Publ. RIMS, Kyoto Univ.
25 (1989), 1001-1020

Symmetric Tensor Algebras and
Integral Decompositions
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Abstract

Let X be a perfect sequence space closed under the Cauchy convolution product, with
respect to which it is a topological algebra with jointly continuous product. Suppose, in
addition, that 1 is type (h) and Ach. Let E[f] be a nuclear Fréchet space, with the to-
pology ¢ defined by the seminorms {p,: r>0}. The corresponding regular tensor algebra
is

T(E, ) = {xEM,2®" E: [p,"(x,)I€2, r>0},
equipped with the topology #(E, 1%) determined by the seminorms
pu,r(x) = >0 lunlpr(")(xn) > (uEXX) .
The algebra product is

xXY)s = Zo<r<n Xn-1QV% -

If S, is the symmetrizing operator on ®"E for all n>0, we consider the symmetric sub-
algebra S[T(E, 2)], where S(x,)=(S,x,).

We show that functionals on T(E, ) and S[T(E, 2)] can be represented by complete
finite complex Borel measures if they are continuous with respect to a certain locally convex
topology t(E 2x)on T(E, ) and its restriction ts(E Ax) to S[T(E, ZX)] respectively. The
topology t(E A%) is coarser than ¢ (E, 1) and non-Hausdorff, whereas ts(E A%) is Hausdorff.

If the algebraic positive cone in 2 is normal, then so is the positive cone on S[T(E, 1)].
Using the isomorphism A==T(C, 1), we show that the cone in S[T(E, 2)] is normal for all
nuclear Fréchet spaces E[¢] if and only if #(C, KX)=2(C, %),

§1. Introduction

In an earlier work [4] we introduced the class of regular tensor algebras,
which are related to the algebras of quantum field theory [3]. Certain ques-
tions of interest for the quantum field algebras may therefore usefully be con-
sidered for regular tensor algebras.
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One such question is to discover which linear functionals may be represented
by complex measures. Borchers and Yngvason [3] have shown these to be
those functionals which are continuous with respect to the finest locally con-
vex Hausdorff topology on the subalgebra, coarser than the original, under
which the algebra product is jointly continuous. This topology turns out to
be the finest such that the closed positive cone is normal.

The same question is considered for regular tensor algebras in this paper.
A similar answer is found. The topology in question has a slightly different in-
terpretation now, but is closely related to the normality of the closed positive
cone.

We have organized this paper as follows. The remainder of this section
contains background material from [4]. In §2 we consider the positive cone
on the sequence space 4 associated to a regular tensor algebra. The new
topology on the tensor algebra is discussed in § 3, along with the decomposition
of linear functionals. In §4 we introduce the symmetric tensor algebra, and
in §5 we consider its order properties and the integral representation theorem
for it.

Much of this paper follows the work of Borchers and Yngvason in [3]
quite closely. There are some differences worth noting, however. For one
thing, we do not have to restrict ourselves to nuclear Fréchet spaces with a
basis. For another, characters on a regular tensor algebra are not automa-
tically continuous, as is the case for the quantum field algebras. They are al-
ways measurable, though, and so the integrability theories are quite similar.
We introduce a constraint on the sequence space sufficient to ensure strong con-
tinuity of the characters.

Definition 1.1. Let ¢, o be the sequence spaces of all terminating, respec-
tively all, complex sequences. All sequence spaces ¢ CAC @ that we consider
will be assumed to have the following properties, cf, [4, 5].

1.1.a 2 is equipped with its normal topology, denoted ©(2*), which is de-
termined by the seminorms

a l—_)pu(a) = Enzo Iun a,| , (uEZX) .

By 2* we mean the Kithe dual of 2.

1.1.b. 2 is to be perfect, which means that 2=2*".

L.1.c. 2is to be type (h), meaning that if a2, then (2" a,)E 2.

1.1.d. Let h be the sequence space tsuch hat a=h if and only if the com-
plex function z+— 3,5, a, z" is entire analytic. Thus a sequence is an element
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of hif and only if e¥" a,—0 for all k=0,1,2,---. NB: we shall assume that 2Ch
in all that follows.

1.1.e. 2 is to be a Cauchy algebra. This means that for all a, bE2, we
have axbe X, where the product is Cauchy’s convolution product

(a*b)n = ZOSkSn ay_r bk . (11)

1.14. The product on 2 is to be jointly continuous. That is, for any u<s 2™
there exist v, weE* such that for all m, n>0 the inequality |ty ,| <|Vy Wyl
holds.

Definition 1.2.a. By E[t] we shall mean a nuclear Fréchet space with the
topology t determined by an increasing sequence of Hilbertian seminorms {p$":
r>0}. We assume, further, that E[t] has a continuous involution, indicated as
x> x*, and it is no loss of generality to assume that the seminorms are *-sym-
metric.

1.2.b. The n-fold tensor product of E with itself, completed in the projec-
tive tensor product topology, is indicated as én=®"E. We shall take it that the
topology on E, is determined by the seminorms PP =Q*" pM, where o indicates
the Hilbertian tensor product topology. On occasion we shall empley the injec-
tive tensor product of the seminorms, writing pf2=@Q" pi", which again determines
the same topology on é,,.

For n=0 e adopt the conventions EO:C and p®(z)=|z| for all zeC, r>0.

The continuous linear extension of (,Q-+ Qx,)*=xFQ---Qx¥ determines
a continuous involution on é,,, denoted y, > y¥.

1.2.c. The tensor algebra associated with E and 2 is defined to be the linear
space

T(E, 2) = {xE1,2®"E: [p(x,)]E€2, r >0} , (1.2)
equipped with the product
(X3)n = Dogia Xu @ Vi » (1.3)
and the continuous involution (x,)* =(x¥F).
Propositien 1.3.a. T(E, ) has a multiplicative identity
e=(1,0,0,:),

no zero divisors, a trivial centre Ce, and 0,e are its only idempotents.
1.3.b. Let t(E, 2*) be the locally convex Hausdorff topology on T(E, 2) de-
termined by the seminorms
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pu,r(x) = 2»20 [un' Ps’n)(xn) .

Egquipped with this topology, T(E, 2*) is a nuclear topological *-algebra with
Jjointly continous product.

When 2 is Fréchet, so is T(E, 2), and hence it is also barrelled, bornological,
Mackey, Montel, and reflexive. In such cases its dual, equipped with the strong
dual topology, is barrelled, bornological, complete DF, Mackey, Montel, nuclear,
and reflexive, cf, [4].

§2. Order Properties of A
The analysis of the order properties of 2 in [4] was based on the choice of
A, = {a€2: a,>0, ¥V n>0} 2.1
as positive cone. Both the positive cone of T'(E, 2),
K(E, 2) = {2i<c- ali)* a(i): a()ET(E, 1)} (2.2)
and its dual cone
K(E ) ={TT(E 2): T(x)=>0, Yx&K(E, )}, 2.3)

are constructed quite differently. For this reason, the order properties of
[2, 2,] and [T(E, 2), K(E, 2)] are not entirely consonant. Qur principal results
in [4] were these:

Proposition 2.1.a. Equipped with the normal topology, 2, is a closed, normal,
strict-b cone, and 2, is a vector lattice.

2.1.b. K(E, ) is a proper strict-b cone for the usual topology t(E,2*). Its
closure, K(E, 2)", is proper if and only if K(E, 2)' separates the points of T(E, 2).
A sufficient condition for this is that 2CI°. Thus, eg, the closed cone is proper
when 2 is ¢ or h, but is improper for A=w.

2.1.c. K(E,2) is normal if and only if the states of T(E, 2*) determine the
topology t(E, 2*). For this it is sufficient that  be of type N1, N2, or N3.

The order properties of 2 and T'(E, 2) will be more naturally congruent if
we consider the order relation on 2 to be given by its algebraic cone, viz.,

KQ) = {3 ali)*a(i): a(i) €} , (24)
rather than by 2,. The reason is clear from the next result.

Lemma 2.2. T(C,2) [t(C, 2*)]=2[z(2¥)] is a tvs isomorphism, under which
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K(C, )=K(3).

In view of this, the results of Proposition 2.1 apply to the pair [4, K(2)],
yielding the following.

Corollary 2.3.a. K(R) is a proper strict-b cone with respect to the topology
(A*). It is generating, and as 2C h, the t(2*)-closure of K(2) is proper.

2.3.b. If 2is of type N1, N2, or N3, then K(2) is normal.

2.3.c. The dual cone, K(2)'=K(C, 2)', consists of the collection of those se-
quences in 2* which are of positive type, viz, u K(2)' if and only if for all a€ ¢,

21',1'20 ui+j ai ajZO . (25)

We shall prove that functionals on the symmetric subalgebra of T'(E, )
possess an integral decomposition with respect to a complex measure on Ej
provided that they are continuous with respect to a certain topology 7 (E, 2*).
Because of Lemma 2.2, we can define this topology for 2 itself, writing 7(C, %)
=%(2%) in this case. As we shall now show, 7(2*)=%(2%) if and only if K(R) is
normal. The existence of integral representations for abelian functionals on
T(E, 2) is a result of this important relation between order and continuity on 2.
This connexion was first discovered by Borchers and Yngvason in their study
of the Euclidean quantum field algebra [3]. For that tensor algebra, only the
sequence spaces ¢ and @ occur, which tends to obscure the fact that the order-
continuity properties of the tensor algebra reflect those of A.

Definition 2.4.a. By A* we shall mean the strictly positive sequences in A*:
A = {us2*: u,>0,V n>0} . 2.6)

Each such sequence u determines an extended real-valued function F,: Ri—
[0, co] given by

Fu(t) = 2:120 (un)_l l t [” . (27)
2.4.b. We denote the standard isomorphism ¢=C[X] by ar— P,(X), ie,
Pa(X) = 21:20 a, X” H (28)

where X is an indeterm nate. By the usual abuse of notation, we identify the
polynomial P,(X) with the polynomial function t+— P,(t) for tER, and in the
next section with the algebra element P(x)E T(E, ), all x&T(E, 2).

2.4.c. For any uc A* we consider the extended real-valued function on 2
given by
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llall, = sup {| P, ()| /F(t): tER}, 2.9
for acsa.
We prove that the ||-||, are all seminorms.

Lemma 2.5. The {||-||,: u€ 4%} constitute a family of seminorms on A. If
we write t(2*) for the locally convex Hausdorff topology they determine, then
£ (A7) C(2%).

Proof. The original topology 7 (2¥) is determined by the seminorms p,(a)
=>1,50 |u, a,|, for all u2*. Restrict them to ¢, using the same symbol. Let
aE ¢, and we may suppose that @,=0 for all n>N. Then

[P,(1)| <pua) F(1), VU, teR.

If we understand P,(z)/F,(t)=0 whenever F,(t)=co, then |la|[,<p.(a). We
may extend the ||-||, to 4, therefore, preserving the seminorm properties and this
bound. That #(2*) is Hausdorff is elementary.

Theorem 2.6. K(R) is ©(A*)-normal if and only if +(A*)=1(2*).
Proof. A computation shows that if

a=2li<e W*a(i)

is an element of K(¢), then
Pa(t) = 2i<w |Pa(i)(t)|2 .

Then if @, b, and b-a belong to K(¢), it follows that P,(t), P,(¢), and P,_,(¢) are
non-negative for all t&&. Consequently, ||a||,<[|b||, for all us4*, so K(¢)
is #(2*)-normal.

Suppose now that = (2*)=%(2*). The closure of K(¢) in this topology must
be normal. As this closure coincides with the 7 (2%)-closure of K(2) (see [4]),
this closure and a forteriori K(2) itself must be = (2*)-normal.

The opposite implication may be inferred from Lemma 3.1 of [3], with the
sequences appearing there suitably restricted to 2* and 4*.

§3. Imtegral Decompositions for 7'(F, A)’

As in [3], we shall construct a class of functions integrable with respect
to the measures which occur in the integral decomposition theory. To start
with, every hermitian functional v»& E} on E defines a character, which we
denote by My, on T(E, 2) through the formula
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My = (Q@™r: n>0). (3.1.a)

These characters enable us to associate a nonlinear function m,: E;—C to each
x&ET(E, %) by setting

m(¥) = My(x) . (3.1.b)
Definition 3.1. By F we shall mean the set of all functions f: E;—C of the

form

@) = Glm,qy(¥), -+, M)l (3.2)

Jor all x(1), -+, x(n)ET(E,2), all polynomially bounded continuous functions
G:C"—C, and all n>1. With pointwise operations, F is a commutative *-
algebra.

Given any f&F as in (3.2), we can always find a polynomial Q=C[X;,
«++, X,] dominating G so that we have the bound

LSO < I M[Q (x(1), +++, x(m)]] (33

Our aim is to define a topology #(E, 2*) for T(E, 2) analogous to #(2*)
on 2. This requires some preliminary definitions.

Definition 3.2.a. For any usA* and r >0, define the function F,,: Ei—
[0, o] by

Fu V) = (Puyr,e)” (My) - 34
By py,.,. we mean the T(E, 2) seminorm
PureX) = 2o || PI2 (x) (3.5.2)
based on the injective tensor product topology. Then
(Pur,)°(T) = sup{| T(X)| : pu,, () <1} (3.5.b)

defines its polar seminorm.
3.2.b. For any ueA* and r=0 let =, ,: F—[0, oo] be the extended real-
valued function given by

7., (f) = sup{| S| [F, ,(¥): ¥ EEj} (3.6)

with the usual convention when F, (y)=--o0.
These functions define extended real-valued functions =, ,: T(E, 2)—[0, co] by
setting
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7%14,' =T, om, (3‘7)
where m: T(E, )—F is given by m(x)=m,.

We have allowed for the possibility that z,, is not well-defined every-
where, but this does not in fact occur.

Proposition 3.3. The collection {z, ,: uc A4*, r >0} constitutes a family of
seminorms on F defining a locally convex Hausdorff topology, written i(F, 2¥),
with respect to which F' is a topological lattice.

As m is a non-injective *-algebra homomorphism, the collection {z, ,: us A~,
r=>0} consists of seminorms on T(E, 2) defining a locally convex non-Hausdorff
topology denoted i(E, 2). It is coarser than the original topology:

HE, ) CH(E, 17). (3.8)

Turning to integral representations, we apply the nuclear spectral theorem
to T(E, 2) as in [3]. The proofs are those of [3], mutatis mutandis, and so we
omit them. Note that z, , and p, , . must be employed.

Proposition 3.4.a. Let R be a positive and t(F, 2*)-continuous linear func-
tional on F. As the Cauchy-Schwarz inequality holds for R we can reconstruct
its strongly cyclic GNS representation [2 g, Dy, 7z

Let B be the subspace of bounded functions in F. Then nx(B)’ is a maxi-
mal abelian W*-algebra on Hp, the Hilbert completion of Dp.

3.4.b. Write I'y for the spectrum of mgx(B)", A A for the Gelfand trans-
form np(BY'—C(I'y), and F—F for its inverse C(I'g)—>ng(B)’. Then there
exists a complete, positive, and finite Borel measure unp on I'y such that for all
FEC(I'y) the equality

| Fdug = (25, F20) 3.9

holds.
3.4d.c. The map Vy: C(I'g)—>nx(B)’ 2, given by

Vi(F) = F &, (3.10)
extends to a unitary isomorphism L*(I" p, dug)— H .

F may be identified with an abelian algebra in L*(I'y, dug) by defining
aR: F_>L2(FR5 duk)s

ox(f) = V'lza(f) 2z - @3.11)
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Using o, and m: T(E, 2)—F defined above, we obtain the following rela-
tion between T (E, ) and L*(I'g, dug).

Corollary 3.5. The map {g: T(E, 2)—L*(Ig, dug) given by {p=ozom is
continuous, linear, and multiplicative.

The nuclearity of #(E, 2*) is now invoked to prove the following.

Proposition 3.6.a. There exists a pgp-null set N and an element K,E
L*(Tg, dug) for each x&€T(E, ), such that x+— K(r) is a t(E, 2*)-continuous
character on T(E, 2) for each r T';\N.

3.6.b For each r &T'R\N there exists a unique hermitian functional ®(r)E
Ej such for all x&T(E,2) the equality K.(r)=Meyw(x) holds. We extend ®
to I'y by defining @ to be zero on N. This extension is written @: I'p+— Ej,.

Using @ we transport puy from I'p to Ej, obtaining a positive measure vy on
Ej, with the properties

(1) WCE} is vg-measurable if and only if @' (W) is pg-measurable, and
So the definition

Vp = ppo®! 3.12)

is consistent.
() fELNE;, dvg) if and only if fo® & LNIg, drg), and the integrals are
related by

SE;, fdvg = LR fod duy. (3.13)

(iii) The measure vy is finite and complete.

We are now able to state the principal measure theoretic result for the
tensor algebra. Part (d) below is the integral decomposition theorem referred
to in the introduction.

Proposition 3.7.a. For all yeE, the map i O(Y) () is usg-measurable.

3.7.b. For all vEE, the function E4—C; yr+—r(y) is vg-measurable.

3.7.c. Every weakly closed subset of E} is vg-measurable, and all weakly
continuous functions E4—C are v p-measurable.

3.7.d. If Ris a t(E, 2)-continuous linear functional on T(E, 2), theree xists
a complete finite complex Borel measure vy on Ej, such that

(i) m,eLYE}, dvg) for all x€T(E, 2);
(ii) all weakly continuous functions Ej+— C are vg-measurable;
(iii) for all x€T(E, 2),
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R(x) = SE;, m, dvg . (.14)

The work of Borchers and Yngvason concerned the quantum field algebra
3,20 S(R*), as noted above [3]. In this case, they showed that the nuclearity
implied that the m, were strongly continuous and so their measurability follows
from continuity. We now know the m, to be measurable, and we consider
next the question of continuity.

Proposition 3.8. The functions m,. E}—C are strongly continuous for all
xET(E, ¢).

Proof. We cannot use [3] here, as EsET(E, ¢). Let B(E) be the collection
of all bounded subsets of E. From the #vs isomorphism (ﬁ],,)'g(®,’§ EN it fol-
lows that {®?* py: BEB(E)} constitutes a basis of seminorms for the strong
topology ﬂ(EA,{, ff,,) on é,’,. We have introducted the standard notation py(v)=

sup{|v¥(x)[}.
Now if (y,) is a net in E’ which converges in the #(E’, E) topology to v,

then (®™,) is a net in E}, similarly converging to ®"y. To see this, sup-
pose ¥, E€E’ and BE B(E) are such that pz(6 —y)<<l. Then

(®7p5) (R —Q")<n[14+px(O)* " paé —¥) ,

and convergence follows.
For all x€T(E, ¢), convergence of (®"y,) implies that

En20(®”¢n) (xn) g 21120(®”¢) (xn) ’
which is the assertion of the proposition.

Recall that as E[t] is a nuclear Fréchet space, its strong dual may be re-
presented as an inductive limit of Banach spaces

E'[B(E', E)] = lim ind {F}[g,]: r >0},

where g, is the polar norm corresponding to p{ on E, and F, is the g,-com-
pletion of {y=E’: g,(¥)<<oo}. Using this result we consider m, acting on the
F,, and then piece together the results.

Lemma 3.9. The function m,: F,[q,]—>C, obtained by restriction, is conti-
nuous for every r >0 and all x& T(E, 2).

Proof. Let v, £ EF, be such that g,(6 —y)<<l. The bound
[(®"€) (x,) —(®"¥) (x,) | <n[1+4g,(O)" 7 P (x,) g6 —¥)
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leads to

I mz(e) ~m:(¢') l < (27121 n [1 +qr(f)]n-l 14 gn)(xn)) q,(f —1#) )
showing the required continuity.

Corollary 3.10 For all x&T(E, 2), the function m,: E}—C is strongly
continuous at the origin.

Proof. For every zero neighbourhood UCC, the set m;'(U)N F, is a zero
neighbourhood in F, for all x, r>0. Then m;(U) is a zero neighbourhood for
B(E', E), as was to be shown.

We have not been able to prove the continuity of m, everywhere without
further assumptions. The general question remains open. Recall that the
measurability of m, has been shown independently, ¢f Proposition (3.7.d).

A condition that ensures the continuity of m, everywhere is that 2™ is
“nearly” a Cauchy algebra.

Definition 3.11. We shall say that the sequence space A is of type (M) if
ux0 €2* whenever us 2.

Recall that 6=(1, 1, 1, --+). Of course if A* is a Cauchy algebra it is
type (M). An immediate consequence of this definition is the following domi-
nance condition.

Lemma 3.12. If and onlyi f 2 is of type (M), for every u2* there exists
vE2* such that n— |v,| is a monotonically increasing positive sequence, and
lu,| <|v,| for all n=>0.

Proof. 1If 2 is of type (M), choose v=|u|*0, where (Ju|),=|u,|. Con-
versely, suppose a sequence v as above exists for each n. Then |(uxd),|<
(14n)|v,|, proving that uxd 2.

The following lemma is the crux of the argument.

Lemma 3.13. If 2 is of type (M), then given any x&T(E, 2) and v F’,
we can find an x(y) < T(E, 2) such that

m(f+8&)—m, () = [m () —m(0)]4[m,y)(€) —m4)(0)] (3.16)
forallEEE'.

Proof. From the definition of the e-seminorms it follows that, given any
r=>0 and n>1 we can find a t >0 such that v+& F}[g,] and
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2 () 18 @ v
<("F") ey Pt

for all s>0, x,,,EE,,,.
Observing that if we sum over all #» convergence obtains, we may define

x(y) by
50, = ST L@@ (S Hov)

for all ¥>0. By S, we mean the symmetrizing operator on 15?,, for k>0. The

properties of S, will be discussed in the next section.
The above definition of x(y) yields the estimate (for u&1*, s=>0)

EOSrSN I u, l pg’.l['x (w)r] S Ele [1 ‘I'%(V")]m( l u I *a)m Pgﬁ)t(xm)'

Taking the limit N— oo proves that x(y) is an element of T(E, 2).
Our next step is to write the action of @"(y»+£) in terms of @™y and ®”¢
and estimate the remainder. For n>2 we observe that

[@" W+ (S, %) = (®") (S, %) +(®") (S, )
+ Shcrari( 1) (FOR@ (S, %)

For n=1 the cross terms vanish, and for n=0 only v appears. Hence for all
N >2 we may write

So<nsn @ (W +E)] (S, X,)
= EOSnSN(@ni/’) (Sn xn)+21£nSN(®n5) (Sn xn)+9N .

The remainder term is

O = Shisrn(&78) Sisuan-o T20) U @@ (Sp10 5r0)

Then
Oy —m.w)(E)+m.w(0) =
~Shicran (@) Do) LO@ W (Spra 00
—502(@6) K,

The second term is the “tail” of the convergent series >,5¢(®’¢) [x(¥),] and so
converges to zero as N—oo.
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We may choose w in such a way that €= F,[q,]. With this choice, the
first term is bounded by

EmZNi-l[qt(w)_}'qw(f)] Ps (xm) H]
and so converges to zero as N—oo. The result has now been shown.

Corollary 3.14. If X is of type (M), the functions m,: Ej—C are strongly
continuous for all xT(E, 2).

We are now ready to start our consideration of the symmetric algebra
corresponding to 7'(E, ). The next section starts with a study of the sym-
metrizing operator.

8§4. The Symmetric Tensor Algebra

The permutation group on 7 letters, G,, acts on @"E by linear extension
from

U 0@+ @) = X,y ® *** ®Xgy -

As U$ is isometric with respect to the sesquilinear form associated with
p?, all r>0, it extends continuously to an operator on E written U$”. The
symmetrizer on E,, is defined to be the operator

S, =N S,ee, UP (n=1). (4.1.a)

Setting S, on i‘o to be the identity map, the symmetrizer on T'(E, 2) is the
operator given by

S(x,) = (S, x,) . (4.1.b)
The following properties of S are easily verified.
Proposition 4.1. For allus2*, r>0, x&T(E, 2),
P, (SX)< pu (%) , (4.2)
and so S is continuous. It is a *-projection:
SE=5, (4.3.a)
(Sx)* = S(x*), (4.3.p)
and is related to the algebra product through the equations

S(xy) = S(yx) = S[S(x) S(y)] = S[xS(¥)] = SIS(x) ], (4.4
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all x, yeT(E, 2).
The kernel of S, N(S), is a closed *-ideal, so
Ts(E, 2) = T(E, A)/N(S) 4.5)

is a locally convex Hausdorff space with the quotient topology ts(E, 2*), deter-
mined by the quotient seminorms

D (%) =inf{p, (x+y): yEN(S)} , (4.6.2)

us*, r>0. We have introduced the notation X=x-+N(S) for the coset equi-
valence classes.
The quotient seminorms satisfy the invariance equation

pu.r(x) =pu.r(Sx) . (4-6-b)
If we write
it X+ Sx, 4.7

then i is a topological isomorphism of T4(E, ) [ts(E, 2*)] onto the range of
S. As S is continuous, the range, R(S), is a #(E, A*)-closed subspace of
T(E,2). The following is now obvious.

Proposition 4.2. T(E, 2) [ts(E, 2*)] is nuclear; it is Fréchet if T(E, 2)
[t(E, )] is. It can be given the structure of an abelian topological *-algebra with
Jjointly continuous product by setting

X7 = (xy)” (4.8.a)
E®* = (¥~ (4.8.b)
If T(E, 2) is locally multiplicatively convex, then so is Ts(E, 2).

Equipped with these operations, we shall refer to T4(E, ) as the symme-
tric tensor subalgebra of T'(E, 2).

The following two combinatoric lemmas prove useful in a number of
contexts. By S7, S’ we mean the transposes of S,, S respectively.

Lemma 4.3. If x,EE, is such that (Q™) (x,)=0 for all y €Ej}, then
S, x,=0.

Proof. Let 4, be the collection of all maps
a: {15 2’ °tC n} - {_l’ +1} .

For any n-tuple ¥ =(¥,, ¥,, -+, ¥,) of elements of E; and any d =4 we define
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¥y =2<i<a 9; ;>
so ¥y E;. We abbreviate ¥5=Q" ¥;.

A multinomial expansion yields the expression

o ;;(k)

vy —SnlSi[ @ @P T I o (,1) !

where the sum is over all i(k)>0 constrained by i(1)+ -+ +i(n)=n.
This equation may be inverted, yielding

ST QR ¥,) =(2"n))" 2, 0,0, T3,

Under the hypothesis, #3(x,)=0 for all §&4,, and from the above equa-
tion, we find that

(1#1 ®'"® 1/"!1) (Sn xn) =0
for all y;, and so S, x,=0.

Lemma 4.4. Let x,€S,(E,) and y,,<S,,(E,,) be such that S, ,(x,@ y.)=O0.
Then if x,+0, y,,=O0.

Proof. Choose Y, € Ej, such that (") (x,)=0. For any nonzero ¥, &
Ej, there exists r>0 such that (®"y,) (x,)+0 for all we R with |w| <r, where
we define ¥, =y +wyr,. As Q"™ is symmetric, it follows that |w| <r im-
plies (®™y,) (y,)=0. Considering this as a function of w immediately yields
(®™r,) (¥,)=0. As yr, was arbitrary, y,,=0.

Our first application of these results concerns the algebraic properties of
the symmetric subalgebra.

Proposition 4.5. The algebra Ts(E, X) has no zero divisors, whence its only
idempotents are 0 and é. Both T(E, 2) and Ts(E, 2) may have non-scalar units.

Proof. Consider X, y= Ts(E, 2) with X §=0. If suffices to consider x, y&
S[T(E, 2)] with S(xy)=0. Suppose %==0, and let » be the index of the first
nonzero component of x.

For any m,

0= Sn+m[20$j$m xn+j®ym—j] s

so m=0 yieds y,=0. Proceeding inductively, assume y,, +--, y,_,=0. With
p=m in the above, S,.,(x,® y,)=0 and we know that this implies y,=0.
Hence y=0.
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For E=C we have T(C, 2)=2. Let A=h, and consider the element (1/n!:
n=>0). It is easy to verify that this is symmetric and invertible, with inverse
[(—1D)"/n!: n>0].

The order properies of Tg(E, ) will be defined through the positive cone
Ks(E, 2) = {2 j<= 4(j)* 4(j): a(JY)ET(E, D)} . (4.10)

Proposition 4.6. Under the isomorphism i: X—Sx of equation (4.7), the
positive cone may be identified with

K(E, 2)|N(S)= K(E, %) . 4.11)
The cone Ks(E, 2) is generating, strict-b, and proper.

Proof. Equation (4.11) is obvious. Kg(F, ) is a generating strict-b cone
because T5(E, 2) is abelian and has a jointly continuous product.

To see that it is proper, consider d= K with @=0. There is a representa-
tion i(@)=S[X;<- a(j)* a(j)] with a(j)=#0 and a(j)E S[T(E, )] for every j.
Let L; be the index of the first nonvanishing component of a(j), and set L=
min;(L;). Then i(@),=0 for 0<n<2L—1, and i(@),; =S,,[2 j<- a(j)FQa(j).].

If i(@),, were zero, Lemma (4.3) would imply a(j),=0 for all j, which con-
tradicts the assumption. Thus 2L is the index of the first nonvanishing com-
ponent of i(d).

Suppose d= Ky(E, )N —K(E, 2), with d4=0. The lowest index for both
i(a@) and i(—a) is 2L by the above reasoning, so that

(%) [{(@).] = 351 (™) (a(/))|? =0
for all v E}, and so a(j), =0 for all j, a contradiction.

Another application is the proof that #(E, 2*) restricted to Tg(E, 2) is
Hausdorff.

Lemma 4.7. If x&S[T(E, )] is such that My(x)=0 for all W< Ej}, then
x=0.

Proof. Considering 0=M,y(x) as a function of t& R yields 0=Q"y(x,)
for all ¢ and all #, and so x=0.

Propostion 4.8. Write is(E, 2*) for the topology t(E, 2¥) restricted to
Ts(E,2). Then i3(E, 2*) is Hausdorff.

Proof. Let xeS[T(E,2)] satisfy z, ,(x)=0 for all ua*, r>0. Then
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., (m,)=0 for all u, r, so m,=0. Thus My(x)=0 for all ¥, and Lemma (4.8)
yields x=0.

We shall see later that Kg(E, 2) is not necessarily normal. In all cases,
however, its closure is proper.

A
Theorem 4.9. The ts(E, 2*)-closed cone Ky (E, ) is proper.

Proof. Given d€ K(E, 2) there is a b K(E, 2) such that i(@)=S(b). Then
My[i(@)]=My(d) is non-negative for all v+ Ej. Consider a me. As
My is continuous, My[i(@)]=>0 for all . If also —@< Ky(E, /I)A, then My[i(@)]
=0 for all ¥, which implies that @=0.

§5. Normality and Decomposability for 7T'((E, )

In this section we combine the integral decomposition theory for T'(E, 2)
with the normality condition for K(X) in the quotient algebra T(E, 2). As
expected, everything dovetails smoothly. For the remainder of this section
we assume that the cone K(2) is normal.

Lemma 5.1. If w<Ej is such that for some us A* and r >0 the sequence
(q,(¢)"u,) is bounded, then the function F, , of equation (3.4) can be written as

F, (¥) = sup{q,(y)"/u,: n>0} . (5.1)
Proof. Now for all x,€E, and n>0

[(®@™) (%) | <q,¥)" i (x,)

and so

I M‘P(x) ] < 27120 qr(w)” ps":)E (xn)
< P r,o(x) sup{q,(¥)"/u,: n>0}
for all x. Thus

Fy ()< sup{q,(¥)"/u,: n>0} .
This shows that F, () is finite, and so for all x€T[E, 1]
| My(x)| <F, J() Pu,r o) -
It follows from this inequality that

(@) ()| <F, (¥) u, p7(x,)

on E,, so that
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9,¥)"<u, F, ()
for all n. The equality (5.1) is immediate.
Corollary 5.2. If w<Ej is on the unit sphere of F)q,], then F; (y)=1.

As noted, we assume 2 to be such that (2*)=%#(2*). We want to similarly
relate t5(E, 2*) and i4(E, 2%). For this we need two lemmas.

Lemma 5.3. For all us2*, r >0 the function

X = 21120 I un I 7%8,1’(56”) (52'3‘)

is a 1(E, 2*)-continuous seminorm.

Proof. Given u, we choose veE A* to satisfy

D20 2wy, | |a, | <llall,
for all a= ¢, ¢f equation (2.9). Given N there exists a 0<J< N for which
EnSN I Uy l ﬁB,r(xn)Szj.*-l I uy l 7,;"8,7(55])

S Sup‘!’ {EnSN 2n+1 I u, M\P(J‘én) I /FB,r("lb)}
<supy sup{M [ (Q"X)| /F(t) F5,(¥): t ER}

where OV is the projection Q¥ y=(y,, ***, ¥, 0, -*+) and F, is defined in equa-
tion (2.7).
If y is such that p, , (y)<1, then

| My (9)| <F(8) F5,(¥) -

Hence
F(t) Fs ()= F, (t)

for all € Ejf, and t€R. The double supremum, then, is bounded by z, (0" x).
But 7, , is 7(E, 2*)-continuous, and this enables us to take the limit N—>oo,
yielding

Szt 75 (%) < 7,,(%) 5 (5.2.v)
finishing the proof.
Lemma 5.4. For all v € A%, r>0, p™ satisfies the bound
PENS, x,) < (2€)" 75 ,[(Sy )]

for all x,€E,.
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Proof. We decompose E’'=E}-+i Ej, in the obvious fashion. This enables
us to consider hermitian functionals only, without loss of generality. Then

p’("g(‘gn xn)szn sup{ | (‘WI@"' ® wn) (Sn xn)] : ijEl/u qr(wj)g 1} .

Let v, -+, ¢, E}; be arbitrary. Using the technique in the proof of

Lemma (4.3) we can show the existence of a d =4, such that
(Y@ v,) (S, x,) | < ()7 My [(S, x,)7]]
As
7, (¥ <3 q,(¢¥)<n,

we get that

(Y1 Q@ ¥,) (S, x,) | < (n"/nt) My (S, x,)/q,(¥s)"

<e" supy{| My o, [(S, x,)71 : ¥ € Ef}
<e" supy{| My[(S, x,)"1/Fs ,(¥)| : ¥ E€E}} .

Substituting this into the first inequality of this proof yields the desired
bound.

Now we can prove the equivalence of the topologies.
Theorem 5.5. The topologies ts(E, 2%) and ts(E, 2¥) are equivalent.

Proof, For any r>0 choose s>0 and K>0 to satisfy p <K p{". Let
uE2* be arbitrary. Set v,=(2eK)"u, and choose we& 4* so as to satisfy Lem-
ma 5.3 with respect to v. With this notation we find that

pu,r(Sy)SEnZO K"I u, ] Pgnz (Sn yn)
S—E:;ZO | Vu I ﬁs,s[(Sn yn)~]
<7,,(Sy) .

Corollary 5.6. If K(2) is ©(2*)-normal in 2, then Ks(E, 2) is ts(E, 2*)-normal
in T4(E, 2).

Proof. We know that S[K(E,2)] is i(E, 2*)-normal. From Theorem 5.5
it is ¢(E, A)-normal. As the isomorphism X Sx preserves positivity, the result
follows.

We can go to the symmetric quotient of the integral decomposition as
follows.

Corollary 5.7. If R is a ts(E, 2¥)-continuous linear functional on Ts(E, %),
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we can find a finite complete complex Borel measure v, on Ej, such that

(i) Every weakly continuous function E}—C is vy-measurable.
(ii) Let us write ng,=n3 for all x. Then ny € L}(E}, dvg) and

R(F) = L 1z dvy (RETL(E, 3)) . (5.3)

Proof. R induces a t(E, 2*)-continuous linear functional R, on S[T(E, 2)]

defined by R=R,oi. R, is i(E, 2*)-continuous and so extends continuously to
T(E, ). The result now follows from Proposition 3.7.
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