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Abstract

We study Hermitian representations of algebras A with involution, a-*>a*. A repre-
sentation TU of A on a vector space D is said to be Hermitian (or to be a positive-energy-
representation) if D carries a positive definite inner product (•,•) such that

(n(a)u, v) = O, 7zr(a*)v) , a^A, w,veD .

Such representations arise in quantum field theory and in the study of unitary represen-
tations of Lie groups. They were introduced (in this general context) by Powers. We show
that main features of von Neumann's index theory (for single Hermitian operators) carry
over to representations. Moreover, we get explicit index-information directly from the rep-
resentation theory, and this is applied to the study of representations of semisimple Lie
algebras g (with Cartan decomposition g=f+P).

For a certain class (to be specified below) of positive energy representations TC, we show
that the index may be computed from the restriction of x to the compact subalgebra !.
Our results are then applied to the integrability problem for representations of semi-simple
Lie algebras.

Several classes of examples are included.

§1. Introduction

In this paper, we study Hermitian representations of algebras with involu-
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tlon and give applications to representations of Lie algebras. We are motivat-
ed by von Neumann's classification of extensions of single Hermitian operators
with dense domain in a given Hilbert space. We show that the extension
theory for Hermitain representations Is somewhat analogous to the case of a
single Hermitain operator. Using Powers' definition [Po] of the adjoint repre-

sentation we identify a generic quadratic form on the domain of the adjoint
representation. If it is the given Hermitian representation with adjoint rc*,
we consider the quotient D(TC*)/D(TU) where D(TT*), resp. D(n\ denote the
corresponding domains. We characterize the Hermitian extensions, and the
self adjoint representations in terms of the quadratic form (the boundary form),
and consider the decomposition theory for the Induced module D(n*)ID(n).

We apply the results to the special case where the algebra is the universal
enveloping algebra of a given semisimple Lie algebra g. For a given Cartan
decomposition g = I + p and a quasi-simple Hermitian representation n, we
show that the boundary module is given by the restriction to I of the repre-
sentation. We finally apply this result to the integrability question (see [JMo])
for representations of Lie algebras.

We study the canonical quadratic form on a certain induced module
associated with a given Hermitian representation.

Since the quadratic form is not positive definite, standard results from
Hilbert space theory on decomposition of modules do not apply in the present
setting. Instead we are motivated by the Gupta-Bleuler theory of module
triples associated with invariant (nonpositive definite) inner products.

The reader Is referred to [Ar], [Kelt], [In], [Kr], [Na], [Ot], and [Ta] for
further details on this last point. The recent paper [Ha] has further results in a
restricted context.

Our motivation comes primarily from the Idea of Powers to adapt von
Neumann's Index for Hermitian unbounded operators to representation theory
[Po]. We note that this leads to an induced module, associated with a given
Hermitian representation of the given algebra with involution. This module
carries a family of quadratic forms indexed by the algebra, and the Gupta-
Bleuler approach may be adapted to this family of quadratic forms.

Hermitian representations have also been considered earlier in a general
context, see e.g. [In], [Jo (a)-(c)], [Ne], [Ph], and [Ra]. We further mention
the recent idea of Powers-Price [PP] to consider induced modules (analogous to
our modules D(TC*)/(D(TI:)) in connection with an index theory for semigroups
of endomorphisms of B(H\ see also [Arv],
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It is our hope that the ideas on index may be adapted to the general study

of derivations in C*-algebras [GJ], and representations by Lie algebras as deri-

vations [Ot] as they arise in noneommutative differential geometry.

Finally we point out in [Jo (c)] that the question of finding the unitarizable

representations of infinite dimensional Lie algebras (such as the Virasoro

algebra [GW], [CP]) may be phrased in terms of Hermitian representations of

associative algebras with involution. In this case, the inner product is not

given a priori which adds one difficult element to the problem. For a given

algebra A, and a representation n of A with domain D9 the object is to find a

positive definite inner product (* , • ) on D such that

(x(a)u, v) = (u, 7r(a*)v), a^A, u,v^D.

§ 2. Definitions

Consider a given Hilbert space H with inner product written (• , • )? anc* let
D be a dense linear subspace of H. Let A be a given (associative) algebra with

involution, written a->a*. We say that it is a representation of A with D as

domain if n is a representation of A by linear operators n(a) such that, for all

ae A, the operator n(a) is defined on D and maps D into itself.

We say that n is Hermitian if

(n(d)u, v) = (u, 7r(0*)v), a^A, u,v^D .

2.1. Let TF be a given Hermitian representation on an algebra A with

*-involution. Assume that the domain D of n is dense in the representation

space, a given Hilbert space H, and let TT* denote the dual representation with

domain D*, defined as follows:

£>* = n {dom (*(a)*): a e= A} (2.1)

with

x*(a):=7u(a*)*\D,, a^A. (2.2)

Since n is Hermitian, for each a&A, n(a) is contained in the operator

*(**)*, i.e.,

*, (2.3)

and it follows that each TU(O) is closable. Let ?r(a) denote the closure, i.e , the

smallest closed operator containing n(d). Then

(2.4)
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We define the closure of TC as n by the following: The domain of n Is

defined by

D := n {dom«a)): a^A} (2.5)

and
~fsi\ ~r*(^\ I - ~f*\ I - fJ £\7c\u) = n (a) I D = ft\ci) I D • ^z.oj

Pov/ers [Po I] showed that n is a Hermitlan representation. Moreover, If p is

an arbitrary Hermitlan representation which extends TC, then

(2.7)

If p is an extension of TZ which Is both Hermitlan and closed (I.e., P=P), then

. (2.8)

2o20 The boundary conditions of a given Hermitlan representation x are

defined In terms of the following trilinear form (called the deficiency form) on

A XD* xD*5 B(a, u, v) given for a^A and n, veD* by:

B(a, u, v) = (n*(a)u, v)-(u, x(d)*v) (2.9)

where (- ,-) denotes the given positive definite Inner product on H. The Inner

product Is assumed to be sesquilinear in the two variables with linearity in the

second variable. It follows that B Is linear In the first and the last variable., and

conjugate linear In the middle variable.

A linear subspace E Is said to be intermediate If

(2.10)

An intermediate subspace E Is said to be symmetric If

B(a,u,v) = 09 Va<=A, u,v^E . (2.11)

We say that E Is a 7r*-module9 or just an JL-module if

n*(d)Ec:E9 a<EEA, (2.12)

Note that the domain D of TC is intermediate, symmetric and a 7r*-module.

2o3o We say that a given Hermitian representation it is closed if TU=TS

when fu Is defined as In 2.1 above. We say that n Is selfadjoint If K=TU*

where the dual representation TT* Is also defined in 2.1 above. Finally, n Is

said to be essentially selfadjoint If

x=n*. (2 13)
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2.4. A given Hermitian representation n with dense domain D is said
to be nondegenerate if the family {B(a, •,•): ae.4.} of sesquilinear forms
separates points on the quotient space D*jD. Specifically, if u^D* satisfies

B(a, u, v)=0 for all a e A and veD*, then it follows that u^.D.
Note that, since n is Hermitian, the deficiency forms B(a, • , -) pass to the

quotient to define sesquilinear forms on (D*/D) X (D*/D) where D* denotes the
domain of the dual representation n*. Also note that B(a, - , - ) is generally not
positive definite. When ae A is given, J3(a, - ,-) may be viewed as a sesquilinear
form on D*/D but it need not be nondegenerate even if n is assumed nondegen-
erate. But if TT is nondegenerate, and if £ eD*/D satisfies $(a, f, 77) =0 for all
a^A and ??eD*/J9, then it follows that <f is the zero-vector in D*/D.

2.5. The domain D* of the dual representation TT* acquires a topology
from the family of seminorms {pa: a^A} defined as follows:

An intermediate subspace E is said to be closed if it is closed relative to this
locally convex topology given by the seminorms {pa\ a^A} on D*.

§3. Preliminary Results

In this section, we show that extensions of a given Hermitian representa-
tion may be classified in a manner which is quite analogous to the classification,
due to von Neumann ([vN], [DS]), of extensions of a single Hermitian symme-

tric operator with dense domain in a given Hilbert space.
Given, at the outset, will be a Hermitian representation n with dense

domain, and the corresponding (dual) adjoint representation (introduced first
by Powers [Pol]) will be denoted TT*.

Lemma 3.1. Let n be a Hermitian representation of a given algebra A
with ^-involution. Let D be the domain ofn, and let rc* be the dual representa-

tion with domain D*
Then there is a 1-1 correspondence between Hermitian extension representa-

tions p and intermediate subspaces E such that
(t) E is symmetric

and

(ii) E is a n*-module.
Moreover, the intermediate subspace E is closed f and only if the corresponding
representation p is closed.
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If p is a given Hermitian extension representation, then we define the cor-
responding intermediate sub space E by

E:=dom(p), (3.1)

If, conversely, an intermediate subspace E is given, satisfying conditions

(i) and (ii), then define, for a^A,

p(a):=n*(a)\E. (3.2)

Proof. Immediate !

Lemma 302, Let n be a Hermitian representation, and let E be an inter-

mediate subspace which is a x*-nwdule.
Then the dual subspace E^ defined by

: B(a, u, v) = 0 Va<=A, v<=E} (3.3)

is also a ^-module, i.e., n*(a)(E^)(ZE^ for

Proof. We shall need the following formula for the deficiency form B.
Recall B(a, u, v) is defined for a^A and u, veD* by (2.9). Let a, b^A.
We claim that

B(ab, u, v) - B(a, x*(b)u, v)+B(b, u, n(a)*v) . (3.4)

We check this by computing the right hand side, substituting (2.9);

B(a, n*(b)u, v)+B(b, u, ?r(a)*v)

= (7c*(d)n*(b)u, v)-(n*(V)u, <a)*v)+(**(6)M, TC(O)*V)-(U, ^(6)*<a)*v)

- (n*(ab)u, v)-(u, 7c(ab)*v)

= B(ab, u, v)

which concludes the proof of formula (3.4).
We now utilize (3.4) as follows: Let u^E^ and b^A be given. It is

assumed that E is a 7zr*-module5 and we claim that K*(b)u^E^-. We note that
the two terms B(ab, u, v) and B(b, u, 7r(a)*v) from (3.4) both vanish whenever
a^A and v^E. For B(ab, u, v) this follows since u^E^, and, for the
second term B(b, u, n(a)*v), we note that n(a)*v=n*(a*)v^E since v^E and
E is a 7r*-module. Hence the third term B(a, n*(b)u, v) must vanish. Since
a^A and v^E are arbitrary, we finally conclude that n*(b)u^E^, which is
the desired conclusion.

Let TU be a given closed Hermitian representation.
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We now proceed to prove two results which allow us to check when a given

intermediate subspace E is symmetric. We shall assume that E is a 7r*-module.

The condition for E to be symmetric amounts to a complicated system of linear

equations. In the results, we show how to get symmetric subspaces from

algebraic conditions on E. We shall be concerned with irreducibility condi-

tions.

In the first lemma, we shall assume that n*(A) acts irreducibly on E, and

in the second lemma we shall pass to the quotient D*/D (i.e., the induced

module) and consider an irreducibility condition for the quotient-representation.

We have seen that both the representation TC*, and the deficiency form B,

pass to D*/D. For TT*, this follows from the two properties:

n(d)DdD and n = TT* |D .

For B, it follows from the fact that B(a, •, •) vanishes identically on D x D

for all a^A.
We shall consider D* as a topological linear space with the topology

determined by the seminorms from (2.14). If DcEcD*, we say that E is

irreducible if E is an irreducible 7r*-module. i.e., it has no closed invariant

subspaces other than D and E itself.

Let Q: D*-*D*/D=M denote the quotient mapping, and let D*/D acquire

the corresponding projective topology. We say that a subspace FdM :=D*/D

is irreducible if F is an irreducible 7r*-module. We assume that the induced

action of A on the quotient does not have any nontrivial invariant subspaces

of F, i.e., no invariant subspaces of F other than 0 and F itself.

With the definition of the quotient space M=D*/D, and the action of A

on M induced from the action of ?r* on D*, we get a one-to-one correspondence

between irreducible closed intermediate modules E and irreducible modules

F in the quotient M: If E is a given irreducible intermediate module, then

F=QE is an irreducible module in the quotient, and every irreducible module in

the quotient is of this form. If, conversely, Fis given, we may take E=Q~\F).

§4, Irreducible Modules

We now show that representation theory applies directly to the problem

of finding Hermitian extensions of a given Hermitian representation.

Proposition 4.1. Let n be a closed Hermitian representation, and let E be

an intermediate subspace which is also an irreducible n*-module.
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Then it follows that DdE^, and E is symmetric if and only if E fl E

where D is the domain of n and

: B(a, u, v) - 0 Ma^A, v<EE} . (4.1)

Proof. We first prove the inclusion DdE^. Let a&A, u^D and

We must show that B(a, u, v)=0. But B(a, u, v)=0r*(a)w, v)—(u, n(d)*v), and

7u(a)d7c*(a)=7i:(a*)*. Since u^D, we get

B(a, u, v) = (n(a)u, v) — (u, n(a)*v)

= (u, n(a)*v)—(u, 7u(a)*v)

-0,

proving the assertion.
Since E is a module, it follows that E^ is also a module. Consider

K:= E^E-1-. We have DdEdD*, and DdKdE, and moreover A: is a

closed module. To get K=E, we need only rule out the possibility K=D.

This comes from the irreducibility assumption on E. If K=E, then ECLE^,

which is equivalent to symmetry.

Theorem 42, Let n be a Hermitian representation, and assume further

that n is nondegenerate. Let n* be the dual representation, and let M=D*[D

be the quotient module.

Then an irreducible submodule F in M is symmetric if and only if

is not dense in M, where

: B(a, f , 37) = 0 Va<=A, y^F} . (4.2)

Proof. It follows from the nondegeneracy that a subspace S in M is closed

if and only if it is of the form £=1^ or equivalent^, S=S-±~1-. It follows
from Lemma 3.2 that, whenever F is a module in M, then F^ is a module as

well. This is because (Lemma 3.1) there is a one-to-one correspondence between

the set of intermediate modules in D*, and the set of modules in M=D*jD

where the correspondence is defined by the quotient mapping Q : D*-> M.

Moreover,

holds for modules F in M.

Working in the quotient M, we get

- F-1- n F^ = F-1- n F .
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By the argument from the previous lemma, we must have F^r\F=Q, or

F •*- n F=F. The density of F+F^ is equivalent to F^ n ^=0 by nondegener-
acy. Finally, the possibility F^r\F = F is equivalent to symmetry of the
module F. The result follows.

Lemma 4.3. A Hermit fan representation n is nondegenerate if and only

if 7t=n**. It follows that nondegenerate representations are closed.

Remark 4.4. Since we do not know whether or not, for general Hermi-
tian representations n, the identity X—TI;** holds, there may be closed represen-
tations which are not nondegenerate.

Proof. We have the following inclusions for representations,

It is known, in general [Po II], that JT** is contained in n* and it follows from
this that TT** is Hermitian. If rc**=n, then it is nondegenerate.

The domains of the two representations TT* and TT** are given as follows,

dom(?r*) = D* = n {dom (*(*)*): as=A} (4.3)

and

dom (***)= n {dom ((*(<*)* | D*)*) : a e A} . (4.4)

A vector u in D* is in dom ((rc(a)*) | />*)*) iff there is some vector w^H such
that

(it, n(d)*v) = (iv, v) for all veD* . (4.5)

But DdD*, so, if w exists, then w=x*(d)u and B(a, u, v)=0. If conversely
B(a, u, v) = 0 for all ve=D*, then we may use the vector n*(d)u as w in equa-

tion (4.5).

Corollary 4.5. Let x be a nondegenerate Hermitian representation. Let
D be the domain of n and D* that of TT*. Suppose the induced action on the
quotient D*/D is irreducible.

Then n is self-adjoint :; in any case, it has no proper closed Hermitian ex-

tensions, i.e., it is maximal Hermitian.

Proof. It is assumed that the module M=D*/D is irreducible, and M^=0
by the nondegeneracy assumption. So if MH=0, we cannot have McM^.
Since M does not contain any nontrivial submodules, there can be no proper
extensions as specified in the corollary when
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In this section we give criteria for selfadjointness of a representation. We
consider decomposition theory for the induced modules, and apply this to rep-
resentations of semisimple Lie algebras.

We are looking for essentially selfadjoint extensions p of a given Hermitian
representation n. Suppose a Hermitian extension p is obtained from an
intermediate subspace E as in Lemma 3.1, i.e.,

(5.1)

and

dom(p)=£. (5.2)

Then we say that p is essentially selfadjoint if p* =/?**.
The argument from the proof of Lemma 3.2 gives the following additional

information about extensions of a given Hermitian representation.

Solo Let TU be a Hermitian representation of an algebra A
with involution, and let p be a Hermitian extension of n.

(i) Let E=dom(p) and E* =dom(p*). Then

E* = E^ (5.3)

and p is Hermitian iff Ed E^.
(ii) LetE**=dom(p**). Then

E** = (E*)- fl £* . (5.4)

It follows that a nondegenerate extension p is essentially selfadjoint iff
E^=E.

Proof. We have B(a, u, v) =(n*(a) u, v) — («, n(dfv) for all a <E A, u, v e D*.
If u^D* and v^E, then B(a, u, V)=(TC*(O) u, v)—(u, p(a)*v). Moreover,

u is in dom(p(a*)*) iff 3 WEE// such that (w, p(a*) v)=(w, v) for V v^E. Since
DdE, we have E*cD*. So if further u^E*, then w=7r*(a)w, and ^(a, w, v)
=0. The converse inclusion E^dE* is immediate, and the proof of (5.3) is
completed.

(ii) Formula (5.4) is from the proof of Lemma 3.2. If now p is assumed
nondegenerate, then E**=E. Combining (5.3) and (5.4), we then get E=E**

=E'1~±-r}E^=E n^"1". The equality p**=p* is then expressed as an equality

between the respective domains, viz., E—E^~.
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In applications to representation theory for semisimple Lie algebras, the
quotient D*/D is frequently finite-dimensional, see e.g., [JMo, Ch. 12]. Let
g be a real semisimple Lie algebra, and let G be a simply connected Lie group
with g as its Lie algebra. Let n0 be a representation of g with domain D

such that

(TUO(X) u, v) = -(u, 7r0(» v), Vxeg, u, v<=D . (5.5)

Let TT be the representation obtained from TTO by extension to the universal
enveloping algebra of g. This enveloping algebra will be denoted A and it
is the complex universal enveloping algebra of g with involution, 0-»0*, de-
termined by the conditions,

x* - -*, A-GEg , and 1* = I . (5.6)

Then it follows from (5.5) and (5.6) that n is Hermitian. Let ?r* denote
the dual representation with domain D*, and assume that the quotient space
D*jD is finite-dimensional. Then it follows from semisimplicity of g that TT* is
semisimple on D*/D, i.e., it breaks up as a direct sum

M:=D*/D=F1+~'+Fk (5.7)

where each F{, i=l, • • • , & , is an irreducible module for the induced action of A
on the quotient. When F{ is viewed as a subspace of M, then F{ R ]>] Fy=0 for

f*./.
In studying Hermitian extensions p of n we may dispense with those

modules Fz- from (5.7) where Ft f) F^=t=0. They satisfy F^Ff by Proposition
4.1 so they are Hermitian.

We shall restrict attention therefore to representations n such that the
components Ft from (5.7) each satisfy FinF^-=0. It follows that then

F;+Ft = M ; (5.8)

so the induced representation from TT* on M is decomposable, and there is an
explicit decomposition (5.8) for each of the irreducible components.

In checking whether or not a given intermediate submodule E is sym-
metric, the following result is useful.

Theorem 5,2. Let n be a nondegenerate Hermitian representation of an
algebra A with involution. Let D be the domain of n, and D* that ofn*. Let S
be a subset of A such that B(a, v, u)=Qfor all a^S, u, veD*. Suppose A is
the smallest subalgebra containing S (i.e., A is generated as an algebra by S).
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Then it follows that K is self adjoint.

Proof. For a.b^A and M, veD*, we have

6, w, v) - B(a, ir*(6) «, v)+J5(6, w, 7r(a)*v) . (5.9)

The right hand side vanishes identically if it is further assumed that a,

Since S generates A as an algebra, we get B(a9 u9 v)~0 for all a^A9 u,
So D* is symmetric. We have D*c:D*\ But D*^-=D** by Proposition 5.1.
Since n is assumed nondegenerate, D**=D, so D*=D which is equivalent to
selfadjointness of rc.

Remark 5.3. The assumptions of the theorem are satisfied in a class of
representations arising from semisimple real Lie algebras. Let g be a semi-
simple Lie algebra with Cartan decomposition, $=%+$, with the Killing form
negative definite on I and positive definite on p, and

[U]c!,[I,WcMfcWcI. (5.10)

Let A be the complex universal enveloping algebra of g.

Assume

(i) » , W = *
and

(ii) B(x,u,v) = Q for Vxep, w, veD* .
Then the theorem applies and we conclude that ?r is essentially self adjoint,

i.e., n=7z*.

The argument from the proof of the theorem shows that D* is symmetric,
i.e., D^cD*"1-. It follows that D**=D*. But if n is obtained, as above, by
extension from a Lie algebra representation ?TO satisfying (5.5), then it follows
that K=n**.

Using known results for finite-dimensional Hilbert spaces, and subspaces
in generic position [Su], the previous discussion yields information about D*jD
for a nontrivial class of representation :

Scholium A. Let K be a nondegenerate Hermitian representation such that
the module M=D*jD is finite-dimensional with decomposition (5.7) for k=2.
Suppose further that any two of the four subspaces F19 F£9 F29 Ft have trivial

intersection. Then it follows that Fl is the graph of a linear isomorphism of
F2 onto Ff.

Remark. An analogous more general result is available for nondegenerate
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Hermitian representations such that the module M=D*/D Is finite-dimensional
with decomposition (5.7) with arbitrary k>2. The proof of this is again based
on ideas from [Su], but we shall postpone details to a later publication, as they
are not needed for the present paper.

When this is applied to ^20^)> Theorem 5.2 allows us to decide the sym-
metry question for Hermitian representations and Intermediate modules from
the consideration of a single quadratic form.

Let Q=<U2(R). Let D be a vector space with Inner product, and let H be
the corresponding Hilbert space completion. A Hermitian representation n of
g is given uniquely by a pair of operators h±: D->D such that:

(I) (h+u, v) = (u, h,v) , u,v<=D.

(ii) The operator h0 : = — — [/*+, /L] satisfies [h0, h±] = ±h+.

For such a pair, consider the corresponding representation n9 and the
quotient D*/D where D=dom(7zr) and D*=dorn(7r*). On D*, we define the
single quadratic form

Q (u, v) : = (h%u, v) -(u, h*v) , u,v^D* .

Finally, let E be an intermediate submodule, i.e., DdEc:D*.

We have

Corollary 5,4 Let E and Q be as above. Then E is symmetric iff

(ill) Q(u, v) = 0 for all u,v<=E.

Proof. This result is immediate from Theorem 5.2. The important step
is that condition (ill) above implies

B(a, H, v) = 0 YaeU^Ca) , «, v<=E

where B(a, u, v) Is given by (2.9).

Theorem 5.2 has the further advantage of facilitating the computation of
the group G(TU) of "unitary" transformations where "unitarity" is defined with
respect to the (nonpositlve definite) quadratic forms {B(a, -): a^A}.

Let A be given, and let n be a nondegenerate Hermitian representation of
A with domain D. Let D* denote the domain of TZT*, and let M denote the
induced (quotient) module M=D*ID. We shall denote by (J(TZT) the group of
linear transformations, T: M-*M such that

(I) T is invertible,
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(ii) B(a, re, TTJ) = B(a,
and

(iii) n*(d) re = T7u*(a)

where we have used the notation B(a, •), and ^*(a), for the quadratic forms,

resp. the operators, which are induced from the corresponding forms, resp.

operators, on D* by passage to the quotient D*/D=M.

Note also that, in fact, (i) follows from (ii)-(iii) by virtue of the nondegen-

eracy assumption.

Corollary 5«,50 Let n be as in Theorem 5.2, and let S be a set of generators

for the given algebra A. Then a linear transformation T: M^>M satisfies (ii)-

(iii)/0r all a^A iff the two conditions are assumed to hold only for a in S.

Proof. Based on (3.4) above: It is immediate that (iii) follows for all

a^A when it is assumed initially only for a^S. Also note that the quadratic

forms {B(a, °): aeS} form a nondegenerate family on M. So if f eM and

B(a, e, ?)=0 for all a^S and all ?eAf, it follows that f =0. A standard fact
on quadratic forms implies invertibility of T under consideration.

To extend the validity of (ii) from S to all of A, we proceed as follows:

We need only consider the multiplicative property of a->B(a, •), since

linearity is given. The problem reduces to showing that (ii) must hold for the

product c=ab whenever it is assumed for the two elements a and b separately.

We now make the assumption (ii) for the individual elements a, b, and consider

C, ??eM. We have, using (3.4) twice:

B(c, re, TTJ) = B(a, **(b)T^ Tr;)+B(b, T?, n(a

= B(a, 7V(6)£, Tv)+B(b, r

, rj)+B(b9 e, *(*

where we used (iii) in the second step of the computation. This is the desired

formula.

Remarks 5.6. We consider transformations T: M->M since such transfor-

mations Tdo not always lift to transformations f: D*->D* satisfying f(D)dD9

and the two invariance conditions on D*. However, it is true that the condi-

tion ?(D)cD is implied by the invariance conditions (i)-(iii) placed on trans-

formations f : D*->D*, i.e.,

(i)~ f is invertible on D* ;
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(ii)~ B(a9fu9fv)=B(a,u,v)',
(iii)~ 7u*(a)fu = fn*(a) modulo D, assumed for ae A, it, v
We give the proof: By nondegeneracy, we have

D = {u<^D*:B(a,u,v) = 0, VaeA,

If f satisfies (i)~-(m)~> and- u^D is given, then B(a, fu, v)=B(a9 u, f~l v)=0
for all ae JL and all veD*. It follows that fu^D as claimed. So f does
pass to the quotient D*/D=M. But there are examples which show that the
lifting problem does not always have solutions.

iles 5.1. The groups G=G(n) constructed from nondegenerate
Hermitian representations include as examples the classical reductive Lie groups
U(p, q)9 cf. [He], but some infinite-dimensional analogues of the U(p, q) groups
are also included in the class of groups {G(x)}.

The following easy example shows how £7(1, 1) arises. Let H=L\Q, 1),
and D=Cr(0, l)=all smooth functions on the unit-interval which vanish of
infinite order at both endpoints. Let A=C[x], and let 7c(x)=d/dt. Then n
defines (by extension to A) a nondegenerate Hermitian representation of the
singly generated algebra A, and the group G(n) is given in terms of £7(1, 1)
where

is the familiar hyperbolic (conformal) group of complex 2 by 2 matrices, i.e.,
the invariance group for the quadratic form

B = zlw1-~z2w2. (5.11)

By calculus, this form agrees with the quadratic form B(x, •) on D*/D=M9

and MaC2. We sketch the details below:
Inclusion of higher order terms is needed in a complete coordinatization of

the space D*/D. In fact, an iteration of formula (3.4) shows that D*/D may be

identified with the direct limit space |J C2 consisting of vectors z=(z(K))JL0 with
0

zw^C2 and nonzero for at most a finite number of values of n (depending on
z). Let B be the symplectic form on C2 which is given in (5.11). We have a
complete family of quadratic forms {Bm: m = l9 2, ••-} on D*/D given by the
formula
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for m=l9 2, • • » . So a more precise description of G(n) involves a product con-
struction from an infinite number of copies of the group U(l, 1).

The above remarks apply more generally to Hermitian representations of
singly generated algebras with involution.

Rao [Ra] showed that the two-parameter unitary dual of the simply con-
nected covering group of SL2(M) may be constructed from integrable (selfad-
joint) extensions of a single nondegenerate Hermitian representation TC of
nc(dl2(R)). It follows from our Theorem 6.1 (in the next section) that D*,
for these examples, may be computed from singly generated algebras, and the
groups G(n)9 for the singly generated algebras in the Rao-examples, turn out to
be subgroups of the Lie group 17(2, 2), or, more generally, a direct product con-
struction involving an infinite number of copies of the group £7(2, 2).

§60 Relatively Bounded Representations

In this section, we consider a class of representations where the induced
modules may be studied in terms of a restriction to a certain subalgebra of
the given Hermitian representation.

Consider a given Hermitian representation n of an algebra A and assume
that the domain D=dom(^) is dense in the underlying Hilbert space H. Let
TT* be the adjoint representation. We shall consider further the induced
quotient module D*jD where

D* = domOr*) = n {dom(7r(fl)*): a^A} .

For the purpose of understanding D*jD (and computing the answer!), it is prac-
tical to reduce the family of operators {n (a): a^A} by passing to a subalgebra
A0dA. In the event (considered here) where A is the universal enveloping
algebra of a given semisimple real Lie algebra g with Cartan decomposition,

with f and J) satisfying

(6.1)

we shall consider this possibility

A=UC(Q) and A0=Uc(t). (6.2)

Let K be the (nondegenerate) Killing form of g and pick a basis {#,-} for g
such that {#,-: !</<r} is a basis for I, and {*,-: r<j<r+s} is a basis for p
satisfying



HERMITIAN REPRESENTATIONS 939

'~1-.. °
-1

^

\
0

1

* /

(6.3)

The corresponding Casimir element Q in A is given by

fl = - 2 *?+ 2 x2j . (6.3')
1 r+l

A given Hermitian representation n is said to be quasi-simple if n(&) is a scalar.
We shall prove the following

Theorem 6.1. Let g be a semisimple real Lie algebra, and let n be a Hermi-
tian representation of A=UC(Q). Let Q=t+$ be a Cartan decomposition and
AQ=Uc(l). If TC is quasi-simple, then it follows that

D*(A) = D*(AQ) - (6-4)

The following observation is needed in the proof:

Lemma 6e2. Let TT, g be as above, and choose a basis {#,•}• Ji? as in (6.3).

Then

= 2 | 2 , u ^ D (6.5)

where ^ = — n(Q).

Proof. For all we A we have

= -S (tt, TTfe.)2 «)+ j («, ̂ (X,)2 M)

which is the desired formula.

Remark 6.3. We say that the Lie algebra g is relatively bounded by the
subalgebra I since (6.5) implies the following operator theoretic relative bound:
For every y e g, there is a constant C such that

|]. (6.6)
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We also note that the estimate (6.6) may be strengthened to give analytic dom-

ination. We refer to [Ne], [JMo, Ch. 12], and [GJ, Thm. 2.1] for details on
analytic domination: We get that every operator n(y) for y eg is analytically

dominated by {n(x): x^l}, and, moreover, the family {^(xz-)
: l<i<r-^-s}

is analytically dominated by the smaller family {^(Xj): l<i<r}.

Be&iMom 6040 A family of linear mappings {/5Z-: z=0, 1, • • - , r} from p

into the algebra %$(H) of all bounded linear operators on H is said to be a

derived representation if the following two conditions hold:

AOO*(*«) (6-7)

and

[*(*), AGO] = A([*,.K]) (6-8)

valid for y^$, x£=l and 0<f< r where g=I+|? is a given Cartan decomposi-
tion and the basis (#,•) is specified as in (6.3).

We note that (6.7) is a pointwise operator identity on the given dense

domain DdH, while (6.8) must be interpreted in the sense of quadratic forms:

(*(*)* u, fay) V)-(K, ftt(y) *(x) v) = (u, h([x, y}) v)

for all xel, jep, and all pairs of vectors wedom(^(A:)*),

Corollary 60§0 Every quasi-simple Hermilian representation TC of a semi-

simple real Lie algebra has a bounded derived representation.

Proof. Apply Lemma 6.2. For further details, see also the proof in [Jo

(a), Thm. 9.2]. (The Hermitian property of n is used in a crucial way in the

proof.)

6060 Let K, g be a representation as specified above, and let

ifti}ri=o be a derived representation defined relative to some basis {x{} for I as

specified in (6.3). Then we have the following inclusion of operator domains:

fl
z = l

for all ys=$.

Proof. Let u e Q dom (n (x,-)*) and v e D =dom n. Then
i

(«,<j')v) = S(ii,A(j')«(**)v)

= S (*(*<)*«, /?,<J) v)-S («, M**, J
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Using boundedness of the derived representation, we conclude that

(*(j>)*)> and that

x(y)* u = S fay)* *(*,)* u+ S £(b, x,.])* w . (6.9)

It follows from the construction of the derived representation (/?,-) in Corol-
lary 6.5 (from Lemma 6.2) that each bounded operator fti(y)9y^^>9 z=0, 1, • • • , r
may be chosen to map the domain D into the intersection fl {dom(7z:(x)):
It follows further from this, and iteration of (6.6), that each ft^y) maps D into

the domain of the closure representation ft, i.e.,

= n {dom(7r(a)):

The operators fti(y) are smooth operators.
We now turn to the proof of Theorem 6.1 which is based on an iteration

of the two formulas (6.7) and (6.8) in Definition 6.4. For the purpose of the
present proof we shall adopt the following simplifying notation for operator
monomials and commutators. We shall work with multi-indices a=(al9 a2, • • - ,
am) with «,- = !, 2, • • • . For a given family of elements (y,) in $>, we introduce
the monomials

But it shall be convenient to denote such a monomial by ym when the specific
form of the expression is not needed, other than the degree m. We shall also
adopt the similar notation for monomials formed from elements (xf) in a given
basis for i We also recall that the enveloping algebra has a basis consisting
of monomials by the Birkhoff-Witt theorem [He, Ch. II, §2, p. 102].

It follows from Corollary 6.5 and induction that higher degree analogues
of the bounded derived representation may be found. In multi-index notation
(with noncommutative monomials as specified above), it takes the following
form:

K(yM) = 5}fin(yM)*(x") (6.10)

where ym denotes a degree m monomial formed from elements in £, and xn

denotes a degree n monomial formed from the given basis elements xl9"-9xr in
f. It is also understood that the summation in (6.10) is extended over all
possible multi-indices of degree n where n<m.

We now turn to the iteration of the second formula (6.8) from Definition
6.4. It is clear that the desired conclusion (6.4) from Theorem 6.1 will then
follow.
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We need to establish, by induction, the folowing commutator formula

valid for monomials ym over p, and monomials xn over I :

where the summation is extended again over all possible monomials which

occur upon carrying through the combinatorics of the iterated commutators,

and keeping in mind the reduction [x,y]^$ for all x^t and all y&$, cf.

(60 1) above. We leave the further details of the combinatorics to the reader.

(It is very analogous to the combinatorial proof of the Birkhoff-Witt theorem.)

We restrict attention instead to consideration of operator-domains. We prove,

as in Corollary 6.5 above, the following inclusion of domains,

0 dom(w(;O*)CdomOr(;O*). C6-11)
n<m

Consider a pair of vectors u^ fi dom^^*)*) and veD. As in the proof of
n<,m

Corollary 6.6, we now have

(«,*(/") v) = S («, /?.(/") «(**) v)
= 23 («, *(*") fla(jT) v)- 23 («, [»(A £.(/*)] ̂  .

But, for the commutator in the last summation term, we have just established

the expression.,

KA P«(ym}} = S K*
and the terms in this summation are included in the general form

with a suitable redefinition of the nonzero terms ft(ym) of bounded operator

monomials. When all the terms are collected in a single summation, we get

(u, *(/» ^ 2 («, <

- 2 (*(**)

since t/edom^^11)*). It follows then, from boundedness of fi(ym), that

(?z:(jm)*)9 and that

</•)*« = 2 ^")M^)*«

generalizing formula (6.9) above from the proof of Corollary 6.6.

It follows that
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where

= 0 {dom(;r(a*)):

D*(A) = n {dom(7r(fl)*):

and A, resp. ^10, are given in (6.2) above. Since the other inclusion from
(6.4) is trivial the proof of Theorem 6.1 is concluded.

We have two corollaries.

Corollary 6.7. Let the Lie algebra g be semisimple with Cartan decomposi-
tion g=f+J), and let n be a Hermitian quasi-simple representation 0/Uc(g).
Then TT is essentially self adjoint if and only if the restriction to Uc(l) is essentially

selfadjoint.

Corollary 6.8. Let n and g be as above. If dim 1 = 1 (e.g., g—4/2 (/£)), then

it follows that n is essentially selfadjoint if and only if it is integrable.

Proof. We say that n is integrable if there is a strongly continuous unitary
representation R of the simply connected Lie group G with Lie algebra iso-
morphic to g such that dR=n where dR denotes the differential of R. It is
well known that dR is selfadjoint, see [Pol] and [Jo (c)]. So if n is assumed
integrable, it must be essentially selfadjoint, cf. also [Po II, Sect. 4] an [Ra,
Corollary Al].

Assume now that n is given and assumed essentially selfadjoint as a represen-
tation of Uc(g). Pick a basis vector x0 for the one-dimensional Cartan com-
ponent I. Since TC is quasi-simple, it follows from Nelson's theorem [Ne] that n
is integrable if and only if the single operator n(x0) is essentially selfadjoint.
But the algebra AQ=Uc(t) is singly generated and the restriction of TC to AQ is
essentially selfadjoint by Theorem 5.2. It then follows from [Po I, Lemma 3.2]
that TC(XQ) is essentially selfadjoint so Nelson's theorem applies.

Remarks and Examples 6.9. We conjecture that the conclusion in Corol-
lary 6.8 holds in general even when the restriction dim 1 = 1 is removed. It
would follow then that every quasi-simple selfadjoint representation of a semi-

simple Lie algebra g (or more precisely of Uc(fl)) is integrable. The conjecture
is consistent with the recent examples (due to Kostant and 0rsted [K0]) of
families of nonintegrable representations of da(py q) for/?, q>3 and p-\-q odd.
These representations are not selfadjoint since they do not have nonzero
X-finite vectors, cf. Theorem 6.1 above.

In Theorem 6.1 and Corollaries 6.7-6.8 above, we assumed that the given
Hermitian representation n is also quasi-simple, i.e., that n(@) is a scalar



944 PALLE E.T. JORGENSEN

times the identity operator where Q is the Casimir element given in formula
(6.3'). We showed in [Jo (a)], in the case of Q=dJ2(R) how this assumption
can be slightly relaxed, but it cannot be removed.

Let A=Mc(dl2(R)). Then Schmiidgen [Sc] constructed a specific selfadjoint
representation TU of A which is not integrable. In his example, the operator
TU(&) is not a scalar times the identity operator; in fact, it is unbounded, and
affiliated with the commutant von Neumann algebra J^=n(A)f studied by
Powers [Po I]. Combining two results of Powers [Po I, Lemma 3.2 and 4.6]
with the integrability theorem of Nelson [Ne], we conclude that, for Schmiidgen's
representation n, the conclusion (6.4) in Theorem 6.1 fails. It is immediate
also that the conclusions in Corollaries 6.7 and 6.8 fail for Schmiidgen's repre-
sentation n.

While the problem from Remark 4.4 remains open for general Hermitian
representations, the identity X=K** can be shown to hold for the special
closed Hermitian representations n considered in Section 6 above. Since this
result is not needed in the present paper, the proof will be postponed to a future
article. Even though the identity TT^TT** may possibly fail for some (patho-
logical) closed Hermitian representations, it would be interesting to focus on
special classes of representations (such as those in Sect. 6) where it does hold.
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