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On the Weak Admissibility of Singular
Perturbations in Cauchy Problems

By

Ryuichi AsHiNO*

1. Introduction

In [3], we have studied conditions on operators for the convergence of
solutions of singulary perturbed non-characteristic Cauchy problems. The
convergence of solutions depends on the Cauchy data. In this paper, we shall
mainly study necessary and sufficient conditions on the Cauchy data for the
convergence of solutions of a given one-parameter family of singulary per-
turbed Cauchy problems.

Let P (D) and P,(D) be linear diflferential operators with constant coef-
ficients. Let the order of P, be m and that of P, be m’. Assume that m>m'.
For x=(xj, -*, x,) in R", put x'=(x,, -**, x,). Let us consider the following
one-parameter family of Cauchy problems:

(1.1) { (e - PD)+PD)yu(x) =0, in R";

D{—lu(x)ln=0 = ¢i(x') > Jj=1"wm,
where ¢ is a small positive parameter. In [2], we have studied that if the so-

lutions u, of (1.1) converge in a suitable topology, then the limit satisfies the
following reduced problem:

P,(Dyu =0, in R";
(1.2) . .
Dj lulzl=0=¢j, j=1,,m.
Let the symbols of P,(D) and P,(D) be
(1.3) Py(€) = o py, (€7 €777,

(1.4 Py&) = o Py (€))7
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Assume that p, , is a non-zero constant and ord p, ;(§)<j, j=1, +--, m and that
P2, is @ non-zero constant and ord p, (¢ )= j, j=1, .-, m’. Such an operator
satisfying the above conditions is said to be kowalewskian. Denote the chara-
cteristic roots of €™~ ™"« P (£)+P,(€)=0 with respect to &, by (e, &), j=1, -,
m, those of P(§)=0 by v;i(&"), j=1,+, m, and those of P,(§)=0 by a;(§"),
j=1, e, m’.

Assumption 1.1, There exists a point £ in R*™' such that for any j, k,
1Sj<k=m’

a;(E0)F0x(€0) -

Remark. 1If Assumption 1.1 is satisfied, then there exists an open ball
B,=B(r,; £¢) of radius r, with the centre £§ such that all ¢;(£’) are distinct on
the closure of B,.

Condition 1.2, (m—m'=2 and p,/p, ,<0) or (m—m’'=1 and p,¢/p,, is
real).

Remark. In [3], we have studied that the characteristic roots 7 (e, ') are
classified into two classes as follows. One consists of all z;(¢, £’) which con-
verge uniformly on every compact subset of RZ ™ to one of a;(§'), j=1, -+, m’
when ¢ | 0 and the other consists of all (¢, £") which diverge for every fixed
&’ when ¢ | 0. Condition 1.2 is equivalent to the condition that the leading

terms with respect to e of all the diverging characteristic roots are real.

Denote @'=(o,, ***, 1), P =(bpr11 ***» 6,), and @ =(@’, ®”). Let the
Cauchy problems (1.1) be given and the Cauchy data space A consisting
of @ be so chosen that for every sufficiently small ¢ the Cauchy problem
(1.1) with A4 is uniquely solvable. If the solutions u, of the Cauchy prob-
lems (1.1) for @ in 4 converge in a suitable topology when ¢ | 0, then we
may say that the one-parameter family (1.1) is a singular perturbation. This
is the reason why we introduced the notion of ‘‘admissibility” of singular
perturbations in Cauchy problems in [3]. Let the Cauchy problem (1.2) be
given and the Cauchy data space /1’ consisting of ®’ be so chosen that the
Cauchy problem (1.2) with A’ is uniquely solvable, We choose the extra
Cauchy data space 4" consisting of ®” so that for every sufficiently small ¢ the
Cauchy problem (1.1) with A=A’ x A" can be solved uniquely. If for every
@' in A’ there exists @” in 4" such that the solutions u, of the Cauchy pro-
blems (1.1) for @ =(@’, ") converge when ¢ | 0, then the solution of the
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Cauchy problem (1.2) for @’ in A’ can be represented as the limit of the solu-
tions u, of the Cauchy problems (1.1) for a datum @ in J{. This is the reason
why we shall introduce the notion of “‘weak admissibility”” of singular perturba-
tions in Cauchy problems.

Let U’ be a domain of R}7' and 0 be a positive number.

Definition 1.3. The uniquely solvable Cauchy problems (1.1) in (—98,8) x U’
with the Cauchy data space A are said to be C-admissible in (—6, 6) x U’ as a
singular perturbation with respect to a given uniquely solvable Cauchy problem
(1.2) if for every Cauchy datum @ in ., the solutions of (1.1) converge to that
of (1.2) in C((—9d, 8)x U’) and said to be C-weakly admissible in (—0, d)x U’
if for every Cauchy datum @' in ' there exists a datum @” in 4" such that
the solutions of (1.1) converge to that of (1.2) in C((—9d, d) x U").

Remark. Relacing C((—9, 8)x U’) by L¥(—6, ) x U"), we can also define
the L2-admissibility and the L*-weak admissibility.

Denote by O(C"™") the space of entire functions defined in C*™* and by
A(R™") the space of real analytic functions defined in R*™'. When A=
O(C* ", the Cauchy-Kowalewski theorem assures the analytic unique solva-
bility in R" of (1.1) for sufficiently small e. But even when A=A4(R*™Y)", we
can not prove that there exists a region independent of ¢ such that the analytic
solutions of (1.1) exist in the region. Hence we must choose 4 so as to be
included in @(C*"Y)™. On the other hand, we shall use the Fourier transfor-
mation. Therefore, we shall only study the C-weak admissibility in R" when
A=FYC7(B,)", where F~! denotes the inverse Fourier transformation and B,
is the open ball in Remark to Assumption 1.1.

The main result in [3] is that Condition 1.2 is necessary and sufficient for
the C-admissibility of the Cauchy problems (1.1) in R" with F~Y(Cy(B,))". The
main result in this paper is the following:

Main Theorem. Assume that Condition 1.2 is not satisfied. Let Assumption
1.1 be satisfied and B, be the open ball in Remark to Assumption 1.1. Denote
m’ =m—m'. Let A'=F Y Cg(B))" and A’ =F Y C5(B))" . Then the
Cauchy problems (1.1) in R" with J are C-weakly admissible in R" if and only
if P\(€) is divided by P,(€) in the polynomial ring C[£). In this case, the solu-
tions ug(x; @) of (1.1) are identically equal to the solution u(x; @) of (1.2).

In this paper, we shall always assume that Condition 1.2 is not satisfied.
The proof of Main Theorem can be found in § 5.
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When the Cauchy data space J{ is {(0, -:-, 0)}, all the Cauchy problems
(1.1) are C-admissible. Our another purpose is to seek the Cauchy data spaces
A included in F~}C7(B,))" with which the Cauchy problems (1.1) are C-admis-
sible. The results are stated in Theorem A and B in §4. Theorem A will be
used in the proof of Main Theorem.

In §2, we shall list up notation and study algebraic lemmas. In §3, we
shall study a necessary and sufficient condition on the Cauchy data for the
convergence of the solutions, but this condition depends on s. We shall
show that the convergence of the solutions implies that ®” is uniquely deter-
mined by @’. In §4, we shall remove the dependency on ¢ from this condition
and distinguish the Cauchy data with which the solutions converge in the
following two special cases.

(1) Theorem A. The case when m’ or m’—1 characteristic roots of F,(£)=0
are equal to the characteristic roots of P,(§)=0 in B,.
(2) Theorem B. The case when m'=1 or (m'=2 and m=4).

Roughly speaking, when P,(£) is divided by P,(¢) in the polynomial ring
C[€], @' can be free but otherwise @’ is restricted.

The same results as for A=F"(C7(B,))" remain true for 4=F"}Cy(B%)"
but fail for A=F(E'(B,))" in general.

2. Preliminaries

In this section, we shall state algebraic lemmas which will be needed.
Similar calculation can be found in computation of the characters of the
classical groups. See Chapter VII, [4].

Notation 2.1. Let X;, j=1,--,m be variables and S,(Xy, -, X,),
k=1, .-, m be the elementary symmetric polynomials of X; j=1, ---, m, that is,
for k=1, -, m

Sk(Xp e, Xm) = Ei1<i2<-~-<ik Xi,Xiz Xik .
Put
SO(XIJ °tt, Xm) =1
and for k=< —1 or k=m-+1
S(Xy, - X)) =0.

Denote
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| X2 eeeee X0 |
DO(XJ'“:Xm):! E E
Aflm-l Xmm—l

2

for k=1, -+, m and for functions ¢;, j=1, :=-, m

Dk = Dk(Xl’ B Xm; [T ¢m)
| X0 eenene > AN (P P X,

X X Gy Xyl Xy
and for k=0, :--, m—1

A.’l" ...... :X'm_lo
XF e X, b

Dm—l—k = Dm"l"k(A’p M) Xm—l) =
X.'lk+1 Xm_l"“

y m=1 _ E m=1
X, X, 1.

Denote ¢ =exp 2 _ and th=¢i"m""1 j=m'+1,---,m. Denote by 0 the argu-
m—m

i0

ment of —p, ¢/p; o satisfying 0=6 <2z and put ©=exp -,
m—m

Lemma 2.2. Assume that X;==X; 1=i<j<=m. Then, for j=1, -+, m—1
(21) Di(Xll ) Xm—l)/Do(Xl’ " )(m»-l) = Si(Xb "t Xm-—l) s
and for k=1, ---, m
(22) Dk(A,ly B A,m; ¢1: °tty ¢m)/D0(X1: o0ty A’m)

?;ol (——1)’:-S,-(X1, = Xeoy, Xpr1r s Xm)'¢m—i .
750 (—1Y - Si(Xy, o0, Xioyy Xy =0, X)) X1

Proof. Expand the Vandermonde determinant D,(X;, -+, X,,) with
respect to the last column and divide it by the Vandermonde determinant
DO(Xls R Xm—l):Do(Xl' ) Xm—l)' Then

(2'3) DO(XD B IYm)/DO(Xl’ °ts X'm—l)

— E}n:ol (___1)m+(m—1—j+1) _Di . Xmm—-l—j/DO

= SV (—1) - (D[DY)- X,
Since the Vandermonde determinants are represented as the difference pro-
ducts, we have
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24) Dy(Xy, -+, X/ Dy(Xys ++, X)) = II7S (X~ X))
= 2?:01(—1)';'S]-(.X1, ) Xm—l)'Xmm_l—j .
Comparing the coefficients of (2.3) and those of (2.4), we have (2.1).

Expand D,(X, *-+, X,,; b1, ***, 6,,) With respect to the last column and
divide it by Dy(X;, **+, X,,_;). Then

(2.5) D, (X, ==, Xy b1y o005 )/ Do(X7, 2, Xiyoy)
= E?:Ol(—l)j'sj(Xp "t Xm—l)'¢m-—j .

Thus (2.4) and (2.5) imply (2.2) when k=m. Since

(26) Dk(/YI’ s Xm; By5 o0y ¢m)/DO(X1r "t Xm)

— Dm(Xlr *tty Xk»l’ Xk+1r °t er Xk; By, 00, ¢m)
Do(Xl» oty Xk—p Xk+1» ooty X X,,)

>

we have (2.2) when k=1, :-, m—1. Q.E.D.

Let m=m'+m", where 1=m'=<m—1. When m”=2, we put ¥;=X,.,,.
j=1, «+,m"”—1. When m” =1, we put
So(Yy, o0y Vo) = 15
Sp(Yy, o+, Yo )=0, when k=0.
Then we have the following lemma.
Lemma 2.3. For k=1, -, m—1,
@7 SiXs, ) X)) = SiKas -+, X, Yoy oon, Yo )
= E;n:-’o—l Sk-—j(Xll ves, Xm').Sj(I,lY oo, Ym”—l) .
Proof. When m” =1, (2.7) is trivial. We may assume that m”>=2. We
can write
SuXy, ) X)) = 2;,<i=<---<i, X.', Xig"'Xik
=t 2y <ig<iy_ S iy juy <ip jrg<o<iy Xiy Xig Ky -
Here if k—j=< —1 or k—j=m’"1 in the suffixes, then we ignore all such terms.
Put i,_;4,=if, I=1, -+, j. Then
Si(Xy, o0, X, Yy, ooe, Yorr_))

. m’—1
= 2170 2.‘,<---<ik-,gm',i;<--.<.-;-5m"—1 Xipoe Xik_,- Yoo Yi;. .

Since
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2i1<»-<ik_,-gm',i;<-»<;g-§m"—1 Xi,"‘Xi,,_,. Yi;"' Yi;-
= (Ei,<---<i,,_;§m' Xil"'Xi,,_i) (Z.-;<-.-<i;.§m”—1 Yi;"' Y-",.)
= Sk-i(Xlx "ty Xm’)'Sj(Ylt ) Ym”—l) ’

it implies that (2.7). Q.E.D.

Lemma 2.4. For k=0, ---,m—m’'—1 and I=m’+1, ++-, m,

(2.8) D=m =D=h(zl, e, Th)

= Iosi<jsm-m-1,i%s, j=x( &7 —CF)
and
(2-9) -D(m—m,—l)_k(‘r:n'+1; e, Tf—l; T;+1, ‘0t Trln)

= (__1)(m-’)2.ck(fn"l).D(M“M'—l)—k(z.:",+l, o, thoy) .
In particular, (2.8)=£0 and (2.9)==0.
Proof. Put
a; = (tpat’, oo, thot?), 0S5 jSm—m’'—1 and j=*k.
Since
a; = (€O, =, @) = (@, -, (@),
we have
Don=m'=N=k(gh, e o)) = Dy(C0, ee, OB, CRFL Ll gmomoY)

which equals the right-hand side of (2.8).
Multiply the rows (zjp417, ==+, Ti—1%, T1417, +++, t47) of the left-hand side of
(2.9) by ¢"=hi  j=1, ... m—m’'—1 and j=k. Then
C(m—l)‘(m_"‘/_l) (m—M/)lz_k) °D(m—-MI—1)—k(T:n,+lﬁ b T;—l: T;-l-l; b Tl’n)
= D(m_m,nl)_k(‘l'fum’-lny tee, Ttln—l; 7;n’+1; °tty T:n+m’—l)

- /_ -— — /_ -_—
— (__1)(1 m'=1) (m=1), p(m=—m"=1) k(Trln'+1: “es, T,'n-.1) .
Since
c(m—l)(m—m'—l)(m—m’)/Z — (_1)(m—1)(m—m’-1)
and

(I—m'—D)(m—D—m—Dm—m' —1)=—m—=I=m—I? (mod 2),
it implies that (2.9). Q.E.D..
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Under Assumption 1.1, we have studied the following asymptotic properties
of the characteristic roots in [2]. Denote the characteristic roots of " ™ .
P,(&)+P,(€)=0 with respect to &, by (e, &), j=1, +--, m and those of P,(&)=0
by 0,(&"), j=1, -, m".

Lemma 2.5. Let Assumption 1.1 be satisfied and B, be the open ball in
Remark to Assumption 1.1.  If the suffixes {j} of the characteristic roots z (¢, £'),
j=1, «-, m are properly chosen, then there exists a positive number &, such that
e-ty(e, &), j=1, =--, m are analytic functions of (e, ') in {|e|<e} X B, and
(e, €'), j=1, --+, m have the following representations:

Forj=1,:,m'

(2.10) 7i(6,€) = 0,()+ 20z 5, 4(67) €@V D

7]
here 0, = — and
where 0, oz,

2.11) Sj2 = —P0;,§):0, Pyfo;, )"

Forj=m'+1,:-,m

2.12) £(6, €)= Oc)e L4 S0, 1; () 642
3

Remark. 1If 5; (6')=0 in B, then P,(c;(¢’), £')=0 in B, This implies
that Tj(e, E’)EUJ(E,) in BO'

3. The Condition for the Convergence of the Solutions

In this section, we shall study a necessary and sufficient condition for the
convergence when Condition 1.2 is not satisfied. The main result in this sec-
tion is the following:

Proposition. Assume that Condition 1.2 is not satisfied. Let Assumption
1.1 be satisfied and B, be the open ball in Remark to Assumption 1.1. Let the
Cauchy data ©®=(¢,, ***, $,,) of (1.1) belong to F Y CF(B,)". The solutions
u, (x; @) of (1.1) converge in C(R") if and only if the Cauchy data @ satisfy

@B.D S (=1 Silrr, vy Tw) P a =0, = 1, oo, m—m”

Here Sy(ty, ***, t,), k=0, ---, m’ are the elementary symmetric polynomials of
the characteristic roots v;=1 (¢, &"), j=1, -+, m’ mentioned in Notation 2.1. For
the Cauchy data satisfying (3.1), the partial Fourier transforms of solutions
u(x; @) of (1.1) are
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B2 dn, &) =3, 2 i B On) o (e, £) x,
Dy(ry, +++, )

Remark. Denote ®=(¢,, -+, $,,). Let B belong to C=(B,). If & satisfies
(3.1), then B+ also satisfies (3.1). Hence if there exists a Cauchy datum @,
such that the solutions u,(x; ®,) converge, then for all the Cauchy data @ satis-
fying ézﬂ-(ﬁo, where £ belongs to C*(B,), the solutions u(x; @) converge.

In order to prove Proposition, we need the following lemma. Denote L=
{l; Im 670, I=m’+-1, ---, m}, where © and 7/, I=m’-+1, ---, m are mention-
ed in Notation 2.1.

Lemma 3.1. Let the same assumptions as in Proposition be satisfied. The
solutions u,(x; ®) of (1.1) converge in C(R") if and only if the Cauchy data ®
satisfy
(33) em-l.z;ﬂ:ol —l)j'Sj(Tl, LT Tians 1-’").¢A)m_j

— -1 i gm=1-i "
=270 (—1)-&e” J'Sj(”l: T, €Ty, €Ty, o, ET/»:)'¢m—j=0

as analytic functions of € for all l in L.
Proof. The partial Fourier transform with respect to x’ of (1.1) is

(e Py(Dy, &)+ Py(Dy, ) 8(x,, ) =0 ;

3.4 _
oY {Di“a«),f') — NS =1,

For fixed &', (3.4) is a one-parameter family of Cauchy problems of ordinary
differential equations. For 7,(e, &'), j=1, :--, m satifying Lemma 2.5 and for
© in F(C5(By))", put
(35) Ck(€! E’; @) = Dk(rh s Ty d;).’ ) d;m)/DO(Tl: R Tm) i
k=1, .--,m. Since (3.5) are analytic in ¢ for sufficiently small &, (3.5) have
power series representations as

Ce,€;0) =506, ;0) k=1, m.
The solution ve(x;, £’) of (3.4) is represented as
(3.6) ve(xy, €7) = 20501 Cile, €75 D) -exp iy, €) X, .

Denote u,(x)=F"'(vi(x;, £")). By the same argument as in [3], we can prove
that if there exist integers /in L and j with j=0 such that ¢; j(§’; ®)==0, then
y(x) can not converge in C(R"). When Condition 1.2 is not satisfied, L is not
void. Therefore it is necessary for the convergence of u,(x) in C(R") that
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¢;,; (£';0)=0 for all / in L and all j=0, that is, C(¢,'; #)=0 for all / in L

and sufficiently small e, which implies the convergence of solutions. Since
ti(6, ) F 76, &), 1= j<k=m

in B, for sufficiently small ¢, we can apply Lemma 2.2 to Cy(¢, &’; @) for X;=
7;(6,€"), j=1, -»-,m. Then

| = 6”’_1'2?:01 (_l)j'Sj(Tl’ Uy T Ty 0 Tm)'(ﬁm—j R
em_1'27:01 (—I)J'Sj(rll s Tes Tyl s T 'Tlm—l—J

The denominators are equal to
P (1Y Si(ery, -0, Ty, €Ty, o0, €T,) (7)) TN
= Ili<jsm,jxi(67i—¢T))

and analytic in ¢ and not zero in B, for sufficiently small e. This implies that
Ci(e, &'; ©)=0 if and only if the numerators

em—l'z?:ol (_‘l)j'Sj(Tp T Ty Trgrs *°%s Tm)'(i;m-j
= E?‘:Ol (_l)j'em—l—j'sj(erl’ o, €Ty, €Ty, o0ty Erm)"ﬁm—j
are zero as analytic functions of e. Thus we come to the conclusion. Q.E.D.
Proof of Proposition. Fix [ in L and apply Lemma 2.3 to (3.3) for
Xj=1'j(e,6’), j:1, “',’71’.
Yi_ml :Tj(é‘,f'), j:m’+1’ ‘e, I—1 ,
Yoo =716, €), j=I14+1,-,m.
Then the convergence of solutions is equivalent to
(37) em—l.E;y:ol (—l)j'Sj(Tl’ s T Tl °°°s Tm)"ﬁm—j
= 5'"_1'2?:01 (_1)1'(2;::0’” -t Sj-k(rli °tty Tm’)

A
'Sk(rm’+l’ s T Trs Tm)'qsm—j) =0.

Substitute (2.10) and (2.13) for z,(e, €'), j=1, -, m. Then we can write for
j=1, -, m—1 and k=0, «--, m—m’—1

. - /
(3.8 Sioa(Ty, oy Tw) = 20 Sjop,i(€7) ),
(3.9) ek'Sk(Tm’+1;  Tpep Trans Y Tar)
= Sk("m’ﬂ» oo, €Ty, €T 4y, **%, €Ty) = D70 Sz',-(E’)-e" .

Here (3.8) and (3.9) are analytic and converge absolutely for sufficiently small
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¢ in B, and
(3.10) Si_ro(€) = S;_w(0y, 0, 0,0),
(3.11) Si.o(‘f’) = 6k°Sk(T;n’+lx e, Thoy, Ty, o0, Up'n) .

Put for £=0, 1, ---
(312) Tlx — ;p:ol _1)] Em —m’/—1 Sl-_ ek(m— m’y, SZ em—1-k ‘ﬁm i
]"2’ — ;n:l (__1)1 m—-m /-1 S ex(m m )'(2i=l Sx,;'E’" 1- ’H-')'d;m—-j ,

and

27 01( l)l k=-0 _1(21—K+ISJ k,i* E’(m m)) (2; OSk em—l—k+i)_$m_i.

Since T,, and T;, converge absolutely for sufficiently small ¢, we can change
the order of summations. Then (3.7) is rewritten as T} g+ 7,0+ 73,=0. The
least order with respect to ¢ of T, is m’, that of T,, is m’+1, and that of
Ty, is m. The coefficient of €” in T, is
(3.13) S (— 1) S} mem—1).0° Shm/—1.0° ¢m -5

= Sh-m—1,0" D romem'—1 (— 1)+ St_mm'—1y.0° ¢m -j

and this must be zero. Lemma 2.2 implies that

2 -m’-1 ’ / / ’
Sm—m’—l,o == em m 'Sm-m’-],(Tm'+1; S TI—1,T41s "7 Tm)

’
-m’-1)-0(../ ’ ’ -
— em—m’—lxD(m »-h (Tm’+1: S T—1, T+l """, Tm)
0./ ’ ’ ’ *
D (Tm'+lx LTI, Tis1s %, Tm)

Lemma 2.4 implies that

’
m=m'—1)—0(.7 /7 ’
D( ) (Tm’+l; CH TI-1,Tis1 "

0.7 4 4
D (‘l'm’+1, L TI-1, Tis1, Tm)

Tm)=|=0

Hence S%_,_1.0+0. Dividing (3.13) by S%_,/_1.0, We have
(314) ,gm_m’_1(—1)] i— (m—m’—l).()"ﬁm—i

= (=1 "t (—1Y - ShorPprar; = 0.
When (3.14) is satisfied, we have

1 0 — 2} 1(—1), m—m —Z(S k,O'Slzz,O'Em_l—k'ém-—j)
and

Tzo—z}jno( 1)] ; (m—m’—1),0° (2:—1 m—m /—1,i° em ') $m -
+3r (1Y 2 Siok o0 (07a1 Siive™ 1" H')"]Sm—i
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——Ez=1 T’ — 1,i°€" T+ {02 yar 1( 1y Sl —(m—m'—1), o¢ m-j)
S (1Y -0 Sho 0t (Dey Sk e e,
=2?= — 1Y S ) g0r (0Fs Sk ),
Thus we can diminish by one the ranges of summations with respect to &k in
T and in T,, Repeat this process m—m'—1 times until the ranges of sum-
mations with respect to k are diminished to {0}. Then we have for j=I, ---,
m—m’

(3.15) Eﬂo(—l)k‘Slle.o'qgm'w—k =0
and 7, ,=1T7,,=0. Hence

T+ Tt Ts0=Ts0 =T+ 15+ 75, =0
Repeating the above argument for =1, 2, ---, we have for £=0, 1, ---
(3.16) SUo(— 1o Skt Burajor =0, j =1, v, m—nt’,

which are equivalent to (3.3). Multiply (3.16) by ¢“»~*) and sum up from
£=0 to £=oo. Even if we change / in L, we have the same conclusion.
Hence (3.16) are equivalent to (3.1) as far as (3.8) converge absolutely. Since
(3.16) are independent of / in L, it implies that (3.3) remain true for all /=m"+
1, -,m and Cy(e, &'; ®)=0 for all [=m’'+1, -+, m. Then (3.6) implies (3.2).
Thus we come to the conclusion. Q.E.D.

Put

ﬁz,k(f') = —Pz,k(f ’)/Pz,m k=0,:,m,
P2y =0, for k<—1 or k=m'+1.

Here p,4(§), k=0, ---, m' are polynomials of &', because p,, is a non-zero
constant. Denote

OE") =(—PpjaENsjl 1, ey m—m', k—1, -, m—m’),
R(E,) = (pz,m’+j—-k(5,);j \l/ 1: "0ty ’n_m’: k—>1, °tCy ml) .

Here Q(¢') is a lower triangular matrix all whose diagonal components are
1. Hence Q7Y(¢") is a matrix with polynomial components. Denote b =

(¢?11 °%% ém’) and é”—:(qgm’+19 °°% ¢;m)'

Corollary 3.2. Let the same assumptions as in Proposition be satisfied.
Then the convergence of solutions implies that
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3.17) S0 PosE) burs s €)= 0, =1, m—m’ .
Then (3.17) are equivalent to
(3.18) td” — QYE')-RE")1D’ .
The inverse Fourier transforms of (3.18) are
3.19 t@” = Q7Y(D")-R(D")-'D’ .
Proof. Since
Py a0 = & =331 P (€€ = TIFa(E,—0))

it implies that

— Py (€ = (—=1Y S0y, ++, 0,0), J=1,,m".
Hence (3.10) and (3.15) imply that for j=1, -+, m—m’
(3.20) S0 Do bureios =0,
which is equivalent to (3.17). By (3.20), we have

—SUZ Boar burejor = i Pobursins S =1 m—m’,

which are equivalent to (3.18). Q.E.D.

Remark. 1n [3], we used the function d(€'; @) to decide the divergence of
solutions. Corollary 3.2 implies that d(£'; ®)=0 is equivalent to 337", ) 2R
-¢A,,,f+1_k(6 "1=0. We had better use (3.18) instead of d(¢'; @)=0 because (3.18)
are more accurate and algebraic relations between the coefficients of P, and the
Cauchy data.

Denote
A= ;j{ 1, m—m', k=1, -, m')
=i F V1, e, m—m’, k=1, e m"),
for i=1, «-, m’
bi = (bk,i; k J/ 19 Tt m')
= ((—l)k—l'Sk_‘(Ul, 0,050, Oigqs =" gm,); k l 1’ ey 177’) .
Here we define S;=1 even when m'=1. Denote
B = (bl; i_->1, Tty 777’) H

s=(8041, -, m),
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where s; ,=—P\(0;, §')+0, Pyo;, '), i=1,---,m’. Then we have the following
corollary.

Corellary 3.3. Let the same assumptions as in Proposition be satisfied.
Then det B=TI,<i<j<w(0;—0;)=0 in B,. The convergence of the solutions im-
plies that ABs=0, which are equivalent to

’ p—
(3.21) a1 Si2 Ezl;ol “"l)k'Sk(Up 0, 041, Oiags *tt, Oy)

A - ’
°¢m’—-1+j—k =0, J = 15 . m—n .
Proof. Since for k=1, ---,m'—1 and i=1, ---, m'—1,
Sk(all ey 041 ai+1! °tty aml) = am"Sk—-l(Ull t0i-1 044y am'—-l)
801, s 05y, Oigr, 0 Ory)
and
Sy(0y, +, 0 )) = 0,28, _1(0y, =+, 041, Oigy, *+r Opry)
+Sk(01: 01 Ojayy Um’—l) s

it implies that for i=1, «--, m'—1

bi _bm’ = (ai —Um')
X((=1F72Spgloy, =, 0,2y, gy, o0 O y); KL 1, oo, m—m')

where S_;=0. Then

det (bp tee, bm’) = det (b1 —bm’r ) bm’—l_bm’! bm’)
= (=D T 7 (o, —0,,)-det Grisj V1, o, m =1, k=1, -, m' —1)
= H?;Tl(am""ai)'det (bk,i;j l’ 13 Y ”7/'-15 k—él, Y 17’1’—1) .

Hence det B is equal to the difference product of ¢;, j=1, ---, m’. Since ¢;%a,,
1< j<k=m'in B,, it implies that det B+0 in B,. Since Sj =0 and

Si.l = :'";1 si,z'Sk—l(Up 01 O G,ut),s k=1,:,m—m",
(3.16) for =1 implies that

m’ m’ k-1
—2ai=1%;2 Ek=1 '—1) 'Sk—l(o'l’ 5 051, 04y, 7, 0',"1)

Xq;»r'+j—k:0s jzl,“‘,/’n—‘lﬂl,
which are equivalent to 4Bs=0. Q.E.D.

In the rest of this section, we shall study conditions on the Cauchy data
in special forms for the convergence of the solutions.
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Corollary 3.4. Let the same assumptions as in Proposition be satisfied.
Let @' =(¢,, -+, $,»,)=0. The solutions u(x; ®) of (1.1) converge in C(R") for
this Cauchy data if and only if " =(,ry,, -+, ¢,,)=0.

Proof. Assume that the solutions converge. Substitute @'=0 in (3.19).
Then @ =0. The converse is trivial. Q.E.D.

Corollary 3.5. Let the same assumptions as in Proposition be satisfied.
Assume that m—m'=m’ and p, ,%£0. Let ®"=($,/41, -+, 6,)=0. The solu-
tions u(x; @) of (1.1) converge in C(R") for this Cauchy data if and only if @' =
(b1, *+, D) =0.

Proof. Assume tha tthe solutions converge. Substitute ¢;=0, j=m'+1,
-+, min (3.17). Then

m A _ - ,
2k=iP2,k'¢m’+j—k=0) J= 11 e, m—m

When j=m'<m—m’', we have ])Z,M/wﬁszO. Since p, ,v is a polynomial with
D2..» =0 and ¢, is a continuous function, it implies that ¢,,=0. Hence

m’ A —_ . 7
2k=i+1p2,k'¢m’+;’—k=0 , J= 1’ v, M—m .

When j=m'—1, we have p, v+, =0. Since p,, =0, it implies that qg,,,f_l
=0. Repeating this process m’ times, we come to the conclusion. The con-
verse is trivial. Q.E.D.

Corollary 3.6. Let the same assumptions as in Proposition be satisfied. Let
¢;=0, j=1, -+, I—-1, [4-1, -+, m.
(Case 1). The case when 1<I<m’'. Assume that there exists a positive integer
J'owith m’+1—I< j'<min {m—/, m'} such that p, ,,5=0. Then the solutions
u(x; @) of (1.1) converge in C(R") for this Cauchy data if and only if ¢,=0.
(Case 2). The case when m'-+1<I/<m. The solutions u,(x; ®) of (1.1) con-
verge in C(R") for this Cauchy data if and only if ¢,=0.

Proof. Assume that the solutions converge. Let 1</<m’'. Substitute
6;=0, j=1, -+, [—1,1—1, -, m in (3.17). Then p, s, s+ 6 =0, j=1, -+, m—
m'. We use the case when j=j'-+/—m’, that is, pz_,-z-ngS,EO. Since p, ;+=%0, it
implies that q;,EO. When m’+1=/=m, Corollary 3.4 implies the conclusion.

The converse is trivial. Q.E.D.

4. The Admissibility of the Cauchy Data

In this section, we shall remove the dependency on e from (3.1) and
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classify the Cauchy data space F~%(C5(B,))" into two classes in the two special
cases mentioned in §1. One class is the set of all the Cauchy data @ with
which the solutions u,(x; @) of (1.1) converge in C(R") and the other is the
complement.

Denote the characteristic roots of e”~""« P ()4 P,(€)=0 with respect to &,
by z;(e, &), j=1, ---, m, those of P,(§)=0 by v;(¢’),j=1, ---, m, and those of
Py(&)=0by g;(('), j=1, --, m’. Then we have the following lemma.

Lemma 4.1. Let B be a fixed arbitrary open set in R"™*. For every inte-
ger i with 1<i<m’, there eixsts an integer j with 1= j<m such that o,=v; in
B if and only if P(€) is divided by Py&) in the polynomial ring CI£].

Proof. We may assume that ¢;=v;, j=I1,---,m’ in B. Applying Lemma

2.3 for X;=o0;, i=1, «=-,m' and Y;=v,,», j=1, ---, m"’, we have in B for
k=1, -, m"

Sk(um’+1: °t Um) = Sk(ol: 0 O’y U/gys 0% Um)
r—
"'2j=é Sk~j(aj: T Gm’)'Sj(Um’+1’ T Um) .
Since

Sk(alv 0t Oty Uyy/ge 00, Um) = (‘l)k'ﬂl,k(fl)/}h,o, kzl: e, m

and

Sk(ali t0ts am’) = (—])k 'Pz,k(f ’)/Pz,m k=1, oty m'’

are polynomials of &', we have inductively that Su(v,ur4s, ***» Um)s k=1, +=-, m”’
have polynomial representations in B. Hence

Py(&)[Py(&) = (PI,O/PZ,O) ° HZ‘:I(§1 —Vpim)
= (Pl,o/Pz,o) . EZ‘:O(— 1)*- NSRRI 4'.1'"”—1?

has a polynomial representation in B XxB. Thus there exists a polynomial
Py¢&) such that P,(£)/Py(€)=P4¢) in R X B, which remains true in B". The
converse is trivial. Q.E.D

Theorem A. Assume that Condition 1.2 is not satisfied. Let Assumption
1.1 be satisfied and B, be the open ball in Remark to Assumption 1.1. Let the
Cauchy data ®=(¢,, -, ¢,,) of (1.1) belong to F~Y(C5(By))".
(Case 1). The case when for every integer i with 1<i<m' there exists an inte-
ger j with 1 < j=<m such that 6;=v; in B,, that is, when P\(£) is divided by P,(£)
in the polynomial ring C[E]. The solutions u.(x; ®) converge in C(R") if and
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only if the Cauchy data @ satisfy (3.19). In this case, the solutions u,(x; ®) are
identically equal to the solution uy(x; ') of (2.1).

(Case 2). The case when o,%v;, for all j=1, .-+, m and for every integer i with
2=i=m’ there exists an integer j with 1= j=m such that o;=v; in B,. The
solutions u(x; @) converge in C(R") if and only if the Cauchy data @ satisfy

(41) 22‘;;1(_1),2"812(02’ °tts am’)'qgm’+j—k =0 ’ ]=O: b m—m'.

Here if m’'=1, then S,=1 and (4.1) is equivalent to ® =(0, -+-,0). In this case,
the solutions u,(x; @) depend on ¢ in general.

In order to prove Theorem A, we need the following lemma.

Lemma 4.2. Assume that the characteristic roots satisfy z;(e, E"Y=0,;(¢"),
j=1, -, m’ in B,. Then for the Cauchy data satisfying (3.17),

A A
_D_l__(rl’ s Tm;§£1y Tt (r,)m) — Dl(oll Sty 0w (ﬁl’ ttt d’m’)
?
DO(TII ) Tm) DO(UIJ ot Um’)

=1, .-, m'.
Proof. Put for /=1, «+-, m’ and for k=1, .-, m
dl,k = t(le—l’ ot Tl—lk—ll (]Sk, z-I+1k—1: ttt ka_l) .
Since for i=1, :--, m’ and j=1, +--, m—m’
2?;0 I’z,};"f;""/w._k—1 = Gij_l'Pz(ois £)=0,

it implies that

Z;?;O pz,k'dl,1n’+j—k = t(oa Tty O: 7m’+1j_1' 'PZ(Tm’+1: EI): vt ij_l'Pz(Tm: 5’» .
Then
D[(Tp S Ty $1: ttty (ﬁm) = det l(dl,k; k">1, M) m)

=det (d},1, ***, dim-1s Pao " 2080 Dok A, mt)

- ’ _ ’
= det (dl,lﬁ "t dl,m” D20 I'Eg;o pz,k'dl,m’+1—kr 5 P20 1'22;0 pz,k'dl,m-k)
_ ’
= Dl(gl: Oy $1! Tt qgm’)'Dﬂ(Tm’+ll "t Tm)'(]]z,s"l’-kl PZ(Tk: E’)) *Pa20 wtm 5

where we use the fact that Py(r;, £')==0 in By, k=m’'+1, ---, m for sufficiently
small €, because z(¢, £'), j=I, ---, m are distinct in B, for sufficiently small «.
By the same argument,

DO(Tla ) Tm)
= Do(ala R 0‘m’)'-DO(“'-m’+1: "t Tm)'(Hz‘sm’+l PZ(T/U 5’))'p2,0—m+m, .
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Since Dy(Tprars **s Tw)* (T b=n’ 21 Polty, €7))=£0 in B, for sufficiently small ¢ except

=0, we come to the concuusion. Q.E.D.
Proof of Theorem A.
(Case 1). By Remark to Lemma 2.5, we have

4.2) t(e, V=06, j=1--,m in By.

Substitute o; for z;, j=1, :--, m’ in (3.1) and (3.2). Then (3.1) are equivalent
to (3.19) when (4.2) are satisfied. Lemma 4.2 and (3.2) imply that wu(x; @)=
U(x; @°).
(Case 2). By Remark to Lemma 2.5, we have s, ,%0 and
4.3) (e, EN=0)8"), j=2,-,m".
Substitute o; for r; j=2,:--,m’ in (3.1) and (3.2). Since
Sk(rls Og5 °°° am’) = Sk(GZ’ ) om’)—I—Tl'Sle-l(az: Tt om’) ’
it implies that (3.1) are equivalent to
(44) 22”;0(_1)k'sk(02J Tt anz’)'§£m’+j—k
+Tl°22n;0(~_1)k'sk-1(025 Tty Um’)'d;m’+j-k
= Z';BI '_l)k'Sk(az, Tt Um’)'(qgm’+j—k_71'$111’+j—k-—1) =0 5
j=1, .-, m—m’. Substitute (2.10) for z; in (4.4). Then the coefficients of &°
in (4.4) are
(45) 21;31 —l)k"Sk(oz: ) am')'(gﬁm’-}-j—k_al'd;m’+j—k—1)
and those of ™" are
_—S1,2°Ekm;;1(_—l)k°sk(o‘2: 0y am’)"ﬁm’-l»j—k—l 3

which must be zero. Since s,,3+0 and s, is an analytic function in B,, it
implies that

(4‘6) 221;51(’—1)12.‘5‘12(625 Tt am’)'qam’+j—k——1 =0

in {€'€By; 5;,(6')*0} and therefore in B,. By substituting (4.6) in (4.5), we
have (4.1), which are equivalent to (3.1). Obviously (3.2) depends on ¢ in
general. Thus we come to the conclusion. Q.E.D.

Remark. When P,(¢) is divided by P,(¢) in C[€], there exists a datum @”
for an arbitrary datum @’ such that the solutions converge. In fact, we may
take ¢, =Dy " uy(x; @), j=m’'+1, ---, m, which belong to F™}(C7(B,)) and are
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independent of e. Corollary 3.4 implies the uniqueness of such data @” as the
solutions converge and the Cauchy-Kowalewski theorem implies the uniqueness
of the solutions for fixed e. Hence we can prove (Case 1) without Lemma 4.2.
Our aim to use Lemma 4.2 is to prove (Case 1) only with algebraic calcula-
tions.

Theorem B. Let m'=1 or (m'=2 and m=4). Assume that Condition
1.2 is not satisfied. Let Assumption 1.1 be satisfied and B, be the open ball in
Remark to Assumption 1.1. Let the Cauchy data ®=(¢,, -+, ¢,,) of (1.1) be-
long to F7Y(CF(By))".
(Case 1). The case when m'=1.
(1-a) If there exists an integer j with 1< j=m such that 6,=v; in B,, then the
solutions u(x; @) converge in C(R") if and only if the Cauchy data @ satisfy

(4.7) $i(€) =0/ HENBUEN =2, m.

(I-b) If o,=Fv;, j=1,-,m in B, Then the solutions u/x; @) converge in
C(R") if and only if ®=(0, ---, 0).

(Case 2). The case when m’'=2 and m=4.

(2-a) If there exist integers j, and j, with 1< jy, j=m such that o,=v; and
0,=v;, in B, then the solutions u(x; ®) converge in C(R") if and only if the
Cauchy data @ satisfy (3.19) for m’'=2.

(2-b) If there exists an integer j with 1 < j<m such that o,=v; and 0,5 v, for
all k=1, ---, m in By, then the solutions u,(x; @) converge in C(R") if and only if
the Cauchy data © satisfy (4.7).

(2—) Ifo;%kv;,i=1,2andj=1, -, min By. Then the solutions u/x; ®) con-
verge in C(R") if and only if ®=(0, -+-. 0).

Except (2-b), the solutions u/x; @) are identically equal to the solution
uy(x: D) of (1.2).

In order to prove Theorem B, we nced the following lemma.

Lemma 4.3. Let the same assumptions as in Proposition be satisfied. Then
the following three conditions are equivalent.
(1) There exist an analytic function r(€') in B, and a Cg(By)-function B(E")
with B(EV=EOQ such that the solutions of (1.1) converge for the Cauchy data sat-
isfying

4.8) &N =BE )T EY, j=1,-,m.
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This implies that $,=p.
(2) There exists integers i with 1 i<m' and j with 1 < j<m such that

4.9 0,(6") = vj(€’) in B,.

Here vy, k=1, -+, m are characteristic roots of P(§)=0 with respect to &, and
oy, k=1, -=-, m’ are those of P,(¢)=0.

(3) There exists an analytic function r(§") in By such that for all the Cg(B,)-

Sunctions B("), the solutions of (1.1) converge for the Cauchy data satisfying
4.3).

Proof. We shall show that (1)— (2)— (3)—(1).
First step: (1)—(2). Substitute (4.8) in (3.17). Then
Fopu€)-BE)TE =0,
Since
S0 PoaE) T €V = poo TIH: (r (€)—0u€))

it implies that if #(£7)==0, then there exists a neighbourhood B, of &/ such that

¥ (r(E)—0o(€))=0in B,. Hence there exists an integer / such that r =
6,&") in B,. The analyticity implies that 7 (§")=0,(¢') in B,, We may assume
that i=1. We have for j=1, -+, m'—1,

(410) Sj(rl’ °ty Tm’) = Sj("'z: "t Tm’)—‘_rl' j-—l(z'z’ ver, T,,,/) .
Then (3.1) for j=1 implies that
(411) ?’;0(—1)"'Sj(72» ) Tm')'$m’+1—j

+71'E?;0(—1)j'sj—1(12’ R Tm’)'d;m’-l-l—j
= E?;—(;l(_l)j'sj(z'w "t Tm’)'($m’+l—-j——rl.$m’—j) =0.

Since
Pt ir=j—T1 P j=—81 5% B0, T e L O (22
(4.11) implies that
815" B G (1Y e Si(zy, o, Ta) oW T HO(2 ) = 0.
The least order of e is m—m’ and the coefficient of e~ is
—8;,2° 8- 205 (1Y S0, -+, 0r) 0™ TV

which must be zero. Since F(6')=%0 and
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T (—1Y - S(op -+, 04) 0" T =TI o(0,—0,) # 0in By,

the analyticity of s, , in B, implies that s, ,(6')=0 in B,. Then P (s}, £")=0 in
B,, which is equivalent to (4.9) for i=1.

Second step: (2)—(3). If (4.9) is satisfied for i=1, then we may assume
that 7,(¢, §)=0,(§)=7(¢’) in B, and that D=(¢,, -, bn) = *(1, 7, -+ 7",
where &, is an arbitrary Cy(By)-function. Hence for =2, ---,m

D7y, *+*, T3 ‘lgv e ‘lgm) = qsl'Do(Tlx T T Tian > T) = 0,

and

DI(TIJ = Tms ‘f)lt ) dl;m) = (f)l'Do(Tl’ ot Tm) .
Thus

us(x; @) = F7(¢y(€")-exp io)(€") x1)

which is the solution of (1.2). Since the solutions u, are independent of e,
the solutions u, converge.

Third step: (3)—(1). This is trivial. Q.E.D.

Proof of Theorem B. (Case 1). First we assume that the solutions u, con-
verge. In this case, (3.18) implies (4.7). When ¢,(¢')=0, (4.7) implies that
®=(0, -+-, 0) and the solutions u, are identically zero. When ¢,(§")==0, Lemma
4.3 implies that there exists an integer j with 1= j=<m such that o,=v; in B,.
Hence if there exist data @ such that ¢,(6")2=0 and the solutions converge, then
it leads to (1-a). Otherwise it leads to (1-b). The converse can be proved
with the same argument as in Lemma 4.3.

(Case 2). The case (2-a) is the special case of (Case 1) in Theorem A.
The case (2-b) is that of (Case 2) in Theorem A, where we must exchange o,
for o,. Therefore we may assume that s, ,3=0 and s,,%0 in B,. Put s=
t(s1,20 83.2) and AI:(cf)jH,,,; j11,2, k—1,2). Assume that the solutions con-
verge. Then Corollary 3.3 implies that 4,Bs=0. Since det B==0 and s==0 in
B,, it implies that det 4,=0, that is,

(4.12) ¢A’22 = $1'¢;3 .
By Corollary 3.2, we have

(4.13) P2,0‘$3+P2.1'¢’2+P2,2'$1 =0.
Then (4.12) and (4.13) implies that
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(4.14) Pz,o‘¢;22+P2,1'9?’11"4;2‘*‘172,2'¢12 =0.
Assume that ¢,2=0. Divide (4.14) by ¢, and put z=¢,/$,. Then

(4,.15) Pao0 Bt Pa 2Dy = Pz, 67) = 0.

Hence there exists an open ball B, with centre £{ included in B, such that ¢,(&’)
+0 in B, and z=0,(£’) or z=0,(€’) in B,. We may assume that z=g,(¢’),
that is, ,=o0,+h, in B,. Since (3.17) are equivalent to

(416) ‘£j+2‘_(0-1+02)'¢;j+1+01'0'2°(,£j
= ¢‘;i+2_61.q§i+1~_02'(q§j+1—01'4;1‘) =0, j=1,-,m—2,
it implies that
q§i+2—01"q§j+1 =0, j= 0, -, m—21in Bl .

Choose B, in C7(B,) satisfying 4,(6/)#0 and put #=4,-$, and r=q,. Then
Remark to Proposition implies that the solutions converge for the Cauchy
datum @, satisfying

d\)l = /91'931'(1’ ap, 0, 0" 7).

By applying Lemma 4.3, we have ¢,(6")=r,(¢, §')=0 in B,, which contradicts
that s, ,%0. Hence $,=0. Then (4.12) and (4.13) implies that ¢,=¢,=0.
Thus (4.16) implies that @ =(0, ---, 0). Q.E.D.

5. The Weak Admissibility

In this section, we shall prove Main Theorem.

Proof of Main Theorem. Assume that for every @' in A’ there exists
@"” in A such that the solutions u,(x; @) of (1.1) converge in C(R"). We have
only to show that it leads to (Case 1) in Theorem A. Assume that the condi-
tion in (Case 1) in Theorem A is not satisfied. We may assume that s=
($;2;0i 4 1,--,m)=E0. We can apply Corollary 3.3. Since det B=0, it im-
plies that Bs==0. By (3.21) for j=1, we have (¢, -**, )+ Bs=0. Hence @’
can not be arbitrary, which contradicts the C-weak admissibility. The con-
verse is proved by (Case 1) in Theorem A. Q.E.D.

Obvoously the C-admissibility implies the C-weak admissibility. When
the Cauchy problems (1.1) are not C-weakly admissible, (1.1) are not suitable
as a singular perturbation. Because the Cauchy data @’ of the reduced pro-
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blem (1.2) are restricted. One of the reasons why (1.2) does not admit ade-
quate Cauchy data @’ is that the Cauchy data @” are independent of e. If we
allow that the Cauchy data @” change as ¢, then we can find a sequence of
solutions of (1.1) whose limit is the solution of (1.2). In fact, we may take
the solutions satisfying

, w Di(Ty, o, Ty by oors Por)
De(x,, €) = D, =1 1 n
E( 1 ) 2] 0 DO(TI, o, ‘l‘m/)

-exp itj(e, &) x; .

When the Cauchy problems (1.1) are not C-admissible but C-weakly admissible,
(1.1) are trivial as a singular perturbation. Because the solutions u(x; @) of
(1.1) are identically equal to the solution uy(x; @) of (1.2). Thus the interest-
ing cases are limited to the cases satisfying Condition 1.2.

When A’ is wider, there is a difficulty in the choise of <4”. But the proof
of Corollary 3.2 suggests that @” is uniquely determined by @’ for wider data.
There is another difficulty. For example, when & belongs to &'(B,)", the
situation is so delicate that we can not analyze with algebraic methods only.
In fact, we used the fact that the product of an analytic function not identi-
cally zero and a continuous function can not be identically zero except that
the continuous function is identically zero.
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