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Symmetric Tensor Algebras and
Integral Decompositions
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Daniel A. DUBIN* and Mark A. HENNINGS**

Abstract

Let X be a perfect sequence space closed under the Cauchy convolution product, with
respect to which it is a topological algebra with jointly continuous product. Suppose, in
addition, that X is type (h) and Xdh. Let E[t] be a nuclear Frechet space, with the to-
pology t defined by the seminorms •Cpr

Cl): r>0}. The corresponding regular tensor algebra

T(E, X) = {xen^o®" E: [jprw(*,)]e J, r>0} ,

equipped with the topology t(E, Xx) determined by the seminorms

Pu.rW = 2

The algebra product is

(xy)» =
If Sa is the symmetrizing operator on ®nE for all #>0, we consider the symmetric sub-

algebra S[T(E, X)], where S(xn) = (Snxn).
We show that functionals on T(E9 X) and S[T(E,X)] can be represented by complete

finite complex Borel measures if they are continuous with respect to a certain locally convex
topology t(E9 A

x) on T(E, X) and its restriction is(E, X*) to S[T(E, X*)] respectively. The
topology t(E, /lx) is coarser than t(E, Ax) and non-Hausdorff, whereas ts(E, Xx) is Hausdorff.

If the algebraic positive cone in A is normal, then so is the positive cone on S[T(E, X)].
Using the isomorphism X^T(C, X), we show that the cone in S[T(E, X)] is normal for all
nuclear Frechet spaces E[t] if and only if t(C, Xx)=i(C, X*).

§ 1. Introduction

In an earlier work [4] we introduced the class of regular tensor algebras,
which are related to the algebras of quantum field theory [3]. Certain ques-
tions of interest for the quantum field algebras may therefore usefully be con-
sidered for regular tensor algebras.

Communicated by H. Araki, February 16, 1989.
* The Open University, Milton Keynes MK7 6AA, England.

** Sidney Sussex College, Cambridge CB2 SHU, England.



1002 DANIEL A. DUBIN AND MARK A. HENNINGS

One such question is to discover which linear functional may be represented
by complex measures. Borchers and Yngvason [3] have shown these to be
those functional which are continuous with respect to the finest locally con-
vex Hausdorff topology on the subalgebra, coarser than the original, under
which the algebra product is jointly continuous. This topology turns out to
be the finest such that the closed positive cone is normal.

The same question is considered for regular tensor algebras in this paper.
A similar answer is found. The topology in question has a slightly different in-
terpretation now, but is closely related to the normality of the closed positive
cone.

We have organized this paper as follows. The remainder of this section
contains background material from [4]. In §2 we consider the positive cone
on the sequence space Z associated to a regular tensor algebra. The new
topology on the tensor algebra is discussed in § 3, along with the decomposition
of linear functionals. In §4 we introduce the symmetric tensor algebra, and
in §5 we consider its order properties and the integral representation theorem
for it.

Much of this paper follows the work of Borchers and Yngvason in [3]
quite closely. There are some differences worth noting, however. For one
thing, we do not have to restrict ourselves to nuclear Frechet spaces with a
basis. For another, characters on a regular tensor algebra are not automa-
tically continuous, as is the case for the quantum field algebras. They are al-
ways measurable, though, and so the integrability theories are quite similar.
We introduce a constraint on the sequence space sufficient to ensure strong con-
tinuity of the characters.

Definition 1.1. Let 0, co be the sequence spaces of all terminating, respec-
tively all, complex sequences. All sequence spaces 0C^Co> that we consider

will be assumed to have the following properties, cf, [4, 5].
l.l.a % is equipped with its normal topology, denoted r(/lx), which is de-

termined by the seminorms

By Zx we mean the Kothe dual of I.
l.l.b. X is to be perfect, which means that X = / l x x .

l.l.c. 1 is to be type (h), meaning that if a^Z, then (2n

LLct. Let h be the sequence space tsuch hat a^li if and only if the com-

plex function ZH-»]>]W>O an z1 ^ entire analytic. Thus a sequence is an element



SYMMETRIC TENSOR ALGEBRAS 1003

of h if and only if ekn an-»0 for all k =0, 1 , 2, • • • . NB : we shall assume that X C h

in all that follows.
l.l.e. X is to be a Cauchy algebra. This means that for all a, 6e^, we

have a*b^A, where the product is Cauchy 's convolution product

n-hbk. (1.1)

l.l.f. The product on % is to be jointly continuous. That is, for any
there exist v, we/lx such that for all m, n>0 the inequality \um+n\ < \ vm wn\

holds.

DefiiiitioE Io2.a. By E[t] we shall mean a nuclear Frechet space with the
topology t determined by an increasing sequence of Hilbertian seminorms {p^ :
r>0}. We assume, further, that E[t] has a continuous involution, indicated as
x\- ».**, and it is no loss of generality to assume that the seminorms are * -sym-
metric.

1.2.b. The n-fold tensor product of E with itself, completed in the projec-

tive tensor product topology, is indicated as En = ®*E. We shall take it that the
topology on En is determined by the seminorms p¥* = ®*pP\ where a indicates
the Hilbertian tensor product topology. On occasion we shall employ the injec-

tive tensor product of the seminorms f writing Prnl = ®" Prl\ which again determines
the same topology on En.

For n=0 we adopt the conventions E0=C and p?\z) = \z\ for all z^C, r>0.
The continuous linear extension of (xl®--®xjl*)*=x*®'~®x¥ determines

a continuous involution on En, denoted yn\- >yf .

1.2.c. 77?^ tensor algebra associated with E and % is defined to be the linear
space

T(E, X) = {*eILao®"£: [p?\xn)]f=l, r>0} , (1.2)

equipped with the product

(xy\ = So^<« x*-k®yh , (1-3)

and the continuous involution (xtt)*=(x$).

Proposition 1.3.a. T(E, X) has a multiplicative identity

* = (1,0,0,-),

no zero divisors, a trivial centre Ce, and Q,e are its only idempotents.
1.3.b. Let t(Ey /lx) be the locally convex Hausdorff topology on T(E, X) de-

termined by the seminorms
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/>..r(*) = 2»*0 \Un\p™(xn).

Equipped with this topology, T(E, Xx) is a nuclear topological * -algebra with

jointly continous product.
When X is Frechet, so is T(E, X), and hence it is also barrelled, bornological,

Mackey, Montel, and reflexive. In such cases its dual, equipped with the strong
dual topology, is barrelled, bornological, complete DF, Mackey, Montel, nuclear,

and reflexive, cf, [4].

§29 Order Properties of X

The analysis of the order properties of X in [4] was based on the choice of

^+-{ae^:a,>05V/2>0} (2.1)

as positive cone. Both the positive cone of T(E, X),

K(E, X) = {S,-<~ 40* 40 : 40 e T(E, X)} (2.2)

and its dual cone

K(E, X)' = {FEE T(E, X): T(x)>Q, VxtEK(E, X)} , (2.3)

are constructed quite differently. For this reason, the order properties of
[X, X+] and [T(E, X), K(E, X)] are not entirely consonant. Our principal results
in [4] were these :

Proposition 2. La. Equipped with the normal topology, X+ is a closed, normal,
strict-b cone, and Xk is a vector lattice.

2.1.b. K(E, X) is a proper strict-b cone for the usual topology t(E, Xx). Its
closure, K(E, X)^, is proper if and only if K(E, X)' separates the points of T(E, X}.
A sufficient condition for this is that XdT. Thus, eg, the closed cone is proper
when X is $ or h, but is improper for X=co.

2el8Co K(E, X) is normal if and only if the states of T(E, X*) determine the
topology t(E, Xx). For this it is sufficient that X be of type Nl, N2, or N3.

The order properties of X and T(E9 X) will be more naturally congruent if
we consider the order relation on X to be given by its algebraic cone, viz.,

K(X} = {SKoo 0(0*40: 4/) e X} , (2.4)

rather than by X+. The reason is clear from the next result.

Lemma 2,28 T(C, X) [t(C, ^X)]=^K^X)] is a tvs isomorphism, under which
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if(r* ?"\ v( i\
/V^lx, Aj = A^Aj.

In view of this, the results of Proposition 2.1 apply to the pair [A, K(Z)],
yielding the following.

Corollary 2.3.a. K(Z) is a proper strict-b cone with respect to the topology
T(&*). It is generating, and as /Ic/z, the T(Ax)-closure of K(X) is proper.

2.3.b. If* is of type Nl, N2, or N3, then K(X) is normal.
2.3.c. The dual cone, K(X)'=K(C, Z)', consists of the collection of those se-

quences in Ax which are of positive type, viz, u&K(Z)f if and only if for <

S.'.^O «••+/*,• fly ̂ 0. (2-5)

We shall prove that functional on the symmetric subalgebra of T(E9 /I)
possess an integral decomposition with respect to a complex measure on E(
provided that they are continuous with respect to a certain topology t (E, ^x).
Because of Lemma 2.2, we can define this topology for X itself, writing f(C9 ^x)
=£(^x) in this case. As we shall now show, r(Ax)=r(Ax) if and only if K(Z) is
normal. The existence of integral representations for abelian functionals on
T(E, ^) is a result of this important relation between order and continuity on X.
This connexion was first discovered by Borchers and Yngvason in their study
of the Euclidean quantum field algebra [3]. For that tensor algebra, only the
sequence spaces 0 and o> occur, which tends to obscure the fact that the order-
continuity properties of the tensor algebra reflect those of ^.

Definition 2.4.a. By Ax we shall mean the strictly positive sequences in ^x :

A* = {W<E;IX: i/,>0, V«>0} . (2.6)

Each such sequence u determines an extended real-valued function Fu:
[0, oo ] given by

2.4.b. We denote the standard isomorphism (f>^C[X] by ai-*Pa(X), ie,

'S<x>afX
n, (2.8)

where X is an indeterm nate. By the usual abuse of notation, we identify the
polynomial Pa(X) with the polynomial function t\-*Pa(f) for t^R, and in the
next section with the algebra element Pa(x)^T(E, X), all ;ce T(E, X).

2.4.C. For any u£=Ax we consider the extended real-valued function on X
given by
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IWL = sup { | P.(r) I /**.('): t*=ll} , (2.9)

for

We prove that the || • \\u are all seminorrns.

Lemma 2050 The i\\°\\u: u^A*} constitute a family of seminorms on A. If
we write r(^x) for the locally convex Hausdorjf topology they determine, then
r(^x)Cr(^).

Proof. The original topology r(^x) is determined by the seminorms pu(a)
=S«>o I un an | , for all we A*. Restrict them to <t>, using the same symbol. Let

, and we may suppose that an=Q for all n>N. Then

If we understand Ptt(t)/FH(t)=0 whenever Fu(t) = °°9 then \\a\\u<pu(d). We
may extend the || • ||B to ^9 therefore, preserving the seminorm properties and this
bound. That r(^x) is Hausdorff is elementary.

Theorem 2A K(X) is r(Xx)-normal if and only z/r(^x)=r(/lx).

Proof. A computation shows that if

is an element of K(<f>), then

Then if a, b, and b-a belong to K(f), it follows that Pa(t\ Pb(t), and P4_B(r) are
non-negative for all t&R. Consequently, ||<3|L<||i|L f°r all u^Ax

y so J£($)
is r(Ax)-normal.

Suppose now that r(^x)=r(^x). The closure of K(<f>) in this topology must
be normal. As this closure coincides with the r(^x)-closure of K(X) (see [4]),
this closure and aforteriori K(X) itself must be r(Ax)-normal.

The opposite implication may be inferred from Lemma 3.1 of [3], with the
sequences appearing there suitably restricted to /lx and Ax.

§3. Decompositions for T(E,\y

As in [3]5 we shall construct a class of functions integrable with respect
to the measures which occur in the integral decomposition theory. To start
with, every hermitian functional ir^E'h on E defines a character, which we
denote by M$, on T(E, fy through the formula
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Af* = (®>:;?>0). (S.l.a)

These characters enable us to associate a nonlinear function mx: E'h-+C to each
xe r(£, ^) by setting

m,W)=Mi(x). (S.l.b)

Definition 3.1. j8y F we shall mean the set of all functions f: Ei-^C of the

form

/WO = G[m,(1)W*), "., m,(ll)W)] (3.2)

for all x(l), •••, x(ri)^T(E, X), a// polynomially bounded continuous functions
G: Cn-+C, and all n>\. With pointwise operations, F is a commutative *-
0/gefera.

Given any f^F as in (3.2), we can always find a polynomial
•••, !"„] dominating G so that we have the bound

\fM\£\M*[Q(x(l),--.9x(n)]\ . (3.3)

Our aim is to define a topology t(E, ̂ x) for T(£, ^) analogous to f (/lx)
on -J. This requires some preliminary definitions.

Definition 3.2.a. For any u^Ax and r>05 cfe/?«e the function Fuy. E'h
[0, oo] by

By Pu.r,* we mean the T(E, X) seminorm

P..r..(x) = S^o I UH I /iW (xw) (3.5.a)

^ injective tensor product topology. Then

(pu,rJ°(T) = sup{\ T(x) I : ptttfiS(x)< 1} (3.5.b)

defines its polar seminorm.

3.2.b. For any u^A* and r>0 let nUsf.: F-*[Q, oo] ie the extended real-
valued function given by

**,,(/) = sup{|/(^)|/F..r(^): +^E'k} , (3.6)

with the usual convention when FK>r(V
ri)=+00.

These functions define extended real-valued functions nUif: T(E, ^)-^[0, oo] by

setting
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where m: T(E, X)^F is given by m(x)=mx.

We have allowed for the possibility that nu>r is not well-defined every-
where, but this does not in fact occur.

Proposition 33. The collection {nUir: u^Ax, r>0} constitutes a family of
seminorms on F defining a locally convex Hausdorjf topology, written t(F9 /lx),
with respect to which F is a topological lattice.

Asm is a non-injective * -algebra homomorphism, the collection {xUtr: u^Ax,
r>0} consists of seminorms on T(E, X) defining a locally convex non-Hausdorff

topology denoted t(E, /lx). It is coarser than the original topology:

t(E,**)dt(E9i*). (3.8)

Turning to integral representations, we apply the nuclear spectral theorem
to T(E, X) as in [3]. The proofs are those of [3], mutatis mutandis, and so we
omit them. Note that nUir and pu>r^ must be employed.

Proposition 3Aaa Let R be a positive and t(F, ^-continuous linear func-
tional on F. As the Cauchy-Schwarz inequality holds for R we can reconstruct
its strongly cyclic GNS representation [@R, 3)R, TCR],

Let B be the subspace of bounded functions in F. Then KR(B)" is a maxi-
mal abelian W* -algebra on MR, the Hilbert completion of 3)R.

3 Ab. Write rR for the spectrum of nR(B)", At-* A for the Gelfand trans-
form nR(B)"^C(r^, and F^F for its inverse C(r^n^B)9/. Then there
exists a complete, positive, and finite Borel measure JUR on FR such that for all

the equality

(3.9)

holds.
3.4.C. The map VR: C(r^-*nR(B)" ®R given by

VR(F)=F$R (3.10)

extends to a unitary isomorphism L2(rs, dfi^-^-MR.

F may be identified with an abelian algebra in L2 (Fs, dtis) by defining
OB: F-*L\rE, dvR\

(3.H)
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Using aR and m: T(E, X)-*F defined above, we obtain the following rela-
tion between T(E, X) and L2(PR, dv^.

Corollary 3.5. The map £R: T(E>X)~^L\rR,d^R) given by £R=aRom is
continuous, linear, and multiplicative.

The nuclearity of t(E, -*x) is now invoked to prove the following.

Proposition 3.6.a. There exists a juR-nulI set N and{ an element Kx^
L2(rR,djLLR)for each x^T(E,Z), such that x\->Kx(r) is a t(E, ^-continuous
character on T(E, X)for each r^T^N.

3.6.b For each r^TR\N there exists a unique hermitian functional 0(r)^
E'k such for all x<=T(E,X) the equality Kx(r)=M^}(x) holds. We extend 0
to FR by defining 0 to be zero on N. This extension is written 0: PR\— > E'h<

Using 0 we transport juRfrom FR to E{ty obtaining a positive measure VR on
E^ with the properties

(i) WaE'h is v immeasurable if and only if ti>~1 (W) is {immeasurable, and
so the definition

VR = ^00-' (3.12)

is consistent.
(ii) f<=L\E'h, dvR) if and only if f°0<=L\rR, dtts), and the integrals are

related by

(iii) The measure VR is finite and complete.

We are now able to state the principal measure theoretic result for the
tensor algebra. Part (d) below is the integral decomposition theorem referred
to in the introduction.

Proposition 3.7.a. For all y^E, the map ty\-*®(is)(y) is fJ.R-measurable.

3.7.b. For all y^E, the function ££-*€', Vrh~>Vr(j;) is VR-measurable.
3.7.C. Every weakly closed subset of E( is v R-measurable , and all weakly

continuous functions E'h-*C are vR-measurable.
3.7.d. If R is a t(E, ^-continuous linear functional on T(E, >*), theree xists

a complete finite complex Borel measure VR on Ef
h such that

(i) mx GE L\E'h, dvR) for all x e T(E, /I) ;
(ii) all weakly continuous functions E(±-*C are v R-measurable ;

(iii) foralIxGT(E,X),
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m,dvR. (3.14)

The work of Borchers and Yngvason concerned the quantum field algebra

S«^o £(Rdtt), as noted above [3]. In this case, they showed that the nuclearity
implied that the mx were strongly continuous and so their measurability follows

from continuity. We now know the mx to be measurable, and we consider

next the question of continuity.

Proposition 3.8. The functions mx: E'h-*C are strongly continuous for all

Proof. We cannot use [3] here, as E^F T(E, 0). Let B(E) be the collection

of all bounded subsets of E. From the tvs isomorphism (Eny^(®% £")A it fol-

lows that {®«pB'. B^B(E}} constitutes a basis of seminorms for the strong

topology ft(Ei, En) on E'n. We have introduced the standard notation pBty) =

Now if (I/TO) is a net in E' which converges in the ft (E', E) topology to T/T,

then (®V"c) is a net *n En similarly converging to ®V"° To see this, sup-
pose ifr, £^Ef and B<=B(E) are such that />*(£— V)<1- Then

and convergence follows.

For all x^T(E, 0)5 convergence of (®VJ implies that

.) M ^ S«>0(® V) fe) ,

which is the assertion of the proposition.

Recall that as E[t] is a nuclear Frechet space, its strong dual may be re-

presented as an inductive limit of Banach spaces

E'\P(E'9 E)} = lim ind {F,[qr]: r>0} ,

where qr is the polar norm corresponding to p(^ on E, and Fr is the ^-com-

pletion of {fr^E' : qr(i^)<°°}' Using this result we consider mx acting on the
Fr9 and then piece together the results.

Lemma 3.9. The function mx\ Fr[qr]->C, obtained by restriction, is conti-

nuous for every r >0 and all x^T(E, /l)B

Proof. Let -fr,£<E.Fr be such that qr(£ — -^)<L The bound
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leads to

showing the required continuity.

Corollary 3.10 For all x<=T(E,Z), the function mx: E'h-*C is strongly
continuous at the origin.

Proof. For every zero neighbourhood UdC, the set m^l(U) fl Fr is a zero
neighbourhood in Fr for all x, r>0. Then m^l(U) is a zero neighbourhood for
fl(E', E), as was to be shown.

We have not been able to prove the continuity of mx everywhere without
further assumptions. The general question remains open. Recall that the
measurability of mx has been shown independently, cf Proposition (3.7.d).

A condition that ensures the continuity of mx everywhere is that Ax is
"nearly" a Cauchy algebra.

Definition 3.11. We shall say that the sequence space % is of type (M) if
whenever

Recall that S=(l, 1, 1, •••)- Of course if Ax is a Cauchy algebra it is
type (M). An immediate consequence of this definition is the following domi-
nance condition.

Lemma 3.12. If and onlyi f X is of type (M), for every w£E^x there exists
v€E^x such that ni— > \vn\ is a monotonically increasing positive sequence, and
\un\<\vn\foralln>Q.

Proof. If ^ is of type (M), choose v=|w|*fl , where ( |w | ) w =|wj . Con-
versely, suppose a sequence v as above exists for each n. Then | (w#£)B | <
(1 +77) | vn | , proving that u*d e -*.

The following lemma is the crux of the argument.

Lemma 3.13. If A is of type (M), then given any x^T(E, X) and

we can find an x(^)^T(E, X) such that

(3.16)

for all£ ZEE'.

Proof. From the definition of the e-seminorms it follows that, given any
r >0 and n> 1 we can find a t >0 such that T/r^Ft[qt] and
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for all s>0, xr+aeEr+n.
Observing that if we sum over all n convergence obtains, we may define
by

for all r>0. By S* we mean the symmetrizing operator on Ek for k>0. The

properties of Sk will be discussed in the next section.
The above definition of xty) yields the estimate (for

Taking the limit N-*o° proves that xfy) is an element of T(E9 X).
Our next step is to write the action of ®n(i^+S) in terms of 0V1 and

and estimate the remainder. For n>2 we observe that

. xj = (
r^)] (S. x.) .

For «=1 the cross terms vanish, and for n =0 only V appears. Hence for all
TV > 2 we may write

= 2os^(® V) (5, ̂ )+2iSB£w(®8f ) (5, xu)+9K .

The remainder term is

Then

The second term is the "tail" of the convergent series Sr^o(®rf) [*0v^)r] and so
converges to zero as N-> oo .
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We may choose w in such a way that £ ̂ Fw[qw]. With this choice, the

first term is bounded by

and so converges to zero as N->°°. The result has now been shown.

Corollary 3.14. If X is of type (M), the functions mx: Ef
h-*C are strongly

continuous for all x^ T(E, /I).

We are now ready to start our consideration of the symmetric algebra

corresponding to T(E, /I). The next section starts with a study of the sym-

metrizing operator.

§4. The Symmetric Tensor Algebra

The permutation group on n letters, Gn, acts on ®HE by linear extension
from

As U(^ is isometric with respect to the sesquilinear form associated with

p¥\ all r>0, it extends continuously to an operator on En written U(/\ The
A

symmetrizer on En is defined to be the operator

S.^O-'SW.tf?' («>!)• (4.1. a)

Setting S0 on E0 to be the identity map, the symmetrizer on T(E, /I) is the

operator given by

The following properties of S are easily verified.

Proposition 4.1. For all Her, r>0, x<=T(E, X),

pu,r(Sx)^pHtr(x) , (4.2)

and so S is continuous. It is a ^-projection :

S* = S, (4.3 A)

(Sx)* = S(x*) , (4.3.b)

and is related to the algebra product through the equations

S(xy} = S(yx) = S[S(x) S(y)] = S[xS(y)] = S[S(x) y] , (4.4)
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The kernel of S, N(S), is a closed * -ideal, so

(4.5)

is a locally convex Hausdorff space with the quotient topology ts(E, ̂ x), deter-
mined by the quotient seminorms

pu,r(5c) = inf {Pu>r(x+y)i y^N(S)} , (4.6.a)

w^A x , r>0. We have introduced the notation x=x+N(S) for the coset equi-
valence classes.

The quotient seminorms satisfy the invariance equation

Pu,rW=Pu,r(Sx)' (4.6.t>)

If we write

/: x H» Sx , (4.7)

then / is a topological isomorphism of TS(E, X) [ts(E, ^x)] onto the range of
S. As S is continuous, the range, R(S)9 is a t(E, ^lx)-closed subspace of
T(E9 ^). The following is now obvious.

Proposition 4.2. TS(E, X) [ts(E, ^x)] is nuclear; it is Frechet if T(E, X)
[t(E, /lx)] is. It can be given the structure of an abelian topological * -algebra with
jointly continuous product by setting

(4.8.a)

(jQ* = (X*)- . (4.8.b)

If T(E, X) is locally multiplicatively convex, then so is TS(E9 X).

Equipped with these operations, we shall refer to TS(E, X) as the symme-
tric tensor subalgebra of T(E9 fy.

The following two combinatoric lemmas prove useful in a number of
contexts. By Si, S' we mean the transposes of Sn, S respectively.

Lemma 4.3. If xn^En is such that (®V)(^»)=0 for all ^^E'hi then

Proof. Let An be the collection of all maps

a:{l,2,-,/f}-M--l,

For any /i-tuple ^=(^1, V2> '"> ¥n) of elements of Ei and any 5eJ we define
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so r8 e E'k. We abbreviate Vs = <g> " Wt.
A multinomial expansion yields the expression

= s «i « [ ® (®«*> n)] n
where the sum is over all i(k)>Q constrained by i(l)+"*+i(ri)=n.

This equation may be inverted, yielding

Under the hypothesis, Wl(xn)=Q for all S^dn, and from the above equa-
tion, we find that

for all ̂ -, and so Sn xn=Q.

Lemma 4.4. Let xtt^Sn(En) andymtESm(Em) be such that Sn+m(xn® jj-0.

Thenifxu*Q,yn=0.

Proof. Choose ^eUi such that (®Vi) (^»)=NO. For any nonzero i^2
e

££ there exists r>0 such that (®V») W^O for all we J? with | w| <r, where
we define ^^1^1+ ̂ 2- As ®w+wlVr

w is symmetric, it follows that | w\ <r im-
plies (®mirw) (^«)=0. Considering this as a function of w immediately yields

=0- As ^2 was arbitrary, jw =0.

Our first application of these results concerns the algebraic properties of
the symmetric subalgebra.

Proposition 4.5. The algebra TS(E, X) has no zero divisors, whence its only
idempotents are 0 and e. Both T(E, ^) and TS(E, X) may have non-scalar units.

Proof. Consider jc, y^Ts(E, X) with x y=0. If suffices to consider x, je
S[T(E, fy] with S(xy)=0. Suppose Jc^O, and let n be the index of the first
nonzero component of x.

For any m,

o = sn+m\22te&. x»+j®ym-j] ,
so m=0 yieds yQ= 0. Proceeding inductively, assume yQ, •••9yp_1=0. With
p=m in the above, Sn+p(xn® yp)=Q and we know that this implies yp=Q.
Hence y=Q.



1016 DANIEL A. DUBIN AND MARK A. HENNINGS

For E=C we have T(C, X)=A. Let A=h, and consider the element ( l / n l :
n>0). It is easy to verify that this is symmetric and invertible, with inverse
[(-!)>!: n>0].

The order properies of TS(E, X) will be defined through the positive cone

KS(E9 X) = SK- a(j)* a(j): a(j)tET(E, X)} . (4.10)

Proposition 4.6, Under the isomorphism i: x-*Sx of equation (4.7), the

positive cone may be identified with

K(E9 X)/N(S) & KS(E, X). (4.11)

The cone KS(E, X) is generating, strict-b, and proper.

Proof. Equation (4.11) is obvious. KS(E9 X) is a generating strict-6 cone
because TS(E9 X) is abelian and has a jointly continuous product.

To see that it is proper, consider a^Ks with a 4=0. There is a representa-
tion i(a)=S[mj<00a(j)* a(j)] with a(j)^0 and a(j)<=S[T(E9 X)] for every j.
Let LJ be the index of the first nonvanishing component of a(j), and set L =

min/Ly). Then i(0)n=0 for 0<n<2L-l, and i(a)2L=S2L[^j<00 a(j}$®a(j)Ll

If i(a)2L were zero, Lemma (4.3) would imply a(j)L=Q for allj, which con-
tradicts the assumption. Thus 2L is the index of the first nonvanishing com-
ponent of i(a).

Suppose a<=Ks(E, X)n —KS(E, ^), with ^O. The lowest index for both
i(a) and i(— a) is 2L by the above reasoning, so that

(& V) W\L] = Sy I (® V) («O')L) 1 2 = 0

for all T/r^E'h, and so a(j)L=Q for ally, a contradiction.

Another application is the proof that t(E9 ^
x) restricted to TS(E, 2) is

Hausdorff.

Lemma 4.7. If x<=S[T(E, X)] is such that M*(x)=Q for all ^e££, then

*=0.

Proof. Considering Q=Mt$(x) as a function of t^R yields 0=®^(xw)
for all T/T and all /2, and so #=0.

Propostion 4,8o Write ts(E, Xx) for the topology t(E, ̂ x) restricted to

Ts (E, X). Then ts(E, Zx) is Hausdorff.

Proof. Let x^S[T(E9Xj\ satisfy xUtr(x)=Q for all we^x , r>0. Then
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KUtr(mx)=Q for all u, r, so mx=Q. Thus M$(x)=Q for all ^, and Lemma (4.8)
yields x=Q.

We shall see later that KS(E, X) is not necessarily normal. In all cases,
however, its closure is proper.

Theorem 4.9. The ts(E, ̂ -closed cone KS(E, X) is proper.

Proof. Given a e KS(E, X) there is a b e K(E, X) such that / (a) =S(b). Then
is non-negative for all ir^E'h. Consider a^Ks(E,)X . As

M^ is continuous, M$[i(a)]>Q for all V- If also —a^Ks(E, X) , then
=Q for all V% which implies that a=0.

§5. Normality and Decomposability for TS(E9K)

In this section we combine the integral decomposition theory for T(E, X)
with the normality condition for K(X) in the quotient algebra TS(E, X). As
expected, everything dovetails smoothly. For the remainder of this section
we assume that the cone K(X) is normal.

Lemma 5.1. If ty^E'h is such that for some u^Ax and r>0 the sequence
yYwn) w bounded, then the function FUtT of equation (3.4) can be written as

lun: n>0} . (5.1)

Proof. Now for all xn^En and «>0

and so

for all x. Thus

This shows that Fa>r(^r) is finite, and so for all

\M^x)\

It follows from this inequality that

on £w, so that
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for all n. The equality (5.1) is immediate.

Corollary §020 Jf^^Ef
h is on the unit sphere of Fr[qr], then F8>r(i^)=L

As noted, we assume 1 to be such that r(^x)=r(^x). We want to similarly

relate ts(E, ^x) and ts(E, /lx). For this we need two lemmas.

Lemma 5.3. For all u e A x , r > 0 the function

is a i(E, ^-continuous seminorm.

Proof. Given u, we choose v^Ax to satisfy

for all ae$3 c/ equation (2.9). Given N there exists a 0</< N for which

| (QNx) |

where 2^ i§ tne projection ^^^^(Joj "S^jO* "0 an(l ^i is defined in equa-
tion (2.7).

If y is such that/?,,frt8(^)<l, then

Hence

for all i/r&Ei, and r e R. The double supremum, then, is bounded by n9tr(Q
Nx).

But 7u9tf is f(£, /Ix)-continuous9 and this enables us to take the limit N-*oo,

yielding

finishing the proof.

Lemma 5e4» For all v e ^lx, r >0, /?^ satisfies the bound

for all
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Proof. We decompose E'=E'h+i E'h in the obvious fashion. This enables
us to consider hermitian functionals only, without loss of generality. Then

xn)<2n sup{|(ih®-® ^) (Stt xn)\ : ̂ -e£L <7,

Let Vu "% tyn^E'h be arbitrary. Using the technique in the proof of
Lemma (4.3) we can show the existence of ad^An such that

As

we get that

-® ^) (5. xn)\ <(«>!) M¥s(Sn xn)/qr

<ensup¥i\M¥[(SnxttT]\/F8>r(V)\ :

Substituting this into the first inequality of this proof yields the desired
bound.

Now we can prove the equivalence of the topologies.

Theorem 5.5. The topologies ts(E, Xx) and (S(E9 X*) are equivalent.

Proof, For any r>0 choose s>0 and JT>0 to satisfy pW<Kp™. Let
be arbitrary. Set vn=(2eK)nun and choose w^Ax so as to satisfy Lem-

ma 5.3 with respect to v. With this notation we find that

Corollary 5.6. If K(X) is T(Z*)-normal in X, then KS(E, X) is ts(E, Abnormal
in TS(E9 X).

Proof. We know that S[K(E,Z)] is r(£, ̂ -normal. From Theorem 5.5
it is t(E, ^-normal. As the isomorphism x\-*Sx preserves positivity, the result

" " ws.

We can go to the symmetric quotient of the integral decomposition as

>ws.

Corollary 5.7. If R is a ts(E, ̂ -continuous linear functional on TS(E, X),

follows.

We
follows.
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we can find a finite complete complex Borel measure VR on E( such that
(i) Every weakly continuous function Er

h~^C is vR-measurable.
(ii) Let us write nSx=n^ for all x. Then nt^L\E'h, dv^) and

R(x) = f ̂  n~x dvR (jce TS(E, Xj) . (5.3)

Proof. R induces a t (E, ^x)-continuous linear functional R± on S[T(E, fy]
defined by R=Rlof. Rl is i(E, ̂ -continuous and so extends continuously to
T(E, <*). The result now follows from Proposition 3.7.
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