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Duality for Vanishing Cycle Functors

By

Morihiko SArTo*

Introduction

Let Y be a complex manifold, and S an open disc. Put X=Y xS, and
identify ¥ with Y x{0}. Let (M, F) be a holonomic filtered 9x-Module, i.e.
M 1is holonomic and GrfM is coherent over Gr’9y, where Dy is the sheaf of
holomorphic differential operators with F the filtration by the degree of oper-
ator. We say that (M, F)is Cohen-Macaulay, if Gr* M is Cohen-Macaulay over
Grfdy, or equivalently

Ll g, (GrPM, Grfy) =0 for izdim X
assuming M holonomic. For (M, F) holonomic Cohen-Macaulay, we define
the dual D(M, F) by

DM, F) = &gy (M, F), (0x, F)®0x(Dx, F))

using a resolution of (M, F) (and (wg, F)), cf. 1.1, where wy is the sheaf of
holomorphic differential forms of highest degree and Grjwy=0 for p=0.
Assume that (M, F) has the filtration V satisfying the conditions (1.2.1-7) in
1.2. Then we can define the vanishing cycle functors by

VM, F) = @ _1cu<0 Gra(M, F[1])
$(M, F) = Gr{(M, F) .

We assume that (M, F) is holonomic Cohen-Macaulay, and v (M, F), ¢,(M, F)
are holonomic Cohen-Macaulay filtered 9y-Modules. Then

Theorem (cf. 1.6). We have the functorial isomorphisms:

Y DM, F) = Dy (M, F) (1)
¢, D(M, F) = D¢(M, F) .
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We also show that these duality isomorphisms are compatible with topological
ones, i.e. by the natural isomorphisms DR(¥M)=¥DR(M)[—1], DR(¢,M)=
¢, DR(M) [—1] in [S1, 3.4.12] (cf. also [M][K2]) and DReD=Do°DR in [SI,
2.4.12] (cf. also [K4]), they correspond to the induced pairings —?vS, ?¢,S in
[S1, 5.2.3-4] on the vanishing cycles of DR(M) and DR(DM), where S is the
natural pairing of DR(M) and DR(DM), cf. 2.2. Note that the arguments used
in the proof of these results can be easily applied to the non filtered case, cf. 1.7,
2.4, and in the one dimensional case they were obtained in the Appendix of [S3].
In the normal crossing case, we calculate the vanishing cycle functors and the
induced dualities on them explicitly, cf. §3. These results are used in the proof
of [S2].

I would like to thank Prof. Kashiwara for useful discussions. Some part
of this work was done during my stay at IHES. I would like to thank the
staff of the institute for the hospitality.

§1. Analytic Duality for Vamishing Cycle Functors

1.1. Dual functor (cf. [S1]). Let X be a complex manifold of dimension #,
and 9y the sheaf of holomorphic differential operators with the filtration F by
the degree of operators. In this note we use the right 9-Modules, because they
are more convenient to the definition of the dual functor.

Let MF(9y) be the category of filtered 9 x-Modules (M, F) such that F is
exhaustive and F,=0 for p< 0 locally on X, and MG(&D, F, D) the category
of graded Modules M. over the graded algebra @, F, 9y such that M,=0
for p«0 locally on X. By the natural functor (M, F)— P, F, M, MF(Dy) is
a full subcategory of MG(D, F, Dx). We denote by Dl F(Dy) the derived
category of bounded complexes of filtered 9 x-Modules whose cohomologies in
MG (D, F, M) are coherent over B, F, Dx.

We say that a filtered 9x-Module (M, F) is induced, if it is isomorphic to
(L, F) Qe (Dy, F) for a filtered Ox-Module (L, F). For an induced filtered
Dx-Module (M, F) we define a filtration G by G,M=(F,M) Dx so that Gry
(M, F) is isomorphic to Gr; LQo(Dyx, F([p]), where (F[p]);=F;_,. We denote
by D F4(Dy) the derived category of bounded complexes of induced filtered
9Dx-Modules (M’, F) such that the filtration G is finite locally on X and
Ui GriGrs M" are coherent Ox-Modules. Then we can show the equivalence

of categories (cf. [S1, 2.1.16]):

(11D Dion Fi(Dx) = Déon F(Dy) -
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Let @y be the dualizing sheaf of X, i.e. it is canonically isomorphic to 2%
the sheaf of holomorphic n-forms and has the structure of right 9, -Module.
We take wy[n]— Ky a resolution by a complex of right 9),-Modules whose com-
ponents are injective Ox-Modules. (For Ky we can take a bounded complex by
a result of V.D. Golvin, Soviet Math. Dokl. 16 (1975)p. 854.) For (M, F)&
Dl Fi(Dy), put

(1.1.2) D(M, F) = JHomg((M, F), (Kx, F)Qo@Dy, F)) ,

where the filtration F on Ky is trivial, i.e. Grj Kx=0 for p==0, so that F,(K;®
Dy)=KxQF, Dy, and KyQpDy is a right Px-bi-Module having an involution
which is the identity on Oy and exchanges the two structures of right Q-
Module (cf. [S1, 2.4.2]). Here Hom™ means the union (or inductive limit) of
morphisms which preserve the filtration up to shifts so that D(M, F) becomes
a complex of filtered 9 y-Modules whose components are induced, cf. [S1, 2.4.3].
Moreover D(M, F) belongs to D%, FI(Dy) essentially, i.e. H/GrF is zero for
j >0, and we get the dual functor:

(1.1.3) D: Db F{(Dy) — Dl Fi(Dx)°, cf. [loc. cit] .

Note that D is independent of the choice of Ky, because we can take for Ky
a resolution by injective 9)y-Modules (so that a morphism of complexes be-
tween two resolutions is constructed.) By (1.1.1) we get also

(1.1.4) D: Dgoh F(Dy) — Dtb:oh F(g)x)o

compatible with (1.1.3) by (1.1.1). We denote by MF,,(9x) the full sub-
category of MF,(Dy) consisting of holonomic filtered 9 x-Modules, where a
filtered Dyx-Module (M, F) is called holonomic, if M is holonomic and Grf M is
coherent over Grf9)y. Then MF,(Dy) is a full subcategory of Di, F(Dy),
and for (M, F)e MF, (D), D(M, F) belongs to MF,,(Dy) (i.e. the differential
is strictly compatible with F) iflf Gr"M is a Cohen-Macaulay Gr¥9Dyx-Module, i.e.

Eatin g (GrTM, GrfDy) =0 for i%n.

In fact for a local calculation of D(M, F) we can take a resolution of (M, F)
by finite free filtered 9y-Modules locally on X instead of taking the resolution
Ky of wy[n], so that Grf commute with the dual functor. Here the assump-
tion M holonomic implies B M & M (9y) and

Ll gy (M, Dy) =0 for izn,cf. [K1].

We denote by MF,c,,(Dyx) the full subcategory of MF, (Dy) consisting of



892 MORIHIKO SAITO

(M, F) such that Grf M are Cohen-Macaulay, so that we have the dual functor
(1.1.5) D: MFycu(Dx) = MFucu(Dx)° .

1.2. Vanishing cycle functors. Let Y be a complex manifold of dimension
n—1, and put X=Y xS, where S is an open disc with the coordinate ¢, and
Y will be identified with Y x {0} in X. Let V;9; be the subalgebra of 9
generated by Oy, 9y and s: =t8,. We define the increasing filtration ¥V of Dy
by

ViDy = (Vo Dx) 17 (=0), Dosj=i (Vo Dy) 8i(i=0) .

Sometimes ¥ will be indexed by @ so that V,=V; for iSa<i+1 and iEZ.
Let M be a 9x-Module. By Kashiwara [K2], there exists at most one increas-
ing exhaustive filtration V of M, indexed by € and satisfying:

(1.2.1) V.M are coherent ¥V, 9y-sub-Modules of M,

(1.2.2) V.MV, DyCV,.; M for ec®, icZ,

(1.2.3) VMyt=V,_, M for a<0,

(1.2.4) t8,—a is nilpotent on GrY M for a=®@ locally on Y,

where we assume that V is discretely indexed locally on X, i.e. there is locally
a positive integer m such that V,=V}, for iim=a<(i+1)/m, and put VegM=
U u<pV M for S R. Let (M, F) be a holonomic filtered 9x-Module. We
assume that M has the filtration V satisfying (1.2.1-4) and

(1.2.5) t:F, Vy M~ F, V, .M (a<0),
(1.2.6) 8:: F, GriM = Fypy Grla M (> —1),
(1.2.7) GrY(M, F) are holonomic filtered 9)y-Modules.

Then we define the vanishing cycle functors of (M, F) by:

(1.2.8) ¥ (M, F) = @_1zu<o Gra(M, F[1)), yu(M, F) = GrL,(M, F[1]),
V(M. F) = ¢3,(M, F) = D _1<a<o Gro (M, F[1]),
¢(M, F) = Gr{(M, F),

and define can: y,(M, F)—¢,(M, F) and Var: ¢,(M, F)—y(M, F[—1]) by
9, and ¢ so that Varocan=N and canoVar=N, where N:=t8,—a on Gr} M.

1.3. Filtered graded Modules. Let MGF(Gr'9y) be the category of filtered
@-graded Gr'9x-Modules (M., F)=® (M, F) such that for some meZ,
M,=0if am&Z, F, M,=0 for p<0, locally on Y, and
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(1.3.1) GrYyt: (M, F) X (M,_,, F) for a<0,
(1.3.2) Gr! 8,: (M, F) < (M, F[—1]) for a>—1,

where we assume that the filtration F on each M, is exhaustive and (F, M,)
F,Gri9DyCF,.; M,,;. We denote by MGF,,(Gr'Dy) (resp. MGF,,,(Gr"Dy))
the full subcategory of MGF(Gr¥49y) defined by the conditions:

(1.3.3)  Gr§ td,—a is nilpotent on M, locally on Y,
(1.3.4) (M, F) are coherent (resp. holonimic) filtered 9y-Modules.

Here 9, is naturally identified with a subalgebra of Gr{ Dy=Dy[s]. The full
subcategory of MGF,,,(Gr'9y) defined by the condition:

(1.3.5) GrfM, are Cohen-Macaulay over Grf9, ,

will be denoted by MGF,,;,c;,(Gr" Dy).

By definition (M, F)& MGF(Gr¥9y) has the natural decomposition (M, F)
=Poza>1(M™, F) such that M§’=0 for a—pe&Z. We denote by MGF
(GrV D)@ the full subcategory of MGF(Gr”9y) defined by the condition: M,
—0 for a—BEZ. Put MGF,(Gr'Dy)® =MGF,(Gr'Dy) N MGF(Gr’ D)
(same for mh and mhCM).

Let MF(Dy; N) be the category of filtered 9y-Modules (M, F) with an
endomorphism N: (M, F)—(M, F[—1]) in MF(9y), and MF(9y; can, Var)
the category of pairs of filtered 9y-Modules (M’, F), (M"”, F) with morphisms

can: (M', F) — (M", F[—1]), Var: (M", F)— (M', F) in MF(Dy).
Then we have equivalences of categories:
(1.3.6) T*: MGF(Gr'9y)® X MF(Dy; N) for —1<a<0,
7% MGF(Gr'Dy)® =~ MF(9y; can, Var)
by assigning (M,; Gry t8,—a) or (M_,, My; GrY 8,, Gr¥, t) to (M., F). We
have also
T MGF,(Gr'D)® 5 MF,(Dy; N) for —1<a<0,
¥°: MGF,, (Gr'9Dy)® 5 MF,,(Dy; can, Var)
(same for mh and mhCM), where the right hand sides are the full subcategories
defined by the conditions:
(1.3.7) N is nilpotent locally on Y,
(1.3.8) (M, F) (or (M', F),(M"”, F)) is a coherent (resp. holonomic, resp.
holonomic and Cohen-Macaulay) filtered 9)y-Module.
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Here N=Varocan on M', N=canoVar on M”, and (M, F) is called Cohen-
Macaulay if Gr¥ M is Cohen-Macaulay over Gr 9.

Let D’GF(Gr"Dx)™ be the derived category of bounded complexes of
MGF(Gr'Dx)®, and Di,, GF(Gr'Dy)® (resp. D, GF(GrVDx)®) its full sub-
category defined by the following conditions (compare to (1.3.3-4)):

(1.3.9)  Grg t8,—B<F, Gr{Dyx is nilpotent on H(D, F, My)
locally on Y,
(1.3.10) H/(P, F, M) are coherent over B, F, Dy (and H' M,

are holonomic 9y-Modules).

Similarly we define D*’F(Dy; N), D'F(Dy; can, Var), Di. F(Dy; N), etc., so
that the equivalences of categories (1.3.5-60) are extended to the equivalences
between the derived categories.

We say that (M, F) MGF(GrV9y) is semi-free (or S-free), if it is iso-
morphic to D_ << M5, FYRQ¢ Gr¥V(Ds, F) for filtered Dy-Modules (M), F),
where (M7, F)Q1 is of degree @ and M/=0 except for a finite number of «
locally on Y by hypothesis. Here we use the natural isomorphism

GrV(Dx, F) = (Dy, F)Q¢ Gr'(Ds, F)

as filtered graded algebras.

We say that (M, F)e MGF(GrV9y) is induced (resp. Y-induced), if it is
isomorphic to P _i<y<o(Ly, F)R0Or Gr¥'(Dy, F) (resp. (M, F) is isomorphic to
Lo, FYR0(Dy, F) as filtered Op-Modules with action of N for —1=a=0),
where (L,, F) are filtered Oy-Modules (resp. filtered ©y-Modules with endomor-
phism N: (L,, F)—(L,, F[—1])) and they are zero except for a finite number of
a locally on Y. Here N on M, is defined by #8,—a. For an induced (resp. a
Y-induced) filtered graded Module (M, F), we define the filtration G by

G,M, = (F,M)) Gr'Dy (resp. G, M, = (F,M.) Dy)

so that Gr§(M,, F) is isomorphic to P _,<.<o Grs L, Q05 Gr'(Dy, F[p)) (resp.
Gry(M,, F) is isomorphic to GriL,Q0x(Dy, FIp]) for —1=<a=0). We say
that an induced (resp. Y-induced) filtered graded Module is quasi-finite, if G is a
finite filtration on M, (resp. M, for —1=<a=0) locally on Y. Note that an in-
duced filtered graded Module is Y-induced, but it is not necessarily quasi-finite
as a Y-induced Module, even if it is so as an induced Module, because the
filtration ¥ on L,® o Gr{ Dy is not finite, if L,=+0.

Let D*GF,; (Gr'Dy) (resp. D'GF(Gr’Dy) or D'GFy(Gr'Dy)) be the de-
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rived category of bounded complexes of semi-free (resp. induced or Y-induced)
filtered graded Modules. Let D’GF(Gr"Dy) (or D’GF%:(Gr'Dy)) be that of
quasi-finite induced (or Y-induced) filtered graded Modules. We define the
full subcategory Dj,.GF, (Gr"Dy) (resp. Dy GFL(Gr'Dy) or Dh.GF}:(Gr¥Dy))
by the cohomological conditions (1.3.9-10) (resp. (1.3.9) and (1.3.11) below):

(1.3.11) HIGrf Gr§ M, are coherent Oy-Modules.

Let D;,GF, [(Gr” D), etc. be the full subcategory defined by adding the cohomo-
logically holonomic condition (i.e. /M, are holonomic Dy-Modules). We also
define the full subcategories D;,.GF,(Gr'Dx)®, etc. by adding the condition:
Mg=0 for a —p & Z, so that

(1.3.12) DreGFAGr¥ D) = D _1<aso DuncGF, {Gr" D)

(same for mh and i, Yi, etc.). For a complex of filtered graded Module (M., F),
let (M., F)= _,<y<o(M., F)*® be the decomposition in (1.3.12). If (M, F) is
induced, Gr§(M,, F)® has the subcomplex generated by F,Gr; M, over Gr" 9Dy,
and this subcomplex and its quotient complex will be denoted respectively by
Gr§(M., F) and Gr$(M., F)I™1, so that

(1.3.13)  Gré(M?, F)9 = Gri LiQoy Gr'(Dx, Flpl) for a = —1,0

if (M7, F)=®_,<a<o(Li, F)Q0y Gr'(Dy, F). Here note that Gr§(M,, F)®
and Gr§(M., F) are filtered acyclic, if so is (M, F), cf. [S1, 2.1.11]. We also
check that D*GF4(GrV9y) is a full subcategory of D’GF(Gr¥Dy), i.e.

(1.3.14) D'GFI(Gr'9Dy) is equivalent to the full subcategory defined
by the cohomological condition: H’Grs (M., F) are filtered
acyclic for p>>0 locally on Y (same for Y-induced Modules
by replacing H/Gr§(M., F) with H'Gr§(M,, F)(—1=a=0)),

cf. [S1, 2.1.13]. Then by the lemma 1.4 below, we get the equivalences of cate-
gories:

D!, . GF{(Gr'Dy) =< D!, .GF(Gr'Dy)
(1.3.15) 1 W

DL.GF,[(Gr'Dy) X D}, .GF(Gr¥ Dy)

which remains valid if we add the upper suffix ().

In fact, in the proof of (1.1.1), we used the canonical resolution by bounded
complex of induced Modules (cf. [S1, 2.1.6]) which is also valid in the case
where the filtered Modules have the endomorphism N or the morphisms can,
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Var. Therefore we get the equivalences of categories forgetting the cohomolo-
gical conditions for mc and f. The coherence condition (1.3.11) for (M., F)e
D'GFi(Gr'9Dy) implies the coherence of H/(P, F, M) over D, F, Gro Dy
(using the filtration G and (1.3.13)), which implies (1.3.10), combined with
(1.3.9). Thus we get (1.3.15) by the construction of 1.4 below and the proof of
[S1, 2.1.16]. Here note that (1.3.15) is valid by replacing the bounded condi-
tion b by 4+, — or omitting it. Therefore we get

(1.3.16) D%.GF4(Gr'9y) is equivalent to the full subcategory of
D;,.GF{(Gr'9y) defined by the cohomological condition:
(M., F) is filtered acyclic for j >0,

which will be used in the definition of the dual functor.

1.4. Lemma. For a filtered graded Module (M_, F), let (M,, F)=®(M,, F)*
be the decomposition as in (1.3.12), and put (M,, F)s : =(M,, F)Q¢ Gr¥'(Ds, F)
€ MGF, (Gr"Dy), where the degree of (M, F)®1 is B. Then we have the can-
onical semi-free resolution:

u v
0— (M, FlI]); = (M, F); = (M, F)® -0 (—1<a<0),

’ ’

0> (My, F)S,@(M_y, F[IDS = (M_,, F)S,@(M,, F)§ - (M., FY® — 0,

where the morphisms are defined by

u(m@P) = Nm@P—mQ(s—a) P, v(m@P) =mP,
u'(mQP, nQQ) = (Var mQP—nQ®8, P, can nQQ—mQtP),
vV(mQP, nQQ) = mP+nQ .

Here can, Var and N are defined by 9,, t and s—a with s=t8,.

Proof. We show the case @«=0. The remaining case is rather easy. By
(1.3.1-2) it is enough to show the degree —1 and O part. We show the degree
—1 part. The other case is similarly checked. The graduation of the degree
—1 part of u’ is
Gri (Mifs DO Gri_i(M[s')) = Gri(M_[s DBGrf (Mils')
) U
MR s, nQs") — (Var mQs'* —nQ@s" ", can n@s"’ —m@s’?)

for meGri_; My,nEGri_,_; M_,, where s': =s-+-1 and Gri(M,[s'N=D; Gr}_;
M,R®s'". We define the finite decreasing filtration W on Grj M, and Grj (M [s'])
by
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W% Gry M, = N* Grj_; M,, W**' GriM_, = Var Nt Gri_; M, ,
W Grf My = can N* Gri_;_,M_, for i€N,
WiGry(MJs']) = ®;(W' Grj_;M))Qs" for ieZ,

where a=—1,0. Then Gry,GrF of u’, v’ become s'Pid and pr-+-0, where pr:
Gry(M,[s')—Gr} M, is the natural projection and 0 is the zero map. Therefore
we get the assertion.

1.5. Dual functor on the filtered graded Modules. Let wy[dy]— Ky be a resolu-
tion as right 9y,-Modules such that K} are injective 9y-Modules. Then wy
®R0y Gr' Dy and K¥ Q0y GrV Dy have the structure of graded right Gr”9 4-bi-
Module so that we have the graded quasi-isomorphism:

0y[dy]Q®0y Gr' Dy — Ky @0y Gr' Dy .

Here the twisted (i.e. not by multiplication from the right) action of Gr'9y
is defined by

(m®P) t(g) =mgQP =mQgP for g&Oy
mQRP) t(v) =mvQP—mQPvP for v€6,
(mQP) t(Gr't) = mQGr't P

(m®P) t(GrV'd,) = —mQGr'o, P

where mE @y and P =Gr” 9y, and the degree of w,QGr! Dy is i—1 (same for
K%). (¢t(*) means the twisted action.) Then for (M., F)E D*GF/{(Gr" D)™,
we define the dual by:

(1.5.1) D(M., F) = Homgy g, (M., F), (Ky[1], F)R0y Gr' (D, F))

where HomF is as in (1.1.2) and the filtration F on Ky{1] is trivial. If (M, F)=
(Ly, FYQR0y GrV'(Dy, F)E MGFH(Grv9y) for —1=<a=0, we have

D(M., F) = Homp, (L, F), (Ky[1], F))®0yr Gr'(Dx, F)
Gry Hompy (Lg, F), (Ky[1], F)) = Homoy(GrZ, Ly, Kyll])

so that (M, F) is well-defined, i.e. the filtered acyclic condition is preserved,
where we use the filtration G and (1.3.13). By a similar argument we check that
the coherence condition (1.3.10) is preserved and H’ Gr¥D(M,, F)=0 for j >0.
As to the condition (1.3.9), we use the canonical filtration = (with the equiva-
lence (1.3.15)) and the generalization of [S1, 2.1.16] to the case where the filter-
ed Modules have the action of N, can, Var so that the assertion is reduced to the
case where N=0 (—1<<e<<0) and M_, or M, is zero (using some filtration on



898 MORIHIKO SAITO

H(D, F, M)), then the assertion is clear. Thus we get the dual functor
(1.5.2) D: D, GF(Gr'Dy) — D, GF(Gr'Dy)°,
using (1.3.15-16). By definition it induces

D: D), GF(Gr' D)™ — (DL, GF(Gr'Dx) 1 "*)°,

because the degree of Ky[1]®1 is —1 and (mQP) 1(s)=mQQ(—s—1) P (where
we use the canonical resolution in 1.4). Similarly we check that the dual func-
tor D is compatible with the functors 77, i.e.
vie DM, F) = (D¥*(M,, F))(—1) for —1<a<0,
(1.53) ¥'DM,,F)=D¥ (M, F) (-1,
Y°D(M,,F)=DY¥(M,,F),
so that the action of N, can, Var on the left hand side is identified with the
transpose of —N, —Var, can on the right hand side respectively, because the
morphisms »' and »” in 1.4 are (essentially) self-dual. Here (k) for an integer
k means the Tate twist so that (M, F) (k)=(M, F[k]) for a filtered Module
(M, F). As a corollary of (1.5.3), MGF,,;,c,,(Gr'Dy) is stable by the functor D
and we get the functor

(1.5.4) D: MGF,,c(Gr’" D) — MGF,,c3(Gr" Dy)° .

Let MF,,,c(Dx) be the full subcategory of MF,c,(Dy) in 1.1 such that its ob-
jects have the filtration V satisfying (1.2.1-7) and v (M, F), ¢,(M, F) are Cohen-
Macaulay. Then we have the vanishing cycle functors

v, 612 MF,c(Dx) — MFc(Dy) .

1.6. Theorem. The full subcategory MF,,c,(Dx) of MF,c,(Dy) is stable by
the dual functor D, and we have the functorial isomorphisins:

(1.6.1) ¥ DM, F) = (D (M, F)) (1)
¢ D(M, F) = D ¢,(M, F)

such that the action of s on v, D(M, F) is identified with the transpose of —1—s
on Yra\(M, F) (:=P _1<u<o Gri(M, F[1])), and can, Var on the left hand side
with the transpose of —Var, can on the right.

Proof. 1t is enough to show the first assertion and the natural isomorphism:

(1.6.2) DGr'(M,F) = Gr¥ D(M, F) for (M, F)EMF,c(Ds) -
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Locally we have a resolution (M, F)<(L, F) such that (L¢, F) are finite direct
sums of the copies of (Dy; F[p], V[a]) (—1=a=0) and Gr"(M, F)<Gr"(L, F)
is also a filtered quasi-isomorphism. Then for the calculation of D(M, F),
(resp. D Gr¥(M, F)), we can use the above resolution and replace Ky(resp. Ky[1])
by wx[n] (resp. wy[n]) in (1.1.2) (resp. (1.5.1)), and this complex is denoted by
D(L, F) (resp. D GrV(L, F)). Then D(L, F) has the filtration V by

D(L; F, V) = Homg (L; F, V), (wx[nl; F, V)®0x(Dx; F, V),

where wy has the filtration V as a right 9x-Module such that Gr’;0y=w,®
t* dt/t for i>0 (and O otherwise). By definition of D Gr¥(L, F) in 1.5, we have
the canonical isomorphism:

GrV D(L,F) =DGrV(L, F)
as complexes of filtered graded Gr¥9x-Modules, because
Gr'(@xQ0xDy) = 0y R0y GrV Dy

as right Gr¥ 9 y-bi-Modules. Then by [S1, 3.3.3-5] and (1.5.4) (cf. the proof of
[S1, 5.1.13]), D(L; F, V) is bi-strict (cf. [S1, 12.2]), and by the above quasi-
isomorphism, the filtration ¥ on D(L, F) induces the filtration ¥ on D(M, F)
satisfying (1.2.1-7). Thus we get the first assertion and (1.6.2) locally. We
check that this isomorphism is independent of the local resolution (L, F) and
(1.6.2) is globally well-defined.

1.7. Remark. The arguments in this section can be applied to the non filter-
ed case as follows. Let X, Y be asin 1.2, and M (Dy)y the category of coherent
9y-Modules having the filtration of Malgrange-Kashiwara along Y. Here we
choose and fix an ordering of C such that a<<a-+1, a+m<b for some me Z,
and a<be —b<—aea+1<b-+1 for any q, b&C. Put A={aeC: —1<a<
0}, and 4'=4A\{0}. Then M = M (Dy)y has the filtration V indexed by C such
that VM are coherent over V,9DyD and ¢8;,—a is nilpotent on Grl M (locally
on X). We define

(A7) M =@y GriM, M =GV, M, oM =GriM.

which are independent of the choice of the ordering. Here note that the hol-
onomic 9 x-Modules belong to M(Dy)y by [K3] (combined with the argument
as in [S1, 3.2.4]). As in [K2] we consider M & M (Dy)y of the form Coker u
with u a filtered endomorphism of a direct sum of copies of (Dy, Via]) (—1<
@< 0) such that Gr¥u is a diagonal matrix whose restriction to a copy of GrVI®!
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Dy is the left multiplication by (9, —a)” for m>0 (but we do not assume that
the off diagonal coefficients of the matrix belong to V_, 9y). Then choosing
local generators of the filtration, every object of M (9x)y has locally a surjective
morphism from such a module (where m may be O in the irregular case), and
hence a resolution by such modules locally. This implies that for any filtered
resolution of (M, V) by finite direct sums of copies of (Dy, Via]) (—1<a<0),
its dual with value in (wx®Dx[n], V) is strict and its cohomologies with the
induced filtration belong to M (Dy)y, because it is clear for Coker u as above
by its self dual form and the injectivity of Gr'u, and we can apply the strictness
of morphisms of M (Dy)y, cf. [K2] [S1, 3.1.6], by taking a free resolution of the
above resolution, where we use also the independence of filtered free resolution,
i.e. a complex of filtered finite free modules is filtered acyclic, iff it is acyclic and
so is its graduation. Here the dual of a free graded module is defined by the
(shifted) graded morphisms to @, @ Gr¥Dy[n] as in 1.5 so that the dual functor
D commutes with Gr¥ for a complex of finite free filtered modules, and D
commutes with Gr” by the above argument, because the graduation commutes
with H’ for a strict complex. Then we get the commutativity of ¥, ¢, with
4’ D using the resolution 1.4 in the non filtered case, where we apply it to the
standard resolution of ¥»M, ¢, M by induced modules using the local nilpotency
of the action of N for its proof. We get also the correspondence between can,
Var, N on v 9’ DM, ¢, 9 DM and the transpose of —Var, can, —N on ¥M,
& M.

1.8. Remark. Here we give some formalism of sign of complexes, cf. [D2],
which will be needed in the proof of 2.2.

Let A, B be complexes (of abelian groups or sheaves). We define the
complex Hwn(A, B) so that we have a canonical isomorphism (without sign):

(1.8.1) Hom(Z, Hom(A, B)) = Hom(ZQA, B) for any complex Z.

For Z=cHem (A, B), we have Z!=T] ; Hom(A’, B'*) with

(1.8.2) df) (x) = —(=1) f(dx)+d(f(x)) for feZi x4 .

By the canonical isomorphism Z[m|QA[—m]=ZQ 4 for me Z, we get
Hom (Z[m], Hoem(A[—m)], B) = Hom(ZRQ A, B)

and an isomorphism

(1.8.3) (Hom (A, B)) [m] = Hom(A[—ml, B),
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where the sign (—1)'” appears on Hom(A4’, B**7) (here (—1)¢+™™ is also pos-
sible). Similarly we have

(1.8.4) (Hom (4, B)) [m] = Hom (A, B[m)),

where no sign appears. The problem is that the isomorphism (1.8.3) is not
compatible with composition for m, nEZ, and does not commute with the
isomorphism (1.8.4). Let f: A—A’ be a morphism of complexes, and f*: Z'—
Z its transpose, where Z'=Hem(A’, B) and {f*v, up=<y, fupE B**/ for uc 4*,
vE Hom (A", BY)C Z". Then by 3.6 and
S Lo
Hom (C(Z'"— Z), Ham(C(4 -~ A"), B[1])

%

= Hom(C(Z’L Z)QC4 -j—i A", B[1]),
we get an isomorphism

’ f* f ’
(1.8.5) C(Hom(A', B) — Hom (A, B)) = Hom(C(4 > A’), B[1])

where the sign (—1)* appears on HAom (A7, B**7).

§2. Compatibility with the Topological Duality

2.1. Topological duality for the vanishing cycle functors. With the notations
of §1, let z: $*—>S5* be a universal covering, and we denote also by z: X*—
X* its cartesian product with ¥, ie. X*=YxS*, etc. Let i: Y—X and j:
X*—>X be the natural morphisms. For K< D!Cy) we define vK < DY(Cy)
by

(2.1.1) wK = i* joj*K, cf. [D1],

where we may assume that K is represented by a bounded complex of injective
Cx-Modules (i.e. flasque sheaves), and this representative is also denoted by K.
The action of the monodromy 7 is induced by the action of 7* on i* j4j*K,
where 7 is a generator of the covering transformation group of = defined by

x> x+1 if z is identified with the exponential map x+—exp (2zix). Then we
have the natural decomposition (cf. [S1, 3.4.14]):

(2.1.2) VK = Drec* VK,

where Y~ K is a subcomplex of K and the union of the kernel of (T—2)
forieN. Put

’51"4:1[( = @)ﬁ:l 'l/,)\K



902 MORIHIKO SAITO

so that K=y K@y, K. We define K=y K[—1] (same for vy, yry,)).
Then we have the natural morphism

sp: i*K[—1] — ?¢~ K (or ¢ K),

and ?¢,K (or ?¢K) is defined by the mapping cone of sp. We have the natural
morphism

can: 7y K — ?¢, K, can: K — ?¢K

induced by the natural inclusion, and the decomposition ?¢ ="¢,P?¢,, com-
patible with that for 1 by the morphism can, where can induces an iso-
morphism vy, "3?¢.,. By definition can is imbedded into the distinguished
triangle:

can 1
(2.1.3) —> Py K — 2, K —> e

We define the action of N on ?y,K, ?¢,K by the logarithm of the unipotent part
of the monodromy T, divided by 2zi, which is well-defined by definition of
Py, K. We define the morphism Var: ?¢,K—?y~ K by the cone of (0,N).
Here we omit the Tate twist (—1) using the canonical isomorphism C(—1)=
C, cf. [S1, (2.0.2)]. We have the natural quasi-isomorphism:

S —N
2.1.4) 'K = [*K 5 o K—> K]

where the right hand side is the single complex associated to the double com-
plex such that i*K has the degree O with respect to the first index. From
now on, i'K will denote the target of the quasi-isomorphism (2.1.4). Then the
natural morphism i' K—i*K is identified with the projection onto the first com-
ponent of i'K. We define the morphism cosp: ?¢» K[—1]—i' K by the natural
inclusion of ¥~ K[—2] into the third component of itK. Then we have the
natural quasi-isomorphism:
C(cosp: "y K[—1] = i' K) — [i*K — ¥, K] (= *¢,K)

induced by the natural projection. In particular we get the distinguished
triangle:

Var +1
(2.1.5) - i'K—> ¢, K — W K—>

because Var is homotopic to the natural projection of the mapping cone onto
the first component.
Let L be as K, and S: KQ L—Ty a morphism of complexes, where Ty is
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a flasque (i.e. C-injective) resolution of Cx(n) [2n]=Cx[2n]. Then it induces
Y8 YKQWL —> Ty, ¥nS: ¢y KQynL —> YTy .
We define ?4rS': 24 K Q*rL—>yrTx[—2] so that the composition
YKQY¥L = (CLIQK)Q(C1]Q*L) — (C1IQCIN QYK QL)
RLgES
coincides with S (same for ?¢~S), where the second morphism is defined by
xQ@y@zQw > (—1)*E 7% xQzQ yQw .
Here note that the natural morphisms
i*Ty —> Y0 Tx — wTx, cosp:ynTx[—2]—i'Ty

are quasi-isomorphisms. We denote also by ?¢S its composition with
Y Tg[—2]—>i'Tx. We have a pairing

i'S:i*KQi'L— i' Ty

by (i*S,yS, ¥ S) using the identification (2.1.4). Here we have a change
of sign coming from the isomorphism

*KQWL[-1]) = (*K QL) [1]

because [—1] means C[—1]Q® by definition. Then the sum of ?¢S and i'S
defines a pairing

2¢.8: ¢ KQ?¢, L — i' Ty

and that of the distinguished triangles (2.1.3) and (2.1.5), cf. [S1, 5.2.3-4].
In particular we get

(2.1.6)  *y,So(id@®Var) = ?¢,So(can®id): "y, K @?¢,L — i' Ty .
Here we can also use the pairing
i'S:I'KQi*L—i' Ty

similarly defined. Then the sum of i'S and —?y~ S give a pairing ?¢,S and
that of (2.1.5) and (2.1.3) so that

(2.1.7)  —y,So(Var@id) = ?¢;So(idQcan): ?¢, KQ?yr, L — i' Ty .

We can check that these two definitions of ?¢, S are homotopic to each other,
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using the quasi-isomorphism
[(*K — ¥ K] — C(y» K[ 2] = [i*K — yn K — ¥ K])
defined by [x, y]— (Ny, [x, y, 0]). In fact the homotopy is given by

[(*K — yn KIQU*L — yn L] — [i*Tx — Y Tx — v, Tx]
w U
[x, YI®[x", y1 [0, 8(y,¥"),0].
We say that a pairing S': K Q L— Ty is non-degenerate, if the corresponding
morphism:

is a quasi-isomorphism.

Remark. We can check that /S and ?¢,S are non-degenerate, if so is §. In
fact, we can reduce to the case where K, L are perverse sheaves and then X, L
are simple (i.e. intersection complexes), using a filtration of K, L, because v
and ?¢, are exact functors, cf. [BBD]. Then it is enough to prove the assertion
for #¢8 by (2.1.6) using the monodromy filtration of v, and ?¢,, cf. [S1, 5.1.12,
5.2.6]. The assertion follows from the same argument as in the proof of 3.5,
because
lim im * ju(*LOE,.a) = C(V: Y4 LT [s™) = L [sT [s™D

n m

is acyclic, where E, ,(n=>m) is the pull-back of a local system on S* whose
monodromy is unipotent and has one Jordan block of size n—m-+1, and the
natural injective and surjective morphisms E, ,—~E,,, , and E, ,—~E, ,., are
given in a compatible way. (We can also use resolution of singularity and

apply 3.5.)
2.2. Theorem. For (M, F)E MF,,;c1,(Dyx), put L=DRxM & Perv(Cy), K=DL
so that we have the natural non-degenerate pairing S: KQL—>Ty. Then by the
Sfunctorial isomorphisms DRyyr ="y DRy(same for 9,), cf. [S1, 3.4.12], and DR D
=D DR, cf. [S1, 2.4.12], the duality isomorphism (1.6.1) corresponds to
(2.2.1) —hpSE K °2 DL,

rp S 2 KX D¢ L.

Proof. The assertion is local. By restricting X, we have free resolutions:

DRy (L,, F)— (Gr!M,F) for —1<a<0,
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where (L, F) are filtered differential complexes on Y such that the filtration F
on each L} splits and Grj L] are free Oy-Modules. Here DRy (L,, F) is the
corresponding complex of filtered free 9y-Modules, cf. [S1, 2.2], and we may
assume that L, are bounded complexes and F is finite, cf. [S1, 2.1.17]. Using a
filtration of Gr} M, we may choose the resolutions so that the morphisms can,
Var, N are lifted to (L,, F) and N is nilpotent. Then we get a free resolution
of (Gr'M, F) by 1.4, and it can be lifted to a free resolution DR (L, F) of
(M, F) by restricting X. By definition (L7, F) is the direct sum of Ox®0y
(Li, F) (—1=a=0) and Ox®@0(Ly*, F[1]) (—1=a<0), 0xQ0x(L$"", F), and
L has the filtration ¥ such that VL7 is the direct sum of #Q,® L’ for i=max
0, —[f—«a]) and £OxQL™ for i=max (0, —[f—a]) (a=* —1,0), max (0,
—[841]) (¢ =0), max (0, —[8]) (e=—1). Note that Gr" DRx(L, F)is the above
resolution of (Gr¥ M, F) and

DR L;F,V)— (M;F, V)
is a bifiltered resolution on a neighborhood of Y, where

VADRZ L) = Xgy-u Ve LQVy Dy .

For =@, let O%(resp. é?() be the left @ y-sub-Module of iyi* ji j* Oy gener-
ated by t**/ (resp. t*H(log 1) (i=0)) for jEZ over Oy. We define the de-
creasing filtration ¥ on O% and (5‘3”; by
VPO = O, tolePl
V8 O% = Sz Ox 17171 (log 1) .
Put
(L@, V) = (L, N)®0x(O%, V) (Cix i* Ju J*L) .
(L@s), V) = (DRS' L, V)®0x(O%. V) (Cix i* j, J* DR L)
where DR5' L=DRy DR3' L=L®0s 95 and
Vo DRs' Ll = Sgiy-q Ve LQ0s Vy Ds -

Then L™ is a subcomplex of iy i* j, j*L (same for L®)[s]), and L@[s] is a
complex of right 9)s-Modules such that
- s - -
(2.2.2) 0— Vo L@[s] > V3 L@[s] > V, L@ — 0.
Then by [S1, 3.4.12] the natural morphisms

(2.2.3) Gr{ L®[s] < V, L@[s] — L®][s]
Grg L@ < Vo L@ — [*) — ¢'exp(2¢iu) JL
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are quasi-isomorphisms for —1<a=<0, where JL is the canonical flasque re-
solution (of Godement) of L.
We define the filtration ¥ on 2x(log Y) by

7*2,(log Y) = t:2,(log ¥) for i=max(0, —[—a]),

and V on 2y (resp. wx) using the inclusion £,—&2y(log Y) (resp. the isomor-
phism 2% =wy). Then we can define 2, 2¢[s] similarly (same for wy). If
a =0, they are written also as 2, 2 4[s].

Let (DL; F, V) be the dual filtered differential complex of (L; F, V), i.e.

(DL; F, VY = Hompy (L; F, V)™, (0x; F, V),

and sometimes (D L; F, V) is denoted by al/amg;((L; F, V), (wx; F, V) [n]). By
definition we have the natural filtered quasi-isomorphism:

(2.24) Hombie (L, V), (2, V) [2n]): =Hom'gy (DR%'(L, V), DR% (2%, V)[2n])
= DRy DRX(DL,V)— (DL, V),

because J/am,‘;iffx((L, V), (wx, V) [n)) =DRx* (DL, V) cf. [S1, 2.2]. We can
check that (2.2.4) induces a filtered quasi-isomorphism

@2.5) omle (L, V), @9, V) [20]) > (DL, V)
for —1<a=<0. Tensoring O% for #=—1—a, we get also
(2.2.6) Vo Hompsse (L, 29 2n) -V, JmDiffx(z(p)v 257 2n)
—> Homyye (GriL®, Gr{ 2P [2n])
for —1<<a<<0. Here we have a quasi-isomorphism
Gri@§Y [2n] = C(s: 2y [r] — 24 [c]) [2n—1] — 2,[2n]

as filtered differential complexes on Y, where r=log ¢ and st’=iz*"!, i.e. [s, 7] =
1in 9y. Therefore by (2.2.3) and (2.2.5-6) we get a morphism in D%(Cy):
(227) Wexp(zﬂtim) DLZ GF(I)’(DE)(W)

— H ‘WDiffy(G" JL®, 2y[2n]) = (DY expioeipy L) [2] .

We can check that (2.2.7) coincides with ., 8% and it is enough to check
that (2.2.7) coincides with the analytic duality. In the level of complex, (2.2.7)
is represented by

22.8) CGri(DLY®[s] = Gri(DL)® [s)

— oy (Grl L®, C(wy[1] —> wy[<]) [n])
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~ J/amay(Gr},’I:(ﬁ), wy[n+1]).
Here we have

Gri(DL)® [s] = C(DLg) [s, 7] — (DLg) [s, 7))
GriL® = C(Lg[r] = Lg[7])

with the morphisms defined by

URP — N*uQP+uRsP
VRO = NvQRQ—vQsQ

forueDLg, ve Ly, PEC]s, t], QEC|7], and uQs't’ (D Ly) [s, 7] corresponds
to

Le[z]12vQt* = {u, vO>QR1/(—ad s) t* S wy[r]
up to sign (cf. 1.8), where (ad s) P=[s, Pl. We define a quasi-isomorphism
Lg[1] = C(Lg[z] = Lgl])

by u> (X N u®<7i/i!, 0). Then this represents the isomorphism in [S1,
3.4.12] (using (2.2.3)), because it can be lifted to a quasi-isomorphism:

SINIvR7i/il, 0 [Lf,[s, 7] = Lgls, 7] ]
Ly[l]2v— eC| 15 hes
0 , SN y@rifi! L Lgls, 7] = Lg[s, 7] | -

We apply this also to DL, and compose these with (2.2.8) so that we get a
morphism

(DLg) [1] = Home (Lg[1], @y[n—1]) 2]

whose restriction to (D Lg)**! is the identity multiplied by (—1)’. This proves
the assertion for vry,. For v, we use the quasi-isomorphisms (dual and
quasi-inverse of each other):

Grgz = C(L [z L_\[7] = L_,[z]D Ly[z])
N—s
2 C(L_y[r]— L_[z])
defined by

UQP,vQ0;vVRQ',u'QP)— (vQQ,v'QQ'+Var u'QP’)
(can uQP, u@Q@P; vQQ,0) — (u®P, vQ Q)

(same for GryL[s]). Then we can apply the same argument as above. As for
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$,, we must be careful about the problem of homotopy and mapping cone.

We use the diagram

Gry H# %iffx(La 2 x[2n]) — A “””‘Diffy(Gr YL, Gri@ x[2n])

? I
I*Vy Homryiee X(L, 2 x[2n]) = H e (O YL, Gri2 x[2n])

Y !
i* A “’mDiffx(Ls 2 x[2n]) — Homg( VOZ, J ('é x/ V<0§ x) [21])

I 1
i* ’%"”Diffx(La gx [2n]) — J‘W‘C(Z’ ng [2n])

Y y
i* Homg(L, jx J*DR(Ky)), — Home(L, Jyr, DR(Kx))

I i
Y Homg(L, DR(K)) — Homg(yr, L, ¥ry DR(Ky))

and the similar two diagrams where L, v, L on the right hand side are replaced
by i*L, and then £ and v, are further replaced by 2, and i* and ji j*,,
are omitted. Here J means the canonical flasque resolution. Then the mor-
phism in D¥%Cy) (cf. 2.1):

N id
6, §%: [* DL~ v, DL] > [i* DL >, DL = v, DL < v, DI]

—N
— Hom([i*L — YL}, [i*Tx — Y Tx — ¥, Tx))
— Hom([i*L — L], Ty)

is represented by
o1 ~
(Gr‘.’1 DL[8,] — Gri{ DL[s]
L 10, Leos
Gr{ DL[8,] — Gr¥{ DL[s]

- ot_l v ~ :N v ~ id v ~
Grl, DL[8,] — Gry DL[s] — Grg DL[s] < Grg DL[s]

— J/at \L o8 \]’ o8 \L o8
~ —N ~ id ~
Gr{ DL[8,] — Gr{ DL[s] — Gr{ DL[s]< Gr! DL][s]]
—N
wy[n] = wyl7] [n] — wyf7][n]
— Homg, ([Gr VYL — Gr{L], J }—s }—s
0 — wy[r][n] — o] [n])/

— y’/amay([GrXL — GriL), wyn—1))

where [A—B—C<-D] means the mapping cone of D[—2]—[A—>B—C], and
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the third morphism is defined by

[“’b’c}a (c+e)
00 f pr(cte

with pr the natural projection: wy[r]—wy. Using the natural inclusion
t7*: Gr¥, DL[8,] (= GrY, DR5* DL)— Gr{ DL[t™", 5]

and putting DL;=(DL,) [s], DL =(DL,) [s, 7], etc. for a=—1, 0, the first
diagram is expressed as

CDLyPDL:, - DL, BDLy) —> ( i2) C(DLYPDL:, - DL D DLY)

yo(—s,5) (—¢,0) l'(s’s)
C((DLy)sSP DL, — (DL:)sP DL3) —’> C(DLSTEBDLSI — DL Y@ DL

with ¢ the natural inclusions, and into its associated single complex, we have a
quasi-isomorphism of DL, defined by

0,0;0, 0 ; 0, 0 ;
"~ [ 0,0;0,u®1; SI(—N*) u®7ifil, =3 can*(—N*) u@7/({i+1)!;
—> can* (—N*) u@+(i+1) 1,0
: o)
Here the bidegree of Gr{ DL[3,] in the first diagram is (0,0). Similarly we
have a quasi-isomorphism of L, into

[Gr{L— Gr¥L] = [C(L_, —>L0)( 9) C(Li®LL, — LL,P L))

defined by
vi= [0, v; 3T N v®7ifi!, 30 Var NEv@«i+(i+-1)!;0,0].

The composition of these morphisms with the above morphism representing
¢, S* coincides with the natural isomorphism

DLy~ Homg (Ly, wy[n—1])

where the contribution coming from Gry DL[s]—> Hoem(Gr{L, wy[7] [n]) van-
ishes. This completes the proof of 2.2.

2.3. Remark. Corresponding to the operation L L in the proof of The-
orem 2.2, we have the following for a complex of C-Modules.

For a=C/Z, we define E{ to be the subsheaf of w4 C3. annihilated by
(T—exp(2ria))**! for k=0, where T=7* with r the generator of the covering
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transformation as in 2.1. Then E is a local system on S*, whose monodromy
is given by T7%. Put E@=E®—lim E® Cn4C5+, and “E® =I"(§*, z*E{)
(same for “E®). Let ¢ be the coordinate of S, and z—=(2zi)"" log ¢ that of §*
so that 7 is given by z+>z-+1. We choose base points p’ of $* and p of S* so
that #(p')=p and Re z=0 at p’. Then =~!(p)=p’+Z, and we have canonical
isomorphisms:

(2.3.1) I'($*, 7% 1y C3+) = (0% 74 C5v) y = (75 C35+), = Iz Cs >

so that the action of T is induced by the canonical isomorphism C,.,—C,, i.e.
(b,)=T(a,) satisfies b,=a,, for a,, b,&C,. Therefore E{” is a local system of
rank k-+1, because its local section is uniquely determined by the values at
x=p'-+j (0= j<k) using (2.3.1). Let N be the logarithm of T,, divided by 2zi,
where T=T, T, is the Jordan decomposition of 7. Let r be the element of
=E{® corresponding to (2zik),= 1 by (2.3.1), and e, € E§* to (exp (27iak)),— 44
Then Nz=1 and Te,=exp (2ric) e,.
We have a natural multiplication

m: w C5+Qmy Cr — my Cx

which induces the componentwise multiplication on C, by (2.3.1). Then we
have T(mu@v))=m(Tu@ Tv) and

m: E@QE® — E@+B)

m: °=E(a)®°°E(u) — 2 E@+B)

with N(m(u@v))=m(Nu@v)+mu@Nv). In particular, we get
"E® = C[r], "E® =Clele,

as a C[N]-algebra and a left W-Module, where Nzi=ic*"! and W is the Weyl
algebra C'[s, 7] such that [s, r]=1 and s=N.

Now we consider a left Ps-Module 7y O3+ or a left Ps-Module jy 7y O3+
with j: S*—S. Then Ef generates over Oy a Dss-sub-Module, and we denote
by @ﬁ(c Jx7xO3+) its natural extension as a meromorphic regular holonomic
Ds-Module (i.e. regular singular meromorphic connection). Then for each
acC, we have a natural morphism

(2.3.2) “E®3ut il 1=t exp (N log 1) ucI' (S, O%)

because t” exp (N log t)u defines a section of z*zy O3« invariant by 7. Then
#(for a=0), é,=I'(S*, n4O3) coincide with log t =2riz, t* =exp(2niaz) €
I'(§*, O3+) by definition.
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For K& D%Cy) represented by an injective complex, we define
K® = i* j(j*K @ E®) = lim i* jy(j*K @ ¢ E{") -
—>

Then K™ is naturally quasi-isomorphic to (the underlying C-complex of) L@,
if K is a flasque resolution of a filtered differential complex L as in the proof
of 2.2. Moreover the natural morphism

(2.3.3) R = i) K

is an isomorphism of complexes. In fact, by definition, v, K is the inductive
limit of

i* je(Ker((T—A): mya*K' — wyn*K'))
where K’ is the restriction of K to X*, and the natural morphism
K'Q¢ E® — Ker(T—2)*': nyn*K' — nyn*K')

is an isomorphism, because they are both subsheaves of z,z*K’ and their
local sections are uniquely determined by their values on the image of k local
sections of z. Here note that the monodromy of Ve,periay K corresponds to
the action on K® induced by the inverse of the monodromy of E® (as a limit
of local systems). The above construction can be generalized to the case where
K is defined on any field (cf. [S1, 3.4.14]).

2.4. Remark. The arguments in this section can be applied to the non filtered
case as follows. With the notation of 1.7 we say that M & M (Dy)y is cohomol-
ogically regular along Y, if the following conditions are satisfied:

2.4.1) DR(M(*Y)) = ju j*DR(M)

24.2) DR(M('Y)) =j,j*DR(M)

where M (xY)=M{[t™"] is the localization of M by ¢, and M (1Y) is the unique
coherent 9 x-Module which is endowed with a morphism M (!Y)—M inducing
an isomorphism outside Y, and satisfies 8,: Gr’;M(\Y)SGr{ M (1Y), where

M(*Y) and M(!Y) belong to M(Dy)y by the natural morphisms inducing
isomorphisms outside Y. Note that (2.4.2) is equivalent to

(24.3) DRy(C(8;: Vo yM — V ,M)|y) is acyclic for some (or any) <0

by [S1, 3.1.7], and in the holonomic case (2.4.2) is equivalent to (2.4.1) for
the dual of M by duality, cf. 1.7. We can show the commutativity of 1, ¢,
with DR as in [S1, 3.4], if the following conditions are satisfied:
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244 M is cohomologically regular along Y,

(2.4.5) the action of the monodromy T on each stalk of #*DR(M) has
non zero minimal polynomial.

Here note that (2.4.5) is satisfied if M is holonomic, and for the non unipotent
monodromy part we can use the correspondence of the functor M— j*M ®O(§‘E}
with Ki— j*KQES by DR, cf. 2.3 for notation. In particular we have the
commutativity of v and DR, if M satisfies (2.4.5) and M ®O% satisfies (2.4.4)
for any @ (e.g. M is regular holonomic). The construction in 2.3 applies under
the assumption (2.4.5), and the above assertion follows easily from (2.4.1)
(2.4.3). In fact we have the isomorphisms as in [loc. cit]:

(24.6)  yr, DR(M) = lim i* j4«(j*DR(M)QEL®))
~ lim i*DR(M(*Y)R6Y) — i*DR(M (+Y) [log 1)
~= DR,(C(8,: M(xY) [log 1] - M(xY) [log t])|)
Z DRy(C (8, t: V_M[log t] > V_M[log t]) | y)
X DR,(C(8, t: Gr¥,M[log t] — GrY M[log t]))
~ DRy, Gr',M

where we use the natural filtration of M (* Y)®(§2 whose graduation is M (*Y)
for the second isomorphism. (A similar argument has been obtained by
Mebkhout in the regular holonomic case using the expression of the finite
determination vanishing cycles as limit of mapping cones due to Beilinson and
the surjectivity of the variation on the vanishing cycles of holomorphic func-
tions instead of the construction in 2.3.) Then in the regular holonomic case
we get the compatibility of the dualities of 4)-Modules and perverse sheaves
for the vanishing cycle functors as in (2.2.1) by the same argument.

8§3. Normal Crossing Case

3.1. Perverse sheaves with normal crossing supports. Let X be a polydisc with
the coordinates (x,, -*-, x,). Put a={l, «--, n}, and v={iEn: v;40} for v=
vy, =, v,)E(C|Z)". Let Perv(Cy),, be the full subcategory of Perv(Cy) such
that the stratifications of its objects are given by the intersections of D;={x;=0}.
For K =Perv(Cy),., and v&(C/Z)", I CF\V, we define

VYK = Py UK

with Y”}"waj,exp(zqzm) (for je&l1), ¢, .(otherwise). Then we have the mor-
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phisms

N;: ¥}JK— ?IK,
can;: ¥1K— ¥ryuK for i€lUV,
Var;: VIK — W}‘\(i)K for ierl.

We can check easily that ¥} is independent of the order of 7, because Vs, is
same as restricting to {x;=1} in this case. By Deligne’s description of mono-
dromical perverse sheaves, K €Perv(Cy),, is uniquely determined by ¥'7K with
N;, can;, Var;.

For m=(my, --+, m,)EN", put g=x"=[Ix%, and m={i€n: m;40}. The
proof of the following lemma is pointed out by Kashiwara in the unipotent and
reduced case (i.e. ¥7K=0 for v==0, and m;=1).

3.2. Lemma. For a=C/Z, ve(C|Z)" and ICi\P, put (Nx—mxN);q5=
iciazN;—m;N). Then for K =Perv(Cy),,, we have a functorial isomorphism
as C[N]-modules:

N

VE g exptonian K = Ker (N —myN)in5: U 5"KQc Cle] = V2" K@ Cl7))

such that N;, can;, Var; on the left hand side correspond respectively to the mor-
phisms defined by the mapping cone of

(N;—m;N, N;—m;N) ,
(d, N;—m;N) if iem\(IUD), (can;, can;) if iEmUIUD,
(N;—m;N, id) if ielnm, (Var;, Var)) if iel\m,

where N;, can;, Var; and N are the abbreviation of N;Qid, etc. and idQN,
and the action of N on C[r] is defined by Nti=ir'"!, ¢f. 2.3.

Proof. Put D=g™0),,, and let j: U=X\D—X be the natural inclusion.
Then by 2.3 and using the graph of g, Ve K is represented by the mapping
cone of

JG*K@¢ E®) = j(j*K Q¢ £)

so that the action of N on ¥ ,mimK corresponds to id@N. Here the pull
back of E® is also denoted by E“, and —N €End E® is the logarithm of the
unipotent part of the monodromy, divided by 2zi. By definition, the semi-
simple part of the monodromy of E® around D;={x;=0} is the multiplication
by exp(--2ziam;), and for IC#A\P such that TN m=@, we have a canonical
isomorphism
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TIH(G*FKQE®) = 77 jx(j*KQE™)
= W}l+me®i*err_n wx;,,exp(—-z'ttjmnk) E@®
= PrremgQC|[r] (cf. 2.3),

if we choose a factorization (X"\D')~—>S8* of (X"\D’)"—X'\D'—S* compatible
with the base points. Here X'={x,=0(ke&m)}, D'=X'ND,i: X'—=X, and we
choose a base point of (X"\D’)~ such that Re(2zi)™! log x,=0 on it. We check
that the action of N;, can; (i €m), Var; (i &) on the first two terms correspond
to N;—m; N, can;, Var; on the last term. For v&(C/Z)" and ICn\p, the
morphisms

cannz: Yna i (J*KQE®) — ¥} j,(j*KQE™)
Varzy-: 7 js(J*KQE®) — Th- jo (j*KQE®)

are bijective, because
1 (J*KQE®) = lim Ty H(*KREL)
(same for jy). Here can,=]];s; can;, etc. Therefore the natural morphism
i ji(J*KRQE®) — ¥ j(j*KQE™)

is identified with

Nrpat Phais(PFKQE®) — Ul jx(J*KQE®@),
and then with

(Ng—mxN)rot ZFK‘;’”K@C[T] — W’;:‘;”‘K@C[r].

We check that this morphism is surjective, using a filtration on Qf’;;‘;”’K and
reducing to the case where N;=0 on ?F‘I‘;‘;:’”K for iem. Thus we get the first
assertion and the other assertions follow from the above description of the
action of N;, etc. on ¥} j,(j*KQE™), etc.

3.3. Corollary. For v, I and K as in 3.2, we have a functorial isomorphism as
C[N]-modules:

V] g oxptzeior K = Coker (Nye—maN) 10 TrHE"KQCIN] > T2 2"K@CIN])

such that N;, can;, Var; on the left hand side correspond respectively to the mor-
phisms defined by the morphisms in 3.2.

Proof. With the notations of 2.3, we have an exact sequence of left W-modules:

(3.3.0) 0= W|We > W|Wes— W|Ws— 0.
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Substituting W/Wr=C|s], W/Wrs=Cl|s, s™"], W/Ws=C][z] as C[N]-modules,
we get
0—C[s]— CJs,s 11— C[z] > 0.

Put H:WR"L:’”K as a C[Ny, -, N,]-module, and H[s]=HQ®C]|[s] (same for
[s, 57", [c]). Then we have a commutative diagram

0— H[s]— H[s, s ']— H[r] >0
Ny Ny N
0— H[s]— H[s,s™]— H[r]—= 0,
where N;=(Nyx—mN); with J=INm, and N=s. We check that the middle
vertical morphism N 7 is bijective, and get
Ker(N;: H[r] — H[z]) = Coker(N;: H[s]— H[s]),

which proves the assertion.

3.4. Remark. The above isomorphism in 3.3 is compatible with the analytic
one in [S2, 3.4]. In fact, with the notations of [loc. cit], the isomorphism in
3.2 corresponds to the isomorphism in the derived category of 9 y-Modules
with the action of N:
(341)  VewpwiwM =[ji(j*M Q1" C[z]) — ju(j*M Q1" C[7])]
= Ker(ji(j*M ®1” C[z]) = jx(j*M Q1 C[z]))

for —1=a<0 (cf 2.3), using the graph of g and then the projection X XC—X
(i.e. taking DRs), where j,, jy are taken in the category of inductive limit of
regular holonomic quasi-unipotent 9)-Modules with normal crossing singular
supports, i.e.

Jx(J*MQ1* C[r]) = 1i_§1j*(4/'*M®t“(@.-gk Cr).
Here t*, r=log t mean €, * in 2.3 so that

x;0; 1" =m;at®, 0,7/ =m;jri!

with 8;=0/0x;, and (uQP) 8;,=ud;QP—u®0d; P for usM, Pct*C[z]. In
fact, the first isomorphism in (3.4.1) is induced by the morphisms of functors

ld < DRS(lg)* < VO DRS(lg)* -—> GrgDRs(lg)*

applied to [M{— M%), where M?=j, (j*M ®:t* C[r]) (same for M%) and Yoy omiay
M=GrYM[8,] with M[8,]=(i,)xM, cf. [S1, 3.4.12]. Here
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Vo DRs = C(8;: Vyur = Vo)
and Gr{ DRs(i,)+M? =0, because (i ), commutes with j, if the inclusion XX
C*—X X is also denoted by j. We use the natural projection (after multi-
plied by 77! [loc. cit]):

_ 0; _
(3:4.2) [Grl, M%[8,] — Gri M3[0,]] > Grg M[9,]

such that the action of N on the left hand side corresponds to that of s—a
on the right, where #%[0,]=(i,)«M% (same for M7[8,]). Let Ker be the last
term of (3.4.1). We define a 9x[N]-linear morphism by

(3.4.3) Kersu— 3 (—1) ug’/i!Qo; € M?[5,] .
Then this gives a commutative diagram

Ker

VAN

DRs(Ig)*[M| “_)]‘ll2 Mv ———)M”]

of 9y [N]-Modules.

Now let u' =ud ;e (Ker)" ™ 1(c (M2)"*'1) for ve[—1,0)" and IC {i€n: v;=
—1}, where J=INm and u< (M%)’ "'n\». Then u’ is annihilated by g, and the
image of u’ by (3.4.3) is v’ @1 =ud,;Q1 = M}[6,). We define

y = ud;Q1—u®1) 8;) 97 = Gr¥, M3, ,

using (u®d}) 0, =ud;Q0; —u(d; y®oi**. Then vd,=u'Q1 in Gri M?[d,], be-
cause u@®1E V, M{[d,]. Let v, be the image of v in Gr¥, M%[d,], and v, that
of v, by the projection (3.4.2). Put

H = M”+II\—77;+“’” .
Then we have the isomorphism
(Ker)"*4 = Ker(N;: H[r] = H][z])

where N 7 is as in the proof of 3.3, and u belongs to the right hand side of the
above isomorphism. By definition, u corresponds to v, in Gry M[8,], and we
check that by the isomorphism (cf. [S2, 3.4]):

(GrI M[8,])"+*1 = Coker(N;: H[N]— H[N]),

v, coincides up to sign with the image of u by the isomorphism used in the proof



DUuALITY FOR VANISHING CYCLE FUNCTORS 917

of 3.3. In fact v, is the projection of —(]\7,-u) s“'eH]r, 5] into H[s]=H][z, s]/
Hlz, s] =, where [s, 7]=1 and N, is the left multiplication of N;—m;s. This
proves the assertion.

The following fact was found by Kashiwara in the unipotent and reduced
case.

3.5. Proposition. Let X and g be us above, and S: KQ L—Ty a pairing of K,
L& Perv(Cy),,. Then by the isomorphism in 3.3, the induced pairing

IS U " erpionior KOUT "Wexp(-rmiay L —> C
is identified with Res TKSM S O(Nr"nl;zg)id), where WR‘,_’;“” S is extended to
g S wrEKIN, NIQU S LIN, N~ — CIN, N7
by Yf’;\ﬁg”’ SuQN:, vQN) =(—1) WK”_':’” S, VN for ue Y’R‘;”’K, ve
¥o“"L, and Res: C[N, N 1—C is defined by Res(3} a;QN¥)=a_;.

Proof. We assume that K, L and Ty are represented by complexes of flasque
sheaves, and S by a morphism of complexes. As in 2.3, the local systems on
S* such that the semisimple part of its monodromy is the multiplication by
exp(—2zia) is identified with the C[N]-modules, by using the functor: Er—
~ A
r'(S*,z*E). Put W=C[s]][r] with [s,zr]=1. We consider the limit of local
AN
systems corresponding to the W-modules:
e, ClIs]l, e,Clzl, e, ClsT [s7'],
and they are denoted also by the same symbols, where

Clls = W/Wr, Cl<] = WWs, C[[sT| [s™Y] = W/ Wes

with s=N, and e, means the condition on the semisimple part of the mono-
dromy, cf. 2.3. Let D, U, j be as in the proof of 3.2. We define

%00 [s7' = js(J*K Qe, CsT [s7Y)), etc .

to be the inductive limit (with respect to [s™"], []) of the projective limit (with
respect to [[sT). (It is same for KP[[s][s™"], etc.) Then using a condition of
Mittag-Leffler, we have an exact sequence of complexes:

0 — K%[IsT| = K%[[s[I[s™1 — K%[c] = 0 (same for K7).
We have also a multiplication of limits of local systems:

e, Clr]®eg ClIsII [s™'] = €445 CIsII [s7']
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(same for ez C[[s]], eg C[z]), because C[[s]] [s""]is a W-modules and N(z'u)=izi™!
u-+7'Nu. Therefore we get

*[FIQLy2[sT [s 71— (T)x [T [s 7], ete.
In particular, we get the induced pairing:
—N
¥ 8: i*KR[FIQi* Ly [r] — [i* Ty — i*(Tx)i[e] — i*(Tyilrl

by 2.3, where i*7T in the last term is at degree —2. We check that this mor-
phism is naturally extended to:

¥ 8: C(K{[r] = K& [-DQC (LT"° [e] = Lz=[z])
— C((Ty) — (To)[e] — (T WUl = [Tx = (T[] — (TX)*[T]])
by 3.6 below, where (Tx),=j,j*Tx. Similarly we have
C(KTlr] = KD CLT™(s)) = Ly*((5))
— C(C(T () ;N(T () = C(T3((s) = (T)3())

compatible with the natural morphisms Li*((s))— Li®[z], etc., where L7*((s))=
Lr*[[sTI[s"], etc. Then by 3.6 (where 4=0), we get a pairing ¢S of C(K}[7]
— K% [z]) and the mapping cone of the surjective morphism:

CELT(s)) = Lx()) = C(Lr°[7] > Lx"[<])

with value in the mapping cone of the surjective morphism of the mapping

cone of
(@ @TINE) 22 Ty
= @@ () &Y (o)

into the mapping cone of

C(Tx)l] — (T D) = C(Tile] — (T o)xle]) -
Therefore we get the pairing vS of

C(Kf[c] = Ki[z])) and C(Li®[s]— Lz°[sI) [1]

with value in the kernel of the above surjective morphism of the mapping
cones. We check that the kernel is the mapping cone of
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('—l’ ~N)
C(TD(TIs —— " (TIsD (1]

. (¢, —N) . )
— C(TxD(Tx)i s —— (Tpx[sD) (1]

where the morphism is defined by the mapping cone of (p, —e; —¢), and ¢, p
and e denote the natural morphisms. By definition S faciors through the
mapping cone of

CO— (T [sI) (1] = CO — (T [sI) [1]

and it is homotopic to the morphism (also denoted by ¥S) which factors
through

t, —N
(3.5.1) C(TxD(Tx)x(s]] il (ToxIsD) [1],

because (—¢, —N) in the first mapping cone is an isomorphism of complexes.
Combining with the natural projection to Ty [2], we get the pairing

¥ 8: C(KY[r] = K[ DQCLi* s — Ly[IsI) [1] — Tx(2],
whose restriction to K7 [7] [11Q Ly*[[s]] [1] is the composition:
(K?[e]D QUL [IsT) [1] = (KT [[]@ L [[sT) [2]
5 (T [sT 2] = (T [2] = Tx2]
by 3.6, where the first isomorphism is induced by
KP[]QC[1] = C1IQKT[r]

A
and the second morphism is defined as above (using W-module structure).
Here note that the projection of (3.5.1) onto Tx[2] represents the natural mor-
phism: iyi' Tx[2]—>T%[2]. By definition, the restriction of

Py S: C(KT[e] = Ki[]) [-1IQC(Lr*[[s] — Lg"[[s]) — Tx
to K¢[r]1Q Lz*[[s]] is the composition:
—8
K [FQLE [T = (Toh[[sI = (Tx) — T -
Put H———W‘I’;‘;’”K, H'=%"-*"L so that
VI Vg exstominn K = Kex (N2 H[z] = HIz)

U7 " expi-aeirL = Coker(Ny: H'[[s]] — H'[[sT)
by 3.2-3 (using the bijectivity of N 7 H' ((s))—H'((s))). Then the pairing
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¥} S of these two vector spaces are induced by
—gfx‘g’” S: H[ZIQH'[[s]] = C[[s]] = C

where ——W;:‘ﬁ"“” S U7, vQs)=(—1)"1i! !If’;:'g’” S (u, v) (if i=j), 0 (otherwise)
for ue H,ve H'. Therefore it is enough to show that this pairing coincides
with the pairing in the assertion by the isomorphism in the proof of 3.3. We
first check that the image of u®s ' '€H((s)) in H[r] is u®<7’/j!, because
ti(s7Y)=jls7/7* in C((s)). Then the assertion follows from the commutative
diagram:

H((s)®H'[[s] = C((s))

v vRes
H[-]QH'[[s] — C

where the first horizontal morphism is defined by ¥ S as in the assertion, and
the second by —¥% 8§ as above. In fact, ¥} of the isomorphism

C(Li*[r] = Lz*[s]) = C(Li*[s] — Lz*[sI) [1] in D(Cx)
coincides with the morphism used in the proof of 3.3 shifted by 1.
3.6 Lemma. Let f: AQD—E, g: BQC—E, h: BQD—F be morphisms of
complexes compatible with morphisms u: A—B, v: C—D, w: E—F, i.e. fo(id@®v)

=go(u®id), ho(idQv)=wg, ho(u®Qid)=wf. Then we have a morphism of com-
plexes

Cu: A»B)QC(v: C—D)— C(w: E—~F)
defined by (a,b;c,d)— (f(a, d)+(—1) g, c), (b, d)) for as A", bE B,
ceC*, deD.
(The proof is left to the reader.)

3.7. Remark. Using 3.3-5, we can generalize [S2, 3.20, 3.27] to the non-
quasiunipotent case where the filtration ¥ is indexed by £. Note that the
absolute value of the eigenvalues of the local monodromies of the polarizable
variations of Hodge structures is 1, and the other results in [S1, 2] can be gene-
ralized to this case, because the result of Schmid and Zucker used in [S1] is
true in this case by Deligne-Schmid and Zucker.
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