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Duality for Vanishing Cycle Functors

By

Morihiko SAITO*

Introduction

Let Y be a complex manifold, and S an open disc. Put X=YxS9 and
identify Y with Fx{0}. Let (M, F) be a holonomic filtered .S^-Module, i.e.
M is holonomic and GrFM is coherent over GrF3)x, where ^5Z is the sheaf of
holomorphic differential operators with F the filtration by the degree of oper-
ator. We say that (M, F) is Cohen-Macaulay, if GrFM is Cohen-Macaulay over
GrF£Dx, or equivalently

(GrFM, Gr*3)x) = 0 for j =|=dim X

assuming M holonomic. For (M, F) holonomic Cohen-Macaulay, we define
the dual D(M, F) by

D(M, F) = £*t%m
x
x((M, F), (o>

using a resolution of (M, F) (and (o)x, F))9 cf. 1.1, where a>^ is the sheaf of
holomorphic differential forms of highest degree and GrFQ)x=0 for /?4=0,
Assume that (M, F) has the filtration V satisfying the conditions (1.2.1-7) in
1.2. Then we can define the vanishing cycle functors by

ir(M, F) = e.̂ o Grv
a(M, F[l])

^(AT, F) - Grf (Af, F) .

We assume that (M, F) is holonomic Cohen-Macaulay, and ^(Mf F), ^(M, F)
are holonomic Cohen-Macaulay filtered .2)r-Modules. Then

Theorem (cf. 1.6). We have the functorial isomorphisms:

,F)=B^(M,F)(l)

> F) = Dti(M9 F) .
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We also show that these duality isomorphisms are compatible with topological
ones, i.e. by the natural isomorphisms DR(^M)=^DR(M) [—1], DR((/>1M) =

<P1DR(M)[-l] in [SI, 3.4.12] (cf. also [M] [K2]) and DRoB=DoDR in [SI,
2.4.12] (cf. also [K4])3 they correspond to the induced pairings —P^S, />01/S in
[SI, 5.2.3-4] on the vanishing cycles of DR(M) and DR(DM), where S is the
natural pairing of DR(M) and DR(DM), cf. 2.2. Note that the arguments used
in the proof of these results can be easily applied to the non filtered case, cf. 1.7,
2.4, and in the one dimensional case they were obtained in the Appendix of [S3].
In the normal crossing case, we calculate the vanishing cycle functors and the
induced dualities on them explicitly, cf. §3. These results are used in the proof

of [S2].
I would like to thank Prof. Kashiwara for useful discussions. Some part

of this work was done during my stay at IHES. I would like to thank the
staff of the institute for the hospitality.

§18 Analytic Duality for Vanishing Cycle Functors

1.1. Dual functor (cf. [SI]). Let X be a complex manifold of dimension w,
and 3)x the sheaf of holomorphic differential operators with the filtration F by
the degree of operators. In this note we use the right ^-Modules, because they
are more convenient to the definition of the dual functor.

Let MF(3)x) be the category of filtered .^-Modules (M, F) such that F is
exhaustive and Fp=0 for p<£® locally on X, and MG(®PFP^)X) the category
of graded Modules M. over the graded algebra ®PFP3)X such that Mp=0
for /7<0 locally on X. By the natural functor (M, F)^®p Fp M, MF(3)X) is
a full subcategory of MG(®P FP<DX). We denote by D*oh F(3)x) the derived
category of bounded complexes of filtered .S^-Modules whose cohomologies in
MG(@P Fp M) are coherent over ©^ Fp 3)x.

We say that a filtered .2^-Module (M, F) is induced, if it is isomorphic to

(L, F) ®o (S>x, F) for a filtered O^-Module (L, F). For an induced filtered
.Sk-Module (M, F) we define a filtration G by GPM=(FPM) 3)x so that Grf
(M, F) is isomorphic to GrF

pL®o(3)x, F([p]), where (F[/?])f-=/;_,. We denote

by -^coh Ffi(3)x) the derived category of bounded complexes of induced filtered
.S^-Modules (M", F) such that the filtration G is finite locally on X and
Mi GrpGrfM* are coherent 0^-Modules. Then we can show the equivalence
of categories (cf. [SI, 2.1.16]):

(1.1.1) Bb
c
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Let o)x be the dualizing sheaf of X, i.e. it is canonically isomorphic to £n
x

the sheaf of holomorphic /7-forms and has the structure of right .S^-Module.
We take o>x[n]-^Kx a resolution by a complex of right 5)z-Modules whose com-

ponents are injective 0^-Modules. (F°r KX we can take a bounded complex by
a result of V.D. Golvin, Soviet Math. Dokl 16 (1975)p. 854.) For (M,F)e

(1.1.2) D(M, F) = JfvJg&M, F), (Kx,

where the filtration F on Kx is trivial, i.e. 6r£ KX=Q for p^pQ, so that FP(KX®

3)x)=Kx®Fp 3)Xi and KX®Q<DX is a right .2^-bi-Module having an involution
which is the identity on Ox and exchanges the two structures of right 3)x-
Module (cf. [SI, 2.4.2]). Here <=MomF means the union (or inductive limit) of
morphisms which preserve the filtration up to shifts so that D(M, F) becomes
a complex of filtered J2)z-Modules whose components are induced, cf. [SI, 2.4.3].
Moreover D(M, F) belongs to Db

coh Fft(<3)x) essentially, i.e. MjGrF is zero for
;>0, and we get the dual functor:

(1.1.3) D: Db
coh Ff(&x) - D*oh F{(̂ )°, cf. [loc. cit] .

Note that D is independent of the choice of Kx, because we can take for Kx

a resolution by injective .S^-Modules (so that a morphism of complexes be-
tween two resolutions is constructed.) By (1.1.1) we get also

(1 . 1 .4) D: Db
coh F(£x) -> D

compatible with (1.1.3) by (1.1.1). We denote by MFhol(£)x) the full sub-
category of MFcoh(£Dx) consisting of holonomic filtered ,2^-Modules, where a
filtered 5)z-Module (M, F) is called holonomic, if M is holonomic and GrFM is
coherent over GrF3)x. Then MFhol(3)x) is a full subcategory of D*oh F(3)x\

and for (M, F}^MF^ol(3)x\ D(M, F) belongs to MFhol(3)x) (i.e. the differential

is strictly compatible with F) iff GrFM is a Cohen- Macaulay GrF.2)z-Module, i.e.

£**Gr*9j(GrFM9 GrF3}x) - 0 for i*n .

In fact for a local calculation of D(M, F) we can take a resolution of (M, F)

by finite free filtered .2^-Modules locally on X instead of taking the resolution
KX °f ^Mj so tnat &rF commute with the dual functor. Here the assump-
tion M holonomic implies D M e Mhol(<Dx)

£***<3)£M, 3)x) = 0 for / 4=77, cf. [Kl] .

We denote by MFhCM(<3)x) the full subcategory of MFhol(<Dx) consisting of
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(M, F) such that GrFM are Cohen-Macaulay, so that we have the dual functor

(1.1.5) D: MFhCM(g)x) -> MFkCM(<£x)° .

1.2, Vanishing cycle functors. Let F be a complex manifold of dimension
n— 1, and put X=YxS, where 5" is an open disc with the coordinate t, and
Fwill be identified with 7x{0} in X. Let V^3)x be the subalgebra of 3)x

generated by Ox, 3)Y
 an(i s:=tdt. We define the increasing filtration V of 3)x

by

Sometimes F will be indexed by Q so that V<& = Vi for f fga</+l and
Let M be a .S^-Module. By Kashiwara [K2], there exists at most one increas-
ing exhaustive filtration V of M, indexed by Q and satisfying:

(1 .2. 1) V&M are coherent F0 ̂ -sub-Modules of M,

(1.2.2) (V&M)Vi3)x^V^iM for

(1.2.3) (V&M)t=V&_lM for

(1.2.4) r0f — a is nilpotent on Gr%M for ae^ locally on F,

where we assume that V is discretely indexed locally on X, i.e. there is locally
a positive integer m such that V^ = Vi/m for i/m^a<(i+l)/m, and put F<13M=
UtfO^Af for y£eJ2. Let (M, F) be a holonomic filtered ^-Module. We
assume that M has the filtration V satisfying (1.2.1-4) and

(1.2.5) t: Fp ¥&M-FP V^M

(1.2.6) ^: F, GrjM^ F,+1 Gr^M (a> -1) ,

(1.2.7) Grl(M, F) are holonomic filtered ̂ -Modules.

Then we define the vanishing cycle functors of (M, F) by:

(1.2.8) 1?(M, F) = e^^o Grl(M, F[l]\ ^(M, F) = Gr^

+^(M, F) = *^(M, F) = ©_1<rf<0 Grl(M, F[l]) ,

^(M, F) = Grl(M, F) ,

and define can: ̂ (M, F)-^ti(M, F) and Var: 0x(Af, F)-^^(M, F[-l]) by
^ and ? so that Varocan^TV" and canoVar=7V, where N:=tdt—a on Gr^M.

Io3o Filtered graded Modules. Let MGF(Grv3)x) be the category of filtered
^-graded GrF^)z-Modules (M., ^-©^^(M^ F) such that for some

, Fp Me,=0 forp<0, locally on Y, and
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(1.3.1) Grllt'.(MetfF)^(M^l>F) for

(1.3.2) G/T^:(M,,F)~(M.+1,F[-1]) for «>-!,

where we assume that the filtration F on each Ma is exhaustive and (Fp MJ
F; GrJ^)xc:Fp+i Ma+j. We denote by MGFmc(Grv$x) (resp. MGFmk(Grv$x))

the full subcategory of MGF(Grv3)x} defined by the conditions :

(1.3.3) Grl tdt—a is nilpotent on M* locally on Y,

(1.3.4) (Ma, F) are coherent (resp. holonimic) filtered ,2)r-Modules.

Here 3)Y is naturally identified with a subalgebra of Grl3)x=3)Y[s\. The full
subcategory of MGF^Gr^S)^) defined by the condition:

(1.3.5) GrFMot are Cohen-Macaulay over GrF3)Y ,

will be denoted by MGFmhCM(Grv S> x\
By definition (M, F)<=MGF(Grv£)x) has the natural decomposition (M, F)

= ®te«>-i(M?\ F) such that M^=0 for a-ft&Z. We denote by MGF
(Grv3)x}

(^ the full subcategory of MGF(Gry3)x) defined by the condition: M^
=0 for a-ft$Z. Put MGFmc(Grv3)x)

w =MGFmc(Grv3)x) n MGF(Grv$x)M

(same for 777/7 and mhCM).
Let MF(S)Y\ N) be the category of filtered ^-Modules (M, F) with an

endomorphism TV: (M, F)-+(M, F[—l]) in MF(3)Y\ and MF(3)Y\ can, Var)
the category of pairs of filtered ̂ r-Modules (M', F)9 (M ", F) with morphisms

can: (M', F) -» (M" , F[-l]), Var: (M", F) -> (M', F) in MF(S)Y) .

Then we have equivalences of categories :

(1.3.6) r*: MGF(Grv3)x)W ^ MF(3)Y\ N) for -1 <a<0 ,

g)x)^ ~ MF(S)Y\ can, Var)

by assigning (Mrt; Gr0
F ^,-a) or (M.lf M0; Grf ^, Grli t) to (M., F). We

have also

N) for -l

an, Var)

(same for 777/7 and mhCM), where the right hand sides are the full subcategories
defined by the conditions :

(1.3.7) TV is nilpotent locally on F,

(1.3.8) (M, F) (or (M', F), (M" , F)) is a coherent (resp. holonomic, resp.

holonomic and Cohen-Macaulay) filtered .S
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Here TV=Varocan on M', 7V=canoVar on M" , and (M, F) is called Cohen-
Macaulay If GrFM is Cohen-Macaulay over GrF3)Y.

Let DbGF(Grv3)x)
(^ be the derived category of bounded complexes of

MGF(Grv3)zy*\ and Db
mc GF(Grv3)x}^ (resp. Db

mh GF(Grv3)x)
M) its full sub-

category defined by the following conditions (compare to (1.3.3-4)):

(1.3.9) Gr^tdt"ft^F1Gr^z is nilpotent on Mj(®pFpM^)

locally on F,

(1.3.10) M*(®p Fp Mp) are coherent over ®PFP3)Y (and MjM$

are holonomic ̂ -Modules).

Similarly we define DbF(3)Y\ TV), DbF(£)Y; can, Var), Db
me F(3)Y\ TV), etc., so

that the equivalences of categories (1.3.5-6) are extended to the equivalences
between the derived categories.

We say that (M., F) e MGF(Grv3)x) is semi-free (or S-free), if it Is iso-
morphic to ®-^^Q(M^ F)®c Grv(£)s, F) for filtered ̂ -Modules (Mi, F),
where (Mi, F)® 1 is of degree a and Mi=0 except for a finite number of a
locally on Y by hypothesis. Here we use the natural isomorphism

Grv(3)X) F) = CSV, F)®c Grv(@s, F)

as filtered graded algebras.
We say that (M0, F)^MGF(GrvS)x} is induced (resp. Y-induced), if it is

Isomorphic to 0_i^e*^o(A*> F)®O7 Grv(<3)x, F) (resp. (Mtf, F) is isomorphic to
(L*, F)®oY(3)Y, F) as filtered 07-Modules with action of TV for — l^a^O),
where (Ltf, F) are filtered 0F-Modules (resp. filtered 0r-Modules with endomor-
phism TV: (La, F)-*(La, F[— 1])) and they are zero except for a finite number of
a locally on F. Here N on Ma Is defined by tdt—a. For an induced (resp. a
F-induced) filtered graded Module (M., F), we define the filtration G by

GPM0 = (FPMQ) Grv3)x (resp. G,M. - (

so that Gr^(M., F) Is Isomorphic to 0-i^o Gr^L^oY Grv(S)x, F[p\) (resp.
Grf(M«,F) is Isomorphic to GrjL,®^^ ^[>]) for — l^a^O). We say
that an induced (resp. F-Induced) filtered graded Module Is quasi-finite, if G is a
finite filtration on Mo (resp. Af^ for — lfga<^0) locally on F. Note that an in-
duced filtered graded Module Is F-induced, but it is not necessarily quasi-finite
as a F-Induced Module, even if it is so as an Induced Module, because the
filtration F on L^®c Grl3)s is not finite, If 1^=1=0.

Let D*GFsf (Grv3)x) (resp. DbGFi(Grv£)x) or DbGFYi(Grv3)x}) be the de-
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rived category of bounded complexes of semi-free (resp. induced or F-induced)
filtered graded Modules. Let DbGFf

i(Grv3)x) (or D*GFf
Yi(Grv3)x)) be that of

quasi-finite induced (or F-induced) filtered graded Modules. We define the
full subcategory Db

mcGFsf(Grv$x} (resp. Db
mcGFfi(Grv 3) x} or Db

mcGFf
Yi(Grv3)x))

by the cohomological conditions (1.3.9-10) (resp. (1.3.9) and (1.3.11) below):

(1.3.11) MjGr F
p GrfMa are coherent 0F-Modules.

Let D^GFs/((zrF.2)z)5 etc. be the full subcategory defined by adding the cohomo-
logically holonomic condition (i.e. MjMa are holonomic ^-Modules). We also
define the full subcategories DmCGFsf(Grv*Dxy*\ etc. by adding the condition:
Mp=Q for a— J3&Z, so that

(1.3.12) Db
mcGFsf(Grv£)x) = ®.1<06^ D

(same for mh and /, Yi, etc.). For a complex of filtered graded Module (M., F),
let (Af., F)=©_1<a5<;0(M , F)M be the decomposition in (1.3.12). If (Af., F) is
induced, Grf(M9f F)(0) has the subcomplex generated by FpGrpMQ over Grv3)x,

and this subcomplex and its quotient complex will be denoted respectively by
Gr£(Af., F)M and Grf(M., F)^l\ so that

(1.3.13) Grf(Mi, F)W = GrfL{®oY Grv(3)x, F[p]) for a = -1, 0

if (Mi>F)==®_l^^(LiF)®oYGrv(3)x>F). Here note that Grf(M.,F)^

and Grf(M., F)W are filtered acyclic, if so is (Af., F), cf. [SI, 2.1.11]. We also
check that D*GF{(Gry.2)z) is a full subcategory of £*GF,.(GrF.2)z), i.e.

(1.3.14) D^F^G^^x) is equivalent to the full subcategory defined
by the cohomological condition: MjGrp(M9, F) are filtered
acyclic for p > 0 locally on F (same for F-induced Modules
by replacing MjGr$(M., F) with JljGrf(Maf F)(-l ^a^O)) ,

cf. [SI, 2.1.13]. Then by the lemma 1.4 below, we get the equivalences of cate-
gories :

Db
mcGF{(Grv£)x) ~D

(1.3.15) Jl
Db

mcGFsf(Grv£)x) ~ D

which remains valid if we add the upper suifix (a).
In fact, in the proof of (1.1.1), we used the canonical resolution by bounded

complex of induced Modules (cf. [SI, 2.1.6]) which is also valid in the case
where the filtered Modules have the endomorphism N or the morphisms can,
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Var. Therefore we get the equivalences of categories forgetting the cohomolo-

gical conditions for me and/. The coherence condition (1.3.11) for (Mo3 F)EE
DbGF{(Grv£)x) implies the coherence of Mj(®p Fp Mp) over ®p Fp GrlS)x

(using the filtration G and (1.3.13)), which implies (1.3.10), combined with
(1.3.9). Thus we get (1.3.15) by the construction of 1.4 below and the proof of
[SI, 2.1.16]. Here note that (1.3.15) is valid by replacing the bounded condi-
tion b by +, — or omitting it. Therefore we get

(1.3.16) Db
mcGFfi(Grv£)x) is equivalent to the full subcategory of

DwcGF^G^tDx) defined by the cohomological condition:
M'(Mm, F) is filtered acyclic for j>0 ,

which will be used in the definition of the dual functor.

1.4. Lemma. For a filtered graded Module (Mm, F), let (M., F) = ©(M8, F)(fl°
be the decomposition as in (1.3.12), and put (Ma, F)j : =(M^ F)®c Grv(£)S) F)
^MGFsf(GrvS)x), where the degree of(Mos, F)®1 is ft. Then we have the can-

onical semi-free resolution :

0 — (Ma, F(l])s
a . (Ma, F)l . (M., F)M -* 0 (- 1

0 - (M0, F&eCM.,, F[\})$ ^ (M_1; F)£1©(M0, F)0
S ^ (M,, F)™ -* 0 ,

where the morphisms are defined by

u(m®P} = Nm®P—m®(s—a) P , v(m®P) = mP ,

u'(m®P, n®Q) = (Var m®P—n®3t P, can n®Q—m®tP) ,

v'(m®P, n®Q) = mP+nQ .

Here can, Var and N are defined by dt, t and s—a with s=tdt.

Proof. We show the case a=Q. The remaining case is rather easy. By
(1.3.1-2) it is enough to show the degree —1 and 0 part. We show the degree
— 1 part. The other case is similarly checked. The graduation of the degree
— 1 part of u' is

(1) UJ
(m®s'*9 77®5/;) h-> (Var m®s'i—n®s'j+l, can

for m^GrF
p-i M0, n^Gr^j M_19 where s':=s+l and GrF

p(Ma[s']} = @i Grf_f-
Ma®sfi. We define the finite decreasing filtration W on GrpMa and Gr$ (Ma[s'])
by
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W2i GrF
pMa = Nl GrF_i Ma , W2i+l GrFM_, = Var #' GrJ_, M0 ,

W2i+1 GrF
pMQ = can N* Gr^^M^ for f <=# ,

0" GrF
p(Ma[s'}) = 0/»" GrJL/Af.)®*1' for /e=Z ,

where «= — 1, 0. Then GrwGrF of w', v' become ,s'0id and pr+0, where pr:

Grp(Ma[s'])-+GrpMa is the natural projection and 0 is the zero map. Therefore

we get the assertion.

1.5. Dual functor on the filtered graded Modules. Let o)Y[dY]-^KY be a resolu-

tion as right .SV-Modules such that KY are injective .SV-Modules. Then o>Y

®0Y Grv£Dx and K1
Y®O7 Grv3)x have the structure of graded right GrvS)x-bi-

Module so that we have the graded quasi-isomorphism:

a>Y[dY]®oY Grv3)x -» KY®oY Grv3)x .

Here the twisted (i.e. not by multiplication from the right) action of Grv£Dx

is defined by

(m®P) t(g) = mg®P = m®gP for

(m®P) t(v) = mv®P—m®vP for v<=0Y

(m®P) t(Grvt) = m®Grvt P

(m®P) t(Grvdt) = -m®Grvdt P

where we&>F and P^Grv3)x, and the degree of o)Y®Gr^S)x is i—l (same for

KY). (t(*) means the twisted action.) Then for (Af., F)<=DbGFf
i(Grv£)x)

(i«\

we define the dual by :

(1.5.1) D(Mm, F) = ^fo^GrYg)((Mmf n (KY[1]9 F)®oY Grv(3)x, F}) ,

where J/«mF is as in (1.1.2) and the filtration F on KY[l] is trivial. If (M., F) =

(L*, F)®oY Grv(S)X) F)£EMGFi(Grvg}x) for -l^a^O, we have

., F) = ^^((Lrf, F), (̂ [1], F))®oY Grv(®x> F)

GrF ^((L*, F), (KY[\l F)) =

so that D(M, F) is well-defined, i.e. the filtered acyclic condition is preserved,

where we use the filtration G and (1.3.13). By a similar argument we check that

the coherence condition (1.3.10) is preserved and M} GrFD(Mo, F)=Q for j>0.

As to the condition (1.3.9), we use the canonical filtration r (with the equiva-

lence (1.3.15)) and the generalization of [SI, 2.1.16] to the case where the filter-

ed Modules have the action of TV, can, Var so that the assertion is reduced to the

case where N=Q (— l<a<0) and M_x or M0 is zero (using some filtration on
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p Fp M))9 then the assertion is clear. Thus we get the dual functor

(1.5.2) D: Db
mc GF(Grv3)x) -> Db

m

using (1.3.15-16). By definition it induces

D: Db
mc GF(Grv3)x)^ -> (Db

mc

because the degree of KY[l]®\ is —1 and (m®P) t(s)=m®(— s— 1) P (where
we use the canonical resolution in 1.4). Similarly we check that the dual func-
tor D is compatible with the functors ¥*, i.e.

W~l-« D(Ma , F) =(D¥*(Ma,F))(-l) for — l<a<09

(1.5.3) F-1 D(Mm, F) = (D V~\Mm, F)) (-1) ,

¥° D(Mm, F)= D W\Mo, F) ,

so that the action of N, can, Var on the left hand side is identified with the
transpose of — N, — Var, can on the right hand side respectively, because the
morphisms u' and u" in 1.4 are (essentially) self-dual. Here (k) for an integer
k means the Tate twist so that (M,F)(k)=(M,F[k]) for a filtered Module
(M, F). As a corollary of (1.5.3), MGFmhCM(Grv£)x) is stable by the functor D

and we get the functor

(1.5.4) B: MGFmllCM(Grv$x) -* MGFmhCM(Grv3)xY .

Let MFmhCM(S)x) be the full subcategory of MFhCM(3)^) in 1.1 such that its ob-
jects have the filtration V satisfying (1.2.1-7) and i/r(M, F), ^(M, F) are Cohen-
Macaulay. Then we have the vanishing cycle functors

1.6o Theorem,, The full subcategory MFmhCM(<Dx) of MFkCM(<Dx) is stable by
the dual functor H, and we have the functorial isomorphisms'.

(1.6.1) i/r D(M, F) = (D1r(M, F)) (1)

0X D(M, F) = D 0X(M, F)

such that the action of s on -fr^D^M, F) is identified with the transpose of —l—s
on ^i(M, F)(: = ©_1<fl5<0GrI(M,F[l]))3 and can, Var on the left hand side
with the transpose of —Var, can on the right.

Proof. It is enough to show the first assertion and the natural isomorphism:

(1.6.2) DGrv(M,F) = Grv D(M,F) for (M , F) <= MFmhCM(Wx) .
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Locally we have a resolution (M, F)<-(L, F) such that (Ll, F) are finite direct
sums of the copies of (S)x\ F[p], V[a}) (-l^a^O) and Grv(M, F)*-Grv(L, F)
is also a filtered quasi-isomorphism. Then for the calculation of D(M, F),

(resp. D Grv(M, FJ), we can use the above resolution and replace ^(resp. KY[l])
by o)x[n] (resp. o)Y[n]) in (1.1.2) (resp. (1.5.1)), and this complex is denoted by
D(L, F) (resp. D Grv(L, F)). Then D(L, F) has the filtration V by

D(L; F, V) = ̂ ^((L; F, V\ (vz[n]; F,

where o>x has the filtration F as a right l3)x-Module such that Gr"Liwx=a)Y®

t{ dtjt for z>0 (and 0 otherwise). By definition of D Grv(L, F) in 1.5, we have
the canonical isomorphism:

Grv D(L, F)=D Grv(L, F)

as complexes of filtered graded GrFj2)z-Modules, because

as right Gry.fi)z-bi-Modules. Then by [SI, 3.3.3-5] and (1.5.4) (cf. the proof of
[SI, 5.1.13]), D(L;F, V) is bi-strict (cf. [SI, 1 2.2]), and by the above quasi-
isomorphism, the filtration V on D(L, F) induces the nitration V on D(M, F)

satisfying (1.2.1-7). Thus we get the first assertion and (1.6.2) locally. We
check that this isomorphism is independent of the local resolution (L, F) and
(1.6.2) is globally well-defined.

1.7. Remark. The arguments in this section can be applied to the non filter-
ed case as follows. Let X, Y be as in 1.2, and M(3)X}Y the category of coherent
^}z-Modules having the filtration of Malgrange-Kashiwara along Y. Here we
choose and fix an ordering of C such that «<«+!, a+m<b for some meJ^T,
and a<b&— b<— a^a+l<b+l for any a,b^C. Put A = {a^C: —\<a<
0} , and A ' =A\ {0} . Then M e M(£DX)Y has the filtration V indexed by C such
that F^Mare coherent over V^XD and tdt—a is nilpotent on Gr#M (locally
on X). We define

(1.7.1) irM = ®.e4,GrZM9 ^lM = Grv_lM> ^M^GrlM.

which are independent of the choice of the ordering. Here note that the hol-
onomic .S^-Modules belong to M(<DX)Y by [K3] (combined with the argument
as in [SI, 3.2.4]). As in [K2] we consider M^M(<3)X)Y of the form Coker u

with u a filtered endomorphism of a direct sum of copies of (3)%, V\a§ (— 1 <
such that Grvu is a diagonal matrix whose restriction to a copy of
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3)x is the left multiplication by (tdt—a)m for m>0 (but we do not assume that
the off diagonal coefficients of the matrix belong to V^ S)x), Then choosing
local generators of the filtration, every object of M(S)X)Y has locally a surjective
morphism from such a module (where m may be 0 in the irregular case), and
hence a resolution by such modules locally. This implies that for any filtered
resolution of (M, V) by finite direct sums of copies of (3)x, V[a]) (— 1<^<0),
its dual with value in (&x®£Dx[ri\, V) is strict and its cohomologies with the
induced filtration belong to M (2)x)Y> because it is clear for Coker u as above
by its self dual form and the injectivity of Grvu, and we can apply the strictness
of morphisms of M(3)X)Y9 cf. [K2] [SI, 3.1.6], by taking a free resolution of the
above resolution, where we use also the independence of filtered free resolution,
i.e. a complex of filtered finite free modules is filtered acyclic, iff it is acyclic and
so is its graduation. Here the dual of a free graded module is defined by the
(shifted) graded morphisms to o)Y^Grv^)x[n] as in 1.5 so that the dual functor
D commutes with Grv for a complex of finite free filtered modules, and M'D

commutes with Grv by the above argument, because the graduation commutes
with Sij for a strict complex. Then we get the commutativity of ^% 0X with
Mj B using the resolution 1.4 in the non filtered case, where we apply it to the
standard resolution of tyM, 0XM by induced modules using the local nilpotency
of the action of N for its proof. We get also the correspondence between can,
Var, TV on ^MJ DM, ^iM'DM and the transpose of — Var, can, —N on

loHo Remark. Here we give some formalism of sign of complexes, cf. [D2],
which will be needed in the proof of 2.2.

Let A, B be complexes (of abelian groups or sheaves). We define the
complex <*i/$w(A, B) so that we have a canonical isomorphism (without sign):

(1.8.1) Hom(Z, Jfom(A, B)) = Hom(Z®X, B) for any complex Z.

For Z=~¥**(A, B), we have Zi=Hj Jfom(A'f Bi+j) with

(1.8.2) (df)(x) = -(~-iyf(dx)+d(f(x)) for f€=Z',xe=Ai.

By the canonical isomorphism Z[m]®A[— m]=Z§§ A for m^Z, we get

Hom(Z[/w], Jfa*(A[-m]9 B) = Hom(Z®^, B)

and an isomorphism

(1.8.3) (J(**(A, B}) [m] ̂  ^fom(A \-m\ B} ,
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where the sign (— l)f'w appears on <^&m(Aj, Bi+j) (here (— -l)< f '+lf l>« is also pos-
sible). Similarly we have

(1 .8.4) (Jf** (A, B)) [m] — <£&m (A, B [m]) ,

where no sign appears. The problem is that the isomorphism (1.8.3) is not
compatible with compositio_n for m,n^Z, and does not commute with the
isomorphism (1.8.4). Let/: A-*Ar be a morphism of complexes, and/*: Z'-*-
Z its transpose, where Z'=^om(A'> B) and </*v, uy=<y,fuy<^Bi+i for

Then by 3.6 and

/* /Hom(C(Z' -* Z), ^«*(C(4 +> A'),

/* /= Hom(C(Z7 -> Z)® C(^ ^

we get an isomorphism

/* /(1.8.5) C(^om(A', B)-> ̂ <*m(A, BJ) =

where the sign (— I)1' appears on

§2. Compatibility with the Topological Duality

2.1. Topological duality for the vanishing cycle functors. With the notations
of §1, let TC: §*->S* be a universal covering, and we denote also by TT: X*— >
X* its cartesian product with Y, i.e. X* = YxS*, etc. Let i: Y-+X and /:

X*-*X be the natural morphisms. For K<=Db
c(Cx) we define

by

(2.1.1)

where we may assume that K is represented by a bounded complex of injective
C^-Modules (i.e. flasque sheaves), and this representative is also denoted by K.
The action of the monodromy T is induced by the action of r* on /* j*j*K,

where r is a generator of the covering transformation group of it defined by
x\-*x+l if TT is identified with the exponential map A'i->exp (2nix). Then we
have the natural decomposition (cf. [SI, 3.4.14]):

(2.1.2) ^=©xec*V\*,

where ^XK is a subcomplex of tyK and the union of the kernel of (T— X){

fon'e-ZV. Put
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so that i^K=ir1K®^1K. We define tyK^Ki-l] (same for Vi, V*i)«
Then we have the natural morphism

sp: i*K[-l] -> pir,K (or V/O ,

and p(t>lK (or ^0J£) is defined by the mapping cone of sp. We have the natural
morphism

can : P^K -> P^K , can :

induced by the natural inclusion, and the decomposition p<f>=p<f>1(&
p(f>3:i com-

patible with that for pi/r by the morphism can, where can induces an iso-

morphism ^V^i^^i- Sy definition can is imbedded into the distinguished
triangle :

can +1
(2.1.3) -> tfaK - * *<l>iK-» i*K - >

We define the action of N on p^r^K9
 P<1>1K by the logarithm of the unipotent part

of the monodromy T, divided by 2ni9 which is well-defined by definition of
Vx-& We define the morphism Var: P(/>1K-^P^1K by the cone of (0 ,N).
Here we omit the Tate twist (—1) using the canonical isomorphism C(— 1)—
C, cf. [SI, (2.0.2)]. We have the natural quasi-isomorphism:

sp —N
(2.1.4) ilK-+ [i*K-£ faK - > faK]

where the right hand side is the single complex associated to the double com-
plex such that i*K has the degree 0 with respect to the first index. From
now on, r/Cwill denote the target of the quasi-isomorphism (2.1.4). Then the
natural morphism ilK-*i*K is identified with the projection onto the first com-
ponent of il K. We define the morphism cosp: P^1K[— I]-*ilK by the natural
inclusion of ^^[—2] into the third component of i\K. Then we have the
natural quasi-isomorphism:

C(cosp: Vi^[-l] -* ilK) -* [i*K-* faK] (= P^K)

induced by the natural projection. In particular we get the distinguished
triangle :

Var +1
(2.1.5) -* ilK-+ p<t>1K - > P^K - >

because Var is homotopic to the natural projection of the mapping cone onto

the first component.
Let L be as K9 and S: K®L-*TX a morphism of complexes, where Tx is
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a flasque (i.e. C-injective) resolution of Cx(ri) [2n]=Cx[2n]. Then it induces

We define tyS: p^K®pirL~^^Tx[— 2] so that the composition

coincides with ^S (same for Vi^), where the second morphism is defined by

Here note that the natural morphisms

are quasi-isomorphisms. We denote also by plfriS its composition with
iriTx[—2]-^r Tx. We have a pairing

by (i*S, i^iS, i^iS) using the identification (2.1.4). Here we have a change
of sign coming from the isomorphism

i'**®O^L[--l]) = (i**®^L) [-1]

because [—1] means C[— 1]®C by definition. Then the sum of P^S and z!S
defines a pairing

and that of the distinguished triangles (2.1.3) and (2.1.5), cf. [51, 5.2.3-4].
In particular we get

(2. 1 .6) ViS°(id® Var) - *01

Here we can also use the pairing

il T

similarly defined. Then the sum of ilS and —pi^1S give a pairing p<f>1S and
that of (2.1.5) and (2.1.3) so that

(2.1.7) -ViS?o(Var®id) = ^01So(id®can): p<t>lK®p^lL -> r Tx .

We can check that these two definitions ofp<f>lS are homotopic to each other,
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using the quasi-isomorphism

defined by [x, y]*-*(Nyf [x, y, 0]). In fact the homotopy is given by

^L] -> [i*Tx -> fr
UJ UJ

We say that a pairing S: K®L-*TX is non-degenerate, if the corresponding
morphism:

(2. 1 .8) S9:K-* UL = <^0mc(L, Tx)

is a quasi-isomorphism.

Remark. We can check that ^S and p<f>1S are non-degenerate3 if so is S. In
fact, we can reduce to the case where K, L are perverse sheaves and then K, L
are simple (i.e. intersection complexes),, using a filtration of K, L, because pifr
and P<p1 are exact functors., cf, [BBD]. Then it is enough to prove the assertion
for VS by (2.1.6) using the monodromy filtration of Vi and ^013 cf. [SI, 5.1.12,
5.2.6]. The assertion follows from the same argument as in the proof of 3.5,
because

Km Inn i*MJ*L®EmtJ = C(N:
n m

is acyclic, where EniM(n>m) is the pull-back of a local system on S* whose
monodromy is unipotent and has one Jordan block of size n— m-^-l, and the
natural injective and surjective morphisms En>m-*En+ltm and En>m-^Enfm+l are
given in a compatible way. (We can also use resolution of singularity and
apply 3.5.)

2o20 Theorems For (M, F) e MFmhCM (£)x), put L =DRXM e Perv (Cx\ K=DL
so that we have the natural non-degenerate pairing S: K®L-*TX. Then by the

fwctorial isomorphisms DRY&=tyDRx(same for 00, cf. [SI, 3.4.12], and DR D
=D DR, cf, [SI, 2.4.12], the duality isomorphism (1.6.1) corresponds to

(2.2. 1)

Proof. The assertion is local. By restricting X, we have free resolutions :

DRY\L.,F)-+(GrlM,F) for -l<o:<0,
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where (L^, F) are filtered differential complexes on Y such that the filtration F
on each LJ

a splits and GrJ Li are free 0F-Modules. Here DRY\La, F) is the
corresponding complex of filtered free £)F-Modules, cf. [S19 2.2], and we may
assume that La are bounded complexes and F is finite, cf. [SI, 2.1.17]. Using a
filtration of Gr#M9 we may choose the resolutions so that the morphisrns can,
Var, N are lifted to (La, F) and N is nilpotent. Then we get a free resolution
of (GrvM,F) by 1.4, and it can be lifted to a free resolution DRx\L,F) of
(M, F) by restricting X. By definition (I/, F) is the direct sum of OX®OY

(Li F) (-l^a^O) and OX®OY(L£\ F[l]) (-l^a<0), 0z®0r(L$+1, F), and
I/ has the filtration V such that FpZ/ is the direct sum of tiOx®Li for *=max
(0, —[£—«]) and tlOx®Lj+l for i=max (0, —[£—«]) (a=|=— 1,0), max (0,
-L#+ 1]) (a =0), max (0, -[£]) (a - -1). Note that GrvDRx\L, F) is the above
resolution of (GrvM, F) and

DRx\L: F, V) -* (M; F, F)

is a bifiltered resolution on a neighborhood of F9 where

V^DR? U) = 2P+^ ^ I/® FY ̂ }z .

For atEQ, let 0J(resp. OJ) be the left .S^sub-Module of 1*1* /# /* 0Z gener-
ated by ^+;' (resp. r*+J'(log 0' O'^O)) for je^ over 0Z. We define the de-

creasing filtration V on Ox and O°x by

J - Ox /«-&•-«

Put

(I«f F) = (L, F)®^(0J, F) (c/* i* /* /*L) .

(I^>[j], F) - (D^1 L, V)®ox(0«x, V) (Cf* /* /„ /* DRS1 L)

where D^s1 L=DRY DRx1 L=L®os 3)s and

Then L(a5) is a subcomplex of /* /*/*/*!/ (same for -£(a>)b])? and i(as)[^] is a
complex of right ^-Modules such that

(2.2.2) 0 -> F|3 Z(o5)[s] -1 F^ I^[j] -> Fp L(a}) -> 0 .

Then by [SI, 3.4.12] the natural morphisms

(2.2.3) Grl LM[s] *- F0

Gr0
F !<•> - F0
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are quasi-isomorphisms for — l<a^SO, where JL is the canonical flasque re-
solution (of Godement) of L.

We define the filtration V on £z(log 7) by

7) = t^x(log Y) for i = max(0, -[-a]) ,

and V on Qx (resp. a)x) using the inclusion ^z->^^(log Y) (resp. the isomor-
phism £x=o)x). Then we can define &%\ £§°[X| similarly (same for o)x). If

a=0, they are written also as ®x, &x[s].

Let (DLi F, V) be the dual filtered differential complex of (L; F, F), i.e.

(DL; F, Vy' = ^F
0

v((Li F, VYj~\ (*>*; F, F)) ,

and sometimes (DL\ F, V) is denoted by Jfom^^L; F, F), (a)x; F, F) [«]). By
definition we have the natural filtered quasi-isomorphism :

(2.2.4) ^l-M^(L, V), (Qx, V) [2ri\): ^Jhmv^DKi\L, V\ DR^(GX, V)[2n])

= DRX DSz\DL, V) -* (DL, V) ,

because ~^£iff;s.((L, V\ (cox, V} [n])=DR?(DL, V) cf. [SI, 2.2]. We can
check that (2.2.4) induces a filtered quasi-isomorphism

(2.2.5) Jt^m^L, V\ (B&, V) [2«]) - ((/>!)«, F)

for — Ka^O. Tensoring O\ for /? = — 1— a, we get also

(2.2.6) F0 ̂ <™0iilx(L, SP [2«]) -* F0 ̂ -«Diffx(I
(p), $£" [2n])

for — Ka<0. Here we have a quasi-isomorphism

GrlQ^ [2n] = C(s: QT[r} -* £y[r]) [2/7-1] -» flr[2»]

as filtered differential complexes on Y, where r=log t and .sr'^z'r1'"1, i.e. [j, r] =
1 in ^^. Therefore by (2.2.3) and (2.2.5-6) we get a morphism in D"C(CY):

(2.2.7) ^exp<2*/«) DL ̂  G

- ^»«fj.(GrtDV, SY[2n]) ex (H^w(«w L) [2] .

We can check that (2.2.7) coincides with V^i®** and it is enough to check
that (2.2.7) coincides with the analytic duality. In the level of complex, (2.2.7)
is represented by

(2.2.8) C(Grl(DL)(a)[s] ^ Grl(DL)(a) [s])
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Here we have

[s] = C((DL$ [s9 r] - (DLJ [s, r])

with the morphisms defined by

» N*u®P+u®sP

v®Q H

for u^DL^ veLp, PeC[j, r], QeC[r], and u®siTj^(DL^) [s, r] corresponds
to

up to sign (cf. 1.8), where (ad 5) P=[J, P], We define a quasi-isomorphism

by H*-»CEji£oN' u®Tlli\, 0). Then this represents the isomorphism in [SI,
3.4.12] (using (2.2.3)), because it can be lifted to a quasi-isomorphism:

0
f - s f - j

0 , 27V'" v®r'7/! J [_£

We apply this also to DL$ and compose these with (2.2.8) so that we get a
morphism

(DLJ [1] -> ^*0rCMl], Q>r[/i-l]) [2]

whose restriction to (DL$)i+l is the identity multiplied by (—1)'. This proves

the assertion for ^i- F°r ^u we use ^e quasi-isomorphisms (dual and
quasi-inverse of each other):

defined by

(can w®P, w®P; v®Q, 0) <H (n®P,

(same for GrlL[s]). Then we can apply the same argument as above. As for
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019 we must be careful about the problem of homotopy and mapping cone.

We use the diagram

L9 Sx[2n}) -

t I I
L9 Sx[2nJ) -+ ̂ DiffF(Gr0

FZ9 Grl@x[2n})

I I

f

I
J*DR(KX)\ -
II t

, ̂  DR(KX))

and the similar two diagrams where L, ^ L on the right hand side are replaced
by i*L, and then Qx and ^ are further replaced by ®x and /* and j#j*,i
are omitted. Here / means the canonical flasque resolution. Then the mor-
phism in Db

c(CY) (cf. 2.1):

—N id
[i*

> ^L], TV)

is represented by

Grl ]BL[s\~^-> Grl SL[s]^ Grl

^^y ftf s***, {(I

r% DL[3t] -> Grl DL[s] -> Grl DL[s] +- Grl

—N
'o)Y[n] -* O)Y[T] [n] -> COY[T] [n]

—N

®Y

where [A-^B-^C<-D] means the mapping cone of D[—2]~^[A->B-~>C]9 and
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the third morphism is defined by

~a, b, c

with pr the natural projection: cyF[r]— ><yF. Using the natural inclusion

r1: Grl., DL[dt] (= Gr^ DR^1 DL) -» Grl DL[t~\ s]

and putting DLs
a=(DLa} [s], DLsJ=(DLa) [s, r], etc. for a=— 1, 0, the first

diagram is expressed as

(-<, 0
C(DLs,@DLll -> DLl^DL^) - - £ C (D Ls

0
r ® D LL\ -> D LL\® D Ls

0
r)

-J,j ,

-> (DL!Ll)s@DLI>) - —

with ^ the natural inclusions, and into its associated single complex, we have a
quasi-isomorphism of ZJL0 defined by

rO,0;0, 0 ; 0, 0 ;
w f— >

L 0, 0; 0,i/(g)l; S(-#*)'' w®^//!, -2 can*(-#*)f' w®r'+1/(/+l)!;

!, 0 "

0 ,0.

Here the bidegree of Grl DL[dt] in the first diagram is (0, 0). Similarly we
have a quasi-isomorphism of L0 into

/ _
[GrlL -> Grit] = [C(L_, -> L0)

defined by

v H» [0, v; S N{ v®r'/i !, 2] Var ̂  v®r'-+1/(/+l)!; 0, 0] .

The composition of these morphisms with the above morphism representing
P$1S* coincides with the natural isomorphism

DL0 -
/•»*/ ^

where the contribution coming from Grl DL[s]-><=#wn(GrlL, O)Y[T] [«]) van-
ishes. This completes the proof of 2.2.

2.3. Remark. Corresponding to the operation Lh-»L(a5) in the proof of The-
orem 2.2, we have the following for a complex of C-Modules.

For a^C/Z, we define E{f> to be the subsheaf of n*Cs* annihilated by
(T—Q\p(27ciaJ)ki'1 for £^0, where T=r* with r the generator of the covering
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transformation as in 2.1. Then E^ is a local system on 5*, whose monodromy

is given by T'1. Put E^=E^=lim E^d^Cs^ and ~EP=r(S*,n*EP)

(same for "EM). Let / be the coordinate of S, and z=(2m)~l log t that of S*

so that r is given by zh-»z+l. We choose base points;?' of S* andp of S* so
that n(p')=p and Re 2=0 at /?'• Then ys'1(p)=p'+Z9 and we have canonical
isomorphisms :

(2.3.1) r($*, x* n* Cs*) = (** x* Cs*V = (** C5*)* = IW+* C, ,

so that the action of T is induced by the canonical isomorphism CX+1-*CX9 i.e.
(bx) = T(ax) satisfies bx=ax+1 for ax, bx<=Cx. Therefore E^ is a local system of
rank fc+1, because its local section is uniquely determined by the values at
x=pf+j (O^j^k) using (2.3.1). Let N be the logarithm of Tu, divided by 2m,

where T=TU Ts is the Jordan decomposition of T. Let r be the element of

°°E[v corresponding to (2mk}x=p,+k by (2.3.1), and e^E^ to
Then NT=! and 7etf=exp(27T/a) ^.

We have a natural multiplication

which induces the componentwise multiplication on Cx by (2.3.1). Then we
have T(m(u®v))=m(Tu®Tv) and

with N(m(u®v))=m(Nu®v)Jrm(u®Nv), In particular, we get

00 E™ = C[r] , -EM=C[T]e.

as a C7[7V]-algebra and a left IT-Module, where AV'^/r1'"1 and W is the Weyl
algebra £7 [5, r] such that [s9 r] = l and 5=^.

Now we consider a left .2)s*-Module n^Os* or a left ^-Module 7*^(55*
with j : S*->S. Then E^ generates over Os* a ^s*-sub~Module? and we denote

by 0J (C J^TT^OS*) its natural extension as a meromorphic regular holonomic
^)s-Module (i.e. regular singular meromorphic connection). Then for each
a^C, we have a natural morphism

(2.3.2) ~ j#*> 3 w h-> fi : = ^ exp (^ log 0 w e r (S, 0f )

because f* exp (TV log i)u defines a section of x*7u*0s* invariant by T. Then

r(for a=Q)9eet^r(S*,7c#Os*) coincide with log t = 2mz, t*=exp(2aiaz) e
*5 0s*) by definition.
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For K^ Db
c(Cx) represented by an injective complex, we define

EW) = Km i*j*(j

Then K((*} is naturally quasi-isomorphic to (the underlying C-complex of) L(flj),
if K is a flasque resolution of a filtered differential complex L as in the proof
of 2.2. Moreover the natural morphism

(2-3.3) ^)-^exp(2^)^

is an isomorphism of complexes. In fact, by definition, ^XK is the inductive

limit of

where K' Is the restriction of K to X*, and the natural morphism

K'®c EP

is an isomorphism, because they are both subsheaves of n*n*K' and their
local sections are uniquely determined by their values on the image of k local

sections of n. Here note that the monodromy of ^expC^i*) K corresponds to
the action on KM induced by the inverse of the monodromy of £!(fl}) (as a limit
of local systems). The above construction can be generalized to the case where
Kis defined on any field (cf. [SI, 3.4.14]).
2A Remark. The arguments in this section can be applied to the non filtered
case as follows. With the notation of 1.7 we say that M^M(3)X)Y is cohomol-
ogically regular along Y, if the following conditions are satisfied :

(2.4. 1) DR (M(* Y)) = ./* j*DR (M)

(2.4.2) DR (M( I Y)) = j, j*DR (M)

where M(^Y)=M[t~1] is the localization of M by t, and M(\Y) is the unique
coherent .S^-Module which is endowed with a morphism M(\Y)— *M inducing
an isomorphism outside Y9 and satisfies dt: Gr^iM(\Y)^GrlM(\Y), where
M(*F) and M(\Y) belong to M(^)X)Y by the natural morphisms inducing
isomorphisms outside Y. Note that (2.4.2) is equivalent to

(2.4.3) DRY(C(dt : V^M -> V*M) \ Y) is acyclic for some (or any) a <0

by [SI, 3.1.7], and in the holonomic case (2.4.2) is equivalent to (2.4.1) for
the dual of M by duality, cf. 1.7. We can show the comrnutativily of ^, 0t

with DR as in [SI, 3.4], if the following conditions are satisfied:
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(2.4.4) M is cohomologically regular along F,

(2.4.5) the action of the monodromy T on each stalk of Mki^DR(M) has
non zero minimal polynomial.

Here note that (2.4.5) is satisfied if M is holonomic, and for the non unipotent

monodromy part we can use the correspondence of the functor M\-*j*M®oO*

with K\-*j*K®Etf> by DR, cf. 2.3 for notation. In particular we have the

commutativity of ^ and DR, if M satisfies (2.4.5) and M®O* satisfies (2.4.4)
for any a (e.g. M is regular holonomic). The construction in 2.3 applies under
the assumption (2.4.5), and the above assertion follows easily from (2.4.1)
(2.4.3). In fact we have the isomorphisms as in [loc. cit]:

(2.4.6) ^ DR(M) £L lim i*j*(

^. lim i*DR(M(*Y)®Ok) = i*DR(M(*Y) [log t])

^ DRY(C(dt : M(* F) [log f ] -* M(* F) [log t]) \ Y)

~ DRY(C(dt t: K^Mflog t] -> K^Mflog t])\Y)

^ DRY(C(dt t: Gr^M[log t] -> Gr^M [log t]))

~ DRY Gr^M

where we use the natural filtration of M(*Y)®Ol whose graduation is M(*Y)
for the second isomorphism. (A similar argument has been obtained by
Mebkhout in the regular holonomic case using the expression of the finite
determination vanishing cycles as limit of mapping cones due to Beilinson and
the surjectivity of the variation on the vanishing cycles of holomorphic func-
tions instead of the construction in 2.3.) Then in the regular holonomic case
we get the compatibility of the dualities of ^-Modules and perverse sheaves
for the vanishing cycle functors as in (2.2.1) by the same argument.

§3. Normal Crossing Case

3.1. Perverse sheaves with normal crossing supports. Let X be a polydisc with
the coordinates (jcl5 ••-,xn). Put n = {\, • • • , n}, and v = {i&i\ ^-=1=0} for v =

(vl9 — , vn)^(CIZ)n. Let Perv(Cx)nc be the full subcategory of Perv(Cjr) such
that the stratifications of its objects are given by the intersections
For K<=PQtv(Cx)nc, and v^(C\Z}n, Idn\v, we define

with ^/'VjJ='^Xj>e^p(2'!fivj) (for 7$7), 0 ^(otherwise). Then we have the mor-
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phisms

can |.:5
r/Ar-»y?u{f.JA: for

Var,- : ̂  J# -> ^/\{.-}^ for / e / .

We can check easily that 3F/ is independent of the order of n, because -frx is
same as restricting to {xj = l} in this case. By Deligne's description of mono-
dromical perverse sheaves, K^PQrv(Cx)nc is uniquely determined by W}K with
Ni9 can,-, Var,-.

For m=(ml9 — , mn)&N*9 put g=xm=Hx7/9 and m = {i<=n: w f-=t=0}. The
proof of the following lemma is pointed out by Kashiwara in the unipotent and
reduced case (i.e. ¥V

TK=Q for y^O, and m,- = l).

3.2. Lemma. For a<=C/Z, v<^(C\Z}n and ICri\v, /?M/ (TV*— w*TV)/ni ==
Tlif=rnm(Ni—niiN). Then for K e Perv (Cx)nC9 we have a functorial isomorphism
as C[N]-modules:

TV,-, can,-, Var,- o« ?/ze left hand side correspond respectively to the mor-

phisms defined by the mapping cone of

(id, TV,— w,-AO i/ /em\(/Uv), (can,-, can,-) ?/

(Ni.-miN.id) if zGE/ r iw , (Var/5 Var,-) //

where Ni9 can,-, Var,- a«^ TV are f/ze abbreviation of TV,-® id, efc. a«^/ id® TV,
the action of TV o« C7|V| w defined by NTl=iTl~l, cf. 2.3.

Proo/. Put />=^"1(0)wrf, and let j: C/ = JrXjD-^^ be the natural inclusion.
Then by 2.3 and using the graph of g, ̂ exp^ao^ is represented by the mapping
cone of

MJ*K®C £<•>) -+j*U*K®c £(K))

so that the action of TV on ^expCz***)^ corresponds to id® TV. Here the pull
back of EM is also denoted by E(*\ and -TV e End £'(*) is the logarithm of the
unipotent part of the monodromy, divided by 2ni. By definition, the semi-
simple part of the monodromy of E(a) around Dj = {Xj=Q} is the multiplication
by exp(— 2^faw7y), and for /C7?\P such that ir\m=$, we have a canonical
isomorphism
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« ¥}+«™K®C[T] (cf. 2.3),

If we choose a factorization (X'\D')~^>S* of (Z/\D')~-^-Xr/\/>'-*Sf* compatible
with the base points. Here A" = {**=() (fc$iw)}, D'=X' fl A *': X'-*X9 and we
choose a base point of (X'\D')~ such that Re^i)'1 log xk=Q on it. We check
that the action of Ni9 canz- (/$/w), Var,- (z°$m) on the first two terms correspond
to Ni—miN, can,-, Varz- on the last term. For v^(C/Z)n and 7c«\P, the
morphisms

can /n?7z: ^i\mj\

Var/n-:^7t,C

are bijective, because

^}j\(j*K®EM) = lim !

(same for 7^). Here can/=life/ can,-, etc. Therefore the natural morphlsm

is identified with

and then with

We check that this morphism is surjective, using a filtration on yr^^K and
reducing to the case where ^-=0 on W^+^nK for i^m. Thus we get the first
assertion and the other assertions follow from the above description of the
action of Ni9 etc. on ¥}jl(j^K®E(^), etc.

3030 Corollary., For v, I and K as in 3.2, we have a functorial isomorphism as
C[N]-modules:

such that Nif canz-9 Varz- on the left hand side correspond respectively to the mor-
phisms defined by the morphisms in 3.2.

Proof. With the notations of 2.3, we have an exact sequence of left PF-rnodules:

(3.3.1) 0 -> W/WT °-i W/Wrs -* W/Ws -> 0 .
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Substituting W/WT=C[s]9 W/WTS = €[S, s'1], W/Ws=C[r] as C[^-modules,
we get

0 -> C[s] -> C[s, s-1] -> C[r] -> 0 .

Put H=Wv^mK as a C[N19 —, TVJ-module, and H[s]=H®C[s] (same for
[s, s'1], [T]). Then we have a commutative diagram

0 -> #|>] -> #[>, .T1] -» ^[r] -^ 0 ,

where Nj=(N*—m*N)j with J=I{}m, and JV=,s. We check that the middle

vertical morphism JV/ is bijective, and get

Ker(A>: ^T[r] -> J7[r]) = Coker(JV/: /T[j] -> ^[j]) ,

which proves the assertion.

3o4. Remark. The above isomorphism in 3.3 is compatible with the analytic
one in [S2, 3.4]. In fact, with the notations of [loc. cit], the isomorphism in
3.2 corresponds to the isomorphism in the derived category of .3^-Modules
with the action of TV:

(3-4.1) ^exP(2^)M = [Mj*M®t* C[T]} -*j*(j*M®t* £7[r])]

for — l^cK<0 (cf 2.3), using the graph of g and then the projection XxC-*X

(i.e. taking DRS), where j\, j* are taken in the category of inductive limit of
regular holonomic quasi-unipotent ^-Modules with normal crossing singular
supports, i.e.

Here r*, r=log r mean e^, f in 2.3 so that

Xi di t* = Jiii at* , 0. r^" = 772,. j^"'1

with d—d/dxt, and (u®P)di=udi®P—u®diP for neAf, Per*C[r]. In
fact, the first isomorphism in (3.4.1) is induced by the morphisms of functors

id «- DRs(ig)* *- F0 DJ^(y * -> Gr0
FD^s(g5,

applied to [Mf->M^], where Mf-j, (j*M®t« C[r]) (same for M|) and
Jlf =GrlM [SJ with M[d,H(O*M, cf. [SI, 3.4.12]. Here
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and Gr% DRs(ie)xM*=Q, because (ig)* commutes with y, if the inclusion Xx
C*-*XxC is also denoted by/ We use the natural projection (after multi-

plied by r*'1 floe, tit]):
xrj

(3.4.2) [Or^ Ml [dt] -i Gr I M% [dt]] -> G?l M[3t]

such that the action of N on the left hand side corresponds to that of s— a
on the right, where M^[dt}=(ig)^Ml (same for Mf [6^]). Let Ker be the last
term of (3.4.1). We define a JZ)z[W]-linear morphism by

(3.4.3)

Then this gives a commutative diagram

Ker

JfrJ] - [Mf - M* ]

Now let M'-w^/e(Ker)v+lj(c(Mf)v+lj) for j/e[-l, Of and 7c {/
— 1}, where J=I[}m and we(Mf)v+lj\^. Then w' is annihilated by g, and the

image of «' by (3.4.3) is M'® 1 =udj® I e J0?[dJ. We define

using (u®d\) dj=uaj®dl-u(dj. g)®d{+l. Then vdt=u'®\ in Grl$fi[dt]9 be-

cause M®leK<0Ai7[0f]. Let vx be the image of v in Gr^M^[dt]9 and v2 that
of vx by the projection (3.4.2). Put

H = A/v+1A»+flM" .

Then we have the isomorphism

(Ker)v+1i - Ker(7V>: H[r] -* H[r])

where Nj is as in the proof of 3.33 and u belongs to the right hand side of the
above isomorphism. By definition, u corresponds to v2 in Gr#M[dt]9 and we
check that by the isomorphism (cf. [S2, 3.4]):

+li = Coker(Nf: H[N] -

v2 coincides up to sign with the image of u by the isomorphism used in the proof
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of 3.3. In fact v2 is the projection of —(N/u) s~l^H[r, s] into H[S]=H[T, s]/
H[T,S]T, where [5-5r] = l and N{ is the left multiplication of JVf-— mf s. This
proves the assertion.

The following fact was found by Kashiwara in the unipotent and reduced
case.

3.5. Proposition. Let X and g be as above, and S : K®L->TX a pairing of K,
L^Perv(Cx)nc. Then by the isomorphism in 3.3, the induced pairing

is identified with Res ¥v™m S°(N-l~®id), where Wv+?m S is extended toJ I\m ^ I f t t n J I\m

by y*™™ S(u®N*, v®Ni)=(—l)i V]+?m S(u, v)®Ni+J for
W-^:*mL, and Res: C[N, N'^C is defined by Res (2 ai®Ni)=a_1.

Proof. We assume that K, L and Tx are represented by complexes of flasque
sheaves, and S by a morphism of complexes. As in 2.3, the local systems on
S* such that the semisimple part of its monodromy is the multiplication by
exp(—2nia) is identified with the C[7V]-modules, by using the functor: E\-*
F(S*, TC*E). Put W=C\[s]\ [T] with [5-, r] = l. We consider the limit of local

A

systems corresponding to the ^-modules:

and they are denoted also by the same symbols, where

CQYQ = W/Wr, C[T] = WjWs, C\[s]\ [s'1] = W/Wrs

with s=N, and ea means the condition on the semisimple part of the mono-
dromy, cf. 2.3. Let D, U, j be as in the proof of 3.2. We define

K*M Is'1] =j*(j*K®e,. CM t^"1]), etc .

to be the inductive limit (with respect to [j"1], [r]) of the projective limit (with
respect to QS]]). (It is same for K*H^J [s"1], etc.) Then using a condition of
Mittag-Leffler, we have an exact sequence of complexes:

0 -> Kl \[s]\ -> Kl d^I [s-1] -* Kl [T] -> 0 (same for Kf).

We have also a multiplication of limits of local systems:
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(same for e^C\[s]\9 epC[c])9 because COVQ [s'1] is a fF-modules and JV(rf't/)=/r>'"1

u+rlNu. Therefore we get

] I*'1], etc.
In particular, we get the induced pairing:

by 2.39 where /*Ty in the last term is at degree —2. We check that this mor-
phism is naturally extended to :

: C(Kf[r]

- c([(rz),
by 3.6 below, where (Tx)i=jij*Tx. Similarly we have

~

compatible with the natural morphisms Lr* ((«))-> Lr^tr], etc., where Lra(0))
Lr*!*]] [s'1], etc. Then by 3.6 (where ^=0), we get a pairing ^«S of
->^* M) and the mapping cone of the surjective morphism :

with value in the mapping cone of the surjective morphism of the mapping
cone of

into the mapping cone of

C((7i)?M ^(rx)?[r]) -» C((7i)J[r] ̂ (r^JtrJ)

Therefore we get the pairing ^-S of

) and C(Zr*[M] — ii-IIJlD [1]

with value in the kernel of the above surjective morphism of the mapping
cones. We check that the kernel is the mapping cone of
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r _ L _ m

where the morphisni is defined by the mapping cone of (p, —e; ~e), and i, p

and e denote the natural morphisms. By definition ^S factors through the

mapping cone of

c(o -> (rx)f M) [i] - c(o - (rz)j [M) [i]
and it is homo topic to the morphism (also denoted by ^8) which factors

through

(3.5.1) C(Tz®(Tz)%M(^^(T*Ms'H) W ,

because (— c9 —N) in the first mapping cone is an isomorphism of complexes.

Combining with the natural projection to Tx [2], we get the pairing

[M] - L*«m) [i]

whose restriction to £?[r] [l]®^05^]] [1] is the composition:

[2] - (rz), [2] -> rz[2]

by 3.6, where the first isomorphism is induced by

and the second morphism is defined as above (using F'F-module structure).

Here note that the projection of (3.5.1) onto Tx[2] represents the natural mor-

phism: z#r TX[2]-^TX[2]. By definition, the restriction of

: C(K? [T]

to jSTf M®Lj*HjI] is the composition:

Put H=Vv+*mK9 Hf=¥-*-"mL so that
I\m 3 7\»z

^/ V,.«,(«.)A- = Ker(A>: //[r] ̂  l/[r])

^Fv V,.«p(-wrti = Coker(JV7: ^'ff^ -

by 3.2-3 (using the bijectivity of Nj: H'((s))->H'((s))). Then the pairing
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of these two vector spaces are induced by

where -Vv£m S(w®r'', v®^')^-!)1'-1 ' ! w]{tm S(u, v) (if 1=7), 0 (otherwise)
for u^H9v^Hf. Therefore it is enough to show that this pairing coincides
with the pairing in the assertion by the isomorphism in the proof of 3.3. We
first check that the image of u(&s~j~1GH((s)) in H[T] is M®T;'//!, because
Tj(s~l)=j\s~J~l in C (($)). Then the assertion follows from the commutative
diagram:

where the first horizontal morphism is defined by W S as in the assertion, and
the second by — ¥S as above. In fact, W} of the isomorphism

W - LJ-W) ~ C(Lr*D>I] -> Li-IM) [1] in D*(C^)

coincides with the morphism used in the proof of 3.3 shifted by 1.

3.6 Lemma, Let f: A®D-*E, g: B®C->E, h: B®D-*F be rnorphisms of
complexes compatible with morphisms u: A-*B, v: C— >jD, w: E-*F, i.e. /o(id®v)
=g°(u®id), ho(id®v)=wg, h<>(u®id)=wf. Then we have a morphism of com-

plexes

C(u: A-*B)®C(v: C->D) -> C(w: E-*F)

defined by (a, b; c, d} h-» (/(a, d)+(~l)i g(b, c), h(b, d)) for

(The proof is left to the reader.)

3e78 Remark. Using 3.3-5, we can generalize [S2, 3.20, 3.27] to the non-
quasiunipotent case where the filtration V is indexed by R. Note that the
absolute value of the eigenvalues of the local monodromies of the polarizable
variations of Hodge structures is 1, and the other results in [SI, 2] can be gene-
ralized to this case, because the result of Schmid and Zucker used in [SI] is
true in this case by Deligne-Schmid and Zucker.
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