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Notations. Let F be an ^4-module over an algebra A. Let / be a nondegenerate
v4-symmetric bilinear form on F. Then we shall use the notations:

F* := the dual ^4-module of F ,
< , > := the pairing map between F and F* ,

/ := the ^[-linear map F -» F* defined by the relation:

I(x, y) = </(x), yy for V y e F ,

I* := the symmetric v4-bilinear form on F* defined by:

I*(I(x),I(y)) = I ( x , y ) for vx , y E F .

By this convention, J*:F*->F is defined as the inverse map of /. Similar notations
will be used for the case when / is degenerate.

§ 1. Introduction

(1.1) The purpose of the present paper is to introduce and to describe the flat structure
on the ring of invariant 9-functions for an extended affine root system. (The extended
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affine root system is introduced in [25], and the results of the present paper were
anounced in [26]. But we do not assume the knowledge of the results.)

i) An extended affine root system (or EARS for short) R is a root system asso-
ciated to a positive semi-definite Killing form with radical of rank 2. The extended
Weyl group WR for R is an extention of a finite Weyl group Wf by a Heisenberg group
BR. A Coxeter element c is defined in the group, whose power c(*max+1) generates the
center of the Heisenberg group. A survey on the root system and the Coxeter element
will be given in § 2.

ii) The W^ -in variant ring Sw is a ring of ^-invariant ^-functions on a line
bundle L over a family X of Abelian variety, which is associated to the Heisenberg
group HR and on which Wf acts. The Gauss-Manin connection F is introduced on the
module of derivations Ders^ of Sw as the Levi-Civita connection with respect to the
Killing form. Then DQISW admits a good filtration (a Hodge filtration). (See §'s 3-6.)

iii) The flat structure on Sw is roughly a certain particular system of homogeneous
generators of the algebra Sw, whose linear spann is uniquely characterized by admitting
a C-inner product, denoted by J. The goal of the present paper is the construction of
the flat structure, achieved in §11, for the root system with codimension 1 (cf (2.4.2)).
In the construction, the fact that the fixed point set of a Coxeter element is regular w.r.t.
the Weyl group action, studied in §'s 7-9, plays an essential role.

As a consequence, Spec(Sw) becomes a graded affine linear space with some
additional structures J and N. For more details on the structures, see Note 1 below
and §11 (11.5) Theorem.

Note 1. Precisely, the flat structure is formulated in terms of a triplet {J, N,
on a module ^, where ^ (called the small tangent module) is the leading term of the
tangent module Dersw w.r.t. the Hodge filtration (cf (9.7.1)), J is a nondegenerate metric
on ^9 N is a semisimple endomorphism of ^ (defining the grading on ^), and V * is an
integrable torsion free connection on ^ such that V * J = 0 and V #N = 0. Actually
{J, N, F#} is defined as the "leading term" of the triplet {Iw, Ol9 ¥} := {Killing form,
multiplication of the coordinate Bl of the highest level, the Gauss-Manin connection}
on Ders^.

Note 2. The line bundle L over X (for fixed T e H) coincides with the one con-
sidered by Looijenga [10] by using Appell-Humbert theorem, and the ring Sw is
studied by authers, Looijenga [10], Kac & Peterson [7, 8], Bernstein & Schwarzman
[3, 4], for which a Chevalley's theorem was shown. We recall the result in §4.

Note 3. Such flat structure was firstly constructed for the invariant ring of a finite
reflection group [23]. So the present paper may be regarded as its generalized version
to a parabolic geometry. A hyperbolic version is yet to be studied. Another general-
ization of the flat structure to certain unitary reflection groups was given by Orlik-
Solomon [18].

(1.2) Let us describe briefly a background of the present paper from the theory of
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period mappings. This is logically unnecessary to read but'explains a motivation and a
role of the present paper.

There is a theory of period mappings for primitive forms (cf. Remark 1, [15, 24]).
As a consequence of the theory, the space of deformation of a hypersurface isolated
singularity, on which the period map is defined, carries a flat structure, i.e. the triplet
(J,N9r*)(d.(l.l)Note 1.).

As a version to the classical JacobVs inversion problem, we ask an intrinsic descrip-
tion for the domain of periods, action of the monodromy group on it, and the ring of
monodromy invariant functions on the domain. Since the space of deformation is
described as the quotient of the period domain by the monodromy action, we ask
further for the description of the flat structure in terms of the monodromy invariant
ring.

As the classical case, the period domain and the monodromy group for simple
singularity are described in terms of classical root systems (Brieskorn [6], Slodowy
[28, 29], cf. Arnold [2]). Then the flat structure on the Weyl group invariant poly-
nomial ring is constructed in [23] only in terms of the finite reflection group and a
Coxeter transformation, independent of the period mapping. (Cf [1, 7, 27, 33]).

This fact causes naturally a general problem:
Develop a theory of suitably generalized root system with a good Coxeter transfor-

mation and a theory of flat invariants for the root system in a self-contained way*, to
answer the JacobVs inversion problem for further cases of period mappings. (* This
means to use only the data of a root system as for the building block but not of a
period map).

The present paper answers the problem for the case of extended affine root systems.
An extended affine root system is a root system in a generalized sense, which belongs to
a positive semi-definite quadratic form with rank 2 radical, whose Coxeter transforma-
tion are carefully studied in the previous paper [25].

Starting with an extended affine root system R with a datum of a marking G on R
(cf (2.1), Remark 1), we construct in this paper the invariant theory for (R, G), which
finally leads to the flat structure on the invariant ring Sw. Since the invariant space
Spec (Sw) with the flat structure is identified with the space of deformation for a simply
elliptic singularity (cf. Appendix, [21]), this is an answer to the Jacobi's inversion
problem for that case.

Remark 1. A period map for a universal unfolding cp: & -> S is determined by a
primitive form £(0), which is an element of the middle relative de-Rahm cohomology
group Rd(p^(Qg/s) satisfying certain infinite system of higher residue bilinear equations.
The primitive form induces an isomorphism of Hodge filter F°(Rd(pJis(D^/s)) with the
tangent bundle Ders of the space of the deformation S and an integrable connection on
Ders, whose integration is the period map. So our aim is to reconstruct the data on
Rd(p^(Q%/s) from a root system.

In the case of simple elliptic singularity, the primitive form is easily written down
explicitly as

Res£ to]
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- - - -where CD := Res#- - - - e Rd(p^(Q'^/s(*)) for F = F(x, y, z, t): the defining polynomial

of the unfolding 5T, E^ is the elliptic curve at infinity ([21]) and a is a homology
class e H^En), so that the denominator of £(0) is the elliptic integral of the first kind.

The ambiguity of C(0) is the choice of aeH^E^). Since the H^E^) is identified
with the radical of the root system, after all, this ambiguity in the period map is
reflected in the present paper as a choice of a marking in (2.1), which is an element
a e rad 1 ~ H^E^} of the radical of the root system.

Remark 2. The period mappings for simply elliptic singularities are treated also by
some works of E. Looijenga [9, 10, 11]. (Cf. H. Pinkham [20], P. Slodowy [30].) So
the present paper may be considered as its completion by introducing the flat structure,
for which purpose the introduction of the Coxeter transformation theory for extended
affine root system was essential.

(1.3) Let us give a brief view of the contents of this paper.
The notion of an extended affine root system and the results on Coxeter elements

for the root system are recalled in § 2. From the data of a root system, a family L of
line bundles over Abelian variety over the complex upper half plane H is constructed in
§ 3 and a Chevalley theorem on the invariant ring Sw is recalled in § 4.

The Killing form / for the root system induces metric lw on the tangent bundle
DQTSW of the quotient space L/Wf = Spec (Sw). Tw degenerates along the discriminant
loci &\ = 0. A precise study of the degeneration of Tw leads to logarithmic forms in § 5
and the logarithmic (Gauss-Manin) connection F in § 6.

The results on Coxeter element in §2 is applied to show the non-vanishing of
leading coefficients for discriminant Bj in §7. Also the Killing form Iw is used to
normalize a unit factor for a generator Ol of Sw in § 8. Both facts lead to a key step:
the construction of the non-degenerate metric J on the "small tangent bundle ^" in § 9
(under the (9.1)).

This metric J may be considered as the leading term of the Killing form Tw on
Ders,y according to a graduation DQISW= ® ty studied in §§9, 10. Then also taking

;>o
the leading term of the connection V by this graduation, one obtains a non-singular
connection F# on the "small tangent bundle #" such that F#J = 0 in §11. This
determines the flat structure on Sw.

(1.4) The first draft of the paper was written with [25] in the Winter semester 1983-84,
when the author was a visitor at the Max Planck Institute fur Mathematik at Bonn. He
also expresses his gratitude to Prof. T. Springer for constant encouragement.

§ 2. Extended Root Systems

A summary on Coxeter transformation theory for extended affine root systems is
given from [25]. Main results are summarized in Lemma's A, B and C. For details
and proofs, one is refered to the original paper.

(2.1) Let us start with a generalized concept of a root system, which we call also a root
system for simplicity.



EXTENDED AFFINE ROOT SYSTEMS II (FLAT INVARIANTS) 19

Let F be a real vector space of finite rank with a symmetric bilinear form /:
F x F -> R. For an non-isotropic element OLE F (i.e. /(a, a) ^ 0), put av := 2a//(a, a) 6
F. The reflection wa w.r.t. a is an element of 0(1) := {g e GL(F): I(x, y) = I(g(x), g(y))}
given by,

wa(u):=u-I(u,xv)a (vw e F) .

Thenoc v v = a and wj = id.

Definition* 1. A set R of non-isotropic elements of F is a root system belonging to
(F, 1), if it satisfies the axioms i)-iv):

i) The additive group generated by R in F, denoted by Q(R), is a full sub-lattice of
F. I.e, the embedding Q(R) c F induces the isomorphism: Q(R) ®zR — F •

ii) l ( a , £ v ) E Z for \ P E R .
iii) wa(R) = R for va 6 R.
iv) // R = R1 U R2 with R± 1 R2, then either R1 or R2 is void.
2. A root system R belonging to (F, /) is a k-extended affine root system (k-EARS

for short), if I is positive semi-definite and the radical: rad (/) := {x e F: /(x, y) = 0 for
vy e F} = F1, is of rank k over R.

3. A marking G for a k-EARS is a decreasing sequence:

G0 = rad (/) n> G! z> • • • ID Gk = {0}

of subspaces of rad (1) such that Gt fl Q(R) ~ Zk~\
The pair (R, G) will be called a marked extended affine root system (or a marked

EARS). Two marked EARS's are isomorphic, if there exists a linear isomorphism of the
ambient vector spaces, inducing the bijection of the sets of roots and the markings.

Note 1. i) If R is a root system belonging to (F, /), then R v := {av : a e R} is also
a root system belonging to (F, 1).

ii) For a root system belonging to (F, /), there exists a real number c > 0 such
that the bilinear form cl defines an even lattice structure on Q(R) (i.e. e/(x, x) e 2Z for
x E Q(R)). The smallest such c is denoted by IR : I and the bilinear form (IR : 1)1 is
denoted by JR.

iii) For a root system R belonging to (F, I), there exists a positive integer t(R) such
that

t(R) is called the tier number of R (Rv) ([25, (1.10 - 12)]).

Note 2. i) A 0-EARS is shown to be finite and hence a root system in the
classical sense [5]. We shall call it a finite root system.

ii) A 1-EARS is shown to satisfy the axioms for an affine root system in the sense
of Macdonald [12]. We shall call it an affine root system.

Notation. Since we are mainly concerned with 2-EARS's in this paper, we simply
say EARS instead of 2-EARS. In the case, a datum of a marking G is a rank 1
subspace Gl of rad (/) defined over Q. We shall denote the space Gl by the same
notation G. A generator of G H Q(R) ~ Z, which is unique up to a sign, is denoted
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by a.

G H Q(R) = Za and G = Ra .

(2.2) The a0? ..., a, for (£, G).
Let (K, G) be a marked EARS. The image of R by the projection F -> F/rad (I)

(resp. F -»F/G) is a finite (resp. affine) root system, which we shall denote by Rf (resp.
Ra). In the present paper, we assume that the affine root system Ra is reduced. (I.e.
a = c/J for a, /? e Ra and c e R implies c e {± I}.)

Put,

(2.2.1) / := rankR (F/rad (/)), (i.e. rankM(F) = / + 2).

Once and for all in this paper, we fix / + 1 elements,

<X0, . . . , < X z E &

such that their images in Ra form a basis for Ra [12]. (I.e. the images are normal
vectors of walls of an affine Weyl chamber of Ra directing inside of the chamber.) We
shall call them a basis for (jR, G). Such basis is unique up to isomorphisms of (R, G).
There exists positive integers n0, ..., «/ such that the sum:

(2.2.2)

belongs to rad (/). By a permutation of basis, we may assume [12],

(2.2.3) FIO = 1 .

Then the images of a1? ..., az in Rf form a positive basis for Rf and the image of — a0

in Rf is the highest root w.r.t. the basis.
Put,

(2.2.4)
i=l

on which / is positive definite and J^ H L is a finite root system with the positive basis
al5 ..., oct (cf. Note 2).

We have a direct sum decomposition of the vector space:

(2.2.5) F = L © rad (/),

and the lattice:

i i
(2.2.6) Q(R) = © Za, 0 Za = ® Za£ 0 Za 0 Zb ,

i=0 i=l

(2.2.7) Q(R) n rad (I) = Za © Zb ,

(2.2.8) Q(R)r\L= 0 Za,.
i = l

Note 1. The choice of the basis a0, ..., az is done for the sake of explicite
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calculations, but it does not affect the result of the present paper. A change of the
basis a0, . . . , az induces a change (a, b) to (a, b + ma) for some me Z.

Note 2. Under the assumption that Rf is reduced, the set R fl L is bijective to Rf

(i.e. (R fl L, L) ~ (Rf9 F/rad (/)).) Hence we shall sometimes confuse (R fl L, L) with (Rf,
F/rad (/)) [25].

(2.3) The Weyl group WR.
The Weyl group WR for R is defined as the group generated by the reflexions wa for

va e R. The projection p: F -> F/rad (I) induces a homomorphism p^: P^ -> WR . One
gets a short exact sequence:

(2.3.1) 0 - > HR -^ WR -^ WRf - > 1.

Here

(2.3.2) HR := (rad (I) ®R F/rad(/)) n E~l(WR)

( i
is a finite index subgroup in the lattice (La 0 Z6) ® z © ZoC

i=i
j

A notational remark. The group HR (2.3.2) was denoted by T in the [25] to
indicate that it is a translation group. Since we shall use the notation "T" as for a
subalgebra (8.1.1) of Sw, the notation for the group is changed as (2.3.2) to indicate its
relation with the Heisenberg group HR (2.7.1). (Cf. (3.4.4)).

The map E9 called the Eichler-Siegel transformation, is a semi-group homomorphism
defined as follows ([25, (1.14) ~ (1.15)]).

(2.3.3) E: F ®R F/rad (I) > End (F)

(2.3.4) E ( Z £t ® ni ) (u) '•= u — Z £i Jfai> M) f°r UE F .

Here a semi-group structure o on F ®R F/rad (I) is defined by,

/ \ /y \
^M^^O^W^X^.-^II^^ + XW,.®^ 1 i^w,.^®*,..

The semi-group structure o coincides with the natural addition of vectors on the
subspace rad(!)®(F/rad(/)) and hence on HR. The inverse map E~^\WR is an injective
homomorphism,

(2.3.5) fT1: WR > F ® (F/rad (/)) - L ® L 0 E a ® L 0 E b ® L ,

by which the reflection wa goes to a ® a v . Hence the image E~1(WR)9 generated by
a ® a v (a e R)9 is included in Q(R) ® (Q(R)v )/rad (/)).

Let us write the map E~l componentwisely.

(2.3.6) E-1 (g) = H(g) + a® p(g) + b® q(g).

Here <!;, p and ^ are maps
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: WR - >(® Za,) ®z( 0 Zaf
v ) c L ® L ,

\;=i / \;=i /
(2.3.7)

(2.3.8) p: WR - > © Za.^ c L ,
i=l

(2.3.9) g:Wi - »0 Za,v cL3
i=l

The action of g = E(£ + a®p + b®q)onxeFis given by

(2.3.10) g(x) = E0(t)(xL) - al(p9 x) - U(q9 x) ,

where E0: L ® L -> End (L) is the Eichler-Siegel transformation defined similarly as
(2.3.4) and XL is the L part of x in (2.2.5). Under these notations, we have:

i) The map E0(£): WR -> End (L) is factorized by WR -» WRf so that the subgroup
HR is characterize by {g e WR: ^(g) = 0}.

ii) The subgroup of WR generated by wai5 ..., waj is isomorphic to WRf by the
homomorphism p% so that the exact sequence (2.3.1) splits into a semi-direct product:
WR = WRf * HR.

(2.4) The Dyekin
For a marked EARS (R, G), we associate a diagram /^>G, called the Dynkin graph

for (R, G), in which all data on (R, G) are coded. The graph is constructed in the
following steps i)-iv).

i) Let F be the graph for the affine root system Ra.
I.e. a) The set of the vertices \F\ is {a0? . . . , aj.

b) Edges of F is given according to a convention in iv) b).
ii) The exponent for each vertex a£ e \F\ is defined by

- = -
where k(a) := inf {n E N: a + na e R}.

iii) Put

mmax:= max {m 0 , . . . ?mj ,

\Fm\:= {^-eiri im,. = mmax}3

iv) The graph FR G is defined as the graph for \F\ U \F*\.
I.e. a) The set of the vertices \FRtG := \F\ U |F^|.

b) Two vertices a, /? e \FRtG\ are connected by the convention:

a ft

o o if

if
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if / ( a , | B v ) = - l , f ( / U v ) = - f ,

if 7(a,F) = / ( £ « v ) = - 2 ,

v) A complete list of Dynkin Diagrams and exponents for extended affine root
systems is given in the Table 1.

Definition- For a marked EARS (R, G), the codimension, denoted as cod (R, G), is
defined as follows.

(2.4.2) cod (U, G) := # {0 < i < I: m{ = mmax} = # |/J .

Note 1. Converse to the above construction of the graph FR G from a (R, G), the
isomorphism class of a marked EARS (R, G) is constructed from the data of the
diagram FRG by a help of Coxeter transformation theory (cf [25, §9]).

Note 2. The exponents mf's introduced in ii) are half integers, which might have a
common factor. We have:

The smallest common denominator for the rational numbers mjmm^ (i = 0 , . . . , / ) is
equal to /max + 1 ([25, (8.4)]), where /max := max {# of vertices in a connected component
of F\Fm}. So we sometimes normalize the exponents as follows.

(2.4.3) mt := m{
 max + * i = 0, . . . , / .

A/ote 3. The name codimension for cod (R, G) has an origin in the period mapping
theory. Namely it expresses the codimension (= # of independent defining equations)
of the singularity for (R, G) in an ambient space (Cf. Appendix)

Table 1. Dynkin Diagrams for Extended Affine Root Systems and Their Exponents [25].

1 1 1 1 1 o o 1

4J1.1).
1/2

00

2 4 4
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2 2 2 2 2 2 2

2 2

1 2 2

2

2 2 2

1 2 1

2 2 2 2 2

4 2 4 4
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5 4 3 2 1

6 4 2

2 2 2 2 2 2

1^ : < ' = «
4

2 2 2 2 2 2 2 2 4 2

«-••
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(2.5) The Coxeter transformation for (R, G).
A Coxeter transformation c e WR is by definition [25, (9.7)] a product of reflexions

wa for a e |/^>G| with a restriction on the order of the product that wa* comes next to wa

for a e \Fm\. The following Lemma's A, B and C are basic results for the Coxeter
transformation, which will be used essentially in this paper.

Lemma A ([25, (9.7)]). A Coxeter transformation c is semi-simple of finite order =
^max + 1- The set of eigenvalues of c is given by:

1 = exp (0) and exp (2n^f - lmf/mmax) (i = 0,..., I).

Particularly, {the multiplicity of eigenvalue 1} = 1 4- cod (R, G).

Lemma B ([25, (10.1)]). Let c be a Coxeter transformation for (R, G). Then

R n Image (c — idF) = (/>.

To state the Lemma C in (2.8), we recall some more concepts.

(2.6) The hyperbolic extentton (F, I). There exists uniquely (up to a linear isomor-
phism) a real vector space F of rank I 4- 3 with

i) an inclusion map F c: F as a real vector space,
ii) a symmetric form 7: F x F -»R such that J|F = / and rad (I) = Ma.

The pair (F, 1) will be called a hyperbolic extension for (F, /).
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Denote by wa the reflextion for a e R as an element of F and by WR the subgroup
of the isometrics of (F, I) generated by them. The restriction wa|F is wa. So we have a
surjection WR -»» WR and then a short exact sequence:

(2.6.1) 0 - > KR^ WR - > WR - > 1

where KR is an infinite cyclic group generated by

(2.6.2) k := (IR : l)'max+ l a ® b ,
^max

and E: F ® (F/G) -» End (F) is the Eichler-Siegel transformation,

(2.6.3) E ( X ^ ® r,] (u) := u - £ £%, u) for u E F .
\ t J i

Notational remark. The notations WR9 KR and HR (2.7.1) are inexact in the sense
that they depends not only on the root system R but also on the marking G. The
confusion can be avoidable by the context.

A precise description of the group WR is as follows ([25, (1.18) ~ (1.20)]). The
inverse map

is an injective semigroup homomorphism. Due to the fact that WR preserves the metric
7, we obtain the following decomposition:

(2.6.5) E-^g) = t(g) + a ® p(g) + b® q(g) - E0(S(g))q(g) ® b

b + r(g)(IR : 7)^±lfl ® b .
m

Here ^, p, q are defined in (2.3) and r is a map,

(2.6.6) r: WR - > Z .

That £ is a semi-group homomorphism implies the relation ([25, (1.20), (1.19)]): For
V 0 i ,02ef lk

(2.6.7) r(gig2) = r(9l) + r(g2) - -—^——I(p(gi)9 E0(t(g2)q(g2)) .
(iR ' 1)(imax + l)

Under these notations, we have:
i) The map E(£ + a ® p + b ® q): WR -> End (F) is factorized by WR^>WR.

ii) y4n element g £ WR belongs to the cyclic group KR, if and only if £(g) = p(g) =
q(g) = 0.

Remark. The following i), ii) and iii) show that a W^-invariant symmetric bilinear
form on F, whose restriction on F is not zero, is a constant multiple of I up to an
automorphism of F of the form E(z) for a z e Center of F ® F/rad (I).
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i) {WR-invariant symmetric bilinear forms on F} = E/ + R/oo, where 1^ is a form
on F characterized by /^(l, 1) = 1 and /oJF x F = 0.

ii) Z(GL(F) fl E(F (x) F/G)) (:= the center of GL(F) fl E(F <g) F/G)) = £(rad (1) (x)
rad (J)/G) = F(Eb (x) b + Ea (x) b).

iii) Let /! be a WR-invariant symmetric form on F such that JJF x F ^ 0. Then
there exists an element g e Z(GL(F) fl E(F ® F/G)) such that J^x, y) = cT(g(x), g(y)) for a
ceE.

Proof, i) Use the expression (2.6.5).
ii) An element z e F (x) F belongs to its center <=> z e F1 (x) F1.

iii) Due to i), /x = cl - dl^ for c, d e R with c ^ 0. Then we may choose g =

El—b®b}as follows. Due to ii), g belongs to Z(GL(F) n F(F (g) F/G)). Since 0(x):=
\2c /

x -- 7(x, 5)fe etc., we have,
2c

, g(y)) = T(X - ^-T(x, b)b, y - ^-% b)b)
\ zc zc /

= T(x,y)-2^T(x,b)T(y,b)

= -(cI
C

Here T(b) (g) /(b) satisfies the characterization for /„, we have shown the statement. D

For £(Ea ® 5) c O(F, 1), the group Z(GL(F) H £(F ® F/G))/£(Ma (g) 6) (- Efc ® 6)
acts on the space I + R/^ as the affine transformation group.

(2.7) Helsenberg group HR.
Put

(2.7.1) HR := (E-^g): g E WR such that £(g) = 0} .

Then, 1) HK is a Heisenberg group with the short exact sequence,

(2.7.2) 0 - >RR - >HR - »HR - >!,

where HR-+HR is induced from the projection F ® F/G -> F ® F/rad (1). (Cf. (2.3.2)
and its following Notational Remark).

2) The extension class of the sequence is calculated from (2.6.7). ([25, (1.11.3)])

m 2

(Z7'3) ^)(/maxri)Im(/ ® 7- 6 Ext2 (H- ^«} - A Homz (HR, Z) ,

where
i) KR is identified with Z through (2.6.6),

ii) J is the skew symmetric form on Za + Zb by J(a, b) = — J(b, a) = — 1.

iii) HR is embedded in (Za + Zb) ® (g) Zaf
v (cf (2.4)) so that J (g) 1^ induces a

\i=i
skew symmetric bilinear form on ffR.
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3) We have the following commutative diagram (cf (2.3.1)):

0 0

n n

0 > KR —^ WR > WR

WRf = WRf

(2.8) The hyperbolic Coxeter transformation.
A hyperbolic Coxeter transformation c E WR is a product of reflexions wa for

OLE\rRtG\ in the same ordering as for the Coxeter transformation c ([25, (11.2)]).

Lemma C ([25, (11.3)]). i) The power c(lma^i} of the hyperbolic Coxeter trans-
formation c is a generator of K.

ii) K is generated by (IR : I) max + a ® b.
^max

This is equivalent to:

Lemma C' ([25, (11.4.1)]). There exists a projection map p: F -> F such that for
v!eF,

(2.8.1) c(l) = 1 + (C- idF)p(l) + T(b, X^^-a .

§ 3. A Family of Polarized Abellan Variety over H

(3.1) Let (R, G) be a marked EARS and let (P, 1) be its hyperbolic extention. We
define complex affine half spaces as follows.

(3.1.1) E := {x £ HomR (F, C): a(x) = 1 and Im (b(x)) > 0},

(3.1.2) E := {x e HomR (F, C): a(x) = 1 and Im(6(x)) > 0},

(3.1.3) H := {x e HomR (rad (/), C): a(x) = I and Im (b(x)) > 0},

where dimc E = / + 2, dimc E = / + 1 and dimc H = 1.

Note. A change of the basis a0, ..., az does not affect the definition of the spaces
E, E and H due to (2.2) Note 1.
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(3.2) Elements of F (resp. F and rad (/)) are C-valued affine linear functionals on the
space E (resp. E and H). Put,

(3.2.1) i := b/a

as a complex valued function on E, E and H. Then H is identified with the complex
upper half plane by i.

A notational remark. For a convenience, the same notation i is used for the
following different meanings:

i) A coordinate function of the complex upper half plane H as defined in (3.2.1).
ii) A point of H.

iii) The value in C of the function (3.2.1) at a point of H.
The inclusion maps: F ID F => rad (!) induces the projections:

(3.2.2) E-^E-^H.

By the projections, E and E are regarded as a total space of a family of complex affine
spaces Er := (n o n)~l(i) and Er := n~l(-c) of dimension I + 1 and I parametrized by T e H.

(3.3) Obviously by definition, the tangent and co-tangent spaces of E, E and H at a
point x of them are naturally given by:

(3.3.1) TX(E) - C ® (F/G)*, TX(E) - C ® (F/G)*, r,(H) ^ C ® (rad (1)/G)*,

(3.3.1)* TX*(E) - C ® (F/G), TX*(E) - C ® (F/G), TX*(H) ^ C ® (rad (J)/G).

In particular, the relative tangent spaces of E and E relative to the projections n
and n o n of (3.2.2) are given by

(3.3.2) Vc := C ®M V for V := (F/rad (I))* ,

(3.3.2)" fc := C ®R V for V := (F/rad (/))* .

Actually, the natural inclusions V c: F* c HomR (F, C) or F c F* c HomR (F, C)
induce the action of Vc or Vc on E or E as the translation groups of the affine fibers Et

or ET over T e H respectively.
The bilinear forms 1 (2.1) and 7(2.6) induces perfect pairings

(3.3.3) I: F/rad (!) x F/rad (I) > E ,

(3.3.3)" 7: F/G x F/rad (!) > R ,

which induce cannonical isomorphisms,

(3.3.4) /*: V := (F/rad (/))* -^ F/rad (!)

(3.3.4)" 7*: F := (F/rad (I))* -^ F/G

of real vector spaces. Therefore we shall regard F/G and F/rad (1) as the real part of the
translation groups of ET and ET for T e H respectively.

The bilinear forms on V and V induced from I and 7 through the isomorphisms
(3.3.4) will be denoted by If and 1~ respectively.
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(3.4) The pairing HomR (rad (I), C) x rad (/) -> C induces the real map:

<p:H x rad(/) >C
(3.4.1)

T x ua + vb i > w 4- vc.

The restriction cpT := <p| t x rad(/) tfor T e H) induces real isomorphism

(3.4.2) (?T:rad(/)-C.

Particularly the lattice Q(R) D rad (/) = Za + Zb is embedded in C:

(3.4.3) (pt:Zfl + Zfc-Z + Zi.

Taking on account of (3.3.2), (3.3.4) and (3.4.2), we obtain a family of natural iso-
morphisms:

(3.4.4) <pT <g> /: rad (I) ®M (F/rad (I)) - Vc

(3.4.4)" <pt ® /: rad (/) ®E (F/G) ^ Vc

depending on the parameter t e H. Hence the H^ (2.3.2) is regarded as the lattice of
the complex vector space Vc through cpr (x) /.

(3.5) The actions of the groups WR and WR on F and F fixes the rad (/) pointwisely.
Hence the dual actions of WR and WR induce actions on E and E respectively. They
are equivariant with the projections n and n (3.2.2). To avoid confusions, the dual
action of g E WR (resp. WR) on E (resp. E) will be denoted by g*.

Lemma.
1. The actions of WR (resp. WR) on E (resp. E) are properly discontinuous.
2, The action of HR on E coincides with the translation by the natural embedding

HR c Vc (cf. (2.3.2) and (3.4.4)).
Put X := E/HR and denote by n/HR the map induced from n:

(3.5.1) n/HR.X »H.

The fiber XT := (n/HR)~l(z) over i e H is isogeneous to an l-times product of elliptic
curves of the same modulous T.

3o The action of HR on E is fixed point free. Put L* := E/HR. The map n/HR

induced from ft:

(3.5.2) n/HR:L* >X,

defines a principal C*-bundle over X. Let L be the associated complex line bundle over
X, which is, as a set, a union

(3.5.3) L = L*U*.

The finite Weyl group WRf is acting on L and X equivariantly.
4. The Chern class c(L\xJ of the line bundle over Xx:= (n/HR)~l(i) for T 6 H is

given by,

(3.5.4) c(L\x) = Im (H) E A Homz (HR, C) - H2(XX, C),
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where H is an Hermitian form on Vc given by

Proo/. 1. Since the subgroups HR and HK are of finite index in WR and WR, it is
enough to show the properness of the actions of HR and HR. This will be shown
explicitly in the next 2 and 3.

28 Recalling (2.3.10), the dual action g* of g = E(£ + a (x) j? + fo ® q) e J^ on x e E
is calculated as:

y)

and hence

(3.5.6) ^*(x) = £0«)*^

Particularly for g e HR, £(g) = Q and £0(0) = idL so that the action of HR on E coincides
with that through the embedding HRc Vc (3.4.4).

3o Let us fix a base 1 e F\F normalized as

(3.5.7) 1(1, ft) = 1 ,

(3.5.8) 7(1,00 = 0 for i = 1, . . . , / .

Considering this 1 as a complex coordinate for E, we obtain,

(3.5.9) (1, TC): E -^> C x E .

Using the formula (2.6.5), the action of g e WR on 1 is given as:

(3.5.10) 0(1) = 1 + E0(t)q(g) - \I(q(g\ q(g))b - r(g)(IR : /)^±!fl .2 mmax

Particularly the generator k of KR acts on 1 by

Hence the complex function A on E defined by

(3.5.11) X := exp W
.Mil ^JMmax "T AJ

is K invariant, giving a fiber coordinate for the C* bundle:

(3.5.12) (A, n): E/KR -^ C* x E .
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Of course this direct decomposition of E/KR is not canonical but it depends on the
choice of 1.

The action of g = a (x) p(g) + b® q(g) e HR/KR ~ HR on /I is calculated by (3.5.10)
as:

(3.5.13) E(g)(X) = teg

where

(3.5.14) eg := exp

This implies that E/HR ~ (C* x E)///u is a principal C*-bundle over E/HR associated to
the Hermitian form (3.5.5) (cf. [14, Chap. 1.2]).

(3.6) Note. Since the line bundle L"1 is ample relative to H, one may blow down the
zero section X c L of L to H (i.e. Xr is blow down to a point for i e H). The blow
down space, denoted as

(3.6.1) L ( ~ L * U H ) ,

is a family of affine algebraic variety of dimension / + 1 with an isolated singularity
parameterized by the space H.

§ 4. The Ring Sw of Invariants

In this section, we recall and reformulate a Chevalley type theorem (4.5), studied by
Looijenga [10], Schwarzman & Bernstein [3, 4], Kac & Peterson [7, 8] and others.

(4.1) For a non-negative integer /c, let,

/A 1 i \ c . rv v" /(!(T ~®k\\(H.I. lJ tJfc .— 1 (A, (^(L, ))

be the module of holomorphic sections of the — fc-th power of the line bundle L over X
defined in (3.5) Lemma 3. An element 9 E Sk is realized as a holomorphic function on E
satisfying the relation:

(4.1.2) g*(6) = (eg)~
kO for *geHR,

where eg is as defined in (3.5.14). Due to [14, Chap. I], it is easily seen that Sk is a
/"(H, 0H)-free module of finite rank, where r(H, 0H) is the algebra of holomorphic
functions on H.

For an element 9 e Sk, put,

(4.1.3) 6:=(l)kO,

where A is the function (3.5.11) on E. Then (3.5.13) and (4.1.2) implies that 9 is a
//^-invariant holomorphic function on E with a degree condition:

(4.1.4)

for the Euler operator:
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(4.1.5) E'-=*Jj-dA

(4.2) Note. Define a graded algebra over jT(H, #H) by

00

(4.2.1) S:= 0 Sk.
k=0

This algebra is the ring of polynomial functions of the affine variety L over H (3.6.1). In
an algebraic geometric expression,

Spec (S) ~ L .

(4.3) The group WRf ~ WR/HR acts on L and X equivariantly. So it acts also on the
space of sections Sk := F(X, d?(L~®fc)), k = 0, 1, . . . . Put,

(4.3.1) Sjf := the set of WRf invariant elements of Sk ,

(4.3.2) SKW := the set of WRf anti-invariant elements of Sk .

By the correspondence 0<->0 (4.1.3), the set S™ (resp. Sk
w) is regarded as the set of

all ^-invariant (resp. anti-invariant) holomorphic functions on E, satisfying the degree
condition (4.1.1), since the action of WR/HR on Sk is identified with the pull-back action
on the functions on E.

Put,

(4.3.3) Sw := © Sf

(4.3.4) S~w:= 0 Sj-w.
k = 0

Naturally Sw is a T(H, 0H)-algebra and S~w is an S^-module.

Remark. A basis of the module S^ and their product are described in terms of
representation theory [8].

Let Q(A) be an affine Lie algebra. For an dominant integral weight A e P+ of level
fc, the character ChL(A) of its highest weight representation is rewritten by a 0-function
which gives an element of S^. Irreducible decomposition of tensor representation gives
the product rule.

(4.4) We prepare one more concept: the Jacobian J(0l3 ..., 9l+2) for a system of
1 + 2

sections d{ E Sk (i = 1, . . . , / + 2) as an element of Sk Ik = V kt I given by the following
\ «=1 /

relation.

d9l A • • • A dSl+2 = .7(01, . . . , Ol+2) (di A d(x1 A • • • A d^ A dX) .

The Jacobian is well defined, since co := di A rfax A • • • A d^ A dl is ^-invariant.
Moreover, since the form CD is WR anti-invariant, if 0£ e S^ (i = 1, . . . , / + 2) then

J(9ly...,9l+2)eSk
wk= X fc

1+2
w
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(4.5) We recall a Chevalley type theorem for an EARS.

Theorem [3, 4, 8, 10].
1. Sw is a polynomial algebra over F(M, 0H), freely generated by I + 1 homogeneous

elements 00, . . . , dl of degree mt := mt-^ - (i = 0, . . . , /), where mt (i = 0, . . . , / ) is
^max

the set of exponents for the root system (R9 G) ((2.4.3)).
2. S~w is a free Sw-module of rank 1, generated by an element &A := J(T, 00, . . . , 0Z)

, , _ ( / + l + c o d ( K , G ) ) ( / m M + l)
homogeneous oj degree - - - .

3. The zero-loci of OA on E is equal to the union (j H^ of the complex
oceR

hyperplanes Ha defined by the equation a = 0 for a e R.

Definition, The invariant function,

01 E Sf (fc := (/ + 1 + cod (R, G))(/max + 1))

will be called the discriminant for (R, G).

(4.6) The generator system 00, . .., 9t of the algebra Sw in the Theorem has an
ambiguity of a change, 0- = Pf(00, • • • > fy) (* = 0, . . . , / ) by weighted homogeneous poly-
nomials with coefficients in 7"(H, d?H)-

Notation. We fix a homogeneous generator system 00, . . . , 0, of the algebra
Sw = T(H, 0^) [009 ... , 0,] with an ordering

deg(00) = 1 < deg(01) < < deg(0,) = lmax + 1 .

As a convention, we put

0_1 :=i and

A goal of the paper is to find an intrinsic system of generators of the algebra Sw for the
case cod (R, G) = 1 which we shall call the flat generator system.

(4.7) Note. Since WRf is a finite group, the quotient space lL/WRf is a family of
algebraic variety over H, whose polynomial function ring is the invariant ring Sw (cf.
(3.6) and (4.2)).

Spec(S^) - L/WRf (= (E/WR) U H) .

The action of WRf on L is as a reflexion group, where the reflexion hyperplane of
wa for a e R(mod HR) is given by a "hyperplane" Ha in L as the image of the
hyperplane H£:= {x E E: a(x) = 0} for an inverse image a e .R of a. The branching loci
of the map L -> l^/WRf is a hyper surface defined by &\ = 0, which will be called the
discriminant loci.

§5. The Metrics TW9 l£ and Logarithmic Forms on Sw

The form I induces metric Iw on the co-tangent space of Spec (Sw).
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(5.1) Let us denote by %, O| and Dei£ the sheaf of germs of holomorphic functions,
1-forms and vector fields on E respectively.

Recalling an expression of tangent and cotangent spaces of E in (3.3.1) and (3.3.2),
we have the cannonical isomorphisms:

(5.1.1) Oj ~ % ®M(F/G) and Der£ ~ % <g)M(F/G)* .

The vector space F/G carries a nondegenerate symmetric bilinear form induced from
7. By extending 1 to Q$ by %-bilinearly, we obtain a form:

(5.1.2) J£: 0| x 0| -> 0fi, G)! x o)2 h-> '£ 1

where Xt(i = ! , . . . , / + 2) are basis of F/G and CD = £ -— dXf.

(5.2) Put,

(5.2.1) Ders,y := the module of C-derivations of the algebra Sw ,

(5.2.2) QgW := the module of 1-forms for the algebra Sw .

They are dual S^-modules by the natural pairing: < , } with the dual basis:

i Q i
Dersw = © Sw~^r and Q$w= © Sw d9t by

using a generator system 9?$ of (4.6) Notation. There is a natural lifting map:

i - ^ 80D£, dO\-^\—— dXh so that the form /£ (5.1.2) induces an S -bilinear form:

(5.2.3) Tw: Q*w x QSV . S^ .

(The values of 7^ lie in 5^, since the form 7^ is W^-invariant.)
Let us show a simple but crucial formulae for all what follows.

Formula.

(5.2.4) Iw(d^ d9) = 2n^l ^max E(B) for 9 e Sw,
MK • i ) l*max + 1J

(5-2.5) det (7^(4, 4)u=-i i) = 0i >

£ is r/ie Euler operator (4.1.5).

Proof. Recall that T = ft/a and a = 1. So rft = db/a = db and hence

fc, da,) + Tw(db, dl)
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= 2 ,r~~l
71 (/* :/)(/»» +1)

(cf (3.5.7), (3.5.8), (3.5.11) and (4.1.5).)
(5.2.5) is simply a reformulation of (4.5) Theorem 2, since by Definition (4.5.1) of the

Jacobian J, we have,

det (Tw(dSi9 4);,; = -! ..... i) - J(0-19 - - - , 6*)2 det ((I(*i9 ay))y-) . Q

The formula (5.2.5) implies that the form Iw is degenerate along the discriminant.
Let us make this statement more precise by introducing logarithmic forms as follows.

(5.3) Consider the S'Minear map induced from Iw of (5.2.3).

i ^
Tw: ®sW - > Deisw, CD H-» Tw(o), • ) := Z Iw(<*>* d^) dOt .

»=o

AssertioOo The above map Iw induces an Sw -isomorphism:

(5.3.1) V:^^Ders,(-log(<9j));

where

(5.3.2) Ders,(-log (9*)) := {6 E Ders,; 50J e 92
ASW] .

Proof. For an co e QgW, the element V(o>, d&A) is anti-invariant. Hence it is
divisible by 9A ((4.4) Theorem 2.). Then Tw(co9 d@A) = 20Jw(co, dOA) is divisible by
9A. This implies Tw(co) e Dersw( — log (0A)) by definition.

To show that the (5.3.1) is an S^-isomorphism, we recall the following simple
criterium for free basis of logarithmic modules.

1 d
Criterium ([22]). Let elements dt= Z 9Fy-HZ~eDersM'("~log(^i)) (*' = - 1 > - - - , 0 ^

j=-i 50,-
given. Then Ders^( — log (0A)) is an Sw-free module with the free basis dt (i = — 1, . . . , / )
if and only if det ((gfy)y-) is a unit multiple of 0A.

i d
We apply the criterium for St := Tw(d0i) = Z TwWi* dej)^- 0' = - 1, - - . , /)- Since

det (V (d0i5 dOj)) = 0A (5.2.5), the condition in the criterium is satisfied. Hence Tw(d0i)
(i = — 1, . . . , / ) form an S^-free basis of Ders^( — log (9A)\ D

Corollary. Let us denote by 7^ the 8W -bilinear form on the module Ders^ dual to
the form Tw (5.2.3). Then the pairing,

(5.3.3) T£: DQTSW x Ders^(-log (0A)) - > Sw

is Sw -per feet.
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Proof. By definition, /£(x, y) := <x, T^(y)y. The isomorphy (5.3.1) implies the
perfectness (i.e. det (l^(xh y^) = unit in Sw for a basis xt and y^ of Ders^ and
Bers,(-log09j)).). D

Remark. There is a natural lifting Detsw( — log 0^) -> Derg such that 7^ (5.3.3) is
a pull-back of 7| on Der^ (cf. (6.3) Assertion).

(5.4) We have shown the isomorphy: 7^: Q^w^. Ders^( — log (9A)). Particularly im-
portant is the correspondence between di and the Euler operator E, which was calculated
in (5.2.4).

,,4,,

(5.4.2) 7* (£) =

The Euler operator E (4.1.5) is expressed as an element of Der^ by

(5.4.3) E=
i =

(5.5) Put

:= a; e e Q*w and

The natural pairing between forms and vector fields induces a perfect pairing:
Ders,(-log (0j)) x O^log (9*)) -, Sw (cf. [22]).

The Assertion (5.3) implies the following commutative diagram.

(5.5.1) V

s^( — log (6^)) c

Remark. As a (2, 0)-type tensor field on Spec (S^), 1^ (5.3.3) is expressed as:

(5-5.2) ^ = ^1®!

implying that 7^ has logarithmic poles along the discriminant.

(5.6) Note. The above logarithmic modules are that for the discriminant: 9% = 0 in
the space ~L/WRf := Spec (Sw). Instead of this, one may study the logarithmic modules
for a system of hyperplanes:

U H, = {0A = 0}
z e R f

in L := Spec(S) as follows, (cf. (3.6), (4.2), (4.7)). Put

Ders(-log 9A) := {d e Ders: 89A e 0AS} ,

): 0Aco e Os1 and 9A da) e Qj} .
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which are dual S-modules by the natural pairing. Then a slightly modified argument in
(5.3) shows the followings.

Assertion. The bilinear form 7g of (5.1.2) induces a non-degenerate S-bilinear form:

7L: Os1 x Q£ -» S .

Then this 7L (: Q$ ~» Ders) induces the following S-isomorphisms:

(5.6.1) i ;L

Ders ( — log 0A) ci Ders c Ders^® S .

Particularly this implies that Ders( —log 0A) and £2j(log OA) are S-free modules of rank

I + 2, with the free basis 7L(d^) and /£* (-r^- S for i = — 1, ..., / respectively.
\deij

(5.7) Remark. Similar diagrams to (5.5.1) and (5.6.1) were shown for a finite reflexion
group W in [23]. The diagrams relate the exponents mt (i = 1,..., /) of the group W
with the degrees mt — 1 (z = 1,..., /) of free basis of Ders ( — log A). (Cf the generalized
Schephard-Todd-Brieskorn formula. Terao [32], Orlik-Solomon [16, 17]).

As an analogue to this fact in case of extended affine root systems, we ask to clarify
the relationship among the following three polynomials:

i) The Mobius function for the lattice defined by the system of hyperplanes
Ha(a G R) in L.

ii) The Poincare polynomial for the topological space L\ (J Ha.
a e R

iii) P(T):= f] (1 + mtT).

(5.8) Remark. The tangent spaces of Spec (Sw), L\H and E are the complexification
(3.3.2) of a real vector space (F/G)*, which carries a nondegenerate symmetric bilinear
form 7*. Its complex bilinear extension gives !& (5.3.3), 7£ (5.6) and 7| (6.3.2).

Let H&, /?£ and Hf be the sesquilinear extension of 7* on the tangent spaces of
Spec (Sw), L\H and E respectively. They are Hermitian forms on the tangent bundles,
whose sign is (/ 4- 1, 1). Since the group action of HR on E has no fixed point, H| and
H£ are regular everywhere on E and L\H respectively. But H$ is singular along the
discriminant loci, having logarithmic poles.

The geometric significance of the Hermitian forms H&, H^ and H| is not
clear and is yet to be studied.

§ 6. The Logarithmic Connection V on Ders^

A metric connection V on the tangent bundle of Spec (Sw) is introduced, which has
logarithmic poles along the discriminant. V may be called the Gauss-Manin connection
for the root system, since it is to be identified with the Gauss-Manin connection for an
unfolding of a simple elliptic singularity after all.
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(6.1) Lemma0 There exists uniquely a connection V on the Sw module Bersw, which is
integrable, torsion free and metric w.r.t. 7^ (5.3.3), having the logarithmic poles along the
discriminant in the following sense.

There exists uniquely a C-bilinear map

V\ DerSM,(-log 0*) x Der^-log 0*)\ - »Bers^(-log 0j)

S x £ , - V&

such that
i) V is a connection. (I.e. F5(£) is Sw-linear for the variable d and satisfy the

Leibnitz rule for the variable £,.)
ii) V is integrable. [F5i, F,J = r[6lM.

iii) V is torsion free. ¥£ — ̂ 6 = [8, £].
iv) V is metric w.r.t. I*. 8j£(829 83) = fy(rdl829 S3) + fy(829 rdl83).

Proof of (6.1) Lemma. The Proof Is divided in the following (6.2) ~ (6.4). The
existence and the uniqueness of a connection V satisfying i), iii) and iv) defined on the
complement of the discriminant loci In Spec (Sw) Is well known as the Levi-Civita
connection for the metric /{£•. (Recall that 7j£ is non-degenerate outside of the dis-
criminant.) Since we need to show the integrability ii) of V and to give a description of
the singularities of V along the discriminant, we proceed to an explicit description of V.

(6.2) First we proceed to an explicit construction of ¥.
1. The uniqueness of V. Assuming an existence of V satisfying I), Iii) and Iv), let

us show its uniqueness.
For (51? <52, <53 e

,) + fy(829 [c53, 5J) - fy(829 r,36J

3) + fy(829 [53, 5J) - 83fy(829 d,) + %(F,3^25 8,)

3) + f* (S29 [^39 «J) - 83fy(829 8,) -fy(tf29 S3l 8,)

839sl)

= 8J^(829 83) + 1^2, [^3? O ~ 83Tl(82, d,) - Tl([829 d3l d,

+ 82fy(8398l)-fy(839rd28l)

= &JK&2, 83) + fy(829 1839 dj) - d,T^(d2, 8,) - I*(IA, 83l 8,

Hence altogether, one obtains the formula:

(6.2.1) fy(r6l829 83) = {8J^(829 8,) + fy(829 183, 8J) -

- Tl(l629 83l d,) + 82T^(83, 8,) + fy(839 tfl9 82])}/2 .

The right hand of the formula (6.2.1) does not contain V. Hence the left hand Is
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independent of a choice of V. Since the discriminant of % is 6^~2 and Q\ is a non zero
divisor in Sw, F5l<52 is uniquely determined from (6.2.1) (cf. (5.3) Cor).

2. The existence of V. Put F(5l9 62, 53) := the right hand of (6.2.1). Let the vari-
ables 61 and 62 run over Ders^( — log 0%) and <53 over DQTSW. Since DerSM/( — log &%) is
closed under the bracket product, the value of F defines an element of Sw (cf. (5.3.3)).
Noting that F is S^-linear in the variable <53 and that /£ is a perfect (5.3.3), one may
write F(dl9 82, <53) = T^(G(5l9 52\ <S3) for some G(Sl982)eDeTSw( — logO^). It is easy
to check that G is S'Minear in dl and that G(dl9 962) = OG(8l9 82) + (M)^ for 9 e S^.
This implies the existence of a connection F such that G(8l982) = Pdlo2. It i§ also a

routine work to check that V is torsion free and metric w.r.t. /£.

(6.3) To show the integrability of F, we extend the domain of V.
The set F(E, Derg) of all holomorphic vector fields on E will be denoted by

f°r short. The set of all holomorphic functions on E will be denoted by

Recalling (3.3.1), one has a natural isomorphism:

(6.3.1) T(Der£) -

where (F/G)* = R- — 0 • - - © R- - , if F/G = RXl © • • • 0 RXl+2.dX1 oXl+2

Since / induces a non-degenerate form on F/G (2.6) ii), let us denote by /* the dual
form on (F/G)*. Applying (6.3.1), one gets a jT(0E)-bilinear map 7| on /"(Derg), which
is
dual to Ig (5.1.2).

(6.3.2) J|: r(Der£) x r(Der£)

Recall that the invariant ring Sw is naturally embedded in

(4.3). Put

<p: Sw

Assertion. There exists a natural injective C-linear map

(6.3.3) i: Ders,(-log 0j) -, r(Der£)

such that
i) i is (p-linear: i(98) = (p(9)i(8) for 9 e Sw and 8 e DerSH,(log

ii) i is equivariant with the derivation action:

<p(80) = i(8)<p(8) for 9 e Sw and 8 e DerSH, (log ®2
A\

iii) i is a Lie algebra homomorphism.
iv) The pull back of the form 7| through the map i is /$-.

Proof. By definition, Sw is a subalgebra of /"($£) consisting of W^-invariant
functions, which are polynomials in the variable L (cf. (4.3)). The map i is defined as
the composition of the following maps:
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(6.3.*) i: Ders, (-log <9j) — » <2SV - > T(^) — -* r(Derfi)
*w 1%

i) z is S'Minear and injective, since each step in (6.3.*) is so.
ii) That i is equivariant with derivation, means the formula:

(6.3.4) d(0) = i(d)(0) for (5eDers,r(-log<9j) and 9 e Sw .

5), dO) = lw(fy(5\ dfl) = <<S, dOy = 6(8).)
iii) Applying (6.3.4) repeatedly, one obtains a relation,

(6.3.5) i

for (5, £ 6 DerSH-( — log 0%) and 0eSw. Since the Jacobian J(0_ l 5 . . . ,^) is a nonzero
divisor in F($E), the (6.3.5) is enough to show that i is a Lie algebra homomorphism.

iv) This is checked as follows.

. D

(6.4) The same argument as in (6.2) shows the existence and the uniqueness of con-
nection,

(6.4.1) V: r(Der£) x r(Der£) - » r(Der£)

such that i) V is torsion free, and ii) V is metric w.r.t. ff . Such V is explicitly given by a
similar formula as (6.2.1).

(6.4.2) Tt(Ptl82, S3) =

Let X,- (i = 1, . . . , / + 2) be linear coordinates of £ so that - — generates Derg as
dXt

module. Noting that J|( - , - )'s are constants, and substituting 6l9 S2 and 63\dXi dXjJ

of (6.4.2) by A (i = 1, ..., I + 2), we obtain Jj/F A JM = 0 for i, j = 1, ..., I + 2.

Recalling the fact that If is non-degenerate, we conclude that V I — — 1 = 0. This in
\oXiJ

particular implies that V is integrable.
By comparing the formulae (6.2.1) and (6.4.2), we see that the restriction

F|Ders^( — log 6£) x Ders*r ( — log G%) coincides with V. Then the integrability of V
implies that of F.

This completes a Proof of the (6.1) Lemma. D

(6.5) Lemma bis. The connection V in (6.1) Lemma, naturally extends to:

V\ DQTSW (-log 0%) x Ders^

F: Ders»F x Ders^ ( — log 0%)



EXTENDED AFFINE ROOT SYSTEMS II (FLAT INVARIANTS) 43

Proof. In (6.2.1), if one of the variables dl9 62 for V and 63 belongs to
SW (log @j) and the remaining variable in Ders^, then the value of the right hand of

(6.2.1) belongs to Sw for the same reasons as in the proof of the lemma. Then the
perfectness of /£ (5.3.3) implies that the range of V is Ders^. D

(6.6) The Euler operator E (5.4.3) is horizontal. I.e.

(6.6.1) F5£ = 0 for V(5 e Dei> .

Proof. Substitute 62 by E in the formula (6.2.1). Applying (5.2.4) and the facts in
(5.4), one has

%(?*& S3) = SJ^(E9S3) + fy(E9 [53, 5J) - <53/*(£, SJ = 0. D

Remark. The fact (6.6.1) (coming from the fact that the intersection form I is
degenerate) makes the flat structure for EARS's in the present paper much more distinct
and harder, compared with that for finite root systems [23] and for indefinite excep-
tional root systems. Namely, as an element of Homsw (Ders^, Ders^),

FE = idDeTsw, or -idDer^,

according as the finite root system case or the exceptional root system case.

(6.7 ) The following relation:

for 6, £ E DQTSW and CD e Q$w defines a dual connection,

F*: Ders^ x Q$w -» Q£w (log O2
A) ,

which is integrable, metric, torsion free, having a logarithmic singularities along the
discriminant. Here "torsion free" means the commutativity of the following diagram:

$w (log <9j) (x) Q$w

The explicit formula (6.2.1) is rewritten as:

(6.7.1) Tw(Ffco2, co3) - {STw(co29 o>3) + <(y2? \Jw™

]9 o) - <o;3, [Twco2, 5]> + Tw(co2)(do)3)}/2 .

§7. The Fixed Points by the Coxeter Transformation

Leading coefficients (as functions in i E H) of the polynomial expression of Q\ is
shown to have no common zeros. This is an important consequence of the Lemma's
A, B and C.

(7.1) Let c e WR be the Coxeter transformation for (K, G) (2.5). Put,
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(7.1.1) W:={xeE:c*(x) = x}.

Since c*(x) = x <^> </, c*(x) - x> = 0 for v/ e F <* <c/- /, x> = 0 for v/ e F, the space
Ec is the common zeros of the functionals (c — idF)F and the equation a(x) — 1 = 0 with
the inequality Im(b(x)) > 0. Therefore

dimc E
c = # {eigen value 1 of c} - 1 = cod (K, G) .

(Cf. (2.5) Lemma A). Since c(a) = a and c(b) = b, we have a surjective map,

(7.1.2) EC-»H.

(7.2) Lemma, For any T eH, we /zaue,

(7.2.1) E'flE^ U Jfa.
ael*

Froo/. Since the right hand of (7.2.1) is a locally finite union of hyperplanes and
the left hand is a linear subspace over C, it is enough to show Ec D ET ^ Ha for
va e R. Suppose the contrary: Ec fl Et c Ha for some a e R. Then the Hilbert-
Nullstellensatz for the polynomial ring C[F] of functions on C®MF* implies that a
belongs to the ideal </(Ec f! Et) generated by (c — idF)F, a — I and b — T. Hence

(*) « = Z 0*(c - id,)/, + 0(a - 1) + ff'(6 - T)
i=l

for some fc e N and /£ e F and ^., g and #' e C[F] (i = 1, . . . , fc). Since (c - idF)F D
rad(I) = {0}, we may assume that (c - idF)/£ (f = 1, . . . , k) and a and 5 are linearly
independent. Let us show by a descending induction on d := max {deg (^1), . . . , deg (0fc),
deg(gf), deg (#')}3 which we can reduce, that 0/s, ̂  and gf' are constants.

Suppose d > 0. Let us denote by gf, g* and g'* the degree = d part of the
corresponding polynomials. Then obviously, we have:

(**)
i=l

The linear independence of (c — idF)/)
9s, a and b implies then an existence of a skew

symmetric matrix 3? of the size k + 2 whose entries are homogeneous polynomials in
C[F] of degree d - 1 such that ( g f , . . . , gf, g*, g'*) = ((c - idF)/l9 . . . , (c - idF)/k, a,
b)^. By multiplying f((c — idF)/! ,..., (c — idF)/k, a — 1, b — T) from the right, we
obtain

(***) I 9f(c - id,)/. + ̂ *(a - 1) + ̂ '*(6 - T)

= ((c - idf )/1; . . . , (c - idF)/t, a, fc)jf '((c - idF )/l5 . . . , (c - idF)fk, a-\,b-

= (0, ..., 0, 1,T)JT '((c - id,)/!, ..., (c - idF)/», a - 1, b - T)

= fcf (c - id,)/, + /i*(a - 1) + fc'*(6 - T)
i=l

where (ftf, . . . , A*, /z*? A'*) is a linear combination of the fc + 1 and Ic -j- 2-th low vectors
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of ffl. By this equality (***), one may replace the highest degree = d part of (*) by a
degree d — 1 expression.

Let us assume that g£'s and g and g' are constant. Take the homogeneous of degree
1 part of (*) and take its imaginary part.

0 = £ Imfo£)(c - id,)/, + lm(g)a + Im(g')b .
i=l

The linear independence of (c — idF)/-'s, a and b implies all the coefficients are zero and
hence the constants #/s, g and g' are real. The constant part of the (*) implies
g 4- Q'I = 0. This is possible only when g = g' = 0, since Im(i) > 0. Thus the final
expression of (*) implies a 6 (c — idF)F, which contradicts the Lemma B. These com-
plete the proof of the Lemma. D

Remark. Recalling that c(A) — A = — — — a (mod (c — idF)F) for the hyperbolic
mmax

Coxeter transformation c ((2.8) Lemma C), we see easily that c does not have a fixed
point on E.

(7.3) Put

(7.3.1) W:=n~l(W)

(7.3.1) W/WR := the image of Ec in E/WR ,

which are irreducible varieties of dimc = cod (JR, G) + 1.

Assertion. Let 00, ..., 0t be a generator system of Sw as in (4.6) such that 1 <
deg (0J < /max + 1 for 1 < i < / - cod (R, G). Then

(7.3.3) EC/^J? = the common zeros of 00, ..., ^-COd(i?,G) on E/^R •

Proof. Put 0£ = Ade8(ai)0£. That 0f vanishes on Ec is equivalent that 0£ vanishes on
Ec. Since 0t is an W^-invariant function on E, it is invariant under the action of a
hyperbolic Coxeter transformation c. Using Lemma C (2.8.1) and (3.5.11), one obtains,

c*(0,.(z, T)) = exp inl deg (e £ ) ( c - idF)/' + -- Bfa T) .
\ \

for some /' e F. Since (c — idF)/'|Ec = 0, we obtain,

et(z9 T)|P = exp

Since 0< = -<l and hence e x p 2 7 r v - - 1 for 0 < , ' <
' m a x + 1 ^max ^ V 'max + 1 /

/ — cod (JR, G), we have 0£|Ec = 0 and hence §i\&/wR = 0.
On the other hand, 0t (0 < i < I — cod (R, G)) form a part of generator system of

the algebra Sw so that their common zeros is an affine irreducible variety of dimension =
/ + 2 - (/ - cod (R, G) + 1) - cod (R, G) + 1 = dimc (E

c) - dimc (W/WR). This implies
(7.3.3). D
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(7.4) Corollary,, For any value TO of H9

Proof. The zero loci of &\ in E is the union of the hyperplanes (J Ha ((4.5)
Theorem 30). Hence if the contrary to the corollary happens, by comparing the zero
loci, one gets an inclusion (J Ha => Ec fl Et, which contradicts (7.2) Assertlon0 D

§ 8. Normalization of the Unit Factor for 0A

The unit factors of the invariants 0j-COd(i?,G)+i9 • •-, 0* are partly normalized up to a
constant factor in C with the aid of Iw.

(8.1) Let 00, . . . , 0j be a generator system for Sw as before (4.6). Put,

(8-1-1) T := r(H, fly [00, . . . , 0,-cod(*,G)] .

Due to the strict inequality deg (00), ..., deg(0,_cod(R>G)) < deg(0,_cod(niG)+1) = ••• =
deg (0,) = lmax + 1, T is intrinsically denned as a subalgebra of S*' independent of the
choice of the generator system of the algebra. Let T+ be the ideal of T consisting of
all positive degree elements, generated by 00, . . . , 0j-COd(R,G)- So

T/T+ ~

(8.2) Put,

where M is a F(H, (PH) free module of rank cod (R, G) generated by 9i-COd(R,G)+i> •-•>
and S2M is its symmetric tensor product

(8.3) Define a covariant differential operator,

(8.3.1) F = Pdldr:S
2M-^S2M

by the correspondence

(8.3.2) 0®0' mod T+SW i - > - ^J - Tw(dO, dff) mod T+SW .
2nJ-imn*max

The well definedness of V\
First note that S^M+1)n T+SW = S^max+1)n(T+)2SFF. This implies that the correspon-
dence (8.3.2) sends an equivalent class to an equivalent class. Let us define a map
D: S£i+1 x 5^ax+1 -^ S^max+i) in the same way as (8.3.2).

The following i), ii) and iii) /or D, imply that D induces V.
i) D(0, 9') = D(9f, 0),

ii) D((p(t)0, 0') = D(0, q>(c)ff\

iii)
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Proof, i) is obvious by definition, ii) is a consequence of i) and iii). Let us
show the iii).

I, 0') = V^ Tw(d<pO + cpd09 dff)

Iw(dr, dff) + <p (^LJ) Tw(dO, dff),
2nJ -1 mmax 2nJ -1 mm

(Cf. (5.2.4) and note the fact E6f = (imax + 1)0'.) D

(8.4) The connection V is integrable, since H is 1-dimensional over C. Furthermore,
since H is simply connected, the horizontal sections of V is defined globally on H.
Hence we have:

Assertion. There exists uniquely a C-vector subspace N of S2M such that
i) X TwWt, dfft) e T+SW for v £ BI ® fft e N.

i i

ii) N <g)c r(H, 0H) ^ S2M.

(8.5) Remark. Except for the case cod (jR, G) = 1, there does not exist a connection V
on the module M such that the induced connection on the module S2M coincides
with V.

Proof. Suppose that there exists such connection V. Let ^ (i = 1,..., cod (R, G))
be C-basis of the horizontal sections for V. Then ^- (g) ^ for 1 < i <; < cod (K, G)
form C-basis for the horizontal sections for V. This means explicitly that T^(d^h d^) e
T+SW. Take £f's as the part of generators 0i-COd(K,G)+i> • • • » ^i f°r $w- Then we
have V(^., dOj) e T+S^ for 0 < i < / and / - cod(K, G)+l<j<l. (For 0 < i < I -
cod (R, G), the degree is not divisible by /max + 1.) This implies that det(7fr(^0£,
dOj)i j=-i i) e T+SW except for cod (R, G) = 1. This is a contradiction to (5.2.5) and
(7.4). '"" D

§9. The Metric J on ^

From this section, we assume that cod (R, G) = 1, and the last coordinate 9t is
distinguished as Sw = T[fy]. Then several structures on S^-modules are reduced
to corresponding structures on T-modules. This comparison leads to the studies in
Sections 10, 11.

(9.1) From this section, we restrict our study to the case

(9.1.1) cod(K, G)= 1 .

This includes the marked EARS's of types: ^(
1
1'1)*, B(

2
2'l\ &*•», C(^2\ C(2>2\ BC{2>1\
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(9.2) The assumption (9.1.1) implies that

deg 0t < deg 9l = lmax +1 (i = 0, 1,...,/- 1).

for a generator system 003 ..., 9l of Sw = T[0J (4.6). Let us express the discriminant
9\ 6 Sw as a polynomial in T[0J.

(9.2.1) 0* = A00l+2 + v4x0/+1 + -•- + Al+2 .

Here X£ is an element of T = F(M, Gm}[9Q,..., 0,_x] homogeneous of degree i(lmax + 1)
for i = 0, ..., / + 2. Note that X0 e F(H, 0) and 4 e T+ for i > 0. Due to (7.4)
Corollary, we have:

(9.2.2) A0(c) is not zero for vt e H.

(9.3) The (9.1.1) implies rankc N = cod (K,G)(cod (U, G) + l)/2 = 1. Then the (8.4)
Assertion is reformulated as follows.

Assertion,, There exists an element 9l E S{^+i such that
i) ^OmodT-^

ii) Tw(dehd6l) = QmodT+Sw.
Such 9l mod T+SW is unique up to a constant factor in C.

We fix such 0j as a generator of the algebra Sw in (4.6).

(9.4) As a graded module, the lowest degree elements of Ders^ is generated by — over
CUi

F(H9 GH\ where —- is unique up to a constant factor after the normalization in (9.3),
OUi

independent of a choice of the generators 00, ..., 0Z of Sw. We fix one choice and
denote it:

(9.4.1) 3l:=^.

The element Ql E Sw of (9.3) is characterized as

(9.4.2) 5,0, = constant + 0 .

The subring T (8.1) of Sw is characterized as

(9.4.3) T={OeSw:dlO = 0}.

(9.5) We define,

(9.5.1) & := {co e Q&,: Ldico = 0},

(9.5.2) »:={feDers^:[3,,a = 0},

where Ld means the Lie derivative w.r.t. a vector field <5. As immediate consequences of
the definition, we have:
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i) 2F and <$ are T free modules of rank I + 2, generated by d9_ly d00, . .., d9l and

— , -—-, . .., — respectively, dual to each other by the pairing < ,> . One has natural

isomorphisms:

(9.5.3) <$ ®T $W - Ders(, , & ®T Sw -

ii) ^ is closed under the bracket product [ , ].
iii) There is a short exact sequence as T-Lie-algebra:

(9.5.4) 0 - > Tdl - > # - > DerT - > 0 ,

Derr := derivations of the C-algebra T.
The image of an element u E& in Derr is denoted by u. This correspondence is

equivariant with their derivation action on T (i.e. uf = uf for /e T). We shall confuse u
and ii so far they act on T.

A splitting factor &<=.<£ for (9.5.4) and a function Ql e Sw with dfy = I correspond
one to one by&' = {8e<& : 50, - 0}.

iv) & is involutive (i.e. d & c ^ A J^).
v) Statements for 3F dual to that of iii) for <$ holds.

vi) For the reason of (9.5.3) and (9.5.4), we have called the module & as the
"small tangent module" in the introduction.

(9.6) Recall the form Iw (5.2.3) and define a T bilinear form,

(9.6.1) J*: & x & -> T9 CD x a}f^dJw(cD, CD') .

Well definedness of J*: Due to (9.4.3), the map dj^co, CD') is T-billinear in CD and
CD'. So, we have only to show that its values lie in T. Due to (9.4.3), this is equivalent
that for any CD, CD' 6 J^, (dt)

2Tw(cD, CD') = 0. Let us show this for the basis dO^.
For - 1 < i, j < /, if (i,j) ^ (/, /), tnen we nave

deg ((di)2Tw(d8i9 4)) = deg (0£) + deg (07) - 2(/max + 1) < 0.

This implies (d^T^dO^ dfy) = 0. On the other hand, (9.3) Assertion ii) implies that
Tw(d9h d9t) cannot contain a term 0/? This implies (dtfl^dO^ d9t) = 0. D

Assertion. The T-bilinear form J* is nondegenerate.

Proof. The above argument for well definedness of J* shows that all entries of the
(/ + 2) x (/ + 2) matrix (7w(d6i, dfy))^ are at most degree = 1 in 9t. Recalling the fact
det ((kjdO^^ ((5.2.5), (9.2.1)), we obtain
det ((djw(d9h d9j))ij=,l t) = AQ(T). This does not vanish anywhere on H due to
(9.2.2). ...... D

Remark. Since Tw is homogeneous of degree 0 and dl is homogeneous of degree
— (/max + 1), J* is homogeneous of degree — (/max + 1). Therefore the intersection
matrix (J*(d9h d9j))ij=^1l has a form,
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0, *

°> * *

27iv/-lmmax

where * are the values at the entry (i, j) for deg (0f) + deg (6j) > lmax + 1. As we shall
see in §11, for a flat generator system T, 00, ..., 0X of 5^, this matrix becomes a constant
matrix and hence the "off anti-diagonal part" of the matrix becomes 0.

(9.7) The following decomposition plays an important role in all what follows.

Assertion As T-module, one has a direct sum decomposition.

(9.7.1) DQTSW = <$® Derst, (-log 92
A) .

Proof. Recall that an S^-free basis of Dersw ( — log 8%) is given by Iw(dOi) =
~ d
Tw(d0i, dOj)—— (i = — 1, . . . , / ) (5.3.1), whose coefficient matrix Tw(d0i9 dOj) is linear in

0,. The leading coefficients djw(d0i9 dSj) form an invertible matrix J* (dOi9 dOj). Then
by induction on the degree in 0Z of the coefficients, any element of Ders*r is uniquely
expressed as a sum of elements of ^ and Ders^ ( — log 0%). D

Corollary. The bracket product with dl induces a T-isomorphism:

(9.7.2) [dl9 ] : Ders, ( - log <9j) -

Proof. Let us extend the map [3Z, ] to be a map from Dersw to itself, which is
obviously T-linear due to (9.4.3). If we show the exactness of the following sequence,
the proof is finished.

(9.7.3) 0 - > 9 - * Ders. -^H Ders. - > 0 .

By definition of ^ (9.5.2), the sequence is exact except for the surjectivity of [d,, ]. For
1 d

an element 6 = J] /i^Tf we have,
,-=-1 OVi

which implies the surjectivity of (9.7.3) immediately. D

(9.8) Let 0Z be as in (9.3).
For an element d e ^, define 0Z * 6 e ^ and w(5) e Ders^ ( — log 0j) by the relation:

(9.8.1) 0,5 = 0,* 5 + w(5)

according to the decomposition (9.7.1). The first factor 0j*£ depends on the choice of
0h since Ql is unique only modulo addition of 7Jmix+i (cf, (9.3)). The second factor w(8)
defines a unique (up to a constant factor) T-linear map,
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(9.8.2) w: <S > Ders. (-log O2
A)

From the definition, we have immediately the following:

Assertion.
i) w sends T free basis of $ to Sw-free basis of Ders^ ( — log 0%).

ii) For a d e ^, w((5) is characterized as the unique element w of Dersw ( — log 0%)
such that [3j, w] = d.

iii) w(5,) = i —r£ '

where E is the Euler operator (5.4.3).
iv) For d, £, e @, one has a relation:

- [5, 0, * {] - [0,

Proof, i) We apply the (5.3) Criterium for the elements St := wl — - 1, i = — 1, 0,
\^i/

. . . , /. Obviously by definition of the map w, the determinant D of the coefficients matrix
of <5f's is a monic polynomial in Ql of degree /max 4- 2. In general D is divisible by 6^
(cf [22]). So D is a non-zero constant multiple of 02

A, which implies i).
ii) By applying [3Z, ] on (9.8.1), this is trivial.

iii) This is obvious from (5.4.3), since

i=0

and the uniqueness of the decomposition (9.8.1).
iv) Let us express w(<5) = 6,8 — 0, * d and w(£) = 9t£ — 9,*£. Then,

y, 0, * «] - [0, * 5, £])
- ((0, * 5)0,)^ + [0, * 5, 0, * £,-]

elW(l8, £,-]) + w(0, * [3, «] + (&OM - (ft)* - Id, 0, * £1 - [0, * 5,

+ 0, * (0, * [5, £] + (50,)^ - (£0,)<5 - [5, 0, * «] - [0, * 8, £])

+ ((0, * 5)0,)5 - ((0, * <5)0,K + W * 5, 0, * «] •

Since Ders»- ( — log 6>j) is closed under the bracket product, the last two lines in the
above calculation should vanish due to the unicity of the decomposition (9.7.1). This
proves the formula. D

Remark. The map 0, *: ̂  -» ̂  denned in (9.8.1) is self adjoint w.r.t. J:

(9.8.3) J(8,ei^) = J(6l*d,^).

Proof. For 5, £ e 0, we calculate, /£(w(c5), w(£)) = J(5, w(^) = J(6, 0,<J - 0, * 0 =
— /(^, 0, * £,). By replacing the role of 8 and ^, this is equal to 0, J(<5, <!;) —

, $ ) . D
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(9.9) We now show that the datum J* on 3F is enough to reconstruct the metric Iw.

Definition. Let J be the symmetric T-bilinear form

(9.9.1) J : ^ x ^ - » T

which is the dual of J* (9.6.1).

Assertion. By the map w (9.8.2), J and Tw (or 7j£) are related by the formulae:

(9.9.2) J((5, d') = T£(S, w(£')) for S, 5' e 9 .

(9.9.3) Tw:= t wft)®#
i=-l

where (5_l5 . . . , 5l is a T-free basis of & and S*l9 . . . , Sf is its dual basis w.r.t. the metric J.

Proof. The formulae (9.9.2) and (9.9.3) are equivalent, since if <5f's and <5f s are dual
basis for J, then (9.9.2) implies that <5f s and w(5f)'s are dual basis w.r.t. /£ and this fact
is equivalent to (9.9.3).

So we show (9.9.2), which is equivalent to the commutativity of the following
diagram:

Ders,(-log<9j) — — -> flsV .
Jw

Since J = J*"1 and J|r = I^1 are isomorphisms in the above diagram, one has to show
that Tw(co) = w(J*(e0)) for a> e 3F . Since Tw(co) is logarithmic, one has only to show
Tw(co) = 6tJ*(a}) mod 9 by definition of w (9.8.1). This fact is checked by a calculation:

Corollary (9.9.4). w = Tw o J,

L^.

w: ^_i^ jr c ^ __5^ Dei> (log 02) _

Froo/. We need only recall the identity: f^1 = 7£. D

Remark. The above formulae (9.9.2), (9.9.3) and (9.9.4) will be used essentially in
§10. The formulae are also interesting in connection with the period map theory.
(Cf. (1.2)).

Namely, an unfolding of a singularity defines a family 3f -> S of complex analytic
varieties. Then J is a metric on the tangent bundle of S, calculated by the residue
symbols with the support on the critical set of the family. On the other hand, the form
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/ is the intersection form for the middle homology group of the regular fiber of the
family. So the above formulae relate the Grothendieck duality J with the Poincare
duality / [15], [24].

(9.10) The following Assertion plays an important role.

Assertion. For d €<&, we have,

(9.10.1) J(dl9 d) = JJ 81.

Equivalently, for dual basis 6t e ^ and cDtE 3F (i = 1 , . . . , / + 2), we have:

(I ' 1} l+2

(9.10.2)

Proof. It is enough to show (9.10.1). Recalling formulae (9.9.2), (9.8) Assertion iii),
and (5.4.2), we calculate,

J(dl9 d) = 7£(w(cU d) = —L-7*(£, d)
*max ' *

,Nt, d) =
2 7 i x — l m m a v 2n^— 1m,

Corollary. For any d, £, E ^, we

(9.10.3) J([5, 5], 3,) = 5J({, 3,) - £7(5, 3,) .

(9.11) The following Assertion is one of the key facts in the construction of a gradua-
tion of Ders^ in §10, for which the normalized 3, is used essentially.

Assertion,, Let V* be the logarithmic connection defined on Q$w, which is dual to
V defined on Ders^ in §6. Then

(9.11.1)
for vco e &.

Proof. The fact (9.11.1) is equivalent to that

TwWM G>3) e T for vo;2, w 3 e J

Recall a formula (6.7.1) for F* and (6.2.1). Substituting 3, for (5:

, 3,) -

The first term ^7^(002,0)3) belongs to T due to the normalization (9.6.1). Next, if we
put o}t = J(di) for some <5f e ^ (f = 2, 3), then [7^c% dtj = [w((5£), 3J = St and therefore
<coj, [/urea,-, 3Z]> = ^coj e T. The remaining terms are
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], fl,) + V(

^2)? w(53)], 3,)

[<$2, <53])) + w(£), 3,) + w(62)J(dl9 S3) - w(8JJ(dh S2)

2, <53], 5,) + c52J(4 53) - M(^ 52)) mod T

= 0 mod (T) .

Here in the calculation, we used freely the facts (9.9.4), (9.8) iv), (9.9.2), (9.8.1)
and (9.10.3). D

Remark. Note that in the formula (9.11.1), Pa*(co) e Q$w (log 0%) but is not con-
tained in QSW except when co = 0. This fact is interpretated as that F^(co) carries a
"pure" logarithmic pole.

Corollary. Let V be the logarithmic connection defined on Ders^ in §6. Then for

(9.11.2) 7^(6)) €9.

Proof. Since I7 and F* are metric connection w.r.t. Iw and /£, we have F^(w(<:>)) =
o J(8)) = Tw(r%J(8))) e%. D

(9.12) Deinltion0 A T-endomorphism N: ^ -> ̂  is defined by

(9.12.1)

Assertion. Let JV*: # -^ ^ fee f/ze adjoint endomorphism of N w.r.t. the metric
J. Then we have the following:

(9.12.2) N + N* = id*? .

Proof. The formula is equivalent to

(9.12.3) J(N6,, S2) + J(Slt N62) = J(^, S2)

for <51; (52 e ^. The left hand of (9.12.3) is equal to

), w(<52)) + I

D

§ 10, A Graduation on

We introduce an infinite direct sum decomposition
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k=0

(-log<9j)- 0 9k9
k=l

by a sequence of T-free modules ^k (k = 0, 1, 2, ...). (For notations, recall (5.3.2),
(9.4.3).)

(10.1) Assertion. There exists an infinite sequence

^ (k = 0 ,1,2, . . . )

of T-submodules of DQTSW satisfying the following conditions.
i) 9t is a T-free module of rank I + 2 (i = 0, 1, 2, . . .) .

ii) <$ = %,

iii) DCTSW = ©
k=0

iv)
i=l

v) The multiplication of Ql induces a map,

6,19, - >9i®9i+l (i = 0,1,2, . . . ) .

vi) The bracket product with dl induces a T-isomorphism,

K,]:$+i - >$ (i = 0 ,1,2, . . . ) .

(10.2) Proof of (10.1) Assertion.
The proof is not hard but rather of technical nature. The properties ii), iv) and vi)

are enough to define the sequence ^ uniquely by induction on i as follows.
^ •— ̂
^0 • - ^5

^fc+1 := the inverse image of &k by the isomorphism (9.7.2), for which the property i)
is also automatic.

To show the decomposition iii) and iv), let us define,

(10.2.1) T<fc := {P e r[flj : deg (P) < k}

where deg (P) means the degree as a polynomial in Ot. Put

2) :=

and

^<k(-log A

Let us shown the following equalities:

(io.2.3)fc ^k = » 0 e» i©-- -e^ ,
(io.2.4)k ^<k (-log ei) = »!©•••© sr* ,
for fc = 0, 1, ... by induction on /c, which imply iii) and iv).

(10.2.3)0 follows from r<0 = T and (10.2.4)0 follows from (9.7.1). Assume (10.2.3),.



56 KYOJI SAITO

and (10.2 A)j for j < k. Since we have the isomorphisms vi), the bracket product with dl

induces the isomorphism:

[3,j:^k(-iogei)^<*-i)-
Since ^<k = ^< ( fc_1}©^& (direct sum) due to (10.2.3)k, the isomorphism (9.7.2) induces
^<k( — log @j)©^&+1 (direct sum). Hence recalling the direct sum decomposition
(9.7.1), we obtain,

^o © #1 © ' ' ' © *k+i (direct sum) .

Let us call this module Jfk+i as T-submodule of Ders^. We have only to show the
equality J^k+1 = ^<(k+i) ((10-2.3)k+1), since (10.2.4)k+1 follows from this, the fact @k+1 c
Ders^( — log 0%) and (10.2.4)fc. The equality is shown by induction on fc, where JT0 =
% is definition. Recalling vi), d e Jf^+1 if and only if [3/, d~] e J#l for Ic > 0. On the

1 d l d
other hand, for d = X 9j(0)-^> we have [d,, 5] = J] (3i0/0)) ^-. Hence 5e

j=-l 00f j=-l C/fy

#< (k+i) if and only if [d,, 5] e ^<fc for Ic > 0. These together with JT0 = ^0 imply the
result.

v) This is also shown by induction on i, where the case / = 0 is trivially true due
to the fact ^0 © ^i = «^i shown above. Assume that the case i = k > 0 is true. In
general the formula [3j, 0J = 1 implies the relation: [3j, 0Z<5] = <5 + 0j[dj, <5]. If <5 e ^k+1,
then [3Z, <5] e ^fc so that by the induction hypothesis the right hand of the relation
belongs to &k © ^fc+1. On the other hand since 6 e ^k+1 c Ders»K ( — log 0%), we also have
did e 0^fc+1 c= Ders^( — log 0%). Hence applying the isomorphisms (9.7.2) and vi), we
conclude that 0,5 e ^k+1 © ̂ k+2. D

(10.3) Extend naturally the T-linear map w (9.8.2) S^-linearly to a map, denoted by the
same w:

(10.3.1) w: Ders^ - 9 ®r S
w - > Ders^ (-log

This is an S ̂ -isomorphism, since a T-free basis of ^ is send to an S^-free basis. The
map w is "the main part of the product by 0," in (10.1) Assertion v).

Assertion The map w (10.3.1) preserves the decomposition (10.1) iii), inducing T~
isomorphisms: ^-^ ^ ^ for i = 1, 2, 3, . . .

Proof. Let us denote by v the T-isomorphism (9.7.2). It is enough to show the
following formulae.

(10.3.2) I>,w

(10.3.3) v\9t = i

Proof of (10.3.2). For 6 e & and 0 e Sw, recalling (9.8) Assertion ii), we calculate:

[v, w](0<$) := [3I9 w(0(5)] - w(K, 0<5])

=05 = idDers,(05) .
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This is enough, since ^ generates Ders^ as an S^-module.

Proof of (10.3.3). For i = 1, (10.2.3) is true due to (9.8) Assertion ii). Assume
(10.2.3) for I For 6 e 9i9 applying (10.2.2) and noting that v(S) := [dh <5] e ̂ _1?

v o w(5) = w o V(d) 4 [v, w](<5) - iv~l(v(d)) + 6 = (i + 1)5. D

The formula (10.3.3) implies the standard isomorphisms:

(10.3.4) % *^=±9i .
(l/il)vl

(10.4) The relationship between the direct sum decomposition of (10.1) and the con-
nection V introduced in §6 is the following.

Assertion. The restriction of the connection V induces the map:

i) V\ 9{ x 9j -» ^< i+j for i, j > 0 with i+j> 1.
ii) rdl:9J^9zj_1 forj>l.

Proof, i) It is enough to show cases i = 0, j = 1 and i= 1,7 = 0, since the other
cases are reduced to these cases, as

Case i = 0, j = 1: Substitute <52 = w(S) and <53 = w(^) for ^ and ^ e ^ in the formula
(6.2.1). Applying (9.9.2) repeatedly,

Applying (9.8) Assertion iv), we rewrite

8, £)) + J(5, [w(£), 5J) -

{, ̂ ) 4- J«, [S19

+ J(£, [519 5])) 4- **)/2 6 T<15 where * e 9 and ** 6 T.

Then due to the non-degeneracy of J (9.6) Assertion, PSlw(5) belongs to 9
9,.

If dl = dh applying (9.10.1), we do the same calculation,

& + dti - [(5, ̂ ]T) 4 tcrmsVl

= terms/2 e T.

This implies that rdlw(5) e 9.
A more detailed calculation shows the equality:
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- 6t* [d,

T 2

In^J — lmn

So we obtain a formula:

(10.4.1)

-!«=_

(10.5) Remark. If one put
00

3^fc .— £ft<^ fr — 019
sXfc' . ^^ e5?/ A- V/, J- , ^>, . . . .

Then due to (10.1) Assertion v), this is a decreasing sequence of S^-submodule of ' .
free of rank / + 2. We do not know whether this gives the Hodge filtration coming from
the period mapping theory. For the purpose, one needs to show the following:

Question. Does the restriction of V induce a map F:% x ^ -> ̂ _x © ^ ?

§11. The Flat on Sw

As the goal of the present paper, we formulate the flat structure on Sw in (11.5)
Theorem,,

(11.1) We recall some technical notations.
0) Sw ~ T(H, fly [003..., 0,] := the ^-invariant ring (4.3.3).
1) V\ DerSfr x Ders^ (log 0j) -*> DQTSW := the metric connection (6.1).

ii) di := a normalized derivation of Sw (9.4.1).
iii) T:= {9 e Sw: 5,0 = 0} is a subalgebra of Sw with Sw = r[0,] (8.1.1).
iv) ^ := {S e Ders^: [5|9 5] = 0} is a T-free module with Deisw ^<&®TSW (9.5.2).
v) w: DQTSW -> Ders^ ( —log 0%) := an ^^-isomorphism (9.8.2), (10.3.1).

vi) J: ^ x ^ -> T :=a nondegenerate T-symmetric bilinear form (9.9.1).
vii) N := a T-endomorphism of # (9.12.1).

(11.2) Lemma0 There exists uniquely a connection V* on <& as a T-module,

(11.2.1) F#:Derr x ^-^^,

t/ig properties i)-vi), which are explained below.
i) F# is integrable.
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ii) V* is torsion free in an extended sense.
iii) V* is metric with respect to J.
iv) F#N = 0.
v) di G ̂  is horizontal

vi) dx G J^ is horizontal.
These mean explicitly the following:

0) The map Vf v (for 6 e Derr and v e &) is T-linear in 6 and satisfies the Leibniz
rule:

for feT.

i) For v(5, f G Derr

ii) For w, v e ^

(11.2.3)

wftere if 0raJ i? are the images of u and v in Derr by the projection map (9.5.4).
iii) For 6 e DerT and u, v E&

(1 1.2.4) S J(u, v) = J(V* u, v) + J(u, Vf v) .

iv) For d G Derr and ^E^

(n.2.5)
v) For 6 G Derr

(11.2.6)

vi) For w, t; G ^

(11.2.7) (7*v)"t = uvt.

Proof. The existence and uniqueness of connection F# satisfying ii) and iii) can be
shown by a slight extension of the Levi-Civita connection for the metric J on ^, which
will be given in (11.3). By a use of the explicit formula for P#, we give a proof of v)
and vi) in (11.3).

An essential feature in the Lemma is that this Levi-Civita connection satisfies
further i) and iv). This is shown in (11.4) by a comparison of V* with V.

(11.3) Existence of F#: First, let us define a map:

(11.3.1) P# # :^ x ^-»^,

by the formula:

(11.3.2) J(F/#£, ri) = (dJ(£, r,) + J(& [17, (5]) - nJ& 5)

- J(K, 17], 5) + £/fo, 5) + Jfo, [5, £]))/2 .

This definition has a meaning, since the right hand of (11.3.2) is shown to be T-linear in
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the variable Y\ and that J is a non-degenerate T-bilinear form. It is easy to check that
the map F## is T-linear in the first variable d and that it satisfies the Leibniz rule:
Vf #(f£) = <5(/)£ + fVf #£ for /e T and 5, £ e 9. Also from the formula (11.3.2), one
checks easily the relations:

and

Let us show:

(11.3.3) r$*d = Q for v < 5 e ^ .

(Proof. Substituting 3Z in (11.1.7) and applying (9.10.1),

3,) - J(K,

= 0. D)

The facts (11.3.3) and that F## is T-linear in the first variable imply that F## is
factored through a connection on 9, denoted by F# (cf. (9.5.4)):

r£v:= V* #v .

The induced map F# has the required properties ii) and iii) due to the relations
for P## .

Uniqueness of V*\ Using the short exact sequence (9.5.4), let us lift the map F#

(11.2.1) as a map F## (11.3.1). Noting that ^ is closed under the bracket product (9.5)
ii), a similar calculation of the uniqueness of F in (6.2) 1. can be used to deduce the
formula (11.3.2). Details are omitted.

Proof of v) and vi). Substituting dl in the formula (11.3.2) and recalling the fact
(9.10.1), we obtain:

v) J(7* #dh r,) = (8J(dh n) + J(dh [if, <5]) - nJ(dl9 d)

jl d) + 3fjfo, d) + Jfr, id

+ J(dl9 [i,, dj) - r,j(dl9 d))/2
= o.

vi) J(Ff #^, ^) = (8J(t, d,) + J({, K, 5]) - 8tJ& d)
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= (dJ(t, 5.) + &&, d) + J(dt, [8,

Notations. From now on, we shall confuse the maps V* (11.2.1) and P## (11.3.1).
Both maps will be denoted by the same V* .

(11.4) To proceed further the proof of (11.2) Lemma, let us give another expression of
F# in terms of V in the following.

Assertion. Let the notations be as in §9-10.

1) PaW'(£) = w'(P/ £) mod S^ for i>l,d,te$.

2) pay(£) = w---i((N + i - IK) mod^< ;_2 /or i > 1, 5, £ e % .

Proof. 1) Since V: <00 x ^ -> 00 © ^t (10.4) Assertion i), one defines a map
F(8, £)€& by the relation (7

gw(<^) = w(F(<5, £)) mod ^0. Let us show by induction on
i > 1 that

^ /or i > 1, 5, £ e ST .

Assuming this for i, let us apply Vd on w'+1(^) = w'(0,^ — 0, * ̂ ):

*)

It is a routine work to check that F is in fact a connection on the T-module
whose detailed verifications are omitted. Furthermore, if we have shown that

a) the connection is torsion free in the extended sense,
b) the connection has the metric property w.r.t. J,

(cf. Lemma ii) and iii)), then the uniqueness shown in (11.3) implies that F(S, £,) =

a) W(F(5, £) - F(& d)) = F,w({) - P4w(5) mod^<0

F * £ - P * a

= w([5, £]) mod ̂ <0 . / /

b) Recall the metric property of V w.r.t. /$•.
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Hence, by taking the derivatives by dt, we have

The left hand = 8^(9,^, r,) - J(£, 9 * rj))) = 5J({, r,).

The right hand = 5,(/(Faw(0, r,) + J(£, F.vvM))

= 8l(J(w(F(d, £)) + *,?/) + Jtf, w(F(d, n) + *))

= J(F(8, £), n) + J(t, F(5, r,)) .

(Here * implies an element of &.) / /

2) The case i = 1 is the definition (9.12.1).
Assuming the formula for i, let us calculate

*) + w'(£) - F^w'^* {)

= ^(w'-^^ + i - IK)) + w'(£) mod ^^i

= w'((JV + i)« mod «?<;_! . / /

These complete the proof of the Assertion. D

Using the expressions 1) and 2) of the Assertion, let us show the remaining i) and
iv) of the (11.2) Lemma, which are now a straightforward calculations as follows.

i) Integrability oft7*. For i > 2, let us calculate,

) mod «?<,._!

mod^,-!

- F[i>aw'(ff) mod ̂ <(_!

j) - w'CFttgi;) mod ̂ <;_!

(Ftf.ai;) mod 9^ / /

ii) For

mod (^

mod

- F,w'(i{) mod

mod

= wf((AT + OF/0 - w'(iF/£) mod

These altogether prove the (11.2) Lemma. D
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(11.5) Let us give the consequence of the (11.2) Lemma. Let the notations be as in
(11.1) and recall some more notations of (2.4).

Theorem (The flat structure on Sw)
Let (R, G) be a marked EARS such that cod(#, G) = 1 (2.4.2).
1. There exists a quintuplet (O, J), N, T, P), "where
i) Q is a complex graded vector space of rank I + 2, whose weights are: 0 := m_ l 5

-m0, . . . , -m, (= -(lm + 1)) (cf. (2.4.3)). I.e.

Q = © £2-mt, rankc Q-^ = multiplicity of mt ,
m,

ii) J is a nondegenerate symmetric bilinear form on Q, which is homogeneous of
degree mmax. Hence J induces the perfect paring:

for any mh

iii) N is a graded endomorphism of Q given by

such that N -h N* = id^ for N* := the adjoint of M with respect to J,
iv) i is a homogeneous C-linear coordinate of Q of degree 0,
v) P is a graded C-linear embedding of the C-dual space Q* of Q into the

invariants Sw (4.3.3), such that
a) P maps the t e O* to the coordinate t e Sw (3.2.1) and a C-linear functional on

£2-mmax to the normalized generator 6t e Sw in (9.3).
b) P induces the algebra isomorphisms:

Sw ~ r(H, 0H) ® $l®*l and T - r(H, (9H) ® s © fi
C[t] C[T] Lmt< Wmax

S[F] means the symmetric tensor algebra of V over C. Hence an element of Q
can be extended to a derivation of Sw, inducing a map P* : Q — » Ders^ and an isomorphism
for the small tangent module ^ (9.5.2):

p*. O 6^ T ~ ^i . &£ v^y l — s' .
C

c) By t/ie identification in b), t/ie J on Q is identified with the metric J on the small
tangent module ^ ((9.9.1), (9.6.2)). I.e.

J*(G>I, a>2) = ^/^(^(coj, dP(co2))

for {W l9 a>2GQ*. (Here lw is a metric on Ders^ induced from the Killing form
(§5(5.2.3)).)

d) Ity t/ze identification in b), £/ie N on Q is identified with the endomorphism N on
the small tangent module <& ((9.12.1)). I.e.

for d E Q. (Here V is the Gauss Manin connection on Dersw (§6 (6.1)).)
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2. Such quintuplet (Q, J, 1^1, t, P) is unique up to a graded affine linear isometry of Q
leaving T, J and N invariant. Particularly the image set P(Q*) in Sw is unique.

Note. The above construction induces an identification of the space Spec(Sw) with
the flat affine half space {x e Q: Im(r(x)) > 0} = H © © Q-^t. This is the reason

0<m,

for the name "flat structure".

Proof. The Theorem is essentialy a reformulation of the (11.2) Lemma. Put

Q := {£ 6 <S : F/£ = 0 for v£ e Derr}

for which let us show the following i)-iv).
i) Q is a graded complex vector space of rank / + 2 with the prescribed degrees.

ii) For v5,£ef l , [5 ,£ |=0.
iii) The restriction of J on Q defines a complex constant valued form, which we

shall denote by J.
iv) The restriction of JV on Q induces an endomorphism of D, which we shall

denote by N.

Proof.
i) Since F# is an integrable connection, one has &~Q®CT. This implies

rankc£2 = rankT^ = 1 + 2, and the graded module structure of % over T, generated by
elements d/dOi of degree — mi9 is inherited to Q over C.

ii) Torsion-freeness of F# implies this.

[<5, £] = Vft - V*b = 0 for (5, { e Q .

iii) Metric property of V* implies this.

dJ(6, <*) = J(F#<5, f) + J(5, r*£) = 0 for <5, £ e Q .

iv) That N is horizontal implies this. If 3 € Q then V#N(d) = N(V*d) = N(Q) = 0
implies N(5) e Q. For the formula for N, recall (9.11.2) and (9.9.4).

The dual vector space of Q is realized as the horizontal space,

where 3F (defined in (9.5.1)) is a dual T-module of ^ and F#* is the dual connection of
V* . Of course O* is a graded vector space with additional structures. In the following
I - III, we embed Q* into Sw:

I) Let us show that any element at of 12* is closed as a differential form. Sub-
stitute (5, £ e Q in the formula

Then each term of the right hand vanishes. This implies dco = 0, since
£2 ®c Sw- ^n the other hand, since the sequence 0 -> C -> S^ -* Ojw -»O|̂  -> • • • is
exact (From the analytic view point, this is trivial, for Spec (Sw) ^ H x Cl+1 is simply
connected.), for any CD e D* there exists some 0 e Sw such that 60 = dd.
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II) If co is homogeneous of positive degree, one may choose 8 homogeneous of the
same degree and this choice eliminates the ambiguity of the constant term of 6 and so
we put 9 := P*(co).

III) Let us show di e O*. Recall (11.2) Lemma vi). Then for v<5, £ e Derr

- o.

We shall call the element x := di £ Q* and define P*(T) :=T.
These I), II) and III) together define the inclusion map P*.

Proof of a). Remark that dl £ Q, due to the fact (11.2) Lemma v). Hence for any
co £ O*, we have <3jP*(co) £ C.

Proof of b). Since O* is the set of linear functional on Q, the inclusion map
P* : Q* c S^ induces a F(H, 0)-algebra homomorphism,

CM

which is obviously an isomorphism of graded algebra, since both are polynomial
algebras over F(H, 0) with equally graded generators.

Proof of c) and d). By the definition of P*, for any linear coordinate co £ O* of O,
the differential JP*(co) coincides with co. So J*(dP*(co), JP*(co')) = J*(co, co') = J*(co, co').
A similar proof is valid also for the case d).

2. Obvious from the unicity of V*.
These complete the proof of the Theorem. D

Notation. For a linear basis o^ (i = 0 , . . . , / ) and di of £2*, the system of functions
P*(cof) £ Sw (i = 0,..., I) and i will be called the flat generator system of Sw.

Problem. Determine explicitely as 0-functions the flat generator system for Sw.
Compare also a flat generator system with the fundamental characters & (i = 0,.. . , /).

For a suitable arithmetic subgroup F c SL(2, Z), one should study the quotient
Q/T by extending the action of WR on E by the group F.

Appendix. Families of Line Bundles over Elliptic Curves

This appendix gives an elementary invariant theoretic construction of families of
line bundles over elliptic curves with an Hermitian metric on it. This leads to a
construction of simple elliptic singularities [21], which is an attempt toward a construc-
tion of a hyperkahler structure on smoothings of a simple elliptic singularity, while such
structure is constructed for a simple singularity by P. Kronheimer [34].

Line bundles over elliptic curves is a classic and there may be many different
approaches to the objects. The approach in this appendix is a Heisenberg group
invariant theoretic one, which is parallel to this paper and we shall use often the same
notations to indicate an analogy. The detailed verifications of the statements are left to
the reader.
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(A.I) The semi-positive quadratic form I and its extention I.
Let F be a real 3 dimensional vector space with a positive semi-definite symmetric

bilinear form:

(A.I.I) IiFxF >R,

whose radical rad (I) := F1 has rank 2 over R.
Assume that I is defined over Z in the sense that
i) 3g : a free abelian group of rank 3, s.t. Q ®z R = F.

ii) I\Q (x) Q is integral valued and I(Q, Q) = Z.
Under the assumption, rad (1) fl Q is a free abelian group of rank 2.

A 1-dimensional R-subspace G of rad (I) defined over Z is fixed and will be called
the marking for 1 as in this paper (2.1) Def. A generator of G fl Q ~ Z, denoted by a, is
unique up to a sign.

Depending on G, there exists uniquely a pair (F, I) of a real vector space F of rank
4 and a symmetric bilinear form 7 on F (up to a linear isomorphism) such that

i) There is an injective linear map: F c: F, regard as inclusion.
ii) T\F = L

in) rad (I) = G.
Once and for all in this Appendix, we fix basis z, b, and a s.t.

Q = Zz + Zb + Za, and rad (1) fl Q = Zb + Za .

The intersection matrix of J with respect to the basis (z, fe, a) is

"l 0 0"
0 0 0
0 0 0

By a suitable choice of a base 1 e F\F, the intersection matrix for 7 with respect to the
basis (I, z, 5, a) becomes:

~0 0 1 0
0 1 0 0
1 0 0 0
0 0 0 0

The choice of the basis 1, z and b are done only for the sake of explicitness and that the
choice does not affect the results of the appendix.

(A2) The Eichler Siegel transformations E and E.
Let the notations be as in (A.I). Let us define a semi-group homomorphisms,

called an Eichler Siegel transformation for /,

(A.2.1) E: F ®R F/rad (I) > End (F),

as follows (cf. § 2 (2.3) or [25, §1]): For u G F and £ Pi ® ^ e F ®R F/rad (J),
i
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(A.2.2) E £ Pi ® q- (u) := u - Z p,/teis u) .
\* / '

Here the semi-group structure on F ®R F/rad (I) is defined as

(A.2.3) ( X Pi <8> fc ) ° (Z 0 ® sj ) := Z Pi ® fc + Z 0 ® s; - Z Z P.-
\ <" / \ J / ' J * J

Similarly, one defines the Eichler-Siegel transformation for J

(A.2.4) E: F ®R F/rad (J) - > End (F) ,

by replacing I by Jin the expressions (A.2.2) and (A.2.3).

(A. 3) The Heisenberg group H.
Let 0(F, /) (resp. 0(F9 /)) be the set of linear isomorphism of F (resp. F), which

preserves / (resp. I).
For {; = xz®z + pa®z + qb®zEF® F/rad (I) with x, p, q e R, we have,

z
b
a

=
~l-x -q -p

0 1 0
0 0 1

z
b
a

Hence E(£) e O(F, /) if and only if x = 1 — e for e e { ± 1}. This implies the following
short exact sequence:

(A.3.1) 0 - > H - > PT -^ { ± 1} - > 1 ,

where PF := (F ® F/rad (/)) n F"1 (O(F, /)),

H:=(F® F/rad (/)) n E~\SO(F, I)) = rad (/) ®R F/rad (/).

The group structure o (A.2.3) on H coincides with its vector space structure of rank 2
generated by a® z and b® z. So the group W is an extension of {±1} by H ~ R2,
where the extension of (A.3.1) is given by the action of —1 e {±1} on the vector space
by -idR2.

xz®z + pa®z + qb®z r ^ r / A ,7, -^ nFor f = e F® F/rad (1) with x, y, z, p, q, r e R, we

have

a

1 — y —z —r
0 l-x -q -p
0 0 1 0
0 0 0 1

z

Hence F(£) e 0(F, /), iff x = 1 - e for e e {± 1}, y = -£qandz = q2/2. So

(A.3.2) £ = (l - &)z®z + pa®z + qb®z-e,qz®b + ̂ q2b ®b + ra®b

We obtain a short exact sequence,

(A.3.3) 0 »K >W-^>W >1

where
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i) W:= (F ® F/rad (7)) n E~l (O(F9 7)),
ii) K := rad (7) (x) (rad (I)/rad (7) ~ Ra (x) b,

iii) The map F^ is induced from the natural projection:

F (x) F/rad (7) »F ® F/rad (I).

iv) Let us define index 2 subgroup H of Why

H:=(F® F/rad (7)) H E-l(SO(F, I)) = P~l(H).

H is a Heisenberg group, for which the commutative diagram holds:

0 0

1 i
0 >K > H -^ H »1

II n P* n

i det I det

i i

1 1

As a set, // is parametrized by (p, ^f, r) e R3 as follows.

(A.3.4) ^pqr := pa (x) z + qb ® z — qz ® b + ^g2b ® fo + ra ® b .

The multiplication rule for <fs and its action on F are given by:

(A.3.5) £, ro£ , ,, = £ + , + , r+r,+ ,

(A.3.6)

a

1 q ~q2/2 -T
0 1 -q -p

0 0 1 0
0 0 0 1

Remark. The following 1, 2 together with 3 show that.
An H-invariant symmetric bilinear form on F, which is not zero on F, equals to a

constant multiple of 7 up to an automorphism of F by a central element of F ® F/rad (/).
L The space of H-invariant forms on F is given by (A.3.7) [H-invariant symmetric

bilinear forms on F} = R7 + ^7^. Here Tx is a symmetric form on ¥ characterized by
7^(1,1) = 1 and 700|(F x F)U(F x F) = 0. The intersection matrix for 7^ w.r.f. the basis
(1, z, b, a) is:

"l 0 0 0"
0 0 0 0
0 0 0 0
0 0 0 0

2o The center of the following group is given by
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Z((F <g> F/rad (/)) n £-l(GL(F)))

= rad (I) ® (rad (J)/rad (/ )) - Rfe ® b + Ra ® & .

where the group structure o in the second line coincides with the addition as the vectors.
Additionally, we notice that,

(Rb ® & + la <g) fc) 0 F-HOCF, /)) = Ra (x) & .

3. Let /! be an H-invariant symmetric forms on F, which is not zero on F.
Then there exists a constants e, d e R such that for g := E(cb ®b)e SL(F), we have

= dT(x, y) for x9yeF.

Proof.
1. Use the expression £pqr (A.3.6) for an element of H.
2. £({) (£ e F ® F/rad (T)) belongs to the center, iff £ e F1 ® F1.
30 Due to 1, /! = d(f + 2cJ^) for c, d 6 R with d^O. Put gf := E(cb ® b). Then

g~l(x) = x H- c/(x, fo)fo, etc., and hence

/to'1 M, ^~1(3^)) = ?(x + cJ(x, &)6, y + cf(y, b)b)

= T(x, y) + 2c/(x, b)T(y, b)

= (I + 2cT00)(x,y). D

(A.4) Discrete subgroups Hd of the group H.
Let us consider the lattice Hz of rank 2 in the group H.

(A.4.1) HZ:=(F® F/rad (/)) H E~l(SO(Q9 /)) = Za ® z © Zb ® z .

For an integer a7 e Z with d ^ 0, let us consider subgroups Hd of P~^(HZ) c H,
satisfying the short exact sequence

(A.4.2) 0 - > Z^a ® b - > 5d ̂ L, ̂ z - > o .
a

Such subgroups Hd's are parametrized by the real 2-torus

(A A3)

as follows. Namely put

(A.4.4) HT := ^, /) 6 P^HHz) x Td : r = /(p, g)

where l(p,q) := l(P*(£pqr))- Hd
ot is a 2-dimensional manifold. The natural projection to

Td induces a covering map:

(A.4.5) n:HT - >Td.

The fiber Hd(l):= n~l(l] over /e Td is closed under the product o, for rx = /(p l 9 ̂ J and
r2 = '(P2? ^2) implies rx + r2 + p2<?i = '(Pi + P2> <?i + ^2)- (Note that Hd

ot is not a group
and 7i is not a homomorphism in o.)
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Explicitly the group Hd(l) is given as follows.
For (M, v) e R2 ~ Homz(JFfz, R) = the universal covering of Td, put

(A.4.6) Hd(u, v) := {tp,q,pu+qv+r/d : (p, q, r) e Z3} .

This depends only on the image / e Td of (ti, i;) e M2, which is Bd(l).
It is a straight forward to see that all groups 8d(l) (I e Td) are isomorphic each

other, denoted as Hd as an abstract group, and satisfy the short exact sequence

(A.4.2). The monodromy action -Iff := nATd)-^ Aut (Hd) of (A.4.5) will be given in
a

(A.9.2).
To see that Hd(I) (I e Td) are the only subgroups of H satisfying (A.4.2), it is enough

to choose and fix an element of P*l(a ® z) and P^(b ® z) as £10M and £oli; for a u, v E R
respectively.

The extension class of (A.4.2) is calculated as follows. Let

(A.4.7) J: Hz x Hz - > Z

be the unique skew symmetric form with J(a ® z, b ® z) = 1, so that

Extl(flz, Z) - A H°mz(Hz, Z) = ZJ - Z .

Since £MO gives a section Hz ->• Hd(0) for P^ (A.4.2), the extension class c of the sequence
(A.4.2) is calculated by

c(pa ® z + qb ® z, p'a ® z + q'b ® z) := ^M0 o £p.q,0 - £p,q,0 o £pqQ

= Zoow-qp') = (P<lf ~ qp')d(a ® b/d)

- (Pi' - qp')d

= dJ(pa ® z + gfe ® z, p'a ® z + q'b ® z) .

Assertion. Tli^ extension class of (A.4.2) fs rfJ e Ext|(/fz, Z).

Remark. It is easy to see that Hd(/) is Zariski dence in the group 5. As a
consequence, any I?d(/)-invariant symmetric bilinear form on F is automatically H-
invariant, and therefore, it is a linear combination of 1 and /„ due to (A.3) Remark.

(A.5) Conjugacy relation among Hd(l).
Recalling the product rule (A. 3. 5), for any p, q, r, s,t,ue R,

where J := J(P*(£pqr\ P*(£stu)) = pt — qs

is the R-linear extention of (A.4.7), denoted by the same J.

Assertion, Groups Hd(l) and Hd(l') are conjugate by a £stu, where /' —/ = ( —t, s)
1
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Proof. Comparing (A.4.6) with (A. 3.5), we have

This is the reformulation of the fact that an orthogonal base change:

(A.5.2)

a a

1 t -t2/2 -u
0 1 -t s
0 0 1 0
0 0 0 1 a

transforms the matrix representation of E(£pqr) (A.3.6) to

(A.5.3)

a

pqi

1 3 — 2<?2 — r + pt — qs 1'
0 1 -q -p z'
0 0 1 0 b
0 0 0 1 a

whose matrix is the same as that of

(A.5.4)

a

1 # —i<?2 —r + pt — qs

Q I -q -p

0 0 1 0
0 0 0 1 a

(A.6) The complex half spaces E and E.
Let us define complex half spaces.

E := {x 6 HomR(F? C): fl(x) = 1 and Im(ft(x)) > 0} .

E := (x e HomR(F, C): a(x) = 1 and Im(b(x)) > 0} .

H := {x 6 HomR(rad (I), C): a(x) = 1 and Im(ft(x)) > 0} .

Here a, b e rad (/) are regarded as complex valued linear functional on the dual spaces
of F, F and rad(J). Put

(A.6.1) i :=b/a,

by which H is identified with the complex upper half plane.

Notational remark. For convenience, the same notation i is used for different
meanings as in (3.2) Notational remark.

The inclusions: F =3 F ID rad (I) induces natural projections:

(A.6.2) E »E >H.

The fibers ET and ET over T e H are affine spaces of dim. 2 and 1.

(A.7) Principal C*-bundle L* over a family X of elliptic curves.
The left action of E(g) forgeWonF (resp. E(g) for geW on F) fixes rad (/)

pointwisely (cf. (A.3.6)). So its dual action E(g)* induces a right action on E (resp.
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E). The homomorphism P^ (A.3.3) is equivariant with the projection E-»E (A.6.2).
Let us describe the quotient spaces E/HZ and E/Hd(l) by the discrete subgroups Hz

and Hd(l) (I e Td).

Assertion,, i) The action of Hz on E is properly discontinuous and fixed point
free. The quotient manifold is denoted by X := E/HZ.

ii) The projection map,

(A.I.I) X >H3

induced from (A.6.2) is a family of smooth elliptic curves. The fiber over t e H is an
elliptic curve of modulous i.

iii) The action of Hd(l) I for IE Homz( Hz? R/[ -Z ) ) ) on E is properly dis-
\ \ l\d JJJ

continuous and fixed point free. The quotient manifold is denoted by L*(/) := E/Hd(l).
iv) The projection map,

(A.I.2) LJ(0 »X,

induced from (A.6.2) defines a principal C*-bundle over X, whose Chern class in
H2(X, Z)~Z is equal to d.

v) For any two I, I' e Td9 there exists a pair (<pstu, i//st) of complex analytic iso-
morphisms, making the following diagram commutative.

Vstu(A.7.3)

where s, r, u e K. are real parameters satisfying a relation:

I' — l = ( — t, s) mod-fff .
a

Notation. The complex analytic isomorphism class of Lf (I) is denoted by Lf, which
will be represented by Lf (0).

Proof. We consider (1, z, t = fo/a) (resp. (z, r = fe/a)) as complex coordinates for E
(resp. E). The action of an element £ e Hd(l) is given in (A.3.6). Then i) and ii) may be
obvious from the description: For tpq: = pa (g) z + qb ® z e H% (p, q e Z),

(A.7.4) t^W = z-qi-p.

Due to (A. 5) Assertion, one has the commutative diagram:

E ——> E

E
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Hence iii) and iv) are reduced to the case where Hd(Q) and the isomorphisms of v) are
given by

cpstu := the isomorphism induced from

\l/st := the isomorphism induced from

1
Let us explain the Assertion for the case Hd(0) explicitly. The generator -a®b of

a
K acts on the coordinate system of E by

(A.7.5) E^axb}
(da® )

~r
z
T

=

T
z
T

- 0
0

Hence by introducing a new coordinate /I

(A.7.6) A := exp (In

the quotient variety E/Zl -a ® 5 1 is a C*-bundle over E.
V* /

Recalling again (A.3.6), the action of a translation tpq\= pa® z + qb® z eH-^^

Hd(l)/Z \-a®b} (for p,qe%) on the coordinates A of E/Z ( -a ® b } is given by,
\d J \d )

(A.7.7) t*pq(X) = etpq^

where

etpq
 := exP (27ryz:Irf(-gz + ̂ 2i)).

As is well known [14], this gives a line bundle of the Chern class d e H2(X, Z) over the
elliptic curve X.

This completes a proof of the Assertion,, D

(A.8) Indefinite metric on L*(/).
In the spirit of the present paper, we consider the metric on the space LJ(/). Some

readers may be suggested to skip to (A. 10).
By construction, the (co-)tangent space of LJ(/) at a point x is canonically

isomorphic to that of E.

rx(LJ(/)) ^ C ®R (F/G)* , T/(L|(0) ^ C (x),, (F/G).

Hence we have cannonical isomorphisms:

DerLJ(/) - 0Lm ®R(F/G)* , fliJ(/) - (9L*(l] ®R F/G ,

where SL*(i)? DerL*(/), and QLJ(/) are ^e sheaves of germs of holomorphic functions,
vector fields, and 1-forms on Lf (/) respectively.

Consider now the dual of the bilinear form 7: F/G x F/G -> R.

7*:(F/G)* x (F/G)*->R,
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By extending /* complex linearly to the tangent spaces, one obtains a non-degenerate
^-bilinear form:

(A.8.1) I*: DerL|(/) x DerL

As a tensor, this is expressed by a form:

(A.8.2) CD := dz (g) dz H == (— ® di + dt <g) — J.
^ *

The 0-bilinear form (A.8.1) induces the (9 -isomorphism:

/* :Derwo (-log X) =- QlM (log X) :

d - 1

—-<^dz
dz

—-4-*di: .
OA

By extending the real bilinear form I* sesqui-linearly to the tangent spaces, one obtains
in the same way a Hermitian form:

(A.8.3) g := dz <g) dz 4- - r=\~T ® di - d-c <g) — J .

The ^ is not positive definite but indefinite of the sign (2, 1). It is a trivial calculation
to show that

i) g = dd(\z\2 + 2Re (If)) = dd ( \z\2 + -J- Im (log (Xftj\ ,
\ dn J

ii) Rice (g) := dd log det
0 0 I/A

5 = 0 .0 1 0
I/A 0 0

The fact that E(£stu) e 0(F, 1) implies the following.

Assertion,, The isomorphism cpstu: L$(l) -»LJ(i') of (A.I) Assertion v)
forms CD and g invariant.

(A. 9) Real deformation of LJ ouer the torus Td.
In this §, we consider a group Hd satisfying the extension:

>-
d

and its action on E := E x Homz (ffz, R). (cf. Remark 2).
First we define I?d by a topological argument as follows.
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Consider a manifold $?, which is a quotient of H x Td by the relation: (x, /) ~
( y ^ l ' ) ^ > l = ll and 3£elfd(/) s.t. E(£)ox = y. By definition, there is a locally trivial
fibration Jf -> Td, whose fiber over / e Td is the quotient manifold Hd(l)\H. Put

Recalling that H ~ E3 and Td ~ Homz (Hz, R)/-HZ and applying the homotopy exact

sequence for the fibration, we obtain (A.9.1).

The action of —HS on Hd induced from the extension (A.9.1) is the same as the
a

monodromy action of the covering (A.4.5), given

i ,(A-9.2) (m, n) e H| i - > KM.r/di-> tp,q,(pm+qn+r)/d) e Aul (Hd(0)) .

The group Hd consists of the symbols:

(A.9.3) Hd = {Spiqtrfdinldtn/d : p, q, r, u, v E Z} ,

such that the multiplication rule is given by

(A.9.4) £<p,q,r/d,m/d,n/d0^p',q',r'/d,m'/d,n'/d = ^p+p',q+q',(r+r'+pm'+qn')/d+pq',(m+m')/d,(n+n'yd •

As is easily seen from (A.9.4), we have the exact sequences:

(A.9.5) 0 - > Z ( -a ® b } - > Hd - tH^x-H* - > 0 .
\d ) d

0 - >%(^a®b\ x-H* - >Hd - >HZ - >0.
\u J a

The action of ^p,^r/d,m/d,n/d e Hd on the space,

(A.9.6) E := E x Homz (Hz, R)

is defined by

(A.9.7) ^P,q,r/d,m/d,n/d(^ u, v) := \E*(£ptqtpu+qv+r/d)x, u + - m, v + - nj .

The action of Hd is properly discontinuous and fixed point free so that we define the
quotient (real) manifold:

(A.9.8) L| := E/Hd .

Natural projection E -> E x Homz(Hz, R) induces a map

(A.9.9) L* - >X x Td

due to the sequence (A.9.5). The map (A.9.9) is a principal C*-bundle, whose fiber
1
d'

coordinate is given by A (A.7.6) and the action of T:= Tptqtmldtn/d e Hz x ~HZ on A is

(A.9.10)
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where

(A.9.11) eT := G\p(2n^/^ld( — qz + ^q2i + pu

By forgetting the first factor in (A.9.9), one obtains a map:

(A.9.12) LJ - >Td.

The fiber over / by this map (A.9.12) is the space L$(l) in §7, and the restriction of the
C*-bundle (A.9.9) to this subspace is the C*-bundle (A.7.2).

Remark 1. The family (A.9.12) is topologically non-trivial, since the monodromy

action of -Hf ~ 7r1(Td? 0) on the homotopy group of the fiber is given by (A.9.2), which
a

is nonzero.

Remark 2. It was shown that the fibers Lf(J) of (A.9.12) are complex analytically
isomorphic preserving the forms CD and g (§7 Assertion v) and §8 Assertion). One may
ask, which differential geometric structure in the frame bundle of LJ is deformed in
(9.12).

Remark 3. In a sense, the construction in this Appendix is incomplete. To obtain
a complete picture, one should consider an extension of Aut (ffz) by the group Hd . I.e.
instead of (A.9.1), one should consider an extension of the group Aut (Hd) by Hd, where

0 - >-HS - > Aut (0d) - > Aut (Hz) - > 0 .
a

Since we have fixed the fibration map LJ(/) -» H (cf. (A.6) and (A.7)), we have neglected
the term Aut (JFfz) in our consideration. Then describe Lf/F for F c= Aut (Hz) .

(A. 10) The family Ld -> H of simple elliptic singularities.
Let Ld be the line bundle over X associated to the principal bundle Lf , which is

set-theoretically obtained by adding the zero section ~ X to the C*-bundle LJ.

As a consequence of the (A.7) Assertion iii), if d < 0 then the line bundle Ld is negative
(relative to H), so that the zero section can be blown down to H. Let us denote by Ld

the blow-down space,

(A. 10.2) Ld

There is a natural projection map Ld -» H so that the fiber over a point T e H is a
normal two dimensional affine variety, having an isolated singular point at the zero
section t e H c Lrf, which is called the simple elliptic singularity of modulous T.

(A. 11) The invariant ring S.
For an integer k with k > 0, put,

(A.ll.l) Sk := {0(z, T): holomorphic on E s.t. t*(0) = e~kQ for t e Hz} ,

where et (t e Hz) is defined in (A.7. 7). (Here we choose / = 0 E Td.)
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Sk is a free module of finite rank over T(H, 0H). Put

(A.I 1.2) S:= © Sk
k = 0

which is an algebra finitely generated over r(H, 0H). This is the coordinate ring for the
space Ld (A. 10.2). That is,

(A. 11.3) Ld~Spec(S).

Generators of the algebra S can be explicitly written down by the Weierstrauss
p-function, as done in [21]. For instance

d=-i s
d= -2 s
d=-3 S

d= -4 S

Thus for d= — 1, —2, — 3, Ld is a hypersurface defined by a weighted homogeneous
polynomial, and for ^f = — 4, Ld is a complete intersection of two homogeneous poly-
nomials, whose weights and associated exponents are as follows.

d Name Weight (a, b,c:h) Exponents

-1 E8 (1, 2, 3; 6) 0, 1, 2, 2, 3, 3, 4, 4, 5, 6.

-2 £7 (1,1,2; 4) 0 ,1 ,1 ,2 ,2 ,2 ,3 ,3 ,4 .

-3 E6 (1,1,1; 3) 0 ,1 ,1 ,1 ,2 ,2 ,2 ,3 .

-4 55 (1, 1, 1, 1; 2,2) 0,1,1,1,1,2,2.

-5 A4 (**; 1, 1, 1, 1, 1) 0,1,1,1,1,1.

(The case A4 is included from [13], for the sake of completeness.)
As is mentioned in the introduction, the period mappings for these singularities

identify the universal unfolding spaces for these singularities with the spaces Spec (Sw)
for the extended affine root systems of types E$-1}, E(^l\ E(^l) and Dg-1*.

The details will appear elsewhere.
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