Then, from finiteness of the propagation speed (cf. Theorem 3.1 in
§ 3 below), it is seen that the solution u(t, x) is a C|TGR")-valued C°° function
on Rt. Therefore, for any fixed t the concrete definition form of the Radon

<-* /̂
transform u(t, s, <a) is valid. Noting that dfu(r, s, <a)=(t>idsu(t, s, co) and

1, we have (8fii
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Pj(G>)u(t, s, a). If we put Vj(t, s, Q})=(dt-Zj(a>)l/2ds)Pj(Q))u(t, s, a>\ then

(0,+-*/©)1/20>/f, J, co) =0 for any (f, 5, oOeJRxlZxS11"1 and 7 = !, •••,#,
which yields that v/f, j, co) =- v/0, ^— ̂ -(^)1/2/, o>). Combining this and the

fact that Pj(v)(nUo(t)f)(s, 01) = ^(o))^(./±v;)(r, ̂ )1/2s, o>), we obtain P^)

•(T£U0(t)f)(s9 Q>) = Pj(o>)(T$f)(s-t, <o) for any (j, f, o>) GE 12x12 X S""1 and

./=!, • • • , Af, which proves (2.14) (note that Co(R*) is dense in Jf0).
Finally we have only to verify (2.11)-(2.13). From what we have proved,

we see that (2.11)-(2.13) mean that 3tL
2
±(BxSn-l}C.L2

±(Rx Sn~l) (±/>0),

0 3tL
2

±(R x S"-1) = 0 and U 3tL
2
±(RxS*^) = L\R x S>l~l), respectively. These

are obvious. The proof is complete.

Dr are characterized in the following theorem. This characterization

plays a fundamental role when defining the translation representations for the

mixed problem (0.1) in § 3 below.

Theorem 2 A / belongs to Df if and only if

(2.15) supp [U,(t)f] C {(t, x)\±rjt^\x\} ,

where 7t=min {/ly(^)1/2| eyes'""1, 7 = ],--, N}.

Proof. The idea of the proof is due to Lax and Phillips [6, 7] (cf. Theorem

1.2 in Chapter VI of [6] and Corollary 4.2 of [7]). We shall give only an out-

line of the proof.

Let/e/)jr. Then there exists a sequence {/4h=i,2,- in Co^xS"'1) such
that supplMjC^R+xS11-1 (M± = is£ER\±s>0}) and\\ki

±-Twf\\L*(RxS*-i)-+Q
as f-»oo. In the same way as in Soga [13] (see Corollary 1.1 of [13])? we see

that the formulas (2.5) and (2.6) are valid for f=f^ =(T^)~1ki
±. Therefore,

combining (2.5), (2.6) and (2,14), we have

=4-(2w)1"*S t ̂ X
2 j=i J

for 1=1 and 2. From these formulas and the fact that supp [dl
s~

2J%k±] C

JZ-tXS11-1, it follows that supp [U0(t)f'±] c {(r, x) e!5w+1| ±^r^ |x|} for
d=^>0. On the other hand, for any fixed t UQ(t)f± converge to U0(t)f in

Liec(R*) as f->oo. Hence, we obtain (2.15).

Conversely, let (2.15) be satisfied. We can assume without loss of
oo

generality that f(=D(A%}= fl DQ(AQ) (the operator A is denoted by AQ here),

which means that df T^f(s, o>) e L\R x Sn~l) for any ;? i^l . Therefore,

J±T%f(s, a>) is L^^TO-valued (consequently L^S^^-valued) C°° functions in
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. The proof can be reduced to verifying that

(2.16) (tftfo(OA(0) = -fW'C-9')1" [ 2 (^r1/2<
2* J S j — i

for any multi-index a (note that [70(f)/(jc)eC~, which follows from /e

In fact, since 9?£/0(0/(0)=0 for any ±t>0, by (2.16) we have

)(-t, o>)da> =0

for any a and 4^X3. Combining this fact and Lemma 1.1 in Chapter VI of

Lax and Phillips [6] yields that P/ca) (/Jr?/) (j, G>)=0 for any ±j<0, o^S*"1

and 7 = 1, •••, N9 which proves that/eDjr.
(2.16) can be verified as follows. Combining (2.6) and (2.14), we can easily

obtain (2.16) if f^<S. For/eD(^S°), take a sequence {/''} ̂ lj2j...C<S such that
m

2 IMoC/1 '— /)IU.B»-^0 as z-»oo (w> |a| +77/2). Then, it is seen that for any
k = Q

fixed /t/0(0/''->t/0(0/in /f£c(18") as i-»oo, and that nf(s, a>)-+Ttf(s, o>) in
Hm(Rs; LZ(S^~1)) as /->oo. These facts imply that (2.16) is valid for any

§ 3. The Problem in the Exterior Domain

Throughout this section we use the notations in §§ 1 and 2. It is expected
that the problem (0.1) has finite propagation speed: There exists a constant
#(>0) such that u(t0) XQ)=() when u(T, x)=Q for any x^{y^.£\ \ y— XQ <
ju(tQ — T)}(T<to). This is derived from the following local energy estimate.

Theorem 3.1. Let the assumptions (A.I) and (A.2) be satisfied. Then,

there exists a constant #(>0) depending only on n, sup | ai :(x) \ and the constant
*^Q

o in (A.2) such that if u(t, x)^C2(Rx@) is a solution of (O.I), for any
andy&BU(t)f(=(u(t, x, (dt u(t, .T))) satisfies

(3.1)

where @R(y) = {x&@ \ \x—y\ <R} and

I! y-112 __ J_ f ./ ~y\ a. (x\
2 JG i , j , * , f f = i
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Proof. The idea of the proof is the same as in the proof of Theorem 1.1
in Chapter V of Lax and Phillips [6]. Multiply the equation (d2

t—L)u=Q
by dfU and integrate over D = {(t, x)\Q<t<T, \x—

Then, by integration by parts we have

-2 Re 2 altit r, d, uq - d^uf} dr = 0 ,
i,P,j,q=i

where r = {(t, x)\Q<t<T, \x-y\ =R + (T-t)n, xe Q\, ri = (xi-yi)/\x-y\
n

and Nu=^ s^a^-d-w. Therefore, if u satisfies (0.1), it follows from (A.I) and
«-./=i

(A.2) that

(3.2) ||Z/(iy||i.^

-^2( sup \au\Kn\dtu\*+±\*ip(u)\*)}<ir.
'

Take the ^ so that ^^(max^3, n2/d}} sup |a^-|. Then, the integral over F

in (3.2) is non-negative, and consequently (3.1) is obtained. The proof is
complete.

Hereafter, we assume that the coefficients of L in (0.1) are constant (i.e.,
L=L°), and that (A.I), (A.2) and (A.3) in § 0 are satisfied. From now on,
using the translation representations T$ in the free space, we make the transla-
tion representations for the perturbed equation (0.1) in the same way as in
§ 2 of Chapter V of Lax and Phillips [6]. Set

D =

Then, it follows from Theorem 2.4 that if /<ED±, UQ(t)f(x)=Q in a neighbor-
hood of d@ for any ±^>0. Therefore, D± become closed subspaces in H^
and we have

(3.3) U0(t)f=U(t)f for any ±*>0 if /e=D± .

Combining this and Theorem 2.3, we obtain easily (i) and (ii) in the follow-
ing theorem.

Theorem 3.2* D+ (resp. D_) is an outgoing (resp. incoming) subspace for
U(t):
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(i)

(ii) n u(t)D± =
(lii) U U(t)D± = H.

t&R

The (iii) of Theorem 3.2 is a key point, and is closely related to the local

energy decay as was stated in § 2 of Chapter V of Lax and Phillips [6]. We

shall prove (iii) later, and we use this theorem without the proof for a while.

For any/e U U(t)D± we set

Then, T± are densely defined in H (from (iii) of Theorem 3.2 and (3.3)), and

can be regarded as isometric operators from H to L\RxSH~l) (by Theorem

2.3). Furthermore, we obtain

Corollary 3.3. T+ (resp. T_] is the outgoing (resp. incoming) translation

representation for U(t) with the outgoing (resp. incoming) subspace D+ (resp. D").

In the same way as in Remark 2.2 in Chapter V of Lax and Phillips [6],

we see from (iii) of Theorem 3.2 also that the wave operators:

W± = lim U(-t)U0(t)
f->±0!»

are well-defined and complete. Namely, we have

Corollary 3.4. W± are unitary operators from HQ to H.

Note that the scattering operator S=(T+)~1T_ is well-defined and unitary

from L2(RxSn -1) to itself.

Now, we shall give a proof of Theorem 3.2. As we mentioned earlier, it

suffices to prove only (iii) of Theorem 3.2. Lax and Phillips in § 2 of Chapter

V of [6] showed that (iii) could be derived from the non-existence of the point

spectrum of A and the local energy estimate stated in Theorem 3.1. Thus, the

proof is complete if the following theorem is verified.

Theorem 3.5. A has no point spectrum. Namely, if f^D(A) and Af=rf

for a r^C (= the field of complex numbers}, thenf=Q.

To prove this theorem, we need the following lemma.

Lemma 3.6. Let o^R-{0}. If u^L2(Rn) satisfies: (L°+o2I)u(x)=Q

for | x | > R where I is the nxn identity matrix, then u(x) = 0 for \x\>R.
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The proof of this lemma will be reduced to the following theorem due to
Hormander [4]3 Littman [8] and Murata [10].

; 3o70 Let the polynomial P(<?) in <?eJgw be decomposed into the
i

form: c II P/£)py (c^C and ̂  are positive integers), where
y=i

(i) Py(f) (j = 1, • • • , /) are irreducible and real polynomials,
(ii) there exists a &^Rn for each Pj such that Pj(£j)=Q and grad P/f 04=0.
// 0 ̂ L2

loc(R
n) n S' (Sr is the dual space of S) satisfies

(3.4) limJT1

S-*°°
n^\x\

and supp [P(DX)<1>] is compact (Dx = — (dl9 • • • , ̂ ))? then supp [<f>] is compact;

more precisely, supp [0] C the convex hull of supp [P(Dx)<i>].

Proof of Lemma 3.6. Let u = t(u1, • • • , uj and set P(f)=the determinat
of the matrix a2/—L°(f). Multiplying L°+a2/ by its cofactor, we see that
P(Dx}Uj(x) = 0 for | x \ > R. Therefore, if we check that P(f) has all the prop-
erties stated in Theorem 3.75 the lemma follows from this theorem, since <f>=-

satisfies (3.4).
Let us check that P(f) satisfies (i) and (ii) of Theorem 3.7. Put f=(f, f J

1 x/Z. For7=1, -, TV we have ffa~^(0, f j)=0 and (d*jlden)(Q, f j) =J= 0
where c,{ = | a | /l;-(03 1)~1/2 by the Euler identity. Hence, there exist positive-
valued C°° functions ??y(f') defined in a neighborhood cy of f' = 0 such that

a2_^(f'9 '̂(f '))=Q for any f ecw and ?'(0) =fi. It is seen that P(f) is of the

form:

p(r, fj = (detaD n (f,-^'(f or^f.+^'Cf or^,y=i

where ay are the multiplicities of ^/f) and det aJM denotes the determinant of
the matrix aln. Note that det a°w>0, which follows from (A.I) and (A.2). De-
compose P(c) into the product of the irreducible polynomials Py(f),7=l, • • • , / ,

i.e., P(£)=fLPj(£^ Then, the set {^i(f')l*=U -,/«;, 7 = U -,/} of thej=i
roots of the equations: P j ( f r , f n ) = 0 in fw (7 = !, • • • , / ) coincides with the set

{-_tV(f')l7=l» D ' 1 0
5 ^}for any f' in an open set CG>. From this fact we can

see that every P/f) satisfies (i) and (ii) in Theorem 3.7, which completes the
proof of the lemma.

Proof of Theorem 3.5. Since 0 = (Af,f)EtQ+(f9 Af)E>Q = 2 Re r\JfBt0 for
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any/eD(X) satisfying: Af=rf, the theorem is trivial when Re r4=0. Let
r=ia (a^R). Then, from the equation: Af=iaf(f=(fl9f2)^D(A)) we have

(3.5) (L°+*2/)/!(*) - 0 in £,

(3.6) /2 = ia/i •

If <7=0, then ^=0 and L°/1=0 in .0. The uniqueness of the solutions (cf.
Theorem 1.7) implies that ^=0, and then/=0. Jf a=NO, it follows from (3.5)
that fi = -a-2L"f^L\Q). Thus, if we put u(x) =X(x/r^fl(x) for %e£ and
-0 for x&Q, then u^L\Rn) and (L°+ff2/)M>)=0 for |x|>2r0. Hence, by
Lemma 3.6 we have u(x)=Q for |x\>2r0, which means that

(3.7) /i(*)=0 for M>2r0 .

Note that L°-{-a2I is strongly elliptic. Thus, the analytic-hypoellipticity im-
plies that fi(x) is analytic in £. It follows from (3.7) that fi(x)=0 for all
x^Q. Consequently, we have/=0? which completes the proof.
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