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On Rational Elliptic Surfaces with Multiple Fibers

By

Yoshio FUJIMOTO*

§ 0. Introduction

It is well-known that a rational elliptic surface with global sections is a nine-points-
blowing-up of p2 which may be infinitely near and can be obtained from the pencil
of cubic curves in P2. This object has been studied by Demauzuer-Pinkham [1],
Looijenga [4] and Naruki [5] [6].

In this paper, we shall study the structure of rational elliptic surfaces with multiple
fibers. A rational elliptic surface with multiple fibers of multiplicity m can be obtained
from a rational elliptic surface with global sections by performing logarithmic transfor-
mations at one point on the base curve P1. It can also be blown down to P2. In this
case, if the nine points pl5 p2, ..., Pg on P2 are mutually distinct and the multiple fiber
is of type m/0, it is obtained from the pencil generated by m-fold cubic which passes
through Pj's and a curve of degree 3m which has an ordinary singularity of multiplicity
m at each Pt(l <i<9) and is non-singular outside them.

The method of this paper is to study birational geometry of curves in P2 through the
logarithmic transformations.

Our main result is as follows.

Main Theorem (2.1.) Let C be a non-singular cubic curve in P2 with the fixed
inflexion point Q on C such that C should be given the natural group structure with Q as
the identity. Fix such an isomorphism e: C ~ T, where T is a one-dimensional complex
torus. Take nine points pt (1 < i < 9) on C (which may be infinitely near) and let S be a
surface obtained by blowing up P2 at p^s (1 < i < 9.) Then

(1) S has the structure of an elliptic surface with global sections if and only if
9

X 8(Pi) ~ 0> where ± means the additive group law in a complex torus T.

(2) S has the structure of an elliptic surface with one multiple fiber of multiplicity m
9

if and only if ]T s(pi) is of order m in T. And there is a one-to-one

9

correspondence between £ e(Pi) and the normal bundle of the support of the

multiple fiber in S.
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From this theorem, we easily prove that if we blow up P2 at nine points in a
sufficiently general position, it does not have the structure of an elliptic surface in any
way.

The construction of the paper is as follows. In § 1, we shall consider the structure
of rational elliptic surface with multiple fibers, (cf. theorem (1.1.)) In §2, we shall
prove our main theorem (2.1.). In §3, we shall construct a family of rational elliptic
surfaces with multiple fibers after Naruki's method, (cf. [6])

The author wishes to express his sincere thanks to Professors K. Ueno and I.
Naruki for many useful suggestions.

Notation and Convention

By an elliptic fiber space /: V -> W9 we mean that / is a proper surjective morphism
of a complex manifold V to a complex manifold W, where each fiber is connected and
the general fibers are non-singular elliptic curves. In particular, when W is a surface
and V is a three dimensional complex manifold, we say that V is an elliptic threefold
over W. Here, "surface" means a two dimensional (not necessarily compact) complex
manifold.

For a compact complex manifold X, we use the following notation.

Nvfx: the normal bundle of V in X, where V is a submanifold of X .
x(X): the Kodaira dimension of X .
Kx: The canonical bundle of X .
hp-q = dimc Hq(X,

(X)n := X x • • - x X

n times direct product

X is in the class # in the sense of Fujiki if X is a meromorphic image of a compact
Kahler manifold.

If D is a divisor on X, we set

[D]: the line bundle on X determined by D .

§ 1. Preliminaries

Proposition (1.1.) Let /: S -+ P1 be a relatively minimal rational elliptic surface.
Then S can be obtained as a nine-points blowing-up of P2 whose center may be infinitely
near and the structure of the elliptic fibration is one of the fallowings:

(1) If f: S -» P1 has a global section, S can be obtained from the pencil generated by
cubic curves in P2 and the anti-canonical map @\-KS\

: 5-^P1 is isomorphic to the
original elliptic fibration.

(2) If /iS-^P1 has only one multiple fiber of multiplicity m (>2), S can be
obtained from a rational elliptic surface X with global sections by performing
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logarithmic transformations, where m and X are uniquely determined by S.
And the anti-pluricanonical map 0\-mKs\: S -+ P1 is isomorphic to the original
elliptic fibration. Moreover, if the nine points pt (1 < i < 9), which are the
center of blowings-up, are all distinct, and the multiple fiber is of type mI0, S can
be obtained from the pencil generated by m-fold cubic mE and C, where E is a
non-singular cubic curve in P2 and C is a singular curve of degree 3m in P2,
which has an ordinary singularity of multiplicity m at each pt e E (1 < i < 9) and
is non-singular outside them.

Proof. If /: S -> P1 has no multiple fibers, S has a global section (since S is
rational) and the result is well-known. (See Naruki [5].) Hence we treat the case
where f: S -> P1 has multiple fibers.

Step 1. First, we show that f'.S-^P1 has only one multiple fiber mE. Assume
that S has / multiple fibers mf£t. (1 < i < 1) of multiplicity m{. Since S is rational,
l(®s) = 1, the canonical bundle formula of Kodaira [3] implies

where

/*0pt(l) ^ [miEt] •
Since

ic(S) = -oo ,
we have

-1+ £ ( l - l /m ; )<0 .
i=l

From this inequality, we have either

(a) 1 = 2 and (m l3 m2) = (2, 2)

or

(b) 1=1.

However in the case (a), we see that 2KS ~ &s and S is an Enriques surface. Hence the
claim follows.

Since

and
/*0Pi(l) * rnlE-] ,

we have

(*) KS--IE]
and

*!-„*.,: S-.P1

is isomorphic to the original elliptic fibration up to projective equivalence of the base
curve P1.
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Step 2. We show that S can be obtained as a nine-points blowing up of P2. For
since —mKs = /*0pi(l), we have the following inequality for any non-singular rational
curve C on S:

C2 = C-(-K)-2> -2

The same inequality holds for any blowing down of S, hence S can be blown down to
P2 or P1 x P1 or 2T2. Clearly every one-point-blowing-up of P1 x P1 is a two-points-
blowing-up of P2. Moreover we see from the above inequality that for the last case,
the center of the blowing-up is disjoint from the ( — 2)-curve of 272, and such a blowing-
up can be blown down to P2 by means of elementary transformations. Hence the
claim follows.

Step 3. By Kodaira [3], S can be obtained from an elliptic surface X free from
multiple fibers by means of logarithmic transformations. Since the irregularity is in-
variant under logarithmic transformations, we have q(X) = q(S) = 0 and h l t 0 ( X ) <
q(X) = 0. Hence q(X) = h^°(X) = 0 and X is Kahler. Since K(X) < K(S), we have
K(X) = — oo and from the classification theory of surfaces [3], X is a rational elliptic
surface with global sections.

Step 4. Let / be the total transform of a line in P2 and et (1 < i < 9) be exceptional
curves. Then Pic (S) ~ Z10, generated by I, el9 . .., e9 and the intersection pairing on S
is given by

/2 = 1, *?=-!, fe, = 0, 0^ = 0 for i*j.

The canonical bundle of S is given by:

(**) Ks -- 3i + ei+~' + e9.

Hence from (*) and (**), we have:

E-3I- V et -- Ks.
«

Assume that the nine points pt (1 < i < 9), which are the center of the blowing-up,
are all distinct and the multiple fiber mE is of type mI0. Then from remark (1.2.) below,
the image of E by this blowing-down is a non-singular cubic curve in P2. Since
dim \iE\ = 0 for 1 < i < m — 1 and dim \mE\ = 1, by remark (1.2.), there exists a singular
curve C of degree 3m in P2 which has an ordinary singularity of multiplicity m at each
Pi^E (I < i < 9) and is non-singular outside them. Conversely let L be the pencil
generated by such mE and C and consider the rational map

associated to L. By easy calculation, we see that the normalization of C is a non-
singular elliptic curve.

By blowing up at F^'s9 which are the base points of the pencil L, all members of the
pencil can be separated and &\L\ extends to a holomorphic map cpiS-^P1 which is
isomorphic to the anti-pluricanonical map &\-mKs\: S-^P1 (hence to the original elliptic
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fibration up to projective equivalence of the base curve P1.) Note that m is uniquely
determined as the smallest positive integer such that dim \ — mKs\ = 1 and so the case
(1) and (2) cannot occur simultaneously. q-e.d.

Remark (1.2.) In the case (1), the (-l)-curve e is a global section of the elliptic
fibration. However in the case (2), the (— l)-curve is an m-section, that is, e is an
m-sheeted coverings of P1 ramifying over the point where the multiple fiber lie and with
the ramification index m.

p2

n/0

e: (— l)-curve

blow-down mE

Remark (1.3.) When m = 2, the pencil of nine-nodal sextics containing one double
cubic was classically called a Halphen pencil, (cf. [7])

§ 2. Proof of Theorem (2.1.)

In this section, we shall prove our main Theorem (2.1.).

Remark (2.2.) Note that the condition in Theorem (2.1.) is independent of the
choice of the inflexion point Q.

First, we prove (1) and the necessary condition in (2).

Proof o/(l). Necessity. Assume that cpiS-^P1 is a rational elliptic surface
with global sections. Then S is a nine-points-blowing-up of P2 and we have:

9
— Ks^(p*0pi(l)^3l— Z ei> where we use the same notation as in the proof of proposi-

tion (1.1.)- Since dim 3/ - = 1, there exists a pencil of cubic curves passing
i=l

through the nine points pl9 p2, . •., p9. For a generic member Ct of the pencil, we have
9 9

CJr ~ 0P2(3)|r, hence Y p£ ~ 90. Then from Abel's theorem, we have Y g(p^ = 0.
t IL- Jr \ / 11^' ^^ i «• ^^ -^1

9
Sufficiency. Conversely assume that j] e(p£) = 0. Then from Abel's theorem, we

9
have V Pi ~ 9Q in Pic (C). By the exact sequence

I*

0C(9Q)
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we have:
o _> c -> r(F2

? 0p2(3)) -> r(p2, 0C(90) -* o .
Therefore there exists a pencil of cubic curves in P2 passing through the nine points pt

(1 < i < 9) and the claim follows. q.e.d.

Proof of (2). Necessity. We use the same notation as in the proof of Proposition
(1.1.). Let (p:S->Pl be a rational elliptic surface with one multiple fiber mE of
multiplicity m. Then S can be obtained by blowing-up at nine points p1? ..., p9 on C,
which is a non-singular cubic curve in P2.

Since £e| — Ks\ Is the fixed component of | — Ks\9 E coincides with the strict
transform of C and we have:

(a) JB-3 / - £ et~-Ks
1=1

Since S has a multiple fiber, it follows from (1) In Theorem (2.1.) that there exists an
inflexion point Q0 of C which does not coincide with any pt (1 < i < 9). From Remark
(2.2.), we may assume that Q = QQ.

Choose I as a tangent line of C at Q0. Then from (a), we have:

On the other hand, by Kodaira [3], [JE]|£ Is of order m in Pic° (E). Hence from
9

Abel's theorem, £ e(p£) is an m-torsion point of T. q.e.d.
i=l

Corollary (2.3.) Let B be the subset of (P2)9 := P2 x ••• x P2 consisting of points

9 times
for which the following condition is satisfied.

Condition (A). The rational surface S, obtained by blowing up P2 at nine points
Pi, P2, ' • - , Pg, does not have the structure of an elliptic surface.

Then B is dense in (P2)9 in the complex topology.

Proof. For any (gl9 ..., Q9) e (P2)9
9 let U be an arbitrary small open neighbor-

hood of (Ql9 . . . , Q9). Then there exists (pl9 . . . , p9) e 17 such that the cubic curve In P2

passing through nine points pt (1 < i < 9) is unique and non-singular. (We call It C
and give the natural group structure.) Next, take nine points (Rl9 ..., R9) e(C)9D U

9

such that £ Ri is of infinite order in C.
i=l

Then from the necessity part of (2) in Theorem (2.1.), (R1,...,R9) satisfies the
condition (A) and we have UftB ^ <j>.

Remark (2.4.) B is not open in the complex topology, as we will see later.

9
Proof of sufficiency of Theorem (2.1.) Assume that r\ := £ e(pt) Is of order m
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in T. Then we can take the corresponding etale covering T of T. Fix an isomorphism
e: C ~ T with s(Q) = 0, where C is a nonsingular cubic curve in P2 with the fixed
inflexion point Q on C. The family P2 x C8 -> C8 := C x • • • x C has nine

8 times
sections 0^(1 < j < 9), defined by:

o-XQi , - . . ,6s) = WeAei, . . - ,6s) ( i < ; < 8)

where i: C — » P 2 is an inclusion and ± means the additive group law in a complex
torus T.

Blow up P2 x C8 with the center of the image of a1. Then we have:

blowing up

P2 x C8

'projection

Next, blow up X{ with the center of the strict transform of cr2
 m ^i and we obtain

X2. Continuing this process, we obtain X := X9, which is a family of surfaces obtained
by blowing up P2 x C8 with the center of nine sections crl5 ..., a9.

blowing-up

p2 x £8

Clearly /: X -> C8 is proper and smooth and each fiber of / is a nine-points-
blowing-up of P2 which may be infinitely near. Then from our choice of nine sections
crj (1 <7<9) , we have the following commutative diagram by Proposition (1.1.) and
Theorem (2.1.) (1):

X

where

(1) T: X -> W c= P(f#cQxfc*) is a morphism and X is an elliptic fiber space over W.
(2) q: W -> C8 is a P^bundle over C8.
(3) Each fiber of / is a rational elliptic surface with global sections.
(4) Let V be the strict transform of C x C8 (c P2 x C8) in X. Then 6 := i(V) is

a section of q: W ^ C8 and we have i~l(o) ^ o x C.

By our construction, T has a global section, which is a (—l)-curve when restricted to
each fiber of / and the discriminant locus of i do not intersect 6.
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Take a sufficiently fine, finite open covering {Ux} of C8 and a point pa on Ua such
that q~l(Ua) ~ Ux x P1. Then we can perform generalized logarithmic transformations
of multiplicity m along o\Ua (cf. [2] [8]) and we have the following commutative
diagram:

where

(1) cp: Ya -» Ua x P1 is an elliptic fiber space which has multiple fibers of multi-
plicity m along o\Uu.

(2) g is smooth and each fiber of g is a rational elliptic surface of with a multiple
fiber of type m/0.

(3) cp"1^) — d x C
(4) For all p e <*, we have [> x Cj^-i^ ~ ?? in Pic° (C).

By proposition (1.1.), Sa:= gT^pJ is a nine-points-blowing-up of P2.

Let 5a -> Sg -4- • • • -I S® -4 S% ~ P2 be the succession of blowing-downs and let e(i} be
the exceptional curve of 0^. S£~1}-> S^. Then from the stability of the exceptional
curves of the first kind, we may assume that there exists an irreducible divisor D of Ytt

which satisfies the following conditions.
(1) gT^pjriD ^ e(l\
(2) For all t 6 C7a, g~l(t) Pi D is an exceptional curve of the first kind on g~1(t).

By Remark (1.2.), D is a multi-section of cp: 7a -^ P1 x [7a, which ramifies along <j\Uu

with the ramification index m. Hence q> and g are locally projective. Let H be a
relatively ample divisor of g: Y^-^U^ and let m be the self-intersection number (DPI
g~l(t\ Hftg~l(t)) on g~l(t). For a sufficiently large positive integer Ic, we have the
following commutative diagram.

Y ^-> Y(l)
A,- r A.y

Then for each re Ux, h and g1 are morphisms and ht:g
 1(t)-*g1

1(t) is a contraction
morphism, that is ht(g~l(t)F\D) is a point. Continuing analogously, we finally obtain a
commutative diagram:

where
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Since the deformation of P2 is isomorphic to P2, for all t e l/a, we have 0gl(t) ~ P2

and g~*(t)^^gl\t)^gi\t)^g2\t)^"^g?(t)^V2 is a succession of blowing-
downs. By taking t/a smaller if necessary, we may assume that Ta

(9) ~ C/a x P2 and
g?(o)^<i x C.

Put ¥:= h(9) o /i(8) o ••• o ft(1) and let ^ be nine irreducible exceptional divisors of
*F: Fa-» Ya

(9). By *F, each fiber of g\Ai are mapped to a point on o x C. Hence there
exists a morphism $°°: U^^o x C such that we have the following commutative dia-
gram:

projection
x C > C

Note that if the two non-singular cubics in P2 are isomorphic, they are projectively
equivalent.

Hence from the necessary condition in Theorem (2.1.) and the continuity of $a),
there exists a morphism

Now, we need the following lemma.

Lemma (2.4.) Let (C, Q) and s: C ^ T be as in the assumption of Theorem (2.1.).
Assume that the surface Sl (resp. S2) obtained by blowing up P2 at nine points pl5 . . . , p9

(resp. Ql9 ..., Q9) on C has t/ie structure of a rational elliptic surface with multiple fibers
mEi (i = 1, 2) and they are analytically isomorphic. Then Pt's and Qt's (1 < i < 9) are
projectively equivalent.

Moreover, if we identify E^ with a complex torus T and cp\Ei is expressed in the
form: z — » az + ^, a, ft e C, t/i^n ^ is a three-torsion point of T and we have arj = rj, where

9

rj := Y, s(Pi) ™ an m-torsion point of T.
i=l

Proof of lemma (2.4.) Assume that there exists an isomorphism

(p: S1 ~ S2 .

Since EtE\ — KSi\ is the fixed component of the anti-canonical system | — Ks\, we have
<P(E!) = E2. Hence by Demazure-Pinkham [1] and Looijenga [4], Pf's and g/s are
projectively equivalent.

Since a line in P2 is mapped to a line in P2, we have 3(1 = 0. Moreover, since we
have an isomorphism: (p*: NE2/S2 ~ NEi/Si, a must satisfy the following relation:

Because j5 is a three-torsion point of T, we have ocrj = a.
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Now, let us continue the proof of Theorem (2.1.). Let G be a finite group of
automorphisms of T generated by an element in the following form: z -» az + /?, where
/? is a three-torsion point of T and ocrj = v\.

From the construction of G and M, G and the permutation groups ®9 act on M
properly discontinuously and let M be its quotient space. Clearly M is a complete
irreducible algebraic variety of dimension eight. By (z l 9 . . . , z9), we denote the point of
M corresponding to a point (z1 ? . . . , z9) e M. Let us consider a morphism

By Lemma (2.4.), {^(a)}a defines a morphism 0: C8-»M and & is independent of the
choice of Pa e Ua. Since the dimension of the moduli of Fa -» C/a is eight, each fiber of
^ must be discrete and 0 is finite. Hence 0 is surjective, and Theorem (2.1.) follows
from Lemma (2.4.). q.e.d.

Corollary (2.5.) Let F be the subset of (P2)9 consisting of (pl9 ...,p9) such that the
following condition is satisfied.

Condition (B). The rational surface 5, obtained by blowing up P2 at nine points
pl9 . . . , p9, has the structure of an elliptic surface.

Then F is dense in (P2)9 in the complex topology.

Proof. This follows immediately from Theorem (2.1.).

Remark (2.6.) In view of Proposition (1.1.), we have at the same time shown the
existence of singular curves of degree 3m which has an ordinary singularity of multi-
plicity m at each p£ (1 < i < 9) and is non-singular except them, under the assumption
that the nine points pl9 . . . , p9 are mutually distinct.

§ 3o Construction of a Family of Rational Elliptic Surfaces with Multiple Fibers

In this section, we shall construct a family of rational elliptic surfaces with multiple
fibers after Naruki's method, (cf. [6] §23 3.)

Example (3.1.) Let T be a non-singular elliptic curve with the period (1, T), T E C,
Im (t) > 0. Fix a polarization

UJ O)

t -> (»(t) : »'(t) : 1) if t ^ 0
0->(0 : l :0 )= :e if t = 0,

where Cx is a non-singular cubic curve in P2 with the fixed inflexion point Q. Let C
be the tangent line of C^ at Q and let lt (t E T) be the line in P2 passing through two
points Q and s(t).

The pencil Lt generated by C^ and 2C + lt has an ,46-singularity over Q and its
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minimal resolution is a rational elliptic surface with global sections, which has a
singular fiber of type IIP (resp. II*) over 0 e P1, if t ^ 0 (resp. if t = 0).

Let {0l9 92} be a basis of HQ(C^&(2Q)\ which can be expressed by using a
Riemann-theta function of degree two. Then we have gP(t) = 01(t)/62(f) and lt can be
defined by lt: 0 2 ( t ) - x - O^-z = 0. Next, put S := P(0T(2Q) ® 0T) and take a suffi-
ciently fine open covering (C/J of T with local coordinate (tt, Q such that (i is a fiber
coordinate of S. Note that the complete linear system \2Q\ is base point free.

Then

W := {£,/„(*, y, z) + z2(0?(t) • x - 0?>(0 • Z) - 0} a S x P2

is the one-parameter family of Lt parameterized by t e T. By Naruki [6], §3, we can
construct the simultaneous resolution of W -> T without base changes and get the
following commutative diagram

X

where
(1) /: X -» S is an elliptic threefold over S and has a regular fiber C^ (resp. a

singular fiber of type IIP) along the infinite section (resp. the zero section) of S.
(2) (p is smooth and each fiber of cp is a rational elliptic surface with global

sections as above.
By taking an m-sheeted etale covering f of T and pulling back the family to T, we

get l-»S-» f.
Note that the self-intersection number of the infinite section 3^ of S is divisible by

m. Hence by Fujimoto [2], theorem (2.1.), we can perform generalized logarithmic
transformations of degree m along ^ and get the following commutative diagram.

T
where

(1) (t>\ Y-+S is an elliptic fiber space which has multiple fibers of multiplicity m
along 3^,

(2) g is smooth and each fiber of g is a rational elliptic surface with multiple fibers.

Remark (3.2.) The total space Y is not in the class # (see Fujimoto [2], remark
(2.5)). However (/> is locally projective, as is clear from the proof of theorem (2.1.).

Example (3.3.) Let e: T ~ (C^, Q) be as in example (3.1.) and {$19 92, 03} be a basis
of H°(Cm9 0(3Q)) such that
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] oc£ = 0>. By Theorem (2.1.) (1), for all a e M9
a J

there exists a pencil of cubic curves in P2 passing through nine points (£(#i))i<;<9

For a = (a l 9 . . . , a9) e M, we set 0a(f) := f] 0(f - a,-), where 9(t) e H°(T5 (P(Q)) is the
1=1

Riemann theta function of degree one on T with a zero of order one at t = 0 and
03 = 03. Then from the choice of a, we have ga(t) e H°(T9 0(90). We choose a basis
K-«}i<;<9 of H°(T, &(9Q)) as follows.

((Tl5 CT2, CT3, (74, CF5, <76, (T7, (T8, CT9) := (03 , 9l 03 , 0203 , 9^ 03, 9l9293.) 0j , 0! 02, 0X 02 , 02 )

Then we have

MO),..., (79(0)) = (0, 09 0, 0, 0, 0, 0, 0, 1)

and

e*(<7l3 cr2, (73, cr4, cr5, (T6, (j7, (j8, cr9) = (z3, ̂ ;z2
? j;z

2, x2z, xyz, x3, x2y, xy2, y3)

Then gx(t) can be written as a linear combination of <7f's:

9

(*) 0a(0
 = X mi(T»(0> m£ e C .

1=1

Now we show that m£'s can be expressed as a meromorphic function of a e M. By
noting 0(0) = 0 and substituting t = al9 ..., ag, 0 to (*), we have the following equation.

/W l \
M«;),^),..,Ma;)

\ 0, 0, . ., 1 /

/ |

I m,-

m8

=

/ '

o i

9

, where j8 := fj
i^i

Let D be the 9 x 9 matrix defined on the left hand side and let Pj be the determinant of
a 8 x 8 matrix obtained from D by deleting the 9-th row and the j-th column. Then
from an easy calculation, we have

det(D) = F9, m9 = jg and m, = (-!)'/?§•
/9

9 9

Hence we have P9 Tl Q(t - az-) = j8 E (-1)^!,..., a9)(7I-(r). Each Pf = Pf(a l9
i=i i=i

a9) vanishes at afc = az (1 < fc < I < 9), so by subtracting the common zeros of Pf's, we
may assume that any two of P£'s are relatively prime and P{ e H°(M5 C?(L)) for some line
bundle L on M. Put M° = {a 6 M, Pf's do not vanish simultaneously.}

Let Ca (a e M°) be the cubic curve in P2 defined as follows.

Ca :/„ := P,z3 - P2xz2 + P3yz2 - P4x
2z + P5xyz - P6x

3 + P7x
2y - P8xy2 + P9y

3 = 0

Then Ca intersects C^ with the nine points e(a£) (i = 1,..., 9).
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Next, put V:=P((9M®0M(L)) and take a fine open covering {C/J of M with
the local coordinate (th Q such that fi is the fiber coordinate of V. Then PF:=
(Cj/ooCx,y, z) + /a(x, 3;, z) = 0} is the one-parameter family of the pencil [C^, Ca] parame-
terized by aeM°. As in Example (3.1.), we can construct the simultaneous resolution
of W and by the generalized logarithmic transformations along the infinite section of F,
we get a family of rational elliptic surfaces with multiple fibers over an 8-dimensional
(non-compact) complex manifold.
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