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The Moduli of Extremal Compact Kahler Manifolds
and Generalized Well-Petersson Metrics

By

Akira FuiiKi*1 and Georg SCHUMACHER**2

Introduction

A basic problem concerning the classification of compact complex manifolds con-
sists of the construction of a moduli space—a complex space, whose points corre-
spond to isomorphism classes of compact manifolds—say with fixed underlying differen-
tiable manifold M. The complex structure of the moduli space reflects the variation of
complex structures on M in a holomorphic family. Here, the consideration of a
polarization turned out to be essential.

A polarized compact Kahler manifold is a pair (X, 7) consisting of a compact
Kahler manifold X and a Kahler class y e H2(X, E). In the sequel we fix a compact
connected differentiable manifold M and a class a e H2(M, E), and consider only those
polarized manifolds whose underlying differentiable structure is diffeomorphic to (M, a).
In [Fu3] and [Sch3] the (coarse) moduli space $R = 501 (M, a) of polarized, non-
uniruled, compact Kahler manifolds was constructed. When a is integral, the moduli
space 501 is naturally identified with the moduli space of non-uniruled polarized algebraic
manifolds in the sense of algebraic geometry.

The guiding principle of this article is the existence of a natural Kahler structure on
the above moduli space, and also when a is integral as above, that of a natural
hermitian line bundle whose chern form gives the above Kahler structure. A con-
ceivable approach for this is to represent the given polarization by a distinguished
Kahler form such that biholomorphic maps are isometries. In the preceding paper of
the second-named author [Sch2] Calabi-Yau metrics were used to construct the moduli
space of polarized Kahler manifolds with vanishing first chern class.

In general, a family of such distinguished Kahler metrics ought to yield a strong
relationship between infinitesimal variations of complex structures and of metrics tensors
in a holomorphic family. Let {^S}S6S be an effective holomorphic family of compact
Kahler manifolds over a reduced complex space S equipped with Kahler metrics gs on
each member Xs. Via the Kodaira-Spencer map we have an inclusion of each tangent
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space TSS of S Into the cohomology group H1(XS, &s)9 where 0S Is the tangent sheaf of
Xs. Let us now assume that all gs are Kahler-Einstein. Then the cup product of a
harmonic representative of a Kodaira-Spencer class with the metric tensor of the fiber Is
a symmetric 2-tensor. The latter represents the infinitesimal variation of gs and the
L2-inner product of such representatives gives rise to a hermitian metric on 5, which
was shown to be Kahler by Koiso In [Koi] (at smooth points.) It generalize the
classical Weil-Petersson metric for the Teichmiiller family of compact RIemann surfaces,
whose Kahler property was first proved by Ahlfors [A].

Now our first idea In this paper Is to use more generally the extremal Kahler
metrics in the sense of Calabi [C1][C2] in the above situation—in principle we have
then the possibility to treat any polarized compact Kahler manifold. Extremal Kahler
metrics are exactly the metrics with constant scalar curvature if X Is non-uniruled, or
more generally, if the automorphism group of X has compact components (manifolds In
class j/). We develop a deformation theory of extremal Kahler manifolds with fixed
polarization. The basic fact we prove is the unique extension property of extremal
Kahler metrics In a given polarized family. Using this, we show that the set W,e of
Isomorphism classes of extremal compact Kahler manifolds in j/ has a natural structure
of a Hausdorff reduced complex space. (The treatment of non-reduced structures could
In principle also be done by the method of this paper.)

One of the main results of this paper is the construction of a natural Kahler metric
on this moduli space 5F!e. For Its definition the description of the Infinitesimal defor-
mations by harmonic representatives in the sense of Dolbeault-Kodaira does not seem
appropriate. Instead, we need to develop a harmonic theory which reflects the rela-
tionship between infinitesimal deformations of the complex structure and the metric
tensor mentioned above. Harmonic representatives In this sense satisfy a partial differ-
ential equation of fourth order rather than of second order. The resulting harmonic
space turn out to be the one suggested by the decomposition theorem of Berger-Ebin
[B-E] (cf. also [Fu-Sch]) in the extremal case. The L2-Inner product yields a hermitian
metric on the base of a universal family 9E -»S. This hermitian metric turns out again
to be Kahler, and we call It the generalized Weil-Petersson metric. In the Kahler-
Einstein case it coincides with the Weil-Petersson metric mentioned above. Note that
S may possibly have singularities. (See Def. 1.1 for the definition of a Kahler metric on
a general complex space.)

As a new aspect, related to our second problem, we consider families of extremal
Kahler manifolds {Xs} with rational polarization. Then our result Is the existence of a
hermitain line bundle (F, fe) on the base such that Its first chern form Cj(F, k) coincides
with the generalized Weil-Petersson form cowp up to a numerical constant. In particu-
lar, the Kahler class of (DWP is integral up to such a constant. In the Kahler-Einstein
case such an (F, k) can even be chosen canonically.

By functoriality, the generalized Weil-Petersson metrics "descends" from the base
spaces of the universal families as above to the moduli space 3Jle. In order to describe
this situation, as in the case of the classical Weil-Petersson metric on the moduli space
of compact Riemann surfaces, we have to Introduce the notion of a F-stracture. (In our
situation the base of a universal family may have singularities we get a F-space rather
than a F-manifold.) This Implies that the Weil-Petersson form on the moduli space has
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locally a continuous potential which is differentiable with respect to local uniformizing
systems of the F-structure.

In the case of a rational polarization, combining our method with the classical
approach via the Hilbert scheme we show the existence of a hermitian line bundle
on the moduli space of rationally polarized extremal Kahler manifolds (in the
F-sense) whose chern form equals up to a numerical constant the generalized
Weil-Petersson form. In particular, all compact complex subspaces of the moduli
space are projective.

We shall now explain our method of proof, first in the rationally polarized case.
This leads us to a variation of our moduli problem; namely the classification of extremal
Hodge manifolds (X, L, g), where (X, g) is an extremal Kahler manifold and L a
holomorphic line bundle whose chern class is represented by the Kahler form associated
to g. One has the notion of a family of extremal Hodge manifolds and a deformation
theory. We prove the existence of the moduli space 9WH,e °f isomorphism classes of
extremal Hodge manifolds in class stf. (Here, we distinguish between objects with
non-isomorphic line bundles (cf. Def. 6.3).) Also in this case we construct a generalized
Weil-Petersson form d)WP, and show that up to a constant it is the chern form of a
hermitian line bundle (F, k) on the moduli space 9KH>C (in the F-sense). In particular, it
is a Kahler form.

This follows from two facts: One is the recent result of Bismut-Gillet-Soule
[B-G-S] concerning the first chern form of a determinant bundle with Quillen
metric—the other is a fiber integral formula, which we show for the generalized
Weil-Petersson form on the base space of any family;

a*WP = - l/nl 2ncl(ST/S9 g)a>% + R/(n + 1)1
Jar/s

Here, R denotes the (constant) scalar curvature (independent of the parameter), and n is
the fiber dimension; furthermore, o% is the chern from of some hermitian line bundle on
the total space SE which restricts on each fiber to the extremal form. In fact, the right
hand side of this formula is interpreted as a chern form of a determinant bundle of the
base in the sense of Knudsen-Mumford equipped with the Quillen metric associated
with certain virtual hermitian vector bundle on the total space. As a matter of fact,
because of the possible singularities we need a generalization of the result of [B-G-S] to
the case of singular base space, and in applying the latter the recent result of Varouchas
[F] that the above fiber integrals are 35-exact on S.

The natural map \JL\ 9Wflie -> 2Re, which sends the isomorphism class of an extremal
Hodge manifold to the class of the underlying extremal Kahler manifold, is proper,
holomorphic and open. The fiber dimension q equals dim Pic Xs — dim Aut Xs. The
generalized Weil-Petersson form cowp on 5Ple equals essentially the fiber integral J^co^1,
and this can be interpreted again as the chern form as a certain determinant bundle
equipped with the Quillen metric. This in particular shows the desired Kahler property
of CDWP itself.

In the general case where the polarization is not necessarily rational, we follow an
analogous (but less intrinsic) method. We only note that if o% is any locally dd-exact
(1, l)-form on <% which restricts to an extremal form on each fiber, we can define the
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associated Well-Petersson form &WP and the above fiber Integral formula is still true In
this case.

In general, such an "admissible" form c% plays an Important role in our whole
argument, especially via the horizontal distribution It defines on the tangent bundle on
#". It turns out that the latter gives rise to harmonic representatives of the Kodaira-
Spencer classes. In the Kahler-Einstein case we have a canonical choice of such an c%
and in this case the associated horizontal lift of the tangent vector coincides with the
"canonical lift" of Siu [Si].

As for the relation with the original problem we note that except for the Kahler-
Einstein case very little is known about the existence and uniqueness of extremal Kahler
metrics in a given Kahler class. If we denote by We the open and closed subspace of
non-uniruled extremal Kahler manifolds in 3Jle9 however, the unique extension property
of extremal metric implies that the canonical map K: 9K'e -> 9K is an open holomorphic
map with discrete fibers.

There is a natural application of the above result to the moduli space of canonlcally
polarized manifolds in algebraic geometry. In particular, we can show that any com-
pact analytic subspace of such a moduli space is always projective (cf. Sect. 11). For a
related result see Viehweg [VI].

In this paper we treat systematically the families with possibly singular base
spaces. This is of course indispensable as our final objective is to study the moduli
space in general. We would like to emphasize, however, this gives rise to additional
difficulties to overcome, e.g., in proving the Kahler property of generalized Weil-
Petersson metric. In fact, when the base space is nonsingular, It Is also possible to
prove the Kahler property by generalizing the method of Koiso [Koi] or Siu [SI] used
in the Kahler-Einstein case.

In [Fu5] extremal Kahler metrics will be studied from the view point of the Infinite
dimensional moment map.

Now the arrangement of this paper is as follows. In Section 1 after summarizing
the basic notions used throughout the paper we introduce the notions of a complex
F-structure and related objects. In Section 2 we construct an elliptic complex naturally
associated to a compact Kahler manifold with a fixed Kahler form, which give harmonic
representatives of Kodaira-Spencer classes in our deformation theory. In Section 3 we
introduce the notions of (metrically) polarized families of Kahler and Hodge manifolds
which are to be the basic objects of study in this paper. Then the Infinitesimal
deformations associated to such families will be studied in Section 4. In Section 5 we
summarize the construction of polarized compact Kahler and Hodge manifolds, and
then in Section 6 we construct the local and global moduli spaces for extremal compact
Kahler and Hodge manifolds.

In Section 7, by using the results of Sections 2 and 4 we Introduce the generalized
Weil-Petersson metrics and give statements of our results about the Kahler property of
these metrics. The proofs of these theorems will be given in Sections 8 and 9. In
Section 9 we also give an important relation between two forms d)WP and O)WP In the
Hodge case. In Section 10 by combining the result of Section 7 and the result of
[B-G-S] we construct a natural hermitian line bundle on the base space of any family of
Hodge manifolds as mentioned above. In Section 11 we consider the global moduli
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spaces of extremal Hodge and Kahler manifolds and obtain the global version of the
above result as we have already explained. Finally, Section 12 is devoted to prove a
generalization of [B-G-S] to the case of singular base spaces.

The main part of the present work was done while the first author stayed at
University of Minister as a Humboldt research fellow, and at Sonderforschungsbereich
170 at Gdttingen. He would like to express his hearty thanks to Professor R. Remmert
and to Professor H. Grauert for their hospitality. The second named author was
supported by Deutsche Forschungsgemeinschaft (Heisenberg-Programm).

In this section we first fix our basic terminologies and notations on objects on a
general reduced complex space such as C°° forms and Kahler metrics. Subsequently,
we introduce the notion of a complex F-structure generalizing that of a F-manifold,
which we believe to be most appropriate to describe the structure of the global moduli
spaces considered in this paper.

a) We start with the notions of C°° functions and forms on a complex space. We
denote by D a domain in a complex number space Cm of dimension m (which we do not
specify), and by @D the sheaf of C-valued C°° functions on D. Let S be a reduced
complex space. Then we also denote by @s the sheaf of C-valued C°° functions on S,
which is characterized by the following condition: For any closed analytic embedding
j:UcL>D of an open subset U E S, the restriction 3>S\U equals the image of the
canonical map j'@D -*• ^S5 where / denotes the topological inverse image, and ^s is the
sheaf of C-valued continuous functions on S. Thus we can identify @S\U with
(QiD//)\U, where /^^D is the subsheaf of functions which vanish identically on
S. We denote by ^S(R) the subsheaf of R-valued functions.

We next recall the definitions of differential forms. Let j: U CL» D be as above and
identify U with j(U). Let J be the holomorphic ideal sheaf defining U and set
/ = (J + S)@D, where ~ denotes the complex conjugation. For any integer k > 0 we
set 4 = (<*£//^D + df A S%~l)\U, where <f£ is the sheaf of C-valued C°° Jc-formes on
S. For p, q ^ 0, p + q = fe, one defines @&q by the natural image of the sheaf @$q of
C°° (p, <z)-forms on D in <?£. The usual exterior differentiation d on D, as well as its
(1,0)- and (0, l)-parts d and d respectively, give rise to the corresponding exterior
differentiations on S\j and @frq (still denoted by the same letters). These notions
actually is independent of the choice of the embedding j as above, so that we obtain
global sheaves <f| and 2$q of differential forms on S with global exterior differentiations
d, and d and d respectively; for instance we have the d-operator d: @H'q -*@j'q+l.
Sections of &j*q are called C°°(p, g)-forms on S.

Observe that (0, 0)-forms give rise to another notion of C°° functions on S. We set
^s '•= $s = ^s'0? on U we have Ss = @D//, and hence there exists a natural epimor-
phism
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(If 5 Is locally irreducible, and hence in particular if S is normal, e is an isomorphism,
but in general not (cf. [M])).

b) Denote by 0*s the subsheaf of ^S(M) of pluriharmonic functions on 5. By
definition a pluriharmonic function is locally an imaginary part of a holomorphic
function, so that we have the following exact sequence of abelian sheaves

/ 1 1 \ A _ . TTD J ^ /(] *m
 v fift _ . A(i.l) y - » JK - » (ys - > zrs - » U ,

where j is the natural inclusion.

Proposition 1.1. Let STeg be the set of smooth points of S. Let (p e F(S, ̂ S(R)) be a
C°° function whose restriction to Sreg is pluriharmonic. Then (p is pluriharmonic on the
whole S.

Proof. We extend the argument in the proof of [Fu2; Lemma 6]. Since the
problem is local, we fix a point o e S and prove that <p is pluriharmonic in a neighbor-
hood of o. Let r: S -» S be a resolution of S and set E = r"1^). Then we consider the
following commutative diagram with exact rows

3 \ v tJl/C TO\) - > li (5, K)

arising from (1.1), where the vertical arrows are restriction maps.
Suppose first that a is surjective. Then, since cp := r*cp is in F(5, &*§}> we can ^n^ a

holomorphic function / on S with Im / = <p, determined up to additive real constants
on each connected component of S. By adjusting these constants we may assume that
/ descends to a (continuous) meromorphic function f on S whose Imaginary part
coincides with <p. Since cp is of class C°°? by a theorem of Spallek [Sp; Satz 4.2] / Is
holomorphic, and hence cp is pluriharmonic, on the whole S.

It remains to prove the surjectivity of a. First note that from the compactness of
E the surjectivity of a follows at once. Hence, fe, and therefore fcjS = yb also, is the zero
map. On the other hand, If we replace S by a suitable neighborhood of o, we may
assume that y is isomorphic. Thus b is the zero map and a is surjective.

Corollary 1.2. 1) Two locally dd-exact real C°° (1, l)-forms which coincide on Sreg

coincides on the whole S. 2) The map d<3:^s-»^J!l descends to dd: ^s-» ^l with
respect to e: ̂ s —» @s.

Proof. 1) The problem Is local. Let \l/1 and \j/2 be R-valued C°° functions on S
with dd\//l = dd\l/2 on STeg. Then by applying Proposition 0.1 to ^ := i//l — \l/2 we get
that the equality is even true on the whole S. 2) Since the support of the kernel of £
Is contained in S — STeg, dd vanishes identically on Ker e by the above proposition.

We denote by
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the subsheaf of locally dd-exact real (1, l)-forms on S. The above proposition yields
the following exact sequence

(1.2) 0 - »^s - ^s(W)J^0s - ,0

as in the smooth case.
We further observe the exact sequence

(1.3) 0 - > S1 - > 0* ̂ 4 &s - » 0 ,

and the induced cohomology sequence

(1.4) - > H\S, OS) -U H\S, &s) - > H2(S, S1) - >

where Sl = {z e C; |z| = 1}, identified with the constant sheaf on S. For any holomor-
phic line bundle L on S

(1.5) 6(L) e H^S, 0>s)

is called the refined chern class of L. If, further, h is a hermitian metric on L, we set

(1.6) Cl(L, ft) = z/271 curv ft = i/27t dd log ft

and call it the first chern form of the hermitian line bundle (L, ft), where curv denotes
the curvature form. Then c^L, ft) is a section of <PS and we have

= 6s(Cl(L,h))9

where ds: F(S, <&s) -> Hl(S, @>s) is the coboundary map arising from (1.2).

c) Let /: 3C -» S be a proper smooth morphism of connected and reduced complex
spaces with connected fibers. For any C°° (p, g)-form a on 3C we can define its fiber
integral /? = J#-/s a along the fibers of /, which is a C°° (p — n, g -- n)-form on S, where n
is the dimension of the fibers. For instance, in the case (p, q) = (n + 1, n + 1) we obtain
a (1, l)-form and we are interested in the condition for P to be locally dc^-exact on
S. Concerning this question the following special case of a recent result of Varouchas
[V] turns out to be very useful for our purpose.

Proposition 1.3. Let f:^^S and n be as above. Let co0, ..., con be real C°°
(1, 1)- forms on $ which are locally dd -exact on 9C. Then the fiber integral

A ••• A con is again a locally dd-exact real (1, l)-form on S, i.e., a section of 0S.

Proof. The problem is local. So by restricting S we may assume that Hl(3£, R) =
0 for i ^ 2n + 1 and Hj(&, &) = 0 for j ^ n + 1 and for any coherent analytic sheaf #"
on 9C. Then by [V; Th. 2] there exists a real C°° (n, n)-form 7 on 3F such that

(1.7) eu0 A • • • A (Dn = idBx

on the whole 9C. In fact, in [V] this is proved for the case where co0 = ••• = &>„ and o> = cof

is a Kahler form; however, the proof clearly shows that it suffices only to assume that w
is locally 53-exact and real. Thus for any real numbers r0, . . . , rn, (r1col + • • • + rno)n)

n+l
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Is 35-exact on the whole 3£. From this one deduces that the same Is true for o)l£ A • • • A co^
for any 0 ^ f0, ..., in with i0 + ••• 4- in = n + 1. Hence, (1.7) holds. Finally, we
get

a)0 A • • • A con = i
9Cis ar/s ar/s

The proposition follows.

d) Let /: SC -» 5 be a smooth morphism of reduced complex spaces. We can then
define the relative holomorphic tangent (resp. cotangent) bundle Tg/s (resp. Tg/s) as a
holomorphic vector bundle on 9C. Then /\PT%/S (x) /\qT%/s Is a complex C°° vector
bundle on #". We denote by 2%fs the sheaf of C°° sections of this bundle. Sections of
9t$fs are called C°° relative (p, q)-forms on X over S. We set 2y/s = 2y% and g%is :=

© 0£/l- Then we set ®£'/s = <f£/s = %-. Also we denote by Qj^is the sheaf of
p + q=k

germs of holomorphic sections of /\pTf/s (i.e., the sheaf of relative holomorphic
p-forms), and by &%IS the subsheaf of Q}% consisting of those functions which are
holomorphic when restricted to each fiber.

Since / Is smooth, we have differential operators

as In the absolute case, which give rise to complexes on $
d 1 d 2

where /" denotes the topological inverse Image, and in each line the second arrow is the
natural inclusion.

Proposition L4 The above three sequences are all exact, i.e., the relative versions of
Poincare and Dolbeault lemma hold.

In the Poincare cases this follows from the observation that the construction of the
homotopy for d or d in the absolute case depends smoothly on the parameter. The
Dolbeault case is due to Andreotti and Grauert [A-G; § 7, b), c)] when S Is nonsingular.
The proof in the general case, which can also take care of the Poincare cases, will be
given In the Appendix.

The functions which are locally imaginary parts of functions in @%/s form a
subsheaf 0>%/s of 9S(R). Sections of 0*%/s are called relative pluriharmonic functions on
9C over S. We have the obvious exact sequence

where j0 is the natural Inclusion. We also set

(1.9) <JW =
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Then Proposition 1.4 yields as in the absolute case:

Lemma 1.5. The following sequence is exact:

(1.0) 0 - > 9XIS ^ ^(R) ^^ %/s - > 0

where ji is the natural inclusion.

e) We next define the notion of a Kahler metric on a reduced complex space
S. We start with that of a hermitian metric. Denote by T = Ts -> S the tangent linear
fiber space, whose fibers over s e S are naturally identified with the Zariski tangent
space TSS of S at s (cf. [Fi]). With respect to an embedding j: U ci*D of an open
subset U E S into a domain D in some Cm we have a canonical embedding of the
restriction T\U into the holomorphic tangent bundle TD of D:

(1.11) i I

U CL* D .

Then a hermitian metric on S1 is by definition a collection /i = {/is}S6s °f hermitian inner
products /is on I^S It is said to be of class C°° if for any point s of S, if we take U
sufficiently small around s in (1.11) {hs}seU can be extended to a C°° hermitian metric hD

onD.

Definition 1.1. A C°° hermitian metric h on S is called a C00 Kahler metric if for
any point 5 e S there exist an embedding of a neighborhood U of s into a domain
D i= Cm and a C°° Kahler metric fej, which extends h\ U (as a hermitian metric).

We have also an equivalent notion of Kahler forms. First of all, note that any real
C°° (1, l)-form co on S determines at each point s e S a hermitian form (not necessary
positive definite) h(co)s on TSS .

Definition 1.2. A Kahler form on 5" is a locally 55 -exact, real C°° (1, l)-form co on
5" such that the induced hermitian form h(co)s is positive definite at each point s of S.

Remark 1.1. 1) By the definition any Kahler form co is locally written in the
form co = idd\l/ for some C°° strictly plurisubharmonic function ij/, which is determined
up to additions of pluriharmonic functions. Thus the notion of a Kahler form given
above coincides with the standard one used, e.g., in [Fu2] or [V], which originates from
Moishezon.

2) A Kahler form induces naturally a Kahler metric as is clear from the defini-
tions. More precisely, by using 1) of Corollary 1.2 one sees easily that this sets up a
natural bijective correspondence between Kahler forms and Kahler metrics as in the
smooth case.

Let /:$"—» S be a smooth rnorphism of reduced complex spaces. Then a hori-
zontal distribution for f is a collection TH& = {T"}xe% of subspaces T/ of the Zariski
tangent spaces TXSE of 3C such that / induces an isomorphism T^1 -> Tf(x)S. TH9£ is
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called of class C°° if for any point x e X we can find a neighborhood V and a
realization of / by a projection

(1.12) V r- ;' > IF x D

17 r- > D

such that TH^ is induced by a C°° horizontal distribution for the projection n in the
obvious sense, where U E S and j are as in (1.11), W is a manifold and j is a closed
embedding.

Let now c% be a C°° (1, l)-form on 5f which induces a Kahler form on each fiber
of /. Then define for any x the subspace T®(Q}%) of TX3£ by the c%-orthogonal
complement of TXS£S9 where s = f(x). Then:

(1.13) Ta(a>x):= (j T*(a>x)
xe%

is a C°° horizontal distribution for /.

Definition 1.3. Suppose that o% is a Kahler form with the associated Kahler
metric % and S is given a hermitian metric hs. Then / is said to be a Kahler
submersion if the linear isomorphism TX

I((DX) ±» Tf(x)S is a hermitian isometry for any
x.

In this case we know that hs also is a Kahler metric at least on the smooth locus
Sreg. (See[Wa].)

f) For the description of the natural Kahler structure on the global moduli
spaces considered in this paper it seems most natural to introduce the notion of a
"complex F-structure" generalizing the notion of a F-manifold in the sense of Satake
(cf. [Ba]).

Definition 1.4. Let 7 be a reduced complex space. Then:
1) A local (analytic) Galois cover of F is a pair 3F = (n: U -+ U, G) consisting of a

holomorphic map n: U -> U of a connected complex space U onto an open subset U of
Y and of a finite group G acting biholomorphically on U over 17 such that n induces an
isomorphism U/G ̂  U of complex spaces. (We do not assume that the action is
effective.)

2) Let #" = (n': U' -> IT, G') be another local Galois cover of Y with 17' E U, then
a morphism of &' into 2F is a commutative diagram of complex spaces

u> ^_* o

[/' —i—> 17

where j is the inclusion and j is an open embedding, together with an injective
homomorphism \JL\ G' -> G such that ; is ^u-equivariant. Any such j is said to be
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associated to j. If such a morphism exists, J^ and 3F' are said to be compatible.
3) A complex V-structure on 7 is a collection

of local Galois covers of Y such that 1) {Utt}aeA forms a basis for open sets of Y9 and 2)
J^ and J^ are compatible whenever C/a E L/^.

4) Let 7' be another complex space with a complex F-structure T^' = {3Fy = (n1:
Uy -> l/y, GJ)}. Then a morphism /: 7-> 7' of complex spaces is said to be V-smooth if
for any point j; e 7 there exist J^ e ^, J^' e y' and a homomorphism ^ay: Ga -> G^ such
that f(y) e Uy, y e C/a, and /| Ua lifts to a ^ay-equivariant smooth morphism Ux-+Uy .

Let 7 be a complex space with a complex F-structure if = (J^ = (nx: Ua ->

Definition 1.5. 1) A Kdhler V -metric on Y is a collection h = {ha} of Ga-in variant
Kahler metrics ha on Ua such that if Ua E t//? then j*^/i^ = fta, where 7a)9: C/a -> C^ is
associated to the inclusion Ua E L^. In a similar manner we can define differential
F-forms and Kahler F-forms etc. on Y.

2) Let Y and Y' be complex spaces with complex F-structure and with Kahler
F-metrics. A morphism /: Y -> 7' is said to be a Kdhler V-submersion if it is F-smooth
and a lift C/a -> l^ as in 4) of Definition 1.4 can be taken to be a Kahler submersion.

Let F be a holomorphic line bundle on 7. Then to each Fa := n^F\Ux) the action
of Ga on Ua lifts naturally. Moreover, any embedding jaj3: L/a -> Up associated to an
inclusion Ua E Up induces naturally an open embedding/^: Fa CL^ Fp of bundle spaces.

Definition 1.6. A C°° hermitian V-rnetric on F is a collection h = {fta} of Ga-
invariant C°° hermitian metrics fta on Fa such that j*^^ = fca for any /a)8 as above. In
this case the collection {c1(Fa, ha)} of the first chern forms of (Fa, fca) determines a
(1, l)-V-form on 7, which we shall denote by c^F, ft) and call it the^rst chern V-form of
(F, h).

The following notion will also be useful in studying the moduli spaces.

Definition 1.7. Let 7 be as above. An abelian V-sheaf on 7 is a collection
L= {La} of sheaves of abelian groups La on (7a with a lift of the Ga-action to La and
with the following property: For any open embedding jaft: Ux c^ Uft associated to an
inclusion Ua E Up, we are given an isomorphism va/3: La ^j*pLp which is /^aj3-
equivariant, where JLL^: Ga -» G^ is the given homomorphism, such that for any inclusions
Ua E Up E [/v and for any open embeddings jap, jpy and jay associated to these inclusions

^ =/ay, we get j^(vpy)v^ = vay.

From the definition we have:

Lemma 1.6. Let J£ = {^a} be an abelian V-sheaf on Y as above. Let JS?a :=
n^^a be the Ga-invariant direct image sheaves on Ux. Then £?a for all a patch together
naturally to a global abelian sheaf & on 7.
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Examples of abelian F-sheaves arise from sheaves naturally attached to each Ua,
such as (9(ja, @p~q, @va, &Q, ̂  etc. We denote by $Y and Q)\ respectively the abelian
sheaves on Y determined by ^ and ^#a and Lemma 1.6. Note that for 6^ and ^/a

the resulting sheaves are just (9Y and &Y respectively. The exact sequence (1.2) Induces
an exact sequence

(1.14) 0 -» 0>Y -> ->$%-*0

on Y.
Note that by definition we may consider a Kahler F-forai COY as a section of

..8. The image d(cQY)eH1(Y9&Y) by the coboundary map
H1(Y,^Y) Induced by (1.14) is called the refined Kahler class of COF. Its Image O)Y E
H2(Y, M) by the coboundary map arising from (1.1) Is called the Kahler class of
c%. The same terminology is used also for an (ordinary) complex space. (In this case
(1.14) Is reduced to (1.2).)

If &a are all invertible 0%-modules In Definition 1.7, and La Is the corresponding
line bundle, we call the collection {La} a line V-bundle on Y. The herailtlan F-metric
on a line F-bundle Is also defined analogously to Definition 1.6. If m is a common
multiple of the orders of Ga for all a, {L™} descends to an ordinary line bundle on F;
indeed, in this case n®**^™ are again Invertible &v -modules.

o9o Let Z be an (ordinary) complex space. Then a morphlsm /: Z -»
Y of complex spaces Is said to be a V~morphism If for any point z e Z, there exist a
neighborhood F of z In Z3 a local Galois cover (n: U -» U, G) in i^ with /(z) e U, and a
morphism T: F -> U such that f\V= m.

In this case we can define the pull-backs f*B of F-objects B = {B^} on 7 such as
C°° F-forms, line bundles, hermitlan metric etc.

L7o Let Y be a reduced complex space with a complex V-structure.
Suppose that there exists a Kahler V-form COY on Y whose Kahler class y is integral, i.e.,
y is in the image of H2(X, Z) -» H2(X, R). Then there exists a positive line bundle L
with Ci(L) = y. In particular, if Y is compact, Y is projective.

Proof. Let 1^ = (^ = (na: l/a -> l/a, Ga)} be the complex F-structure on 7.
Suppose that O)Y is given by a system {coa} of Ga-Invariant Kahler forms coa on Ua. For
a with small Ua we may write coa = iddij/a for some Ga-in variant C°° strongly pluri-
subharmonic (psh) function ^a on l/a. Then $a descends to a continuous strongly psh
function ^a on Ua. If l/a g Up, then i/^a - ^ Is C°° pluriharmonic on Ua. In fact, take
an open embedding ja/?: Ua -> 0^ associated to the inclusion Ua S L^. Then ^ — 7*^^
can be written as a real part of a Ga-in variant holomorphic function fta^ on C/a; the latter
descends to a holomorphic function ha^ on Ua and we see that \j/a — \l/p is the real part of
hap on I7a. Thus ^a — ̂  is C°° pluriharmonic on Ua. Then by Theorem I of [V]
there exists a C°° strongly psh function ^ on Ua such that t/^ — t/^ = /ia/?. Thus we get
a global C°° Kahler form co'Y by setting o}'r|!7a = idd\//'a such that 7 = [o/y] as both are
the Image of {haft} e H ^
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Now we observe the following commutative diagram of cohomology exact se-
quences on Y

I I
H2(Z)^ H2(E) -» H2^1).

The assumption that 7 is integral shows that the element h e Hl(^} determined by
{h^} is in the image of Hl(@$}. Let L be a line bundle with the refined chern class
h. Then it is easy to construct hermitian metric k on L such that c^L, k) = o/y (cf.
Prop. 3.10 below). Thus L is positive, and further, is ample if Y is compact. (See
[Gr].)

§ 20 Elliptic Complex Associated to a Compact Kahler Manifold

Fix a connected compact Kahler manifold X and a Kahler form a* on it through-
out this section. Accordingly, for any abelian sheaf 3F we write Hq(^) for Hq(X, J^) for
short, and similarly, for a C°° vector bundle E write F(E) for the space of C°° sections.
Let T and T* be holomorphic tangent and cotangent bundles of X respectively. We
denote by Aq = Aq(X) (resp. Dq = Dq(X)) the space Aq = T(T ® /\qT*) (resp. Dq =
F(/yr*)) of vector valued C°° (0, g)-forms (resp. ordinary (0, g)-forms) on X which form
as usual the Dolbeault complex with respect to 5, where the bar denotes the complex
conjugate.

Now in this section, we shall construct a certain elliptic complex B' — B'(X, co)
naturally associated to the Kahler manifold (X, co) (depending also on the Kahler form
co), essentially as a subcomplex of A'. The cohomology group Hq(B") of this complex
will be interpreted as a certain sheaf cohomology group Hq(Zy\ where Zy is defined by
the Atiyah sequence associated to the Kahler class y of co (cf. (2.13)). Since Hq(Ey) is
considered as the space of certain infinitesimal deformations associated to (X, co) (cf.
Sect. 4) this means that we get natural harmonic representatives for such infinitesimal
deformations. If co is of constant scalar curvature, these representatives are exactly the
ones coming from the decomposition theorem of Berger-Ebin [B-E] formulated in terms
of Riemannian geometry.

Denote by g the Kahler metric associated to co. Then g and co give natural
identifications of tangent and cotangent bundles; we denote these isomorphisms T-»
f* and T* -» T by Ig9 ^ and f,, |m respectively.

We first define a bundle map

(2.1) il

by the composition

(2.2) T® A^T* ^®id> 7"* (g) /\qT* <~~ ldx^q >T* ®(^+1) ^ > A«+1 r*
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where jq: f\
qT* -> T*®€ is the natural inclusion and A is the alternation operator. We

denote by the same letter /* the induced linear map

(2.3) %:A9->Dq+l.

From the definition the following is immediate.

Lemma 2.1. /£ are all surjective in (2.1), and hence also in (2.3).

Lemma 22* The linear maps /£, g ^ 0, induces a homomorphism i'm: A° -» D0+1 o/
Dolbeault complexes.

Proof. Write i = /«. We have to show that dif(K) = id(V) for all Fe Aq. Since
the problem is local, we may assume that V is of the form a ® b, where a is a local
nonvanishing holomorphic vector field and b is a C°°(0, g)-form. Note first that
z(a ®b) = i(a) (x) ft by the definition and that 3 (a ®b) = a® db. We have thus only to
show that d(i(a) ®b) = i(a) A db. This clearly follows from di(a) = 0. So we shall
show the latter. It suffices to show that for any local vector fields 17, V of type (1,0)
such that a, U, V all commute, we have (di(a))(U, V) = 0. In fact, noting that
i(a)(W) = co(a, W) for any W by the definition, we have

, V) =

= Ua)(a, V) - Va)(a, U) + aa>(U9 V)

= 3(do))(U9 a, V) = 0 .

Now for q > 0 we define Bq = Bq(X, co) by the kernel of j« and set dB = d:
Bq+1. Namely

Bq = KQT^: Aq ̂  Dq+1) .

We further set

where C°°(Jf) is the space of C-valued C°° functions. We then get the following
commutative diagram of exact sequences

T T T
0 ->• B2 -> A2 -> D3 -» 0

T T T
0-^51^^1^D2-*0

(2.4) t t
Ao~Di

T t
0 -+D0

t
0 .
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Then we see that the composite map

L:I)0_L>Di_L^o_I^i

has image in B1. Hence we set dB := L: B° -> J51;

dB = dlmd = idlgd.

By Lemma 2.2 and the definition of dB, (B\ dB) is a complex. We note the cohomology
exact sequence which arises from (2.4):

(2.5) - > Hq((9x) -£+ Hq(Ba) -£+ Hq(0x) -^> Hq+1 (Ox) - >

where we have used the canonical isomorphisms Hq(A') ^ Hq(0x) and Hq(D') ^ Hq((9x).

Proposition 2.3. (B\ dB) is an elliptic complex.

Proof. Let x be any point of X. Fix any nonzero real cotangent vector v at
x. Then we have the following commutative diagram of symbol sequence of complexes
A\ B', and D° at (x, v):

T T T_
0 - > K2 -^ T ® /\2 T* -^ /\3 T* - > 0

t t_ r_
o — ̂ x1-^ r®r* ^^/\2r* — >o

T f T
T ^^ T*

t t
0 - > C

f
0

where K9, ^ ^ 1, is the kernel of 4 in (2.1) and jq are the natural inclusions. Since the
Dolbeault complexes are elliptic, the middle and the right vertical sequences are exact.
It follows that the left vertical sequence is also exact except at degree 0 and 1. The
exactness at degree at 0 or 1 follows immediately if we note that av(dB) = iff^d^^ff^d^
where av denotes the symbol.

We now consider elements of A1 := F(T ® T*) as a homomorphism T->T of
vector bundles. Then B1 is by definition the subspace of elements cp of A1 which is
skew symmetric with respect to co;

(2.6) B1 = B\X, co) = {cpe A1; a(<p(U), V) + a>(U, <p(V)) = 0}

or

(2.7) = [cp e A1; g(9(U\ V) = g(U, <p(V))} ,

where 17, Ve A° = F(T\ and note that g(U, V) = co(U9 JV) with J the complex struc-
ture of X.

By virtue of the above proposition we may apply the usual harmonic theory to the
complex (B\ d°B). First of all, since X is given a Kahler metric, Bq, as well as Aq and Dq,
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carries a natural hermitian L2-Inner product. For Instance If <p and i// are elements of
B1 ^ A1 considered as homomorphisms T^>T as above, this Inner product Is given
explicitly by

(18) (<P,M

where a)[n] := con/nl is the volume form associated to the Kahler metric g, and the trace
tr is taken in End T. Let dj be the formal adjoint of dB with respect to g. In our case,
the Laplacian \3q = DJ is defined In each degree as follows:

Q« = (35*)2 + (d*d)2 , q^2.

(We shall write d = dB for degree g; 1.) We denote by J>tf% the space of harmonic
forms. For instance we have

#£ = {cpe B1; D> = 0} = {d<p = djcp = 0} .

An immediate consequence of the harmonic theory is as follows (cf. e.g. [We]).

Theorem 2,4 J#% are all finite dimensional and the natural map vq: 3tf£ -> Hq(B°) are
isomorphisms.

Note that with respect to local coordinates, say z1? . . . , zn on X, If <p e B1 is written
as 9 = Jl Vpd/dZa ® ̂ » da takes the form

(2-9) 1^ = 0, %? = Zfe^»

where gaj is the metric tensor and (pap = cp^ by (2.7).
We further define subspaces $B of ^4° and j^1 of tf£ by

-2̂ ? . _ I K r- A®.~A£ ,- -*/P^\jtE .— (c e A , oq e 3vB } ,

and

Definition 2.1. Define J^1 to be the orthogonal complement of ̂  In ̂ j &£ =
1J^1. We call J$B the essential harmonic space in B1 .

We shall give a cohomological interpretation of jfcg. We denote by y the Kahler
class of CD; y = [co]. We first note that w = w1: H*(9X) -> H2((9X) Is given by the cup
product with 7 considered as an element of H1(Qx), as follows easily from the definition
of the sequence (2.5). Therefore, we get the following exact sequence

(2.10) Hl(@x) -*-> Hl(B°) -^ H1^), - > 0

where e = e1, a = a1 and

HH^)y := Ker (y: Hl(0x) -, H2(^)) .
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Note that if we set '$E = J^/t^Jf^, 8 induces a linear map '&B -» Jtft, which will still
be denoted by d.

Theorem 2.5. 1) There exists a linear isomorphism 6: Hl((9x)^'$?B such that
vdd = e, where v = v1 as above. 2) The map a' := av: <#£ -> H1(0x)y induces by restric-
tion to J^B a natural isomorphism ft: $% -^>H1(&x)y such that a' = ftp, where p: ̂  -> J^1

is the orthogonal projection.

Proof. For simplicity, we write t = To>- Let G and H be the Green operator and
the harmonic projection operator respectively associated to the harmonic theory on
B\ Then we define &:Zl(X)^>&b

where Z1(X) is the space of d-closed (0, Informs. In fact, if we set f = d t 9 we get

(2.11)

hence the image of 8 is certainly in J^. Moreover, if we set q> = df, f e Cao(X), in the
definition of 6 we get

T(3/ - 8d*GdBF) = USf - d(f - H/)) = WHf e

Thus, (5 induces a linear map d'.Hl(Ox)^>'$B. The formula (2.11) shows then the
commutativity vdd = e in view of the definition of e. If d(cp) = 0, then <p = ddjGd f cp +
3/ for some /e J^°; hence ^ is injective. On the other hand, for any £ G J^, if we set
£ = t<P for a unique (p e Zl(X), then since G5 1 ̂  = G3^ = 0, we have £ = 5(<p). Hence
6 is surjective. This proves 1).

2) then follows from 1) together with (2.10) and the fact that the orthogonal
complement Jfg1 of J^1 is precisely the kernel of a' by 1).

Proposition 2,6. In the above proposition suppose further that (X, CD) is of constant
scalar curvature. Then f w induces an isomorphism J^1 ^ '$B such that to, = <5/, where
Jf1 is the space of harmonic (0, 1)- forms in D1, and j: Jf1 2>H1((9X) is the natural
isomorphism.

Proof. It suffices to show that J|Jf x = t in the above proof. By the definition of
<5 this follows if we show that 5|5|(p = 0 for cpejf3 1 . Let D" be the Laplacian
operating on (0, l)-forms and p the Ricci form of (X, co). By contraction with t<P, P
defines again a (0, l)-form, say Q(q>). Then we have (cf. [K; p. 158])

0 = D> = X <??;%

where in our notations we may further write

where | = iw. On the other hand, since (X, co) is of constant scalar curvature
d*Q(q>) = 0 (cf. [K; p. 98]). Hence, 3*S | 9 = (5* i 5*)5 T <p = 0.

In the Kahler-Einstein case there is a comparison result of our essential harmonic
space jfeg and the harmonic space J^B with certain spaces of harmonic forms in
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A1. So suppose that (X, co) Is Kahler-Einstein. Recall that we have the following two
cases:

a) y = rc^X) for some real number r / 0, and
b) y is arbitrary and c^X) = 0.

Let ^ be the space of harmonic 1 -forms In A1 with respect to g. Let 'Jtff := J^HB1

and "3?2 be the subspaces of ^ of those elements which are symmetric and anti-
symmetric with respect to g respectively (cf. (2.7)). Then by [Koi] (cf. also [Sch4] [SI])
we have the following:

Proposition 2.1 '„ In the case a) we have 3^2 = 'fflj^ '• %n ^ne case ^) we have the
direct sum decomposition ̂  = '^ © "Jf*1* and "^ is mapped isomorphically to H2((9X)
via the natural linear map ̂  ^ H1^) — ̂  H2((9X).

Proof. See [Koi; Prop. 8.2, 8.3]. As for the last assertion he proves that "^ is
in general isomorphic to the space of parallel (0, 2)-forms, considered as a subspace of
H2((9X). But if Ci(X) = 0, every anti-holomorphic 2-form is parallel (cf. [lea]). From
this, the last assertion follows.

Proposition 2.8D Suppose that (X, CD) is Kahler-Einstein as above. Then the natural
inclusion B1 c~> A1 induces a hermitian isomorphism of hermitian spaces h: $£ -* fflj^
which fit into the following commutative diagram with isomorphic arrows

(2.12) #j*H\Ox\

U U

in the case a). Similarly, in the case b) we get a hermitian isomorphism h': $% ^ 'ffl& of
hermitian spaces.

Proof. By the definition of the harmonic spaces we have clearly the Inclusion
'^ c^ ^. Further, by the fact that Jlft Is orthogonal to the Image of ,4° by 5 we get
'3?A = $B • On the other hand, we have In general

dim ^ = dim Hl(0x\ ^ dim Hx(^) = dim J^1 .

Hence, by Proposition 2.7 we have J^1 = J^ In the case a) and j&£ = 'J^1 In the case
b). The commutativity of (2.12) Is also obvious.

We now go back to a general (X, co) with the Kahler class 7 = [cat] as before.
Consider now y as an element of Hl(Qx) = Hl(3tf#mGx(0x, (9X)). Then It defines a
locally free extension

(2.13) o -> 0* -> 27y -> 0* -> 0

of Ox by 0X. We then get the associated cohomology exact sequence

(2.14) - > Hl(Gx) -!U. H\ZJ ^ H\6X) - > H2((9X) - . ,

where the coboundary maps H"(&x)-> Hq+1(0x) are obtained by a cup product with
r, uy.
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If 7 = Ci(L) is the chern class of a holomorphic line bundle L on X, then (2.13) is
nothing but the Atiyah sequence associated to the principal C*-bundle Lx := L — 0 ->
X. (See [At].) In this case LL := 27y is identified with the sheaf (on X) of C*-invariant
holomorphic vector fields on L; in other words, ZL is just the C*-invariant direct image
sheaf

(2.15) ZL = n^0L.

We put Q := TLX/C*, the quotient of the holomorphic tangent bundle TLX of Lx

by the natural C* action. Then Q is a vector bundle on X with &X(Q) = ZL. In
general we denote also by Q the vector bundle on X corresponding to 27r Then the
sequence (2.13) is associated to an exact sequence of vector bundles

(2.16) 0 > lx —U Q —5-> T > 0 .

Then in accordance with the case of line bundles we call any C°° splitting of the
sequence (2.16) a connection of type (1, 0) (of the class 7). Such a connection is thus
given by a homomorphism 9: Q -»lx with 61 = id. As usual 6 is represented by a
system a = {aj of C°°(l, 0)-forms a; with respect to a suitable open covering fyt = {t/J
of X such that ^ — i^- = c0-, where c = {c0-} is a representing cocycle of 7 in Hl(&x).

For the given Kahler form co such connections with "curvature form" 2n/i CD are
constructed as follows. Let tf£ = {l/J be a sufficiently fine Stein covering of X so that
we may write CD = 2n/i ddi//t for some E-valued C°° functions \l/{ on Ut and ^ — ̂  =
Re ftj for some holomorphic function f^ on [7t- fl Uj. Then it is easy to see that we can
take {dfjj} as a representative c as above and

(2.17) a = {3^}

defines a connection of type (1, 0) of 7 with CD = i/2n doc. If CD is the first chern form
c±(L, h) of some hermitian line bundle (L, h) the unique hermitian connection for (L, /i) is
a typical such connection.

We now compare the exact sequences (2.5) and (2.14). By the five lemma it is im-
mediately clear that Hq(Zy) is isomorphic to Hq(B°). It is important, however, to have a
canonical such isomorphism in defining generalized Weil-Petersson metrics later. In
the sequel we write Z for 27r

Theorem 2090 Associated to any connection 9 of type (1, 0) of y with curvature CD as
above, there exists a natural isomorphism Aq: Hq(B°) -> Hq(Z) for each q^Q which extends
to an isomorphism of the sequences (2.5) and (2.14), where the other morphisms are all
identities.

In particular, if CD = cx(L, h) for some hermitian line bundle (L, h), then by taking
the unique hermitian connection as 0, we have a canonical such isomorphism. More
generally, one can show that A1 actually is independent of the choice of a connection 9
as above. By composing with the isomorphisms vq: Jfg ^ Hq(B") we get isomorphisms

(2.18) nq: Jfg-
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For the proof, first we note that the sequence (2.14) is obtained from the exact
sequence of the Dolbeault complexes

(2.19) 0 - >Dq-^Aq~^Aq - >0, g ^ O ,

associated to (2.16), where we have put Aq := F(Q ® /\qT *). The splitting 0: Q -> 1^
determines naturally a homomorphlsm #: T -» Q such that yji = idT and Im # =
Ker0. Denote by Oq: Aq -+ Dq and iq: Aq ^ Aq be the Induced homomorphlsms.
Define a C-linear map j°: B° = C°° (X) -> ̂ ° by

(2.20) ;°(/)=-«(/) + 27c/iZ(

where i = *°: C*(X) = r(lx) -» A°. We first prove

Proposition 2.10. x": IT -» A" is a homomorphism of complexes.

The essential point is contained In the following:

2.11. 9q+1d%q(V) = -i/2n iq
w(V) for any V e Aq .

Proof. The problem is local. So we may assume that V is of the form a ® ft,
where a is a holomorphic vector field and b is a C°°(05 #)-form on X. Then we have

9d%(a ® 6) = 05ft(a) ® 6) = 4(03*(a) <8> 6)

since (0x(a)) ® db = 0. This reduces the proof to the case q = 0 (and b = i). Fix a
local holomorphic splitting j: T -* Q. With respect to j consider a as a holomorphic
section of Q and similarly 9 Is identified with the C°°(l? 0)-form which represents G with
respect to this splitting. Then we have

d%(a) = d(a - 9(a)l) = -d(ia9)l = -ia(89)l = -i/2n(iaa>)l ,

where / is the section 1 of (9X and ia is the contraction with a. Hence we get
Qdi(d) = —i/2n iaco = —i/2n iw(a) as desired.

Proof of Proposition 2.10. By Lemma 2.11, If V e Bq, q ^ 1, then dx(V) e
Write di(V} = i(V') for some V'eAq+l. Then V = nx(V) = nd%(V) = dn%(V) = dV.
Hence d%(V) = %d(V) as desired. Similarly, again by using Lemma 2.11 we have

9dj°(f) = -Odi(f)

= ~0i(df) + im(Uf) = -df + df = 0

since i^^ = Oo = Identity. It follows that df(f) e Im %. If we write 5/°(/) = %(V)
for some V eA1, we get V = d^mdf = dBf by the same argument as above. Hence
Bj°(f) = x(8Bf).

Proof of Theorem 2.9. By Proposition 2.10 iq, q ^ 1, and j° Induce a homo-
morphism hq: Hq(B°) ^ Hq(A°) = Hq(Z). Therefore the theorem follows by five lemma If
we show that Aq fit Into the sequence (2.5) and (2.14). In view of the definitions of the
coboundary map in (2.5) this follows immediately from Lemma 2.11 and (2.20).
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§ 3o Families of Polarized KShfler and Hodge Manifolds

In this section we introduce the notions of polarized and metrically polarized
families of compact Kahler and Hodge manifolds, which will be the basic objects of our
study throughout the paper.

First of all, the notions of polarized compact Kahler manifolds and families of such
manifolds were introduced in [Fu3] and [Sch3] in slightly different but equivalent
formulations. Let X be a compact connected Kahler manifold. Any Kahler form CD
on X, being rf-closed, determines a de Rham class [co] in H2(X, R). In general such a
class y is called a Kahler class, or a Kahler polarization, on X, and the resulting pair
(X, y) is called a polarized (compact) Kahler manifold.

In what follows f:3£-+S always denotes a proper smooth morphism of reduced
complex spaces with connected fibers Xs:=f~1(s). In this case we shall call / also a
family of compact complex manifolds (over S). For an abelian sheaf 3F on & we write

Definition! 3.1. A polarized family (/: °£ -» S, y ) of (compact) Kahler manifolds con-
sists of a family of compact complex manifolds /:#"-» S and an element y E (R2f^E)(S)
such that all the restrictions ys := y\Xs E H2(XS, R), s e S, are Kahler classes on Xs. In
this case y is called a polarization of the family /. Isomorphisms of two families are
defined in an obvious way.

In [Sch3] a Kahler class Is considered rather as an element of Hl(X9 Q%\ and
accordingly, a polarization y for a family is considered as an element of R1f^Qx/s(S).
Moreover, / is assumed to be Kahler (at least locally with respect to S) in the following
sense: There exist an open covering <% = (l/J of % and R- valued C°° functions pt on Ut

such that Pi — PJ are pluriharmonic on Ut fl Up and that the resulting relative real
(1, l)-form co^/s = iS^,sd^/spj restricts to a Kahler form on each fiber. However, as we
shall show in Lemma 3.2 below, In any polarized family (/: X -> S, y) as in Definition
3.1 /Is actually a Kahler morphism In the above sense. Further, the equivalence of
the two notions of the polarizations of families follows from the next proposition.

Proposition! 3.1. Let (/: SE -> S, y) be a polarized family of Kahler manifolds. Then
y induces a section y$-/s of Rlf^Q$-ls whose restriction to each fiber is a Kahler class, and
vice versa.

Proof. Let a e (R2f^f(9s)(S) be the image of y e (R2f^R)(S) by the natural homo-
morphism jR2/*R ^ R2f*f^ -> R2f^f'0s. Observe then that the sequence

0 - Rlf*dXlsGx - R2fJ°Os - K2/,0* - 0

coming from the short exact sequence 0 — »/°0s ~* ®sc ~^dg/s@£ — »0 is exact with
Rlf*d%lsG% locally free (as well as Rqf*d%/s@%- for any other q). Here a is mapped to
zero in (R2f^(9$-)(S) since this is true fiber- wise. Hence a comes from a uniquely
determined section of Rlf*d$-/s&%- which gives rise to a desired section y#-/s of R1f^Q^/s.

Suppose conversely that we are given an element 7^/5 of (Rlf*@k/s)(S) with the
property of the proposition. Consider the usual Inclusions
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Xl5Gs g R2fJ'(9s

Ull Ull UN

(0) g

where the second row is induced by the conjugation in R2f*f0@s- Then y%-/s clearly
induces y e (R2f* R) (S). One can see easily that the assignments y^>y%/s and y%/s-*y
above are inverses to each other.

Let now /: SC -» S be a family of compact complex manifolds in general Then a
family d) = {ws}S6S of Kahler forms CDS on the fibers Xs is called of class C°° if it is
induced by a section of <£#/s = ^#/s (cf. (1.9)), which is then uniquely determined by
co. We then identify CD with the corresponding section of /„,<£#•/$• The induced Kahler
classes 7:= {ys} e H2(XS9 R) are then induced by the image ^^(co) 6 (R2f^f°@s(R))(S)
of a) via the composite map

(3-1) f*0xis -^ K1/*^/* -^ ^%/°^sW

where ^ and <52 are the coboundary homomorphisms induced by the sequences (1.10)
and (1.8) respectively.

Definition 3.2. A metrically polarized family (/: 9C -» S, d>) o/ compact Kahler mani-
folds consists of a family /:#"-» S of compact complex manifolds and a C°° family
<S = fas} of Kahler forms such that y := <52<5i(d>) is constant, i.e., y e (R2f^R)(S) ^
R2f%f°@s(R)(S); thus (/, co) naturally gives rise to a polarized family (/, y) of Kahler
manifolds. In this case d> is called a metric polarization for /, or for (/, y).

We shall see below that any metric polarization is always induced by a Kahler
form on the total space locally with respect to S. First we give a definition.

Definition 3,3, Let (/: 3C -> S, co) be a metrically polarized family as above and c%
a locally dd-exact real C°° (1, l)-form on #" i.e., a section of &%. We shall call co%- an
admissible (1, l)-form for (/, co) if its restriction co^|Jrs to each fiber agrees with ojs.

Lemma 3JL Let (/: 3C -> 5, y ) be a polarized family. Then there exist locally with
respect to S a metric polarization co for (/, y), and an admissible (1, l)-form co%- for the
resulting metrically polarized family (/, co).

We prove the lemma in a more general form for later use. Let (/: 2£ -> S, y) be as
above. Let S' E S be a closed analytic subset and #" := ^ xsS'. Set f = y|^" and
/' = /|^". Then (/': $' -» S", f) is again a polarized family. Then Lemma 3.2 follows
from the special case of the next lemma where S' reduces to a single point.

Lemma 3030 Let cbr be a metric polarization for (/', y') with an admissible
(1, 1)- form cou^. Then CD' extends locally with respect to S to a metric polarization co for
(/, 7), and coy to an admissible (1, 1)- form c% for (/, co).

Proof. We consider the following commutative diagrams with exact rows, con-
sidered around an arbitrary point of S';
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0

and

6 ?

coming from the short exact sequences (1.2) and (1.1) on $% and X'. Here, a and e are
surjective, and b is isomorphic. (For a we use the cohomological flatness of 0% with
respect to /.) Moreover, /? := b'1 qf SQ(O)%->) e (R2f^R)(S) is just the given polarization
y. Therefore, c(/f) = 0, and /? is in the image of q. From these, by a simple diagram
chase we can find a section c% of /„.##• with r (<%•) = <%•-. Then this co^ and the
associated metric polarization c5 clearly satisfy the requirement of the lemma.

Proposition 3.4. Let (/: SE -» 5, c5) foe a metrically polarized family. Then locally
with respect to S there exists always an admissible (1, l)-form co%- for (/, c5).

We need a lemma.

Lemma 3,5,, 17ze homomorphism 62: /^
1/*^r/s ~* ̂ 2/*/"^sW z'w (3-1) is injective.

Proof. By definition <52 fits into the exact sequence

I? I/* /"•£!/> /"!H>\ ^ v i?l/* /n _ v pi/" ^2> ^2 p2r /"8^/> /"P^^ ./*./ %w - > K J+War/s - > & J*^&/s - ^ K J*J %(M) •

Hence it suffices to show that j8 is surjective. Note that

JR
1/5!!R®R^S(R) is a locally free ^s(R)-module, while Rlf*&%-/s is a locally free @s-

module of rank equal to dim Hl(Xs, Ox) by S (cf. Lemma 12.6 below). Then the
surjectivity of /? follows from the following commutative diagram

where s is any point, the vertical arrows are the restriction maps, and both rs and /?(s)
are surjective.

Proo/ o/ Proposition 3.4. Let (/, 7) be the induced polarized family. By Lemma 3.2
we can find a metric polarization a>' for (/, y) which possesses an admissible (1, 1)-
form co'p. Then a) — a>' e(f*&%•/$)($) is mapped to zero by <5t in (3.1) by Lemma 3.5.
Therefore we can find an element \j/ e /%f, ^^-(R)) such that (b = co' + z^/s^/s^ (°f-
(3.2) below). We then define 0)% = c% + id^d^ijj, which is clearly admissible for (/, co).
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Let (/: 3£ -+S,a>) be as above. We observe the following commutative diagram
with exact rows

(3.2)

.3.4 We say that an element r\ e (K1/,^r)(S) is compatible with co if
/?(//) = d^co). In such a case a triple (/, c3, */) is called a refined metrically polarized
family (of Kahler manifolds).

Remark 3.1. The proofs of Lemma 3.2 and Proposition 3.4 show that for any
refined metrically polarized family (/, CD, rj) we can always find an admissible (1, l)-form
(Of for (/, &) with <50(c%-) = rj locally with respect to S.

We now fix a metrically polarized family (/: 9£ -» S, a>).

Definition $.5. We say that two admissible (1, Informs c% and co^r on X for (/, at)
are equivalent if the following equivalent conditions are satisfied:

(3.3) <5o(c%) = ^oC^k) as a section of K1/*^1

and
(3.4) we may write c% = c% + f*cDs for some locally 53-exact (1, l)-form <DS on S.

The equivalence of (3.3) and (3.4) follows easily from the commutative diagram
(3.2). If CD^ is admissible for (/, CD), then any (1, l)-form which Is equivalent to It In the
sense of (3.4) is again an admissible (1, l)-form. In particular, by taking cos to be a
suitable Kahler form on S we may always take c% to be a Kahler form (locally with
respect to S).

3=6o We call an admissible (1, l)-form o% for (/, CD) normalized if the
fiber integral of co#, as a (1, l)-form on S, satisfies the condition

(3.5)

where n is the dimension of the fibers.

Proposition 3060 1) Let (f, co) be as above. In each equivalence class of admissible

(1, 1)-forms for (f, co) there exists a unique normalized form co# locally with respect to

S. 2) For any refined metrically polarized family (f: SE -> S, co, rj) there exists a unique

normalized admissible (1, I)-form co% such that S0(co^) = r\. 3) For any element v\% e

Hl(%, &$) there exists an admissible (I, 1)-form co% on 9C such that S&(cog) = r\%, where

6#\ Fffi, 0$-) -> Hl($, 0*%-) is the coboundary map coming from (1.2).

Proof. Fix any admissible (1, l)-form co% according to Proposition 3.4. From the
equation 'co% = co# + f*cos we obtain

'CDy- = COtr -h /
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By taking the fiber integral we then get

f ',-« f ,-n + r,I (Oag- — 1 (£% I ^&?s ,
J«? Jar/s

where C = JXs co" is a positive constant which is independent of s E S. Hence, if we set

o>s=-i/c
3T/S

then by a theorem of Varouchas (cf. Proposition 1.3) we have cos E F(S, d>s). Hence,
by this choice of cos the form 'c% satisfies (3.5), which determines C uniquely. This
shows 1).

2) follows from the uniqueness in 1) and Remark 3.1.
3) We observe the following commutative diagram of exact sequences

o

where the right vertical sequence comes from the Leray spectral sequence for /, and the
horizontal one from (1.2). By 2) we can find an element co^ e F(3C^ <£#•) such that
^oO^r) = wfer)- Then a simple diagram chase shows the existence of an element
cos e F(S, <PS) such that <5#-(e%- + /*cos) = r\^.

Corollary 3.1, Suppose that the first Betti number b^ (Xs) vanishes for any s E S.
Then a normalized admissible (1, l)-form is unique, and is defined globally on the whole
space X.

Proof. The exact sequence

shows that v: (K%^)(S) ->(K2/*R)(S) is injective, while if y is the polarization deter-
mined by (5, we have vc50(c%) = y for any admissible form c%-. Thus 60(a}^) is inde-
pendent of <%-. The result then follows from Proposition 3.6.

We shall also give another characterization of the equivalence classes of admissible
forms.

Lemma 3.8, Let c%- and c% be admissible (1, I)- forms for (/, d)). Then TH(c%) =
TH(o}'uf) if and only if c% and 0)'$- are equivalent, where TH(a)$) is the horizontal
distribution for f associated to c%- and TH((D'%} is similar (cf. (1.13)).

Proof. The sufficiency is obvious. The necessity is shown in [B-G-S II; Th.1.7]
when S is nonsingular (cf. Remark 3.2 below.) In the general case, let co^ and c%
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be two admissible (1, l)-forms with TH(c%) = TH((o%), which we may assume to
be normalized. Then by the uniqueness in Proposition 3.6 and the above result of
[B-G-S] co% — w'% must vanish on the smooth locus of 3£. By Corollary 1.2 c% = c%
on the whole 9C.

Remark 3.2. For any (/, <S) and c% as above the resulting triple (/, (%-, 1
is exactly the Kahler fibration in the sense of [B-G-S II; Def.1.4]. Lemma 3.8 shows
that this notion is equivalent to our notion of refined metrically polarized family as
defined above.

For later applications we discuss admissible forms for families of complex tori.

Proposition 3.9. Let (/: 9C -> S, d>) be a metrically polarized family of complex tori
such that ajs are flat Kahler forms on Xs for all s. Then, for any admissible (1, I)-forms

Q),j and 0)% for (/, o>), there exists locally with respect to S an automorphism g of % over

8 such that g*co& and co'% are equivalent.

Proof. The problem is local with respect to S. Fixing a holomorphic section to /
we put on SC -»5" a natural structure of a relative Lie group over S acting on itself by
translations over S (cf. [Fu3; (2.1)]). (Namely, we identify 3T->S with Aut0 9C/S -> S.)
We consider the induced action of 2E -»5 on the exact sequence

arising from (1.1). Since the action on R2f%R is trivial, in view of Definition 3.5 it
suffices to show that SC/S acts transitively on the inverse image Py := a'"1^) E
(Rl ft &&)(S) where y is the polarization associated to ax

We consider the associated infinitesimal action of /^ 6^-/s where 0^/s is the relative
tangent sheaf. The action on Rlf^0% is given by the coboundary homomorphism
w:/*^r/s ->^1/*^r coming from the relative Atiyah sequence associated to (f,y)
generalizing (2.13) (cf. (4.2) below). Both f*@%/s and Rlf*&% are locally free Os-
modules and on each fiber w induces an isomorphism H°(XS, 0Xs)^H1(Xs, (9Xs); hence
w itself is isomorphic. Now (R^f*®x)(S) acts transitively on Py by the exactness of (3.6),
and so the orbit map o: (Rl/*&%)($) -* Py, C -* a(C) + <5o (<%•)> is surjective. Thus the
action of % -> S on Py is transitive.

We now look at families of compact Kahler manifolds which are polarized by
chern classes of positive line bundles.

Definition 3870 1) A polarized Hodge manifold is a pair (X, L) consisting of a
projective manifold and a positive line bundle L on X. An isomorphism of two
polarized Hodge manifolds (X, L) and (X', L') is an isomorphism i//: X ^ X' of complex
manifolds such that \I/*L' = L.

2) A polarized family of Hodge manifolds (f:^-^S,^) consists of a family of
projective manifolds f:&^>S and a holomorphic line bundle <£ on 9C whose restric-
tions Ls:= £f\Xs to fibers are all positive. An isomorphism of two such families (/:
9?-* S, <£} and (/': 9C' -»S, J§?') is an isomorphism il/:2C^>9?' of complex spaces over
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S such that \l/*g" = ^ ® f*F for some holomorphic line bundle F on S. This
amounts to considering, instead of line bundle itself, the induced section of relative
Picard variety.

Remark3.3. In 1) (X, L) gives rise naturally to a polarized Kahler manifold (X, y),
where y = c±(L) E H2(X, E), which is in the image of H2(X, Z). Conversely, any (X, y)
with y E Im (H2(X, Z) -> H2(X, R)) is induced by some (X, L) as above with L denned
up to numerical equivalence; hence a polarized Hodge manifold is just a projective
manifold with an (inhomogeneous) polarization in the sense of algebraic geometry (cf.
[P]). Similarly, in 2) (/, «£?) gives rise to a polarized family (/, &) of Kahler manifolds,
where cos = c^LJ.

Definition 3.8. A metrically polarized family of Hodge manifolds is a triple
(/, ft), J&f), where (/, <u) is a metrically polarized family of Kahler manifolds and (/, JS?) is
a polarized family of Hodge manifolds such that cos represents c^LJ on Xs.

Remark 3.4. As in Remark 3.3 (/, c5, J^) as above gives rise to a refined metrically
polarized family (/, c5, n) of Kahler manifolds, where rj = c(j£?) with the refined chern
class c(£?) identified with its image in (R^f*0*gcis)(S) (cf. (1.5)). In fact, one sees from
Lemma 3.5 that co and rj are compatible in the sense of Definition 3.4.

Definition 3,9. Let (/: #" -> S, a), &) be a metrically polarized family of Hodge
manifolds. We call a hermitian metric h on JS? admissible if the first chern form (^(JS?, h)
is an admissible (1, l)-form for (/,<&). If, further, c^^h) is normalized, h is called
normalized also.

Proposition 3.10. Let (/: #" -> 5, cy, JS?) foe a metrically polarized family of Hodge
manifolds. Then there exists an admissible (resp. normalized admissible) hermitian metric
h on ^ (resp. on <£ locally with respect to S). Moreover, the totality of such metrics is
given by h' = h-f*ep for all C°° ^-valued functions (resp. pluriharmonic functions) p on S,
where ep = exp (p).

Proof. By Remark 3.4 and Proposition 3.6 there exists an admissible (1, l)-form
coy for (/, co) such that <5#-(<%0 = £(&) m H1^ &>%•). Furthermore, co#- can be taken to
be normalized if the family is considered locally over S. Take now any hermitian
metric h0 on &. Since ^(c^JSf, h)) = t(&\ for some q E F(3f9 ^(M)) we may write

(Of = Cl(&, h0) - (i/2n)ddq = Cl(&, h),

where h = eqh0, thus proving the first assertion. The above proof further shows that if
c^^h') is admissible for another hermitian metric h\ h = h'eq' for some q'E
r(2F, ^(R)). But since h/h' is then on each fiber pluriharmonic, and hence is constant,
q is of the form q = f*p for some p E F(S, ^S(R)). If c^J&f, h') also is normalized, by
the uniqueness q, and hence p also, must be pluriharmonic.

Corollary 3.11. Locally with respect to S a normalized hermitian metric on ££ is
determined uniquely up to automorphisms of JS? over 9C.
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Proof. If h = h ' - f * ( e p ) with p pluriharmonic as In the proposition and If p is
locally a real part of some g G F(S, (9S\ the multiplication by f*e9'2 on the fibers of &
transforms h' into h.

Remark 3.5. Though h Is determined only up to automorphisms of &, the result-
ing chern form cv(5£, h) is independent of the choice of such an h. Hence we always
have a global normalized admissible (1, l)-form c% which coincides with Ci(&,h) on
any open subset on which a normalized admissible hermitian metric is defined. (This is
in fact a special case of Proposition 3.6 where v\ = c(L).)

Note however that the de Rham class of a)% in H2(^ E) (cf. Def. 1.8) may In
general not coincide with cx («£?), or it may even not an integral class. The obstruction
for the latter and for the global existence of a normalized hermitian metric Is detected as
follows.

Proposition! 3<,128 Let (f:SE-*S9oJ9 J&?) be as above. Then there exists an element
^ e H2(S, S1) whose vanishing is equivalent to the existence of a holomorphic line bundle F
on S and a hermitian metric h on 5£ ® f*F such that c^(5f ®/*F3 h) = co%.

Proof. We observe the following commutative diagram of exact sequences

0

where the horizontal sequences come from the Leray spectral sequences for / and the
left and the middle vertical sequences are just the sequences (1.4) for 5 and X. Let
ri e Hl(9C9 &%) be the image of coy e /%f, %). Since b(fj) = b(t(&)\ we may consider
rj - c(&) e H^S, &s). Then we set £ = v(r\ - c(^}\ This vanishes if and only if there
is a line bundle F on S such that rj — c(^) = c(F\ or equivalently, r\ = t(& ®f*F) on
X. In this case, the proof of Proposition 3.10 shows the existence of an h with
c^(Sf (g) f*F, h) = (Dy as in the proposition.

§ 4o Deformatioms for Polarized Families

In this section we shall introduce the Kodaira-Spencer maps associated to the
polarized families introduced in the previous section. In the case of a metrically
polarized family, we shall see that any admissible (1, l)-form gives rise naturally to
representatives of the Kodaira-Spencer classes. In the special case of metrics of con-
stant scalar curvature these representatives turn out always to be harmonic, which Is
closely related with the Kahler property of generalized Weil-Petersson metrics defined
below.
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For a complex space S we shall denote by Os the holomorphic tangent sheaf of
S. Let /: 9C -> S be a family of compact complex manifolds. Then the associated
locally free extension

of f*@s by the relative tangent sheaf 0%/s gives rise to the commutative diagram

(4.1) s e S ,

defining the Kodaira-Spencer map ps for the family / at s, where the vertical arrows are
the restriction maps.

Let rj be any element of (Rlf^sc)(S) and assume S to be Stein. The natural
homomorphism

gives a homomorphism f: J*%^r -» J?1/*^. The space (K%
classifies the set of isomorphism classes of coherent extensions 0 -> % -» £ -» $#• -> 0 of
0^- by ^ such that 27 is locally isomorphic to the direct sum ®£®Q%\ so y% := C(??)
gives rise to the following commutative diagram of exact sequences of %-modules

0 0

1 i
O-^-.^-^s-.O

II 4 4
(4.2) 0-^%^^ -,% ^0

1 I
f*0s=f*0s

I I
0 0

where the top horizontal sequence is defined by the natural image y%/s of y% in the space
H^ffi, O^/s), which classifies the set of isomorphism classes of (locally free) extensions of
®scis by 0#. From the middle vertical sequence we get the following commutative
diagram

(4.3) s 6 S ,

where the vertical maps are the restriction maps and Zs = ZJs (cf. (2.13)).
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4.1. The C-linear map ps: TSS -> Hl(Xs, Zs) obtained in (4.3) is called the
Kodaira-Spencer map at s associated to the family (/, rf). We say that (/,»/) is effective if
ps is injective at any s E S.

From (4.1), (4.2) and (4.3) we get the following commutative diagram with exact
rows

(4.4)

TSS = TSS

where 7,e H2(XS, R) is induced by 7 = q(rj) E (R2f*W)($) (cf. (3.2)). Denote by
Hl(Xs, 9Xs)ys the kernel of U7S.

Lemma 4.1. Let (/: #" -» S, 7) be a polarized family of compact Kdhler manifolds.
Then for any point s e S we have Im ps E H1(XS, ®Xs)ys'

Proof. Since 7 is mapped to zero by a in the exact sequence

y can locally always be lifted to an element i\ as above. The result then follows from
(4.4).

For any polarized family (/, 7) as above we call the induced map

the Kodaira-Spencer map associated to (/, 7) at s. We call (/, 7) effective if ps is injective
for all s.

Next we consider a polarized family (/: #" -> S, JS?) of Hodge manifolds. Let 17 be
the natural image of the refined chern class 6(&)e Hl(X,0>ff) in (Rlf^y)(S) (cf.
(1.5)). In this case we call the Kodaira-Spencer map ps associated to (/, rj) the Kodaira-
Spencer map associated to (/, JSf ); and (/, jSf ) is said to be effective if so is (/, rj).

Note that in this case the diagram (4.2), and hence (4.3) also, can be constructed
geometrically from jSf, e.g., the top horizontal sequence of (4.2) is nothing but the
relative Atiyah sequence for the principal C*-bundle &* := jSf — 0, which yields on each
fiber the Atiyah sequence (2.13)s associated to the principal C*-bundle Ls on Xs. In
view of this we write in this case E& = Zy and 27j^/s = £Ja:ls in (4.2).

We next discuss realizations of the above Kodaira-Spencer maps via differential
forms. Let f:2£^>S in general be a family of compact complex manifolds. Let
TH = TH^ be any CQO horizontai distribution for / (cf. (§l,e)). Fix an arbitrary point
o e S and set X = X0. Take a C°° trivialization ^: % -» X x S over S of / such that

(4.5) TH\X= THil/\X,

where TH\j/ is the (real) horizontal distribution for / defined by the trivialization.
(Starting from a given trivialization it is easy to construct one satisfying (4.5).) Now \j/
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induces a C°° family of almost complex structures on (the underlying C°° manifold of) X
and this is given as usual by a C°° family <p = {(ps}seS °f elements cps of A1 = A1(X) =
F(T® T*) (cf. §2) with <p0 = 0. Then for any vector v e T0S we may speak of the
derivative of this family at o with respect to v, say Lvq>, as an element of A1; the
resulting C-linear map T0S -» A1, v -» Lvcp, will be denoted by £0;

This is actually independent of the choice of the above C°° trivialization \j/ and depends
only on the restriction TH\X, which is a complex vector bundle on X.

Lemma 4.2. Let Z1 be the kernel of d in A1. Then £(T0S) E Z1; moreover, if
p: Z1 -^>Hl(X, 0X) is the natural projection via the Dolbeault isomorphism, we have
Po = P£O> where p0: T0S -» H1(X, Ox) is the Kodaira-Spencer map.

Proof. See e.g. [Ku].

Fix veT0S. Take a local embedding (S,o) cz* (Cm, o), Cm = Cm(sl3 ..., sm), such
that i; = d/ds, s = sl5 at o. Choose a local coordinate system of the form (z, s), z =
(z 1 ? . . . , z n ) and s = (sl9 ..., sm), on an open subset ^ of ^ such that / is given by
/(z, s) = 5. Write the horizontal lift v of v as

(4.6) v = d/ds + X «ad/5za

on I/ := X fl ̂ . The following is also well-known:

Lemma 4.3. £0(v) = d(£ a*d/dza) = £ aa
;?fl/5za ® dz^ on I/.

In the above situation if more generally A = {as}S6S is a C°° family of tensor fields
as on Xs and A' = {a's} the induced family of tensor fields on X via \l/, we may consider
the tensor field L^' on X. This is also independent of choice of \j/ and depends only
on TH\X and A; so it shall be denoted by L^A (This is in fact nothing but the relative
Lie derivative defined by TH at o, at least when S is nonsingular. (See [B-G-S] [Si]
e.g.)

Suppose now that there exists a holomorphic line bundle 3? on #". Let $: ^x ->#"
be the associated principal C*-bundle. Denote by TC: ^C1 -^l1 be the natural homo-
morphism as in §2, where A1 = F(X, Q ® T*) with respect to the restriction L := L0.
Let now f:^^SbQ the natural projection. Suppose that we are given a C*-invariant
horizontal subbundle TH&* for / such that for any / e JSf x , $ induces an isomorphism

(4.7) 7J*S? ^ T/ , x =

Suppose further that ^ is lifted to a trivialization of C*-bundles 0 r : ^ ? x ->L x x5 such
that TH£?\L ^ TH\j/\L in a similar sense as before. In this case the resulting family of
almost complex structures on (the underlying C°° bundle of) L is given by a C°° family
$ = {$s} of elements $s of A1 with $0 = 0 (cf. [Gri]). Then, as before, we can take the
derivative of this family at o with respect to any v e T0S and we denote by |0: T0S -> ^C1

the resulting C-linear map.
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Lemma 4.4 Let Z1 be the kernel of d in A1. Then: 1) £0(T0S) E Z1. 2) If
p: Z1 -» H1(X, ZL) is the natural projection with respect to the Dolbeault isomorphism,
p£o = po? where p0 is the Kodaira-Spencer map associated to (/, J^7) at o. 3) The
following diagram is commutative

Z1 g A1

z1 g yi1.
Froo/. The proofs of 1) and 2) are the same as that of Lemma 4.2. We only note

that the proof of Lemma 4.2 does not require the properness of /; so we apply It to /
and then restrict to the subspaee of C*-Invariant elements. 3) Is obvious.

We now consider a metrically polarized family (/: 9C -> 5", co) with a fixed admissible
(1, l)-form CQ&. We set TH = TH(Q)%) as in (1.13) In the above consideration. Then,
taking A to be CD = {cos} in the remark after Lemma 4.3 we have a 2-form Lvcb on X.

Lemma 4.5- Lvcb = 0.

Proof. This was shown in [B-G-S II; Th. 1.7,d)] when S Is nonsingular. The
general case can be reduced to this case as follows. The problem Is local; we take a
local realization of / by a projection as In (1.12) such that co%- extends to a rf-closed
(1, Inform <bx on W x D. Then fH := TH(c%) extends TH(c%-) to a horizontal distribu-
tion for TL Let co = {cos} be the family of Kahler forms induced by c% on the fibers of n.
Now applying the above result of [B-G-S] to fH and co we get Lv(b = ® for any veT0D,
where Lv is taken with respect to n. The lemma follows since Lvd) = Lva) for veTsS.

The kernel of d in B1 = B1(X9 co), CD = co09 is denoted by Z1(B) (cf. (2.6)).

Lemma 4.6. If TH = TH(Q}%) is as above, then the image of £0 is contained in B1,
and hence in Z1(B).

Proof. With respect to a C°° trivialization \l/ as above let {co's} be the family of
2-forms on X defined by co. Then a)'s must be isotropic on the graph FVs E T © T of
(ps: T -»• T. Hence we get

0 = co's(u + q>a(u), w -f <p5(w)), 11, w e A° .

On the other hand, L^co' = 0 for any v e T0S by Lemma 4.4; so by differentiating with
respect to 5 (symbolically) and setting s = o we get

0 = G)(q>0(u), w) + co(u, <?0(w)),

where co = o)'0. Hence <p0e B1.

Let p be any local potential function for CQ&. Then In local coordinates we see
that in the notation of (4.6)
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where ' denotes the derivative d/ds, and gaj is the metric tensor associated to co0. Note
that gxj = d2p/dzad'zp on 17. (Lemma 4.6 also follows from (4.8).)

Next we treat the case of a metrically polarized family (/, co, &) of Hodge mani-
folds. We fix an admissible hermitian metric h on & for (/, co) (locally over S) and set
CH# = c !(«£?, h). Let Q(£ := d log ft be the hermitian connection of (&, h\ considered as a
C*-Invariant 1-form on J^x. Define a C*-invariant horizontal subbundle Ta(0&) =
11,1 (̂0 )̂ for /by

7JH(0^) ={veTl: 8#(v) = 0 , and fav) e T*(c%)} .

This clearly satisfies the condition (4.7).
On the other hand, Qy restricts to a hermitian connection 9S of (LS9 hs) and we

apply the relative Lie derivative Lv for/ to this family of C°° 1-forms 9 = {9S}:

Lemma 47. LV9 = 0 for any v e T0S.

Proof. By the same method as In the proof of Lemma 4.5 we may assume that S
is nonsingular. Lv is then the usual relative Lie derivative associated to TH(6^). It
suffices to show that (Lv9)(u) = 0 for any C°° vertical vector field u on <£. Let v be the
horizontal lift of v to J^7 x . Noting that [£, M] is vertical, we have

(Lv9)(u) = v(9(u)) - 0([v, u-]) = 00(ii) - ii0^(S) - 0(K 11])

= (d^)0(S, «) = (<^*a%)(0, w) = CD^($^V, (j)*u) = 0

since ^t; e TH(c%-) and ^M is vertical

Now consider 0 = 90 as a homomorphism 0: Q -» 1 as in Section 2 and let 01:
A1 -> D1 be the induced linear map. Recall also the associated linear map %lm.
A1 -» A1 with n% = idAi and Im x1 = Ker 01.

Proposition 4.8. Let |0: I^-^vC1 be the linear map associated to TH(9^). Then we
have £0(v) 6 % l ( B l ) for any v e 7;S.

Proof. First of all, n£0(v) = £0(v) E Bl for any v by Lemma 4.4. On the other
hand, since each 9S is of type (1,0), for any u e A° we must have

where 9' = {9's} is the family of C*-invariant 1-forms on Lx with 90 = 9 defined by $,
and where <ps Is considered a homomorphism f -> Q. Then each Q's is considered a
homomorphism Q -> lx. By Lemma 4.7 0^ = 0 (in the same notation as in the proof of
Lemma 4.6). Hence we have

Hence, E>0(v) = il(u) for some ueAl\ then <J0(u) = n£0(v) = n%l(u) = M; so u e B1 as
desired.

Lemma 4.9. Let (/, d), J&?) be as above. Then the following diagram is com-
mutative',
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(4.9) *

where p0 is the natural projection and 10 = A* is as in Theorem 2.9.

Proof. We drop the suffix o. By the definition of 1 we have a C-linear map
i: Zl(B) -> Z1 := {0 e A1; d<p = 0} such that TT# is the identity and that the following
diagram is commutative

Hence we have by Lemma 4.4 ^p£, = p%l; = p%n£. On the other hand, by Proposition
4.8 we have xn£, = | since %n is the identity on %(Bl). Thus by Lemma 4.4 we get
W = p£ = ft.

In order to get an analogue of Lemma 4.9 for a general refined metrically polarized
family we shall look at the above construction in the Hodge manifold case in another
way. Let TJ£?X be the tangent linear fiber space of ^x and Q<?=T^X/C* its
quotient with respect to the natural C* action. Then Q^ is a linear fiber space over SF
which fits into the exact sequence

(4.10) 0 -»ly -> Q<? -» T& -> 0

of linear fiber spaces; moreover, if we take the sheaf of holomorphic sections in (4.10) we
get exactly the middle horizontal sequence of (4.2). Let 9^ be a connection as above
which defines a C00 splitting of the sequence (4.10).

On the other hand, \j/ induces a C°° trivialization of the sequences (4.10); in
particular a C°° trivialization i//Q: Q^ -»S x QL, over \l/ which preserves the vector
bundle structures and induces the given one t/^: TSE -»S x TX on T3E and the canon-
ical one 1^- -»S x ix. Then I/SQ induces a C°° family of almost complex structures on
the vector bundle QL -> X which coincides with the standard one on the trivial sub-
bundle lx c=^ QL- Such a family is easily seen to be represented by a C°° family of
elements of A1 and can be identified with the above family $ (cf. [Gri]).

Now we consider a general refined polarized family (/: % -»5", c5, f/) of Kahler
manifolds. Let CD^ be an admissible (1, l)-form with ^^co^-) = ^ and if/: ^ ^ S x X 3.
trivialization with THi//\X = TH(CD%)\X as before. In this case we also have the linear
fiber space Q^-^^ and the corresponding exact sequence (4.10) which gives rise to the
middle horizontal sequence of (4.2). (Note that the situation are the same as in the
Hodge case at least locally with respect to #".) Then a connection % of type (1,0) with
curvature c%-, defined in the same way as (2.15), defines a C°° splitting of (4.10). Then
we set THQ := TH(%) = Ker % E Q,. We take a C°° trivialization $ of (4.10) lifting ^
and with the same property as above such that TH\I/Q\X = THQ\X, where \I/Q:
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Qn -> S x Q, Q := Qn\X9 is the induced C°° trivialization. Then i//Q induces a C°° family
of complex structures on the fibers of Q -»X which induces the standard one on
lx d* g; this family in turn is represented by a C°° family of elements of A1;
$ = {0s}. Once such a family is obtained, just as above we get a linear map |0: T0S -»
A1 depending only on the given THQ, which reduces to the previous one when (/, d>, rj)
comes from a family of Hodge manifolds. Then we get:

Lemma 4.10. The diagram (4.9) is commutative also in the general case.

Proof. If we show that Im |0 S %l(Bl\ the rest of the proof is the same as in
Lemma 4.9. The proof of Proposition 4.8 shows that the assertion follows from the
equation 0'0 = 0, where 9' = {6's} is the C°° family of connections 9's: Q -> lx defined by
% and IJ/Q. In fact, the latter follows from Lemma 4.7 since the assertion is local with
respect to % and hence we may assume that we are in the line bundle case.

In the cases of families of Kahler manifolds with constant scalar curvature the
following phenomenon occurs which is basic for the Kahler property of the generalized
Weil-Petersson metric below.

Theorem 4.11. Let (/: 9£ -» S, a>) be a metrically polarized family of Kahler mani-
folds and c% an admissible (1, l)-form for (f, CD). Let £s: TSS-*Z1(B) be the linear map
associated to (/, co%). Then if cos is of constant scalar curvature for an s, we have
£S(TSS) E J^1, where ^ = J^ is the space of harmonic forms in the complex B^ :=

Proof. Fix any point o e S and any element v e T0S. We have to show that
df£0(iO = 0, or by Lemma 4.3 and (2.9), to show that a^d = 0 in the notation of the
lemma. We use the summation convention:

(4.12) a-d.-
b = gy*(a-. - — R-*- a^) = a^- — R-*a^,

where Rfiy an(l ^atf denote the curvature, and the Ricci, tensors
respectively. All cos are of constant scalar curvature R, which is independent of the
parameter by our polarization assumption. In view of (4.9) setting g = det (g^) we get

(Rtp)' = -(log 0)'.?a = -g

Hence by (4.12) we have

(4.13) 0 = R = gal*(R«-B)' - R^g,-*)

(The last equality holds since the scalar curvature is constant on the fiber.)

Remark 4.1. The above formula (4.13) is a special case of a formula for the
variation of the scalar curvature in Riemannian geometry (cf. [B-E]).

In the case of a family of Kahler-Einstein manifolds with nonvanishing Ricci
curvature we have a distinguished admissible (1, l)-form for (/, cu). First of all, d)
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induces a hermitian metric, say ft, on the relative anti-canonical bundle K%*/s and then
c%- := rci(K&}S9 ft) is the admissible (1, l)-form mentioned above, where cos e rc^JQ.

Proposition 4.12. Let (/: 9C -» 5", CD) be a family of Kdhler-Einstein manifolds, and
CD& the distinguished admissible (1, Inform defined above. Then we have £S(TSS) E ^AS ^n

the same notation as in the previous theorem^ where 3fJ*s *s tne space of vector valued
harmonic I-forms on Xs.

Proof. In the same notations as in the previous proof we have to show that
ad-/ = 0- By (4.12) and the Kahler-Einstein condition, we have

(4.14) a-d./ = a#.dj - 2n/r a^ .

On the other hand, from (4.9) and the condition

9ap = r/2rc S2 log g/dz(ld~Zp .

we have 2n/r aj = —5(log g)°/8zp, and a-d~f = — gy^gyj = —(log g)°. From this and (4.14)
the desired equality follows.

§ 5. Deformations Moduli Space§ off Polarized Hodge Manifolds

In this section we shall review basic structures of the local and global moduli
spaces of polarized Kahler and Hodge manifolds, with special regard to their natural
complex F-structures in the global case. We also study the structure of the natural
morphism between these two moduli spaces.

We start with the Kahler case. In this case, the relevant results were shown in
[Fu3] and [Sch2,3]. We review the basic construction rather in detail since the con-
struction of the related moduli spaces treated in this paper follows more or less the
same pattern.

In accordance with the previous sections, for simplicity, the base spaces of deforma-
tions of complex manifolds are assumed to be reduced.

OeieitSon 5.1. Let (X, y) be a polarized compact Kahler manifold and S = (S, o) a
(reduced) complex space with a distinguished point o e S. Then a deformation of (X, y)
over S consists of a polarized family (/: % -»S, y) of compact Kahler manifolds together
with an isomorphisms (X, y) ̂  (X0, y0), where y0 is the restriction of y to the fiber X0.

We get as usual the notions of isomorphic deformations, pull-backs of deforma-
tions, and of complete, versal (effective + complete), and universal deformations.

Theorem 5.1. Let (X, y) be a polarized compact Kdhler manifold. Then (X, y)
posesses a versal deformation which induces complete deformations of all nearby fibers.

See [Fu3; Prop. 8, Remark 9] [Sch 3; 1.6]. A versal deformation is also called a
Kuranishi family and its base space S = S(X, y) a Kuranishi space of (X, y).

Remark 5.1. By the Kodaira-Spencer map p0: T0S - » H l ( X , 0x)y the Zariski
tangent space T0S of S at the reference point o is naturally identified with a complex
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subspace of Hl(X, 0x}y (cf. Lemma 4.1). If we consider also Kuranishi families with
non-reduced base spaces as in [Fu3], T0S actually coincides with H1(X, 0X)T

We shall recall that a Kuranishi family is actually universal under a certain
condition on the automorphism group Aut X of X. We first explain the condition.
Let A = Alb X be the Albanese variety of X and J: Aut0 X -»Aut A be the natural
homomorphism (Jacobi homomorphism), where Aut0 X denotes the identity component
of Aut X. Let L(X) be the identity component of the kernel of J. Then L(X) has the
natural structure of a linear algebraic group and the quotient (Aut0 X)/L(X) is a
complex torus (cf. [Ful]). (We call L(X) the linear part of Aut0 X.) Hence, the
following conditions are equivalent: 1) Aut0 X Is a complex torus (of dimension ^ 0),
and 2) L(X) reduces to the identity.

Definition! §020 A compact Kahler manifold is said to be in (the class) stf if X
satisfies the above equivalent conditions.

As follows from the definition, in the Lie algebra of all holomorphic vector fields
on X the Lie algebra l(X) of L(X) is characterized as the space of annihilators of
holomorphic 1-forms. Furthermore, given a Kahler metric g on X it admits the
following identification;

(See [K; 4.4].)

Now we come back to deformations. Let (X, y) be any polarized compact Kahler
manifold and (/: % -»S, y) a deformation of (X, y) over S = (S, o). Then we have:

02o Suppose that X is in s$. Then in a small neighborhood of o, Xs

are all in jtf, and the dimension dim Aut (Xs, ys) (= dim Aut Xs) is independent of s;
moreover, Aut0 3E/S -> S is smooth.

Here, Aut0 2£/S denotes the component of the identity section of the relative Lie
group Aut 3£/S of relative automorphism of 3£ over S. See [Fu3; 2.4 and Prop. 2] for
the first statement, and [Fu3; §4] and [Sch3; §1] for the rest. From this, together with
a general principle of deformation theory one gets:

o §30 If X is in j/, a Kuranishi family of (X, y) is universal, and gives
also universal deformations of all nearby fibers.

See [Fu3; Prop.8, Prop.9] and [Sch3; 1.8] for the proof. As a formal consequence
of Proposition 5.3 we get a natural action of Aut (X, y) on a Kuranishi space S =
S(X, y), which by Proposition 5.2 factors through the finite quotient group G =
G(X, y) := Aut (X, y)/Aut0 X (cf. [Fu3; 5.3] [Sch2; (3.4), Sch3; 1.9]). However, S/G does
not necessarily classify the isomorphism classes of corresponding polarized manifolds
(Xs, ys). Therefore, in order to get the moduli space in the analytic category, we have
to consider more restrictive classes than jtf.

First, recall that for any polarized family f = (X -» 5, y) and 9E' = (#" -» S, y ) of
Kahler manifolds the functor Isoms(3E, %')'. (An/S) -* (Sets) which assigns to a
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space T->S the set of isomorphisms between pull-backs of 9E and 3E' to T Is repre-
sentable by a complex space Isoms(5T, 9E') -> S. Here3 and in what follows, (An/S)
denotes the category of complex spaces over S.

Now we consider in general a class Jf* of polarized compact Kahler manifolds
(X, y) such that 1) Jf is closed under local deformations and 2) the following condition
(B) is satisfied:

(B) For any polarized families $ and 9C' as above with Xs and X's all in Jf,
Isoms($T, $T) is proper over S.

In particular, Jf is a subclass of jtf.
Then, as almost formal consequences of the above two conditions we get the

following:
(5.2) If (X, y) e Jf, then for any points r and s of a KuranishI space S(X, y), (Xr, yr) and
(JQ, ys) are isomorphic If and only if s = g(r) for some g e G(X5 y). (See [Fu3; 6.2]
[Sch3; 1.9]and[Sch2;§3].)
(5.3) In the notations of (B) if a sequence of points SVE S converges to a point t e S, and
if ( X s , y s ) and (X's,y'a) are Isomorphic, then ( X t 9 y t ) ^ ( X ' t 9 y l ) . (See [Fu3; Prop. 10]
[Sch2; (3.4), Sch3; (L9)j).

As a typical example of Jf we can take the class of nonuniruled manifolds (cf.
[Fu3]):
(5.4) The class of non-uniruled manifolds are closed under deformations and satisfies the
condition (B).

With (5.2), (5.3) and (5.4) In hand, It Is standard to construct the global moduli
space of non-uniruled Kahler manifolds. First, we fix an underlying C°° structure
(M, a) consisting of a compact connected C°° manifold M and a class a e H2(M9 R).
Denote by 9W0 the set of isomorphism classes of polarized Kahler manifold (X, y)
which are diffeomorphic to (M, a), I.e., there exists a dlffeomorphism <p:X^M such
that <p*a = y. We also denote by 9W = 9Ha the subset of SFI0 consisting of the classes
of non-uniruled manifolds. Since the underlying C°° structure is Invariant under
(polarized) deformations, for any point of 91 represented by a polarized Kahler manifold
(X, y) we have the natural map n: S(X, y) -»501 which induces by (5.2) a bijectlon
S ( X 9 y ) / G ( X 9 y ) * U ( X 9 y ) : = n ( S ( X 9 y ) ) ^ W l . Then from (5.2)-(5.4) we obtain the
following theorem, which is the main result of [Fu3] and [Sch3].

Theorem §A The set 50! carries a natural structure of a Hausdorff complex space
with at most countably many connected components. It also carries a natural structure of
a complex V-stmcture induced by the collection {S(X, y) -> U(X, y); G(X9 y)} of all possible
such pairs.

See [Fu-Sch] for the countability of the components of 501. For the last assertion
we assume more precisely that besides having all the properties mentioned so far each
S(X, y) is connected and simply connected. Then the last assertion follows from the
above description of the local structure of 50? and the definition of F-structure (Def. 1.3),
in view of the next lemma.

Lemma 5oS8 Let S = S(X9 y) and S' = S(X\ y') be two Kuranishi spaces satisfying
the above conditions such that U(X, y) £ U(X\ y'). Then there exists an embedding
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T: 5" -» S' over the above inclusion which lifts to a morphism f: JT -> JT' o/ £/ze corresponding
universal families.

We first recall some general fact. Let T = S x S and pf: T -»S, i = 1, 2, be the two
projections. Let ^ = (^ -> T, c5f) be the pull-backs of the universal family by pt. Let
/^ be the graph of the action of an element g of G = G(X, y) on S. Consider the
morphism 1 := IsomrQF 1? 9E2) ~~* T with its image denoted by R. Then by (5.2) R is the
union of Fg. In this case, if I -> 5 -> JR is the Stein factorization, we have

(5.5) R = Hg rg (disjoint union).

More precisely, let q: Aut (X, y) -> G be the natural projection, and lg the connected
component of 1 containing q~1(g) with respect to the identification /(0>0) = Aut (X, y).
Then / is a disjoint union 1 = \]_glg and Ig-^^g is smooth and admits a
holomorphic section.

Proof of Lemma 5.5. Pulling back both universal families to V := S x S' by
the natural projections, we get families $ and $'. Let jf =
IsomF(^, ^') and 1A .R -> V the Stein factorization. Since / -» £ is locally isomorphic
to I -+R by the local universality of both families, by (5.5) we see that the natural
projection R -> S is an unramified covering. Since S is connected and simply con-
nected, each connected component ^v of R is mapped isomorphically to S. This shows
the existence of T as in the lemma. The last assertion then follows from the existence of
holomorphic section to r~1(^v) -»Rv.

SR with the complex structure as in the theorem is called the moduli space of
polarized non-uniruled compact Kdhler manifolds (with underlying C°° structures (M, a)).

We next consider the moduli problem for polarized Hodge manifolds in parallel
with the Kahler case. First of all, starting from Definition 3.7, we get as in Definition
5.1 notions concerning deformations of (polarized) Hodge manifolds such as (universal)
deformation of Hodge manifolds, pull-backs of such deformations etc. The following
result is well-known (cf. [Gri; 3.2]).

Theorem 5.6, Any polarized Hodge manifold (X, L) possesses a versal deformation
which induces a complete deformation of all nearby fibers.

A versal deformation of (X, L) in the theorem is called a (reduced) Kuranishi family
of (X9 L) and its base space S = S(X, L) a (reduced) Kuranishi space of (X, L).

Remark 5.2. By the Kodaira-Spencer map p0: T0S - » H 1 ( X , ZL) the Zariski tangent
space T0S of S at the reference point o is naturally identified with a complex subspace of
Hl(X, 27L). If we consider also Kuranishi families with nonreduced base spaces, we
have the identification T0S = Hl(X, ZL).

For a polarized Hodge manifold (X, L) denote by Aut (X, L) the group of auto-
morphisms of (X, L); Aut (X, L) = {<p e Aut X; <p*L ^ L}, and by Aut0(^T, L) its identity
component. It is known that Aut0(Jf, L) is exactly the linear part L(X) of Aut0 X in
this case (cf. e.g. [K; 9.4]). Hence we get:
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Lemma §070 Let (X, L) be as above. Then X is in £/, if and only if Aut0(X, L)
reduces to the identity.

In particular, If X is in s/, In a Kuranlshi family (/: 9E -» S, JSf) of (X, L),
dim Aut (Xs, Ls) Is independent of s. Then, similarly to Proposition 5.3 we get:

mi 5o8o // X is in j/, a Kuranishi family of (X, L) is universal and gives
also universal deformations of all nearby fibers.

In this case G(X, L) := Aut (X, L)/Aut0(X, L) = Aut (X, L) Is a finite subgroup of
G(X,y), y = cJL). It acts naturally on the Kuranlshi space S(X,L) as In the Kahler
case.

To consider the global moduli space we fix a pair (M, a) as In the Kahler case with
aeIm(H2(M,Z)-^H2(M,M)) (cf. Remark 3.3). We denote by WH the set of iso-
morphism classes of polarized non-uniruled Hodge manifolds (X, L) such that (X, c^L))
is diffeomorphic to (M, a) In the previous sense.

Theorem §090 The set 9KH carries a natural structure of a Hausdorff complex space
with at most countably many connected components. Moreover, it carries a natural
complex V-structure.

yjlH with the complex structure in the above theorem Is called the moduli space of
polarized non-uniruled Hodge manifolds.

Remark 5.3. If one fixes a Hilbert polynomial P for (X, L) and considers the
corresponding moduli space $Rj as a subset of WIH, then it is open and closed in SKH

and carries a natural structure of an algebraic space of finite type over C; In fact 2KJ
can be realized as a quotient of a suitable Hilbert scheme by a projective general linear
group (cf. Sect. 11).

We give a sketch of a proof of Theorem 5.9 along the same line as In the Kahler
case. We need an analogue of (5.4). Let ffl = (£"-» S, &) and X'a = (T -> S, &') be
two polarized families of Hodge manifolds. Since we have the notions of Isomorphisms
of such families we have the natural functor Isoms(^a9 #]J): (An/S) — » (Sets)
analogous to the Kahler case. Denote by X = (9C^S, y) and f ' = (T -> S, f) the
induced family of polarized Kahler manifolds.

olOo The functor /s0ms(JTfl? $'a) is representable by a closed complex
subspace Isoms($n, JTj) of Isoms(S£, 3C'\ Moreover •, it is finite, i.e., proper with finite
fibers, over S if the fibers of 3F and 3f' are not uniruled.

Proof. Let cP: X xsl -^ T xsl be the universal isomorphism of the induced
polarized families of Kahler manifolds over / := Isoms(^, 9£') -» S. Denote by J^j
and jSf/ be the pull-backs of JSf and <£' to X xsl and %' xsl respectively. Then
(0*£fj) ® ^i1 defines a section of the relative Picard variety Pic(3T xs ///)->/. Its
zero set I0 := Isoms(3£a9 %'a) E I provided with the restriction of <P to an Isomor-
phism X xs/0^^" xs!0 clearly represents Isgms(Xa9 X'a\ The last assertion follows
from (5.4) and the fact that each fiber J0)S Is either empty or is a principal homogeneous
space of Aut (XS9 Ls), which is finite.
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The rest of the proof of Theorem 5.9 is now formally just the same as in the case
501. We note that in particular for any polarized Hodge manifold (X, L) we have a
natural map n: S(X9 L) -> 50IH which induces a bijection S(X, L)/G(X, L) ^ U(X, L) :=
n(S(X, L)), giving the local analytic structure of ^JlHi further, the collection {(S(X, L) — >
U(X9 L); G(X9 L))} determines a complex F-structure of 9HH in the previous notations.

We now compare the two moduli spaces considered so far. First9 let (X, L) be a
polarized Hodge manifold in general with the associated polarized Kahler manifold
(X, y). Then a Kuranishi family (/: SE -> S, &) of (X, L) gives rise to the associated
deformation of (X, y), which in turn induces a versal map

between the corresponding Kuranishi spaces. Under the identifications of the Zariski
tangent spaces as in Remarks 5.1 and 5.2 the differential r^ of r at o is induced by the
natural homomorphism

u:Hl(X,Z)^Hl(X,0x)7

in the exact sequence (2.14).
We shall give a description of this morphism in terms of the relative Picard variety

associated to the Kuranishi family (/: 3C -> 5, y) of (X, y). Since the construction is
more or less standard, we omit some technical details for which we refer to [Fu4]. Let
F:= Im (R2f^Z — » R2f^)9 considered also as a local system on S. Then, correspond-
ing to the natural sheaf homomorphism Rlf^.&^-^r we get a homomorphism i\
Pic $T/S — > r over S of the relative Picard variety to F. Considering y as a section
S -> r, we set Picy X/S := i~*(y(S)). Then Picy 9C/S is smooth over 5. Since Aut0 &/S
is also smooth by Proposition 5.2, with respect to the natural action of Aut0 X/S -> S
on Picv SC/S over S we can construct the relative quotient of Picy 3F/S over S:

u: Py(9C/S) -> S .

Furthermore, both the quotient map q: Picy SC/S -> Py(^/S) and the structure morphism
Py(%IS) -* S turn out to be smooth.

The fiber over o of u is naturally identified with the quotient abelian variety
PY(X) := Picy JT/Aut0 X, where Picy X = {L e Picy X\ cx(L) - y}. Let I and I be the
points of PicyX (EPic^/S) and Py(X) (E P7(£/S)) determined by L. We fix a
Poincare line bundle J£y on 3C xsPicy 3£/S9 associated to some section S -> 3£ of f. It is
then formal to prove the following:

Proposition 5.11. Set P = P7(9T/S). Let &y be the pull-back of &y to % xsP via
holomorphic section a: (F, I) -> (Picy &/S, 1) to q. Then the family (fp\ % xsP -> F, J5fy) is
a Kuranishi family of (X, L) with respect to any given isomorphism of (X, L) with
(Xu(i}, LI). In particular, r: S(X, L) ->• S(X, y) is smooth with its fiber dimension
dim Hl(X, Of) - dim H°(X, 0X}.

Moreover, the natural action of G(X, y) = Aut (X9 y)/Aut0 X on 5 lifts naturally to
an action on P and we get the induced proper surjective morphism

, y) - S(X, y)/G(X9 y) .
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At IE P7(3£/S) this also is isomorphic to the morphism r: S(X, L)/G(X, L) -» S(X, y)/
G(X, y) induced by r and the inclusion G(X, L) -» G(X, y).

By the definitions of the moduli spaces 2RH and W, we have a canonical map
v: yjlH —»2R which assigns to the isomorphism class of a polarized Hodge manifold
(X, L) the class of the induced polarized Kahler manifold (X, y). The induced map
v ~ 1 ( U ( X , y ) ) - ^ U ( X , y ) is naturally identified with the morphism q above. Together
with Proposition 4.10 this shows the following:

Theorem 5ol20 The canonical map v: ^JIH -»9K above is a proper V-smooth mor-
phism of complex spaces with complex V-structures.

In particular, if a point m of 9K is represented by a polarized Kahler manifold
(X, y), then the fiber over m is naturally identified with Picy X/Aut (X, y).

§60 Extremal Kahler Manifolds—Their Deformations Moduli

In this section we first review the definition and the basic properties of extremal
Kahler manifolds, and then, construct the local and global moduli spaces of extremal
Kahler and Hodge manifolds in the class $4 introduced in the previous section. The
main point here is to show that for any metrically polarized family of Kahler manifolds
in j/ an extremal Kahler metric given on a fiber extends uniquely and smoothly to all
nearby fibers as a family of extremal Kahler metrics. This also forms the basis of
the relations between these moduli spaces and those of the corresponding polarized
manifolds defined in the previous section.

Let (X, y) be a polarized compact Kahler manifold. Let 17 be the space of all the
C°° Kahler forms CD on X which represent the Kahler class y e H2(X, R). According to
Calabi [Cl] [C2] we shall introduce the notion of extremal Kahler metrics as follows.
First, we consider the functional 0 on U defined by:

r
(6.1) 0(co):=\ R2co\ well, n = dim X.

Jx

where R = R(co) is the scalar curvature of the associated Kahler metric gm. Then the
Euler-Lagrange equation of 0 is given by the following (cf. [Cl]):

(6.2) dBR = id1jR = Q9 or Rsj* = 0.

Definition 6.1. Let co be a Kahler form on X. Then co, or the associated Kahler
metric 0W, is called extremal if it gives a critical point of the functional 0. If co is
extremal, we call the pair (X, co) an extremal (compact) Kahler manifold.

From the definition it is clear that a metric with constant scalar curvature is
extremal. Conversely, by (5.1) and (6.2) we obtain:

Proposition 6.1. // X is in <$/, then a Kahler form CD is extremal if and only if it is
of constant scalar curvature.

Remark 6.1. Any Kahler-Einstein metric is of constant scalar curvature, and hence
is extremal. Precisely, it occurs in one of the following three cases: 1) c^X) < 0, and
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y = —eci(X)9 2) c±(X) = 0 and y is arbitrary, and 3) c^X) > 0, and y = ec^(X\ where e
is any positive real number. Indeed, a Kahler-Einstein metric is exactly a Kahler
metric with constant scalar curvature in y in one of the above three cases. In the cases
1) and 2) X is always in jtf(cL e.g. [Ful; Prop. 6.5]), and hence any extremal metric in y
is Kahler-Einstein.

For any compact Kahler manifold (X, co) we set

Aut(X, co) = {h E Aut X\ h*co = co} .

This coincides with the group of isometries of (X, co). Denote by Aut0(X, co) its identity
component. There are some necessary conditions on the structure of Aut0(X9 co) g
Aut0X for X to admit an extremal metric due to Matsushima, Lichnerowicz, and Calabi
(cf. [K] [C2]):

(6.3) Suppose that co is extremal. Then Aut0(X, co) is a maximal compact subgroup of
A.ut0X. If, further, it is of constant scalar curvature, L(X) is a complexification of
Aut0(X, co)L(X). In particular, if X is in jtf, Aut0(X, co) = Aut0X. If X is not of
constant scalar curvature, then dim (Aut0(X, co)r\L(X)) > 0. Here L(X) is the linear
part of Aut0X (cf. Sect. 5).

The last condition gives a necessary condition for the existence of extremal Kahler
metrics which gives rise to many examples of compact Kahler manifolds (not in s#) with
no extremal metrics (Levine). On the other hand, Burns and de Bartolomeis [£-B]
recently have found examples of ruled surfaces in stf and Kahler classes on them in
which no extremal metrics exist (cf. also [Fu6]). For non-uniruled manifolds such
examples seem to be unknown.

By Calabi [C2] it is also known that L(X) acts transitively on each connected
component of the set of extremal Kahler metrics; in particular if X is in j/, this set is
descrete (cf. Theorem 6.3 below).

Now we consider deformations of extremal manifolds.

Definition 6*2, A metrically polarized family (/: SC -»S, co) is said to be a (polar-
ized) family of extremal Kahler manifolds if cos is extremal on Xs for any s. An
isomorphism of two such families (/: 3C -> S, co) and (/': %' -> S, co') is an isomorphism
i/r. #" -> 5T of complex spaces over S with \l/*cor = co in the obvious sense.

Starting from these notions we get as in Definition 5.1 the notions of deformations
of an extremal Kahler manifolds, universal deformations of such, etc.

Theorem 6.2. Let (X, co) be an extremal compact Kahler manifold with X in stf.
Then (X, co) posses a universal deformation (/: 3C -»S, co) which induces also universal
deformations of all nearby fibers. Furthermore, the associated deformation of the as-
sociated polarized Kahler manifold (X, y) is a Kuranishi family of (X, y).

We shall call a universal deformation of the theorem a Kuranishi family of (X, co)
and its base space S = S(X, co) a Kuranishi space of (X, co). The proof of the above
theorem follows formally from the universality of a Kuranishi family of (X, y) and the
following extension theorem of an extremal metric. (See also [Fu5].)
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Theorem 6=30 Let (f: 9C -» S, y) be a polarized family of compact Kdhler manifolds
and o e S a point. Suppose that X0 is in sf and y0 is represented by an extremal Kdhler
form CDO on X0. Then over a sufficiently small neighborhood U of o, co0 extends uniquely
to a C°° family CD = {cos}seU of extremal Kdhler forms CDS on Xs which represents ys for all
seU.

Proof. The proof depends on the fact that the equation "K = const" leads to a
(non-linear) elliptic equation of order four, and uses the implicit function theorem.

Now fix any metric polarization CD' for (/, 7) with a)'0 = co0 by Lemma 3.2. Any
other metric polarization is then of the form co' + id^lsd^lscp for some real C°° function
cp on SC locally over 5" (cf. Lemma 3.5 and (3.2)). Thus our CDS should be of the form
CD'S + i^sdscps for some C°° function <ps on XS9 which is uniquely determined if we assume
Jxs ^s^s" = 0? where n is the dimension of the fibers of /.

In order to treat the case of a singular base space rigourously, we first remark the
following: The problem is local with respect to S. So we can assume that S is a
closed analytic subset of a domain D in Cm, and there exist a C°° trivialization
T. 3C -» X x S over S and a C°° family {Js}seD of almost complex structures on X which
induce for s e S the complex structures of Xs via is := i\Xs, where X = X0 (cf. [Ku]).
Thus d- and ^-operators on the fibers Xs come from a C°° family of differential
operators ds and <3S, s e D.

Take and fix a positive integer k ^ n -f 5. Let Hk(X) be the Sobolev space of real
functions on X, whose derivatives up to order k exist in the distributional sense and are
square integrable. By Sobolev's lemma every element of Hk(X) is at least of class C4.
We set

W = {(s, i//) E S x Hk(X); CD'S -f idsds(i// • TS) is Kahler on Xs} .

Set co = CDO and denote by H*(X) the closed subspace of Hk(X) defined by J^ i//con = 0.
Then the map

(6.4)

where R(s, if/) is the scalar curvature of co's -f iSsds(i//is) pulled-back to X by is. One can
see that F is of class C°° (also for singular S). We first look for a solution of
F(s, ^(s)) = 09 where </>: S -* Hk(X) is a C°° map.

Now the second partial derivative D2^ of F at (o, 0) is the linear map D: Hk(X) -»
Hk~4(X) which assigns to a function [// e Hk(X) the function —d£dB\l/ in the notations of
Sect. 2. (See (2.5) and Lemma 2.1 of [C2]. The contribution from the second term
of (6.4) clearly yields zero.) Thus (D2F) (ij/) = 0 implies dB\j/ = 0. By (5.1) and our
assumption that Xs e s$ we get that \ji is constant, which means by our normalization
^ = 0.

Since D is a strongly elliptic operator, this implies that D possesses a bounded
inverse. Hence, by the implicit function theorem, over a neighborhood of o there exists
a unique C°° map ^: S -* Hk(X) with $(o) = 0 and F(s, </>(s)) = 0. It remains to show



MODULI OF EXTREMAL KAHLER MANIFOLDS 145

that (j)(s) is of class C°° for all s. Since <f>(s) is at least of class C4 as we have remarked
above, this in fact follows from the next lemma, (thus completing the proof).

Lemma 6.4. Let (X, CD) be a Kdhler manifold with a C°° Kdhler form a). Let <p be
a real function of class C4 on X such that CD + iddcp is again a Kdhler form and its scalar
curvature is constant. Then cp is a C°° function.

Proof. We use the regularity theorem of Agmon-Douglis-Nirenberg [A-D-N; Th.
12.1] (cf. also [Bes]). For any real function \l/ on X such that co(il/) is a Kahler form,
denote by R(\//) the scalar curvature of CD(\J/). Then the condition "R(\l/) = const." leads
to a nonlinear differential equation P(\l/) = 0 of order 4 in ^ with C°° coefficients, and q>
is a C4 solution of this equation. The first variation of this equation at q> is exactly the
elliptic equation dj£dBil/ = 0 as we have noted in the previous proof, where dB and dg are
now taken with respect to the Kahler form co(<p). Therefore, by [A-D-N] we get that cp
is of class C°°.

Remark 6.2. The above lemma and Theorem 6.3 are also true even if we replace
"C°°" by "real analytic" there.

In order to pass from Theorem 6.2 to global moduli space we need a result
analogous to (5.4). In this case, however, we can stay in the class stf which is larger
than the class of non-uniruled manifolds. Let 2£e := (9C -> S, CD) and 9f= (#"' ->S,a>')
be two families of extremal compact Kahler manifolds. Since we have the notions of
isomorphisms of such families we have the natural functor

Isams(Xe9 X'e)\ (An/S) -> (Sets).

Denote by $ and 9C' the underlying polarized families of Kahler manifolds so that we
have the natural morphism of functors Isoms(3£e, %'e) -> Isoms(3£, $'}.

Proposition 60§8 Suppose that Xs and X's are in &/ for all s. Then Isoms(9E^ 9£'e)
is representable by an open and closed subspace Isoms(SEe, 9£'e) of Isoms(^ &')
which is proper over S.

Proof. The fact that Isoms(3£e, $'e] is representable by an open subset of
Isoms(^, &') follows easily from Theorem 6.3. In fact, let 0: 9C xs/-»J"' xs/ be the
universal isomorphism, where / = Isoms(^, 3C'\ Then the zero of ^*d>j — a>l9 con-
sidered on 1, is an open and closed subset of / by Theorem 6.3. This serves as
Isoms(^e? JTg). It remains to show that this set is proper over S. Take any sequence of
points sv of S converging to a point o e S, and a sequence of isomorphisms (pv: (XSv, coSv)—>
(X's^ CD'S). Since these are isometrics with respect to the underlying Riemannian metrics,
by Lemma 6.8 of [Fu-Sch] for any m>0 a sequence of {<pv} converges in the Cm topology
to a Cm isometry <p:X0-*X'0 with respect to the underlying Riemannian metrics.
However, as a Cm-limit of biholomorphic maps <pv, cp also is biholomorphic. Hence the
convergence actually takes place in Isoms(^fe, 3£'e). So the latter is proper over S.

Now let (X, CD) be an extremal compact Kahler manifold, and (/: 9E -* S, a>) a
Kuranishi family of (X, CD). By the universality of (/, CD) combined with (6.3) and
Proposition 5.2, we have a natural action of the finite group G(X, CD) := Aut(X, CD)/
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Aut0X on S(X, CD). Moreover, from Proposition 6.5 we conclude that for any points r
and s of S(X, CD), (Xr, cor) and (Xs, cos) are isomorphic if and only if r = k(s) for some
k e G(X9 CD).

It is then standard to construct a global moduli space of extremal Kahler manifolds
as in the case of moduli space of compact Kahler manifolds. We first fix a compact C°°
manifold M and a class a e H2(M, E). Denote by 3Re the set of isomorphism classes of
compact extremal Kahler manifolds (X, co) with X in d such that (X, 7), y = [CD], is
diffeomorphic to (M, a).

Theorem 6.6. The set W,e carries a natural structure of a Hausdorff reduced com-
plex space with a natural complex V-structure.

We call %Jle with the above complex structure the moduli space of extremal compact
Kahler manifolds (in the class jtf). The complex F-structure, and hence also the local
analytic structure, of We is described as follows. If m is a point of We represented by
an extremal Kahler manifold (X, co), the image U(X, CD) of the natural map S(X, CD) ->
yjle forms an open neighborhood of m and it is identified with S(X, co)/G(X, CD). Then
the collection {S(X, CD) -> U(X, CD); G(X, CD)} with S(X, CD) sufficiently small as in Sect. 5
give the complex F-structure of 3Jle.

Let W be the subset of ^Jle consisting of the classes non-uniraled manifolds. Then
we have a natural map K: We -> 9W of W into the moduli space 5R of polarized Kahler
manifolds considered in Sect. 5.

Theorem 607. $Jl'e is an open and closed subspace Wle. The natural morphisrn
k: We -> 9H is an open holomorphic map of complex spaces with discrete fibers, which
correspond bijectively to the set of extremal Kahler metrics of the given polarized Kahler
manifolds considered modulo the action of Aut(X, y).

For the first assertion see (5.4). The second assertion follows from the following
local description of the map K in terms of F-structures. Let m e We g W,e and (X, CD)
be as before. Let (X, y) be the associated polarized Kahler manifolds. By Theorem 6.2
we may identify S = S(X, CD) with S(X, y). The natural inclusion Autpf, co) i= Autpf, 7)
induces an inclusion G(X, CD) E G(X, 7), and then a finite morphism

S(X, co)/G(X9 CD) -> S(X, y)/G(X, y).

This can be identified with the map K: in a neighborhood of m with respect to the
natural identifications of S/G(X, CD) and S/G(X9 y) with open neighborhoods of m 6 We

and fc(m) e 9P^ respectively.
We shall study a variation of the previous result for Hodge manifolds.

Definition 63. An extremal Hodge manifold is a triple (X, CD, L), where (X, CD) is an
extremal Kahler manifold and (X, L) is a polarized Hodge manifold such that co
represents the first chern class c^L). A (polarized) family of extremal Hodge manifolds
is a metrically polarized family (/: 9E -> S, co, J^7) of Hodge manifolds (cf. Def. 3.8) such
that (/, co) is a family of extremal Kahler manifolds. An isomorphism of two such
families (/: X -»S, co, JSf) and (/': X1 -»S, co', £?') is an isomorphism <p: % 2$ X' of com-
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plex space over S which Induces the isomorphisms (/, co) 2» (/', co') and (/, £?) ^
(/', J^') of the underlying families (cf. Def. 6.2 and 3.7).

Theorem 6JL Any extremal Hodge manifold (X, co, .£?) with X in jtf posesses a
universal deformation (/: X -» 5,60, J5f) wfcicfc also induces universal deformations of all
nearby fibers. Furthermore, the associated deformation (f: % -»S9 3?) of the polarized
Hodge manifolds is a Kuranishi family of (X, L).

Proof. Let (/: X -> S, X\ (X09 L0) = (X, L), be a Kuranishi family of (X,L).
Then by Theorem 6.3 there exists a unique extremal metric polarization co = {cos} for
(/, J^7) with co0 = co. It is immediate to see that the resulting triple (/, co, JSf) gives a
desired universal family.

As before, we get a Kuranishi family S = S(X, CD, L) and the group G(X, co, L) :=
Aut(X, co, L)/Aut0X acting on S. From the last assertions of Theorems 6.2 and 6.8
together with Proposition 5.11 we have:

Corollary 6090 The natural morphism S(X, co, L) -> S(X, co) is smooth.

As before, in order to pass from a local to global moduli space we need a result on
the structure of isomorphisms of families. Let (/: 9C -> S, co, JS?) be a family of extremal
Hodge manifolds. We set Xe = (/, co), ffl = (/, JS?) and f f l je - (/, co, jgf). If (/': %' ->
5, co', «£?') is another such family, ^, J^, and ^,« are defined similarly. We get then a
functor Isoms($fa>e, ^>e): (An/S)-> (Sets) in the obvious way. Then the following is
immediate from the definitions and Propositions 5.10 and 6.5.

Suppose that Xs and X's are in s$ for all s. Then the functor
Isoms(^fl>eJ 9E'a>e) defined above is representable by the subspace Jfl>e := Isoms($fa, 3^)0
Isoms(^e, ^) (E Isoms(^, ^*')). In particular, the natural morphism /fl>e -> S is /inite.

Let M be a compact C°° manifold and a e Im(H2(M, Z) -> H2(M, R)) be an integral
element. Denote by SRH>e the set of isomorphism classes in the obvious sense of
extremal Hodge manifolds (X, co, L) with X in jaf. From Proposition 6.10 we get as
before:

Theorem 6.11. The set 91Hj6 carries a natural structure of a Hausdorff reduced
complex space with a natural complex V-structure.

Let WH^e be the subset of WHje consisting of isomorphism classes of (X, co, L) with
X non-uniruled. Then we have the following commutative diagram of natural maps

(6.5)

Then as Theorems 5.12 and 6.7 we get:

Theorem 6.12. WHie is an open and closed subspace of ^lHte, and all the maps in
(6.5) are morphisms of complex spaces, where 1 and K are open with discrete fibers, and u,
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fjf and v are proper surjective and V-smooth. The fiber of IJL over a point of SWe

represented by an extremal Kdhler manifold (X, co) is naturally identified with PicyX/
Autpf, co), where y = [co].

The local description of /i similar to the one for v in Theorem 5.12 is given by the
following commutative diagram

Py(3T/S) —i-* Py(3T/S)/G(X9

(6.6)

S(X,co) > S(X,co)/G(X,co) c: > me

Here, as a map into 2RHje, a is clearly a Kmorphism in the sense of Definition 1.9; in
fact, locally at each point of Py(3f/S) n is locally isomorphic to the natural morphism
S(X, co, L) -> S(X, co).

§ 7, Generalized Weifl-Petersson Metrics Kahler Property

In this section, first for any polarized (effective) family of extremal Kahler and
Hodge manifolds we define the generalized Weil-Petersson metric, which is a hermitian
metric on the base space of the family. This will be done here as a formal consequence
of the results of Sections 2 and 5. We also see that this agrees with the classical
definition in the Kahler-Einstein case. We then proceed to state our results concerning
its Kahler property in a series of theorems. In the Hodge case our result gives more
precisely the representation of the Weil-Petersson form as a certain fiber integral along
the given family. The Kahler property is a direct consequence of this in the Hodge case,
even for singular base spaces thanks to the recent result of Varouchas [V]. The proof
of the integral formula, which we formulate more generally for any refined metrically
polarized families of Kahler manifolds, will be given in Section 8. The Kahler property
for families of Kahler manifolds will be deduced from this in Section 9. The global
consequence of the above results on the moduli spaces ^JlHi6 and We will also be given.

In the rest of the paper, "Weil-Petersson" will often be abbreviated to WP.
We now give the definitions of generalized WP metrics. For the definition how-

ever we may consider any polarized family (not necessarily extremal). We start with
the Kahler case. Let (/: 3f -> S9 co) be a metrically polarized family of compact Kahler
manifolds. For any s e S9 composing the Kodaira-Spencer map ps: TSS -> H1(XS, @Xs)ys

associated to the underlying polarized family (/, y) with the natural isomorphism
fa1: Hl(Xs, 0x)ys -> ^ (Theorem 2.5), we get a C-linear map

x . T c . ^?1
Ps- Jsa -* MS

where J^1 = J^s is the essential harmonic space in B^ := B1(XS, a)s) (cf. Def. 2.1). Then
by pulling back the hermitian inner product of the hermitian space J^1 by ps we get a
natural (positive semi-definite) hermitian inner product hs on TSS. If (/, co) is effective,
i.e., so is (/, y), then hs is positive definite. Denote also by cos the imaginary part of hS9
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which is an alternating form on the (real underlying space of) the Zariski tangent space
TSS, considered also as an element of AltlT*S.

Definition 7.1. Suppose that (/, CD) is effective. Then the generalized Weil-Peters-
son metric on S associated to (/, CD) is the collection hwp:= {hs}seS of hermitian inner
products hs on TSS defined above. The collection CDWP := {cos}seS is called the general-
ized Weil-Peter sson form on S associated to (/, CD).

By the functoriality of ps it is immediate to see that if (/': $£' -» S', CD') is another
such family and \l/ is an isomorphism of two families (/, CD) and (/', CD'), then \l/ induces
a biholomorphic isometry of hermitian spaces (S, hWP(S)) and (S'9 hWP(S')).

Next, we consider the case of a polarized family (/: X -> S, CD, JS?) of Hodge mani-
folds. Composing the Kodaira-Spencer map ps: TSS -»H1(XS, Zs) associated to the
underlying polarized family (/, L) with the natural isomorphism fi~lm. H1(XS, Zs) -> J^1

(2.15) we get a C-linear map

where 27S = £LS and ^ = J^*. Then, by pulling back the hermitian inner product on
the hermitian space ^ by ps we get a natural hermitian (possibly semidefinite) inner
product hs on TSS. If the family is effective, i.e., if so is (/, $£\ then hs is positive
definite. As in the Kahler case denote by cbs the imaginary part of hs.

Definition 12. Suppose that (/, CD, =£?) is effective. Then the generalized WP met-
ric associated to (/, CD, &) is the collection hwp = {hs}seS of hermitian inner products on
7^5 defined above. The collection O)WP := {cos}seS is called the generalized WP form
associated to (/, CD, ££).

Similar assertion on the functoriality of hWP is true as for the case of a family of
Kahler manifolds.

It turns out to be useful to consider hwp also for a general refined metrically
polarized family (/: 9E -» S, d>, n,) of Kahler manifolds (cf. Def. 3.4). Let ps: TSS -> Hl(XS9

Zs) be the Kodaira-Spencer map associated to the pair (/, fy) (Def. 4.1). Then in the
same manner as above, composing ps with /^~1 we get a naturally induced hermitian
inner product hs on each TSS, and hs is positive definite if (/, CD, q) is effective, i.e., so is
(/, YI). Similarly, c5s is defined for each s.

7o3o Let (/, CD, YI) be an effective, refined metrically polarized family as
above. Then the collections hwp = {hs}seS and a>WP = {a>s}seS

 are respectively called
the generalized WP metric, and form, associated to (f, CD, n).

Remark 7.1. 1) If (/, c5, YI) comes from a family (/, CD, &) of Hodge manifolds (cf.
Remark 3.4), then the generalized WP metrics in Definitions 7.2 and 7.3 coincide as is
clear from the definitions. 2) If the first Betti number b±(Xs) = 0 for any s, then
jf^1 = j^1 and ps = ps; therefore we always have hwp = hwp and O)WP = o}wp. In this
case YI is uniquely determined by (/, CD) (cf. Cor. 3.7) and hence hwp depends only on
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We shall obtain a more manageable expression for cbwp by using admissible
(1, l)-forms. So for (/, c5, rj) as above, we fix an admissible (1, l)-form 00% which is
mapped to rj (cf. Prop. 3.6) and let £s: TSS -»B* be the linear map associated to
the horizontal distribution TH(c%-). Composing 4 with the orthogonal projection
^s1 "^ ̂ s1 we get a natural C-linear map ps(co%-): TSS -> J^1. Then we get as before
a hermitian inner product ds(a)%) and an alternating form d*s(a)%) on Ts&. We set
d)WP(cog-) = {cos(c%-)} and call it the generalized WP form associated to (/, c%)- Then
by Lemmas 4.9 and 4.10 and the above definitions the following is clear.

Lemma 7.1. Let (/: 9C -> S, to, if) foe an effective refined metrically polarized family.
Let (£$• be an admissible (1, l)~form for (/, a>) wftft fj = <50(a%). Tfcen £/ie generalized WP
forms associated to (/, (5,17) and (/, c%) coincide; O)WP = d%F(c%).

We now consider the special case of families of Kahler-Einstein manifolds. Let
(/: 9C -> 5, (5) be an effective family of Kahler-Einstein manifolds. First, if QJS E mci(Xs)
for some nonzero integer m, (/, c5, K^-/s) is a family of extremal Hodge manifolds and we
have the associated generalized WP metric hwp. Propositions 4.12, 2.8 and Lemma 7.1
yield:

m 7o20 Let (/: 3C -»S, co) foe as above. The two generalized WP metrics
hwp and hwp on S coincide.

Next, we compare the generalized WP metric with the original Well-Petersson
metric considered In [Koi], [Sch4], [SI]. In this case by Proposition 2.7 we have the
natural isomorphisms

Hl(X,9 0Xs)Js ^ H\X» Ox) ^ J^l if CDS = rc,(Xsl r / 0

and

H1 (X,, @Xs)Js ^ '^l If Cl(X8) = 0

where ^s Is the space of vector valued harmonic (0, l)-forms with respect to the given
Kahler-Einstein metric, and '«#£ is Its symmetric part. Composing these Isomorphisms
with ps: TSS-^>H1(XS, ®Xs)ys

 we obtain a natural C-Hnear map p®\ TSS-> 3%*^ (resp.
'$?A)- This Induces as before a natural hermitian Inner product on TSS, denoted by ft§.

, 7=4 The Weil-Petersson metric on S is the collection h^P := {^s}seS of
the hermitian inner product h° on TSS.

Thus, we have a priori two notions of WP metrics hwp and h^P in this case. How-
ever, these actually coincide.

Proposition 7030 In the Kahler-Einstein case as above, both notions coincide: hwp =
hwp.

Proof. This follows from Proposition 2.8 and the above definitions at once.

The proposition implies that our generalized WP metric is a correct generalization
of the classical one. In what follows we write hwp for h^F and Identify both. In the
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Kahler-Einstein case it is known that hwp is actually a C°° Kahler metric on S if S is
smooth and Xs is in s/ for any s. (See Remark 7.2 below).

We shall generalize this result to families of extremal Kahler and Hodge manifolds
with any reduced base space S. (See Definition 1.1 for the notion of a Kahler metric
on a complex space.)

Theorem 7 A Let (/: 9E -> S,CD) be an effective family of extremal compact Kahler
manifolds with constant scalar curvature. Suppose that Xs is in s$ for any s if b^(Xs) > 0.
Then the generalized WP metric hWP is a C°° Kahler metric on S.

Combined with Proposition 7.3, Theorem 7.4 yields:

Corollary 7.5B Let (/: 3£ -> S, CD) be an effective family of Kahler-Einstein manifolds.
Then the associated WP metric on S is a C°° Kahler metric.

Remark 1.2. When S is nonsingular, this is due to Koiso [Koi] (with some
additional conditions when c^pQ ^ 0). (See also [Sch4] for polarized families.) Note
that if CitJQ > 0, then b^(Xs) = 0.

In the Hodge case we can weaken the assumption slightly.

Theorem 1.6. Let (/: SC -* S, CD, JSf) be an effective family of extremal Hodge mani-
folds with constant scalar curvature. Then the generalized WP metric hwp is a C00

Kahler metric on S.

In particular, for any compact extremal Kahler manifold (X, CD) and any extremal
Hodge manifold (X, CD, L) with X e j/, associated Kuranishi spaces S(X, CD) and
S(X, CD, L) carry natural C°° generalized WP Kahler metrics, denoted by hWP(X, CD)
and hWP(X, CD, L) respectively.

In the sequel, it is also convenient to consider non-effective families. The same
definitions as above give us hwp, hwp, CDWP, and CDWP though they may be degenerate.
We call CDWP and CDWP generalized WP form in the general case also.

We show Theorem 7.6 in a more general form.

Theorem 7.7. Let (/: 3£ ->S, CD) be a family of extremal compact Kahler manifolds
with constant scalar curvature. Let CD% be any admissible (I, I)-form for (/, CD). Then
the generalized WP form CDWP(CD%) associated to (f, CD%) is induced by a unique element of
F(S, 0S), i.e., by a unique real C°° locally dd-exact (I, l)-form on S.

In fact, Theorem 7.6 follows from this theorem as follows.

Proof of Theorem 1.6. For any family (/, CD, <£) as in Theorem 7.6, if we take any
admissible (1, l)-form o% for (/, CD) such that <5#-(c%) = t(S£} in Hl(3C, &%} by Proposi-
tion 3.6, then by Lemma 7.1 we have fiwp = ftWP(cD%). Hence, by Theorem 7.7 the
associated WP form cbwp is induced by a section cos e F(S, <PS), which is clearly a Kahler
form since hs is positive definite at each point.

The proofs of Theorems 7.4 and 7.7 can be obtained by modifications of the
proofs of Koiso [Koi], or of Siu [Si] in the Kahler-Einstein case, at least when S is
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nonsingular. There Is also another proof from the view point of infinite dimensional
moment maps. (See [Fu5].)

Here, however, we follow a method which takes care of the cases of singular
parameter spaces as well This consists of representing the WP form CDWP(CD%-) In
Theorem 7.7 as a certain fiber Integral along the fibers of /. To state the result we
introduce a notation. Let (/: 9C — » S, CD) be any metrically polarized family of compact
Kahler manifolds. Then CD Induces a hermitian metric g on the holomorphic relative
tangent bundle T%/s, and hence a metric /\ng on the relative antlcanonical bundle K^/S9

where n is the dimension of the fibers. Then we write c^SF/S, g) for the first chern form
vs» /\ng) and call ^ ^e relative first chern form for (/, CD). We further set

(7.1) 6 = 6(/, cB) = ^(jy -yTW , 7s = !>,]

which is independent of s as long as S is connected, where y[k] = yk/kl

Theorem 70§0 Let (f: 3C -> S, CD) be a family of extremal compact Kahler manifolds
with constant scalar curvature with S connected. Let c%- be an admissible (1, I)- form for
(/, CD). Then we have the following equality:

(7.2) f Cl(3T/S, g)a$ - b
Jar/s sr/s

where co[^ = CD^/kl for any k.

Remark 7.3. When c% Is normalized (cf. Def. 3.6), (7.2) takes a simpler form

(7.3) Cl(af/S, g)a$ = - i/2n CO
Jar/s

Conversely, (7.2) can be deduced formally from (7.3). These fiber integral formulas are
inspired by the results of [B-G-S] (cf. Sect. 10) and of Wolpert [Wo].

Theorem 7.7 is deduced from Theorem 7.8 as follows.

Proof of Theorem 7.7. The fiber integral on the left hand side of (7.2) belongs to
F(S, <&s) by Varouchas (cf. Prop. 1.3). Hence cbWP(cD%) Is Induced by an element of
F(S, 0S) by Theorem 7.8. See Corollary 1.2 for the uniqueness assertion.

Thus our remaining task is to show Theorems 7.4 and 7.8. We shall prove
Theorem 7.8 in the next section, and then in Section 9 Theorem 7.4 will be deduced
from Theorem 7.7.

On the other hand, In the Kahler-EInstein case with non-zero first chern class there
is another canonical representation of the Well-Petersson form CDWP as a fiber integral
which has a more Invariant form than (7.2).

Theorem 7=90 Let (f: $ -> S, CD) be a family of Kahler- Einstein manifolds with
ci(^s) ^ 0 for a" s- Then we have

(7.4) r"/(n + 1)! f c^X/S, g)"+1 = - l/2n awp ,
Jar/s
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where cos e

Proof. We set CQ% = rcl(SE/S,g) in (7.2). Then since b = n/r in this case, we
get the formula (7.4) with COWP replaced by cbwp. The theorem then follows from
Proposition 7.2.

Remark 7.4. When n = 1, i.e., the case of a family of compact Riemann surfaces,
this was first shown by Wolpert in [Wo] by a different method.

Finally, we draw immediate global conclusions from Theorems 7.4 and 7.6.

Theorem 7.10. Let W,e and ^JlH^e be the moduli spaces of extremal Kdhler and
Hodge manifolds in £/ respectively. Then there exist natural C°° Kdhler V-metrics (cf.
Def. 1.5) on these spaces with respect to their natural complex V-structures. Moreover,
the natural morphism ^:^JlHie-^^Re is a Kdhler V-submersion with respect to these
Kdhler V-metrics.

Proof. Let (X, CD) be any extremal compact Kahler manifold in <$$. Since the
action of the finite group G(X, CD) := Aut(X, co)/Aut0X on a Kuranishi space S =
S(X, CD) is induced by an automorphism of the Kuranshi family, we see, from the
functoriality, that the generalized WP metric hWP(X, CD) on S is invariant by G(X, CD).
In view of the definition of a Kahler F-metric and the functoriality of hWP(X, CD) it is
easy to check that the collection [hWP(X, CD)} gives a global Kahler F-metric on Wle in
the sense of Definition 1.5. The proof for 501H)6 is quite the same. Finally, the last
assertion follows from Proposition 9.1 below (based only on the results of Sections 2
and 4) and the definitions of complex F-structures on both the spaces.

We call the Kahler F-metrics obtained in the above theorem the generalized WP
V-metrics on W,H^e or 9Ke, and the associated Kahler F-forms the generalized WP
V-forms. The classes of the latter in H2(N, R), N = ma,e or 2Re, (cf. Def. 1.8) is
called the generalized WP class on N.

§ 80 A General Fiber Integral Formula

In this section we give a proof of the fiber integral formula (7.2), and hence of
Theorem 7.8. In fact, we shall formulate and prove a more general fiber integral
formula (8.2) which is true for any metrically polarized family and which specializes to
(7.2) in the case of constant scalar curvature. This formula (8.2) can be proved directly
starting from the set-up in Lemma 4.3 and formula (4.8). Here we proceed in a
different way.

In general, let (/: 9C -> S, c5) be a metrically polarized family and c% an admissible
(1, l)-form for (/, CD). Let 4: TSS -> B* be the linear map associated to TH(CD$-) (cf.
Lemma 4.6). By the pulling-back from the hermitian space B* we get a natural hermitian
inner product on TSS, whose imaginary part we shall denote by Qs = QS(CD%). Explicitly,

(8.1) QB(V, V)= I tr (S,(V)t,(V))a>™, 17, Fe T S S ,
lxs
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where n is the fiber dimension of/. The collection {Os} of (1, l)-forms on TSS on S will
be denoted by Qs = Qs(a}%). Since the definitions contains no harmonic projection
operator it is clear that Qs is induced by a C°° (1, l)-form on S. Note that when (/, co) is
extremal, 4(17) and £S(V) are harmonic by Theorem 4.11; hence Qs(co%) = cbwp(coy) by
the definitions. Thus, (7.2) is a consequence of the following fiber integral formula which
is true for any metrically polarized family.

Theorem 80L Let (f: 3£ -> S, co) and c% be as above. Then we have

(8.2) Cl(3T/S, g)a$ - - Ro%+" = - l/2n
Jar/s 2n J&/s

where R is the R-valued C°° function on 9£ which restricts to the scalar curvature of a>s on
each fiber Xs. In particular, Qs(co%) is locally dd-exact on S.

Note that the last assertion follows from Varouchas [V] and (8.2). If the family
(/, YI) defined by (/, c%) is effective, Qs(co%) is thus a Kahler form (cf. Lemma 4.9). The
left hand side of (8.2), say A(co%)9 can also be interpreted as follows. For any real
C°°(l, l)-form a on 3f we set

(8.3) J3(a) := c^Sf/S, g)a[n\ a[n] = an/n! .
J^r/s

We decompose c% into the vertical and horizontal components with respect to the
associated horizontal distribution TH(c%-);

(8.4) c%- = 6% + of ,

where &y and cof are real C°°(l, Informs on 3f such that d>x(U, V) = 0 whenever U is
horizontal, and coH(U, V) = 0 whenever U is vertical.

Lemma 8<,20 We have A(CD%) = B(c%).

Proof. Denote by c^ST/S, g)s the restriction of c^SE/S, g) to X8. Since d)%+1] = 0
and c^(3C/S9 g)s A G)?~I] = l/2n Rsa)^] for any 5, we get

B(a>x) = I Cl(3T/S, g)d$ + f c^X/S, g)^~l] A cof
J^/s Jar/5

1/271 Rd$ A cof ,

and

^r/s

from which the lemma follows immediately.

Thus Theorem 8.1 is equivalent to:

Theorem 8.3. Let (f: $ -» S, co) and to% be as in Theorem 8.1. Let c% be the
vertical component of (D% defined in (8.4). Then the following equality holds true:
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(8.5) B(<i>x) := Cl(ar/S, g)a> = - l/2n
ar/s

The proof depends on three lemmas. The first two give a proof of the theorem In
a special situation; the general case is then considered as an approximation of this
special situation.

Let D be a neighborhood of the origin o of Cm = Cm(t l5 ..., tm). Let M be a
compact connected C°° manifold of even dimension 2n. Set Y = D x M and denote by
p: Y -* D the natural projection. We assume that there exists an almost complex
structure on Y such that p is almost complex and D(m) := D x m Is an almost complex
submanifold for all me M. In particular, we may speak of the relative canonical
bundle KY/Eh whose restriction to each D(m) = D is holomorphic line bundle.

Let now CD = {cot}teD be C°° real J-closed 2-forms such that CD" is a volume form on
the almost complex manifold Yt := p~l(t). Then as a family of volume forms on Ff{co"}
Is considered as a hermitian metric h on K^D. Denote by c^Y/D, ft) the associated
chern form.

Let m be the ideal at o of germs of C- valued C°° functions on D generated by th

1 <^ i ^ m, and m its complex conjugate. We assume that cb0 = 0, where the dot
denotes the derivative with respect to t; or equlvalently, we may write

(8.6) cDt = CD + Z tttpCDgfi mod (m2, in2)

for some C°° complex 2-forms CD^ on M, where CD = CDO. Denote by co' = {o)'t} the
constant family coj = CD on M and by h' and c^X/S.h') the corresponding hermitian
metrics on K^D and the first chern form respectively.

Lemma 8 A Set X = Y0. Suppose that the de Rham classes of cot is independent
of t. Then we have

)(Dn = Cl(Y/D,hf)oon

Jx

as an element of f\ T0*D, where \x denotes the value of the fiber integral J#-/s at o, and ojn

is considered as an n-form on Y via the natural projection Y -> M.

Proof. Let m be any point of M. We compute c1(7/D, ft) and c^Y'/D.h') on
D(m). Let rj(t) be any non-vanishing holomorphic section of K?fD on D(m). Then

(8.7) \l(t)\2 = P(t)\*l(t)\'2 ,

where \rj(t)\ and \rj(t)\' are the norms of r\(t] with respect to the metrics ft and ft'
respectively; further p(t) = p(t, m) is the restriction to D(m) of the global C°° function

(8.8) p(r, m) := &»/&'»

defined on 7. Applying —i/2n dd log to both sides we get on D(m) the relation

(8.9) Cl(Y/D, ft) = -i/2n dBlog p(t) + Cl(Y/D, ft').

On the other hand, from (8.6) we get

< = ™n + Z tJpVtf mod (m2, m2) ,
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where v^ = na)aj A a)n~l Is a C°° 2n-form on M. Further, if we define C°° functions caj
on M by c^ = v^/oi", then from (8.7) and (8.9) we get

! + I ctf V* mod (m2> m2) •

Hence,

log p(t) = X ca?tafy mod (m2
9 in

2) .

Applying dd on D(m) to both sides and then evaluating at t = 0, we have

dd log p(t\=Q = X c«? dtx A dF^ .

Substituting this in (8.9) we have on D(m) at t = 0

Cl(Y/D, h) = Cl(Y/D, h') - i/2n £ c^ dt. A dF, .

In view of the definition of ca^, from this we get

(8.10) f f f -c^Y/D, h)cDn = Cl(r/D, h')ojn - i/2n v# dt« A dtp .
J^ Jx Jx

But since the de Rham classes of cot are constant, cya^, and so vaj also, must be
J-exact. Hence the last term of (8.10) vanishes. The lemma follows.

Retaining the previous notations we assume for simplicity that X := Y0 Is a complex
manifold. Let A1 = A[(X) = F(X, T® T*) as before. Then we may represent the
family of almost complex structures on Yt canonically by a C°° family <p = {<pt} of
elements of A1 (cf. §4). For any vector v e T0D one can take the derivative Lv(p e A1 at
o of this family. Denote by £0 the resulting linear map ^0: T0D->Al, £0(v) = Lvq).
Then we get an element O0 of /\lflT*D by

0(u, v)= tr (e0(u)t0(v))a>™ u, v E T0D ,
x

where elements of A1 Is regarded as a map T -> T and tr Is taken In End T.

Lemma 80§0 In the above notations we have

convention as in the previous lemma.

Proof. Fix any m e M. Then D = D(m) -» Horn (TX9 Tx) = Horn (T*, T*), x -*
(^f(x), is a holomorphic map into a finite dimensional vector space, where x = (o, m).
Take any C-basis ei9 . . . , en e 7^*. Then

M(0 := A fe + ftfe))i

gives a nonvamshing holomorphic section of KY/D on D(m). Then the norm \n(t)\ of
with respect to h Is given by:
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IJL(t)

From this we get that if we set

9< eEnd(T*@T*)

we have \n(t}\2 = det B(t) = det (/ — <ptcpt\ where 1 denotes the identity. Hence we have

Cl(Y/S,h') = i/2nddlog\u(t)\2\t=0

= - l/2n tr (dt(pt(o)dtvt(o)) ,

where dtcpt(o) is the symbolical expression for £0. Hence, by taking the fiber integral
with respect to the volume form o)[n] yields the lemma.

In order to realize the situation of the above lemmas in the situation of Theorem
8.2 we recall a result of Kuranishi [Ku]. Let /: X -» S be as in Theorem 8.2. Then a
C°° trivialization \l/: %^»S x M of / is said to depend holomorphically on seS if
for any point meM, S^m) := ̂ ^(S x m) is an analytic subset of 2£. In this case
TH\I/ := Q TX

H\I/, T*(\l/)=TxS1(m), with i//(x) = (/(x), m\ is the horizontal subbundle
associated to ij/.

Lemma 8.60 Let o e S be any point. Suppose that we are given a C°° complex
horizontal subbundle TH for f. Then there exists a C°° trivialization ^ of f depending
holomorphically on s such that TH\//\X = TH\X.

Proof. The result is due to Kuranishi [Ku] if we neglect the additional tangential
condition. However, as the proof there shows it is immediate to see that the construc-
tion can be carried out with the given initial data TX\X = TH\ X © T.

Proof of Theorem 8.3. Fixing an arbitrary point o e S we show the equality
B(d>z) = — l/2nQs(coy)0 as an element of /\1'1 T*S. By Lemma 8.6 there exists a C°°
trivialization \j/\%2$SxM depending holomorphically on 5 e S such that TH(\JJ) =
TH(c%) along X. We may assume that S is an analytic subset of a domain D in Cm, o
is the origin of Cm, and T0S = T0D. By \// we consider CD = {cos}seS as a C°° family of
symplectic forms on M with a fixed de Rham class; \// then defines a C°° family of
Kahler structures J = {Js}seS

 on (M» ^s)- We may assume further that J and CD extends
to a C°° family (Jj and {tuj, t e D, such that (Dt are ^-closed with fixed de Rham class
and Jt depends holomorphically on t also. Hence on Y := D x M we get a natural
almost complex structure for which the projection p\Y-*D is almost holomorphic
and D(m), m E M, are almost complex submanifold of Y. Finally by Lemma 4.5 the
condition (8.6) is fulfilled. Therefore, all the conditions of Lemmas 8.4 and 8.5 are
satisfied. The theorem then follows from these two lemmas.

§ 9. Comparison of Generalized Well-Peterssoe Metrics and Proof of Theorem 7 A

In this section first we compare two generalized Weil-Petersson metrics hwp and
hwp for Hodge manifolds. In global terms our results says that 1) the natural morph-
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ism \i\ 9WH>e -» 9Jte Is a Kahler F-submersion, 2) 9WH,e admits a natural foliation which Is
transversal to the fibers of /^ 3) the generalized WP metric is F-fiat on each fiber, 4) the
generalized WP F-forai on 5F!e Is a fiber Integral of a power of that on 9WH>e, and 5) the
locus of canonical bundles on 9KH,e *s a union of leaves of the foliation In 2). As an
application of these considerations we also prove Theorem 7.4 In the second half of this
section.

We consider it locally. Let (X, CD, L) be an extremal Hodge manifold In jtf. Let
S:=S(X,o)9L) and S := S(X, CD) be Kuranlshi spaces of (X, CD, L) and (X9co) with
generalized WP metrics fiWP and hwp respectively. In this section we first study a
relation between hwp and hwp with respect to the natural smooth morphism r:S^>S.
This will then give a proof of Theorem 7.4 Immediately In this case (cf. Corollary 9.3
below) and also give us the idea how to proceed in the general case.

Recall that hwp Is a C°° Kahler metric by Theorem 7.6. Hence, it defines a C°°
horizontal distribution THS:= TH(d)WP). Recall that r Is said to be a Kahler submer-
sion if for any § e S with s = r(s) the Induced Isomorphism r^: T~HS-* TSS is isometric
with respect to the hermltian metrics fiWPtS\Ts

HS and hWPjS (cf. Def. 1.3).

Proposition 9.1. 1) r is a Kahler submersion. 2) The restriction of hwp to each
fiber of r is flat.

Proof. 1) We first observe the following commutative diagram which we get from
(4.4) and Theorems 2.5 and 2.9:

(9.1)

where 27S = ZL; = Zls, $s = J^s, and ps is the orthogonal projection. The assertion
then follows from this, the fact that P£TSSS) = Im vS9 and the definitions of Jf^1, hwp and
hwp. Here, Ss = r~1(s).

2) For simplicity of notations we show 2) only for the fiber F through o e S,
where o is the base point of S. (The proof In the general case is completely the same
since X Is in ^/.) Let I e Pic X be the point corresponding to L. Take an abelian
sub variety T of Pic X passing through / which Is transversal to the Aut0^-orbit 0 of I
In Pic X with dim T + dim O = dim Pic X. Let & be the restriction of a universal
line bundle on X x Pic X to X x T. Then the universal morphism T -> § associated
to the family (p: X x T-»T?c50, jSf) of extremal Hodge manifolds Induces an iso-
morphism (T, I) ^ (S, o), where p Is the natural projection and d>0 = {co} Is the constant
family.

So we have only to show the flatness of the generalized WP metric for the extremal
family (p, c50, J^7). By our construction the tangent space of T at t e T Is Identified via
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the Kodaira-Spencer map with the image I of the homomorphism v: Hl((9%) -+Hl(ZL],
independently of t. Thus it suffices to show that the hermitian metric on I induced by
the isomorphism /x"1: H^(ZL) ±» 3tf£ °f (2.15) actually is independent of t, or more
specifically, that jj,~lv is independent of t. In fact, this can be seen from the following
commutative diagram (cf. Theorem 2.9):

A H\ZL)v\
(9.2)

where \it = /lfv, and & and v are independent of t e T.
By 1) of the above proposition and a theorem of Watson [Wa] if we restrict THS

to the set Sreg of smooth points, then THS is integrable with each leaf F a complex
submanifold. F turns out to extend across the singularities of S.

Proposition 92, The closure F in S of each leaf F as above is an analytic subset of
S which is mapped isomorphically onto S by r. Moreover, the Zariski tangent space 7}F
at each point s e F coincides with T^S.

Corollary 9.3. For any F above, r induces a biholomorphic Kahler isometry (F,
hwp\j) = (S(X, CD), hwp). In particular, the generalized WP metric hwp on S(X, CD) is a
C°° Kahler metric.

Proof. The first assertion is immediate from the above two propositions. Then,
since hwp is a C°° Kahler metric, the same is also true for hwp.

The last assertion of the corollary is exactly the statement of Theorem 7.4 (for
S(X, CD)) in the Hodge case. Before proceeding to the proof of the proposition we
make an observation related with the above result in the case L = K™, m e Z — 0. In
this case we have a natural holomorphic section a: S -> S with cr(o) = d of r, i.e., the
universal morphism associated to the family (/: ?£ -> S, CD, K^/s) of extremal Hodge
manifolds, where (/, CD) is a Kuranish family of (X, CD).

Proposition 9.4. The image a(S) coincides with the leaf F passing through d of the
horizontal distribution THS as in Proposition 9.2.

Proof. Let 5 be any point of § with r(s) = s. By Proposition 9.1 and Proposition
7.2 we have the hermitian isomorphisms (7}HS, hwp) ^(TSS, hwp) and (I}cr(S), hwp) ^
(TSS, hwp) respectively, both induced by r^. This implies that the orthogonal projection
T^S-^ T/*S restricted to the subspace Tsa(S) is an isometry. This implies that TS

H§ =
Tscr(S).

As an application of Proposition 9.1 we also give a formula which essentially gives
the generalized WP F-form on ^Jle as a fiber integral of a power of that on $JlHte. Let
(X, CD) be an extremal Kahler manifold with integral Kahler class [co]. We recall the
commutative diagram (6.6):
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(9.4)

S/G d _ > me

where P = P7(9F/S), S = S(X, co) and G = G(X, CD); further a Is a F-morphlsm Into
SWH,e. So we get a lift cowp := a*o}WP(3JlHte) of the generalized WP F-form coWP(3Jlate)
on 9J!Hj6 to an (ordinary) Kahler form on P.

a 9«,So Let m be the dimension of the fibers of n. Let C = JPs cowp(s)9

which is independent of s. Then we get on S = S(X9 an) the fiber integral formula

(m + l)Co)WP,
p/s

where cowp = coWP(X, CD).

Proof. Decompose a>WP into vertical and horizontal components with respect to
TH(O)WP)\ QJWP = cowp + twjjrp. Then we get

= (wi + 1) WWP A &WP = (m + l)Ca)WP
P/S JP/S

as desired, where the last equality follows from Proposition 9.1, 1).

Now we are in a position to prove Proposition 9.2.

Proof of Proposition 9.2. In the notations of Proposition 5.11 let Q be the con-
nected component of Py(S£/S) which contains I. This is a smooth fiber space of abelian
varieties over S. By the definition of OJWP9 ((Q, I), cowp) and ((S, o), cbwp) are isomorphic
over S (cf. Proposition 5.11). Hence, it suffices to prove the corresponding assertion for
the fiber space n: (Q, cowp) -> (S, O)WP). Let THQ = TH(coWP). (Q, OJWP) is a Kahler
space with n a Kahler submersion; furthermore, on each fiber QJWP Induces a flat Kahler
form o)s on an abelian variety, and on the smooth locus Qreg of Q, THQ Is Integrable
and each leaf, say F, Is a complex submanifold of Qreg. We have to show that the
closure F of F in Q Is an analytic subspace which is mapped isomorphlcally onto S and
that i;F = Tq

HQ for any q e F .
Now, considered as an extremal deformation of (Q05 co0), where co0 = aJWP\Q0, n

is induced from a Kuranishi family (n0: Q0 -* S0, c50) of (Q0, co0)9 where S0 Is smooth.
For (TTO? &Q) from Its construction it Is immediate to see that we have an admissible
(1, l)-form a)Qo such that the corresponding horizontal distribution THQ0 Is integrable
and each leaf Is a complex submanifold mapped isomorphically to S0.

Let o)Q be the pull-back of O)QQ to Q by the given morphism u: Q -> Q0. Then by
Proposition 3.9 there exists an automorphism g of Q over S such that g*coQ and OJWP

are equivalent. Therefore, by Lemma 3.8 we have only to prove the corresponding
assertion for g*a)Q. But the closure of each leaf of TH(g*Q}Q) on Qreg Is just the Inverse
image of some leaf on g0 of TH(O)QQ) via ug. Hence, for g*(DQ the assertion is
immediate to see.
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As the above proof and Corollary 9.3 Indicate, even In the general case, if we
construct a family of complex tori over s which has the same property as Q -> S in
the above proof, Theorem 7.4 could be deduced from Theorem 7.7 in the same
manner. We first construct such a fiber space.

Let (X, co) be an extremal compact Kahler manifold in jtf. Let S = S(X, co) be a
Kuranishi space of (X, CD) and (/: 9£ -> S, co) the associated Kuranishi family.

o60 There exist a family of complex tori n:Q^S over S and an
admissible (1, l)-form co%> for the induced family (/: & -+ Q, COQ), & = % xsg, with the
following properties: 1) // we set i\% = dQ(co^) e (Rlf*&&) (Q\ then for any point q e Q
the Kodaira-Spencer map pq: TqQ-^ H1(XS9 Zs) associated to (f,r\g) (cf. Def. 4.1) is
injective and induces an isomorphism TqQs2$Is, where s = n(q)9 Qs = TC~I(S), and Is is the
image of the natural homornorphism vs: H

l(XS9 @Xs) -» H1(XS, Zs). 2) Let hwp = hwp(a)&)
be the generalized WP metric associated to (/, o?Q, Y\%\ or equivalently to (/, o>^). Then
the map n: (Q, hwp) — » (S, hwp) is a Kahler submersion and the restriction of hWP to each
fiber of n is a flat Kahler metric.

Proof, a) Construction of the fiber space Q -> S. Since Rlf^(9%- is locally free on
S and commutes with base changes, there exists holomorphic vector bundle V on
S such that for any base change u: S' -> S we have a canonical isomorphism @s,(u*V) ^
Rlf*@%', where 3E' = $ xsS' and f':SE'->Sr is an induced morphism. In particular,
we have the identification V = (JSH

1(XS, (9X). The natural sheaf homomorphism
Rlf*& ^ Rlf*0x induces isomorphisms Hl(XS9R)^H1(Xa90Xa) over the reals; so we
may consider also

(9.3) V=\JH1(X.,R)
S

as a family of real vector spaces.
Similarly, f*0%ls Is locally free and commutes with base changes since Xs is in j/;

so we get a holomorphic vector bundle 17 -»S with similar properties for /^0^/s;
moreover, the natural homomorphism fj.@gcis-*Rlf*®gc arising from (4.2) is injective
and its cokernel is locally free; hence it is realized by a vector bundle embedding
U-+V. Take any holomorphic subbundle }i:W^SolV-+S such that 1) U@W^V,
and 2) there exists a local subsystem N of K^R such that we have W = USNS in the
identification (9.3). Take then a discrete local subsystem F of N such that Q := W/F is
proper over S. Then Q is a fiber space of complex tori over S.

b) Construction of a refined Kahler polarization v\%\ We set %/ = 3C xs W and let
/: ®j -» W be the natural morphism. We consider the tautological section a of
Rlf*@&l namely with respect to the canonical isomorphisms

R%09 ^ GW(IJL*V) ^ (9W(V xs W) i GW(W xs W) ,

a- corresponds to the diagonal section of W xs W.
We fix a section rj^ of K1/*^ which is mapped to y = ^2^1(d>) with respect to the

natural homomorphism R.lf^gc -> ̂ %M. By pulling it back to W, we obtain a section
r& of Rlf&y over W. We then set
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where a is the natural homomorphism Rlf*&®/ -> Rlf*^&-
Any section /?: S —» F = N9 considered as a holomorphic section of W, induces by

translation an automorphism /?* of W over S, and then of /: <Sf -> W and also of the
sheaf R%0>&. But in view of the exact sequence (n*N ^) jR^R-^*1/*^^
R^f^w, v* leaves fixed the section rj& in the last action. Hence r\<y descends to a
section r\% of Rlf^.&%.

c) We take any admissible (1, l)-form cog which is mapped to r\% for (/, GJQ).
(See Proposition 3.6.) We check first the condition 1). For any point q E Q with
s = n(q)9 by our construction TqQs is naturally identified with the subspace of
H1(XS, ®Xs)9 and then by the definition of r\^9 pq restricted to TqQs is induced by the
canonical homomorphism vs: H

l(0Xg) -^H1^) and is isomorphic onto the image of
vs by our choice of W. Since S is a Kuranishi space, it follows that pq itself is injective.

Finally, the first property of 2) is verified in the same way as for 1) of Proposition
9.1 by using the diagram (9.1), and the second property also is proved in the same way
as the second half of the proof of 2) of Proposition 9.1 replacing ZL by Ly in (9.2).

Proof of Theorem 7.4. The case bl = 0 follows from Remark 7.1 and Theorem 7.7
as in the proof of Theorem 7.6. So we may assume that Xs e j/ for all s. In this case,
to the fiber space n: (Q, hwp) -*(S, hwp) in Proposition 9.6 we can apply the proof of
Proposition 9.2 (instead of to (Q, cowp) -»(S, cowp) there). As a conclusion we get that
the horizontal distribution THQ := TH(d)WP) is integrable so that for each point q e Q
there exists an (analytic) leaf F passing through q which is mapped isomorphically to S
and TqF = T^Q. Finally, the theorem follows from the Kahler isometry (F, fiWP\F) 2$,
(S, hwp) as in Corollary 9.3 because of the universality of S(X9 CD).

§ 10. Determinant Line Metrie§9 and Applications

In this section, combining our fiber integral formula (Theorem 7.8) and the main
result of [B-G-S] we construct a hermitian line bundle (F, k) on the base space of
any family (/: 3£ -> S9 c5, JSf ) of extremal Hodge manifolds whose first chern form gives
up to a constant the associated generalized Weil»Petersson form. Thus F is obtained
as a certain determinant line bundle associated to a virtual vector bundle on $T and
hence is canonically determined; k is the Quillen metric depending on the choice of an
admissible hermitian metric on <£ for (/, a>). In the Kahler-Einstein case k also can be
chosen canonical.

When we deal with families with singular parameter spaces we need [B-G-S]
with singular parameter spaces also. In this respect we have formulated such a
generalization also in this section, the proof of which will be given in Section 12.

We shall first recall the main result of [B-G-S]. Let X be a compact Kahler
manifold with a fixed Kahler metric g. Let £ be a holomorphic vector bundle on X
with a C°° hermitian metric h. Then we define a 1 -dimensional complex vector space
/(£) by

(10.1) A(£) = k(X, E) := 0 (/\ma* H"(X,
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where /\max denotes in general the highest exterior power. Let jj?q(E) be the space of
harmonic forms on X with values in E with respect to the metrics g and h. This is
naturally a hermitian vector space. Hence, the natural isomorphism J^q(E) ^ Hq(X, E)
induces a natural hermitian metric on each Hq(X, E), and hence on A(£) also. We
denote by 'k the hermitian metric on 1(E) thus obtained.

Further, one associates to any pair Q = ((X, g\ (E, h)) as above a real number
i = T(Q) as follows. Let (D*(E\ 8) be the Dolbeault complex associated to E. Then,
letting 3* be the formal adjoint of d with respect to g and h we consider the Laplacian
QJ = SB* + 3*5 operating on Dq(E). Then the associated zeta function £q(s) = E/TS,
where the summation is over all the nonzero eigenvalues A of Q^ counted with
multiplicities, converges absolutely if Re s is sufficiently large and has a meromorphic
continuation to the whole complex plane C. Moreover, it is holomorphic at the origin
so that its derivative £'q(°) a* o makes sense. Then the analytic torsion T is defined by

Now by using i we define a new hermitian metric k on k(E) by

(10.2) k = kE:= 'ke~(1/2)T .

Then fc is called the Quillen metric of A(£) associated to the pair Q.
We next consider the relative version of the above construction. Let (/: $ -> S, a>)

be a metrically polarized family of compact Kahler manifolds and E -> 9C a holomorphic
vector bundle. First, by [F-K; Th. II] the direct image Rf*$ (in the derived cate-
gory) is a perfect complex, i.e., locally on S there exists a bounded complex J5f" of finite
free ^-modules which is quasi-isomorphic to Rf4l&. (We denote by $ the locally free
sheaf corresponding to E.) Then the theory of Knudsen-Mumford [K-M] associates
with Rfj.& canonically an invertiblae 0s-module det Rf^fi, called the determinant of
Rf^ff. (Most of the theory of [K-M] also works in the analytic category.) Then we
define A(£) to be the holomorphic line bundle on S corresponding to (det Rf^S)~l. We
note that there exists a canonical isomorphism

(10.3) A(£)s ̂  1(ES) ,

where 1(ES) is defined by (10.1).
On the other hand, a> defines a C°° family g := {gs}seS of Kahler metrics gs on each

fiber Xs. Let ks be the Quillen metric on A(ES) associated to the pair ((Xs, gs\ (Es, hs)),
where (ES9 hs) is the restriction of (£, h) to Xs. Via the natural isomorphism (10.3) we
consider k = (ks}seS as a hermitian metric on A(£) and call it the Quillen metric on A(£)
associated to the pair Q = ((#", g)9 (E, h)).

Now the chern character ch E of E is written as a certain universal formal power
series in the chern classes cq(E) of £, while for a hermitian vector bundle (E, h) its
chern classes are canonically represented by ^-closed C°° forms cq(E, h) of type (g, q\
constructed universally from the curvature form of (E, h) (cf. [K-N]). (This is true
also on any complex space as the arguments of [K-N] shows.) By substituting these
in the formula for ch E we get a C°° ^-closed differential form ch (£, h) on X\ for
example if £ is a line bundle J5f , we have



164 AKIRA FUJIKI AND GEORG SCHUMACHER

ch (JSP, h) = I + Cl(JSP, h) + Cl(JSP, fc)2/2! + • • ' .

Similarly, by using the total todd polynomial td (S£/S) associated to the relative
tangent bundle T$-/s we define a ^-closed C°° form td (#YS, 0) on #":

(10.4) td (5F/S, #) = 1 + c^/S, 0)/2 + higher degree terms .

Here g is the hermitian metric of T%js defined by g.
Now in [B-G-S] the following is proved:

Theorem BGS. Let the notations and assumptions be as above. Suppose that S is
nonsingular. Then the Quillen metric kE on A(E) is smooth. The first chern form
c !(%(£), kE) of the hermitian line bundle (A(E), kE) is given by

l(A(E), kE) = -\ I td (3T/S, g) ch (E, fc)l ,
LJ^/S J2

(10.5)

where [ ]2 denotes the components of degree 2.

Under a certain assumption on the fiber integral in (10.5) the result turns out to be
true even when S has singularities. Namely, from the above theorem we shall deduce
in Section 12 the following:

Theorem 10.1. For any reduced complex space S the conclusion of the above theo-
rem still holds true, provided that the right hand side of (10.5) is locally dd-exact on S.

Remark 10.1. We call any expression of the form E = F — G, where F and G are
holomorphic vector bundles on X, a virtual vector bundle. Then a chern character is
extended to any such E simply by setting ch (E) = ch (F) — ch (G). Correspondingly, if
F and G carry hermitian metrics hF and hG respectively, we can also define the chern
character form ch (E, hE) by

ch (E, hE) = ch (F, hp) - ch (G, hG) ,

where hE is the "virtual" hermitian metric on E determined by hF and hG. In this
situation we define the determinant bundle A(E) similarly by A(E) = A(F) (g) /t(G)"1 with
Quillen metric kE defined by kF®ksl. Then under these extended definitions the
above theorems still hold true for any virtual hermitian vector bundles, as is immediate-
ly seen from the fact that the both sides of (10.5) is additive in (E, h).

Let (JSf , h) be a holomorphic hermitian line bundle on Sf. Let K%/s be the relative
canonical bundle with the hermitian metric induced by g. We are interested in the
following virtual hermitian bundles:

where n = dim ̂ s and in general

(E! - JE2) ® (£i - E'2) = (E, ® E;) 0 (E2 ® £'2) - (Ei ® £'i) © (£'i
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By Remark 10.1, for E and F the chern characters and the determinant bundles with
Quillen metrics are defined. We get

(10.6) ch ((& - 3?~l)k+l) = 2fc+1c1(JSf, h)k+1 + • • •

and then

ch (E, hE) = -2"+1
Cl(^5 fcr

(10.7)
ch (F, hF) = 2«Ci(Se9 h)n + 2"-1c1(J2?, h)n+1 + •••

where • • • denotes the higher degree terms.

Proposition W.2, Let E and F be as above. Then the first chern forms c±(k(E\ kE)
and c1(A(F), kF) are given respectively by

-2"+1 f
JvJ<r/s

and

g)-2\ c^^Kf
&/S J&/S

Proof. By Varouchas (cf. Proposition 1.3) the above fiber integrals are both locally
<9<5-exact on S. Hence the result follows from Theorem 10.1, (10.4) and (10.7).

The idea of using virtual vector bundles in a similar situation is due to Donaldson
[D].

For a polarized Hodge manifold (X, L) of dimension n we define integers d(X, L)
and e(X, L) by d(X, L) = Cl(X)- c^L)""1 and e(X, L) = Cl(L)n respectively. Let (/: X ->
S, JS?) be a polarized family of Hodge manifolds with S connected and with fiber
dimension n. Then we define a virtual vector bundle £(/, J£?) on $" by

(10.8) E(f9 &) = 4nd

where d = d(Xs, Ls) and e(Xs, Ls) are independent of s. If we have a hermitian metric h
on J5f, we get the Quillen metric kE(f^}(h) on the corresponding determinant line bundle

Theorem 10.3. Let (/: jf -» S, d), J^7) foe a family of extremal Hodge manifolds with
S connected, and h an admissible hermitian metric on <$? for (/, d)). Then the first chern
form of the hermitian line bundle (A, fc) := (A(£(/, JSf)), kE(fi^(h)) is given by

Proof. Set r = b/(n + 1) = (w/w + l)(d/e), where & = &(/, c5) is as in (7.1). By Pro-
position 10.2 we get

2n+2(n +l)e(l Cl(ar/S, 0)Cl(J&?, fc)" - r
\Jar/s

, kE) + 4r
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The theorem then follows from Theorem 7.8 applied to (%• = c^^f, h\ in view of
Lemma 7.1 and Remark 7.1.

Corollary 10.4. Let (f: 3£ -» S, w, &) be any family of extremal Hodge manifolds.
Then Ana)WP is a first chern form of some hermitian line bundle on S. In particular,
An[a)WP] is an integral class.

Proof. By Proposition 3.10 there exists a hermitian metric h on & which Is
admissible for (/, <S). The corollary thus follows from Theorem 10.3.

Remark 10.2. If h is normalized in the above theorem (cf. Def. 3.9) we have
similarly the following simpler formula:

Cl Ol(E), kE) = Bnd)WP , Cl (A(F), M - - (BJ4)wWP

where 5n = 2nnl/n. But the global existence of such a metric is not guaranteed (cf.
Proposition 3.12).

On the other hand, In the Kahler-Einstein case there exists a similar construction of
a hermitian line bundle on S which turns out to globalize naturally to the correspon-
ding moduli space (cf. Sect. 11).

Let (/: 3C -» S, a>) be a family of Kahler-Einstein manifolds with c^X^ / 0 for any
s. We then consider the following virtual hermitian vector bundle

G =

whose chern form is given by

ch (G, hG) = (- ir+12"+1
Cl(ar/s, g)n+1 + • • • .

Then by Theorem 7.9 we get similarly

Theorem 10.§o Let (/: #" -> S, a>) be as above. Let (/l(G), feG) fee tftg determinant
line bundle with Quillen metric associated to G. Then we get

), kG) = (-

where cos e rc^^J.

§ IL Positive Lime Bundlfles on the Moduli of Extremal Hoige

In this section, by globalizing the construction of the previous section we construct
a line bundle with a hermitian F-metric on the moduli spaces of extremal Hodge and
Kahler manifolds whose chern F-form coincides with the generalized Weil-Petersson
F=form up to a constant. A similar but a slightly better result will be obtained for
the moduli space of canonically polarized manifolds also. Especially, we shall see
that any compact subvariety of these moduli spaces Is projectlve. The method is to
compare our construction with the (global) Hilbert scheme construction In algebraic
geometry.

We now state the results precisely. Fix a compact connected C°° manifold M and
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a class a e H2(M, E). We assume that a is integral, i.e., a e Im (H2(M, Z) -» H2(M, R)).
We consider the moduli spaces 9HHje and 9Jle of extremal Hodge and Kahler manifolds
respectively with the underlying C°° structure (M, a).

Theorem 11.1. There exist a holomorphic line bundle F on 3KHje and a hermitian
V-metric k on F with respect to the natural complex V-structure on 9K#,e such that the
first chern V-form c1(F9k) coincides with the generalized WP V-form on 502H,e

 UP to

positive constants which may depend on the connected components of 9WH>e.

See Definition 1.6 for the terminologies. By using this theorem we also obtain:

Theorem 11.2. The same statement as in Theorem 11.1 is true also for 2Re.

In particular, the generalized WP classes [oVP] and [OVP] (cf. Def. 1.8) are integral
classes up to positive constants. By Proposition 1.5 we get:

Corollary 11.3. Any compact analytic subspace 9KHje and W,e is projective.

Corollary 11.4. Let (/: 9E -> S, at) be a family of extremal Kahler manifolds such
that the Kahler classes of CDS are all integral. Then there exists a hermitian line bundle
(FS9 ks) on S whose first chern form coincides with the generalized WP form cowp

associated to (/, a>) up to a positive constant on each connected component of S.

Proof. The natural map 7c:S->9We is clearly a F-morphism in the sense of
Definition 1.9. Therefore, the hermitian F-metric n*k on 7r*F is actually an ordinary
metric, where (F9k) is a hermitian line bundle on 9Ke in Theorem 11.2. Since the
pull-back of the generalized WP form on 5Jle is that on S, the corollary follows from
Theorem 11.2.

We now turn to the proof of Theorem 11.1. We need some preliminary considera-
tions. For any numerical polynomial P = P(Y)eQ[7] let 5R# be the set of isomor-
phism classes of polarized Hodge manifolds (X, L) with Hilbert polynomial P, i.e.,
P(m) = %(X, Lm) := S^0(-1)« dim Hq(X, Lm) for every m. Each SR£ is open and closed
in SRH, and 2RH is a disjoint union mH = \\Pm^. We set mp

H,e := /T1^)- Then
50ZH>e also is decomposed into a similar disjoint union 2RH>e = U/»9K£,e.

We shall first recall the algebraic construction of WIP
H mentioned in Remark 5.3,

which is based on Matsusaka's big theorem [Ma]. Namely, the latter implies the
following lemma (cf. [P]). We denote by PN the complex projective space, by Hilbp*
the Hilbert scheme of PN and by H the hyperplane bundle on PN.

Lemma 11.5. There exist positive integers N and m, and a Zariski open subset U of
(HilbPjv)red with the following properties: For any UE U: 1) The corresponding subspace
Xu of PN is smooth. 2) There exists a positive line bundle Lu on Xu such that the
isomorphism class of (XU9 Lu) belongs to SK^ and (Xu, L™) ̂  (XU9 Hu)9 where Hu is the
restriction of H to Xu. 3) Conversely, any point of yJlp

H is represented by some (XU9 Lu) as
above. 4) The restriction map F(PN, H) -» F(XU9 Hu) is isomorphic for any u. Finally, 5)
U is invariant under the action of G := PGL(N + 1, C) on Hilbp* and the action is with
finite stabilizer dt u where Xu is in £/.
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Let V = {(u, LJ; u e 17, Lu e Pic XU9 L™ ̂  H}. Then the natural projection ft: V ->
U makes V a finite unramified covering of U, the natural action of G on U lifts to a
proper action on V, by construction we have a natural Isomorphism 9K£ 2» V/G of
complex spaces.

Let p0: Z0 -> F be the pull-back of the universal family over Hilbp* by the natural
map j8: F -> U E HilbP*, and N0 -> Z0 the pull-back of H N+i -> PN via the projection
ZQ-^P^. We get the polarized family (pQ9 N0) of Hodge manifolds, to which the
G-action on V naturally lifts. We further set

W = {(v, cov); v E V, a)v Is an extremal Kahler form on Xu with cov e c^N^)} .

Then by Theorem 6.3 we can put a natural structure of a complex space on W such
that the projection d\ W -* V Is locally blbolomorphlc. Moreover, by the definition of
W the pull-back (p\Z-*W9N) of (p0, JV0) Is turned naturally Into a family (p:Z->
W, co, AT) of extremal Hodge manifolds. The natural G-actlon on (p0? N0) lifts further to
a natural action on the family (p, c5, N). Then by the construction we get a natural
isomorphism of complex spaces

Lemma 11.6. There exists a G-invariant hermitian metric h on N which is admissible
for (p, (5).

Proof. Let a:W-»W:=W/G be the natural projection. For any point w e F F
take a point w E W with a(w) = w. Take a local slice for the action of G on W, i.e., a
locally closed Gw-invariant analytic subset E of W passing through w such that the
natural map E/GW -> £ := a(£) E W Is Isomorphic, where Gw is the stabilizer at w (cf.
[H]). Take any Gw-Invariant hermitian metric hE on N\ZE, which Is admissible for the
restricted family (ZE->E9 CDE) over E (cf. Proposition 3.10). Then define a G-invariant
C°° hermitian metric % on N over oT^E), which Is admissible for (p,<S) by the
condition; hEjZ = g*hE^-i(z), where g Is any element of G with g~1(z)eZE. It Is then
standard to see that the definition is independent of the choice of such a g and gives a
G-invariant C°° hermitian metric. The admisslbility Is clear by the definition.

Now cover W by a locally finite open covering £ = {Ej such that E{ Is obtained
as £ as above. Let ht be a G-invariant hermitian metric on N over £f = oT1^) which
is admissible for (p,&). Then by Proposition 3.10 over E^Ej we have ht/hj = p*eqij

for some C°° function g0- on J^nE^ which Is G-invariant by the G-Invariance of
hi and hjf Hence, qtj Is considered as a section on Etr\Ej of the G-Invariant direct
image sheaf %®@w on 1^. Thus {q^} defines a 1-cocycle with respect to the covering &
with coefficients In a%@w. Since a%3}w Is a fine sheaf, Hl($, ct%@w) = 0- Therefore we
can find elements qt G r(Et, a%@w) such that qtj = qi — qjm Then If we set h't = htp*eq\
these patch together globally to give a desired hermitian metric on N.

We also note a simple general lemma.

Lemma 11.7. Let Y be a complex space and F a holomorphic line bundle on Y. Let
G be a finite group acting on F -» Y as bundle automorphisms. Suppose that for any
y e Y the stabilizer Gy at y acts trivially on the fiber Fy. Then the induced map
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F/G -> Y/G makes F/G again a line bundle over the quotient analytic space Y/G such that
TT* (F/G) = F canonically, where n: Y -» Y/G is the projection.

Proof. Let y be any point of Y. Take a local trivialization F\ V = V x C on some
Gy-invariant neighborhood V of y such that 0FDF = ^ for any g $ Gy. Then any
element g of Gy acts on F x C in the form f(v, () = (g(v\ Q, (v, 0 e F x C. Hence, in a
neighborhood of the image of y in Y/G, F/G -> Y/G is isomorphic to the projection
(F/G) x C-> F/G. It follows that F/G is a line bundle on 7/G with the desired property.

Proof of Theorem 11.1. We need only to prove the statement for each 9W£>e. By
Lemma 11.6 there exists a G-invariant hermitian metric h on N which is admissible for
(p, d>). Take any extremal Hodge manifold (X, co9 L) in 2JI#,e. In the notations of
Section 6 let S = S(X9 CD, L) and H = G(X9 co9 L). Let & = (n: S -» S, H) be the asso-
ciated local Galois cover of 2R£fe. Take and fix any point w G W such that (ZWJ cow, ATW)
is isomorphic to (IT, ew, L). Then by a standard argument we can find a local Gw-
invariant slice £ at w for the G-action and an isomorphism of the induced family
(pE: ZE -> E9 o>£, N£) and the universal family (/: 2£ -» S9 bco, J£f&) over S, where b =
m(N + 1). Moreover, there exists a natural isomorphism juw: GW^H such that the
isomorphism E -> S is //w-equivariant. We consider the induced hermitian metric /is on
J^b from h\ZE by the above isomorphism. Similarly to Gw, the action of H on 5 then
lifts canonically to an action on the family (/, bed, J£b) preserving hs.

We take the determinant bundle As := A(F(/, <£b}) associated to the virtual vector
bundle E(f9 J£?b) (cf. (10.8)). Let fes = kE(f^b)(hs) be the corresponding Quillen metric
on As. The action of If on S lifts naturally to the action on (As, fcs), and hence on
(As, fcs) for any integer c. By Theorem 10.3 we get c^As, fcs) = Anb

na)WP, where O)WP is
the generalized WP form for the family (/, co, &\

On the other hand, the action of G on U is algebraic with U quasi-projective; so
the set of the orders of the stabilizers of this action is finite. Hence the same is true for
the action of G on W because Gw E G^(w). Take c to be a common multiple of the
orders of Gw for all w e W. Then by Lemma 11.7 A| descends to a line bundle, say Fs

on S/G E mp
H,e.

We show that {As} defines a line F-bundle on 9KH>e and {fcs} defines a hermitian
F-metric on this F-bundle (cf. the remark before Definition 1.9). By what we have seen
above and Lemma 11.7 this would then imply that hc

s descends to a line bundle, say F,
on ^MH,€ and {̂ 1} defines a hermitian F-metric on F. It is clear that the pair (F, {fc|})
satisfies the condition of the theorem.

Let (JT, co', L') be another Hodge manifold and write Sf = S(Xr, a/, L') and H' =
G(X'9 co', L'). Assume that S'/H' E S/H E SR£fCf and that &'b is given a hermitian
metric hs> via an isomorphism of (/', bco', $"b) with (pE,\ ZE, -> F, a>E.9 NE.), where E' is a
fixed local slice at a point w' e a~1(a(£)). It suffices to show that there exist an inclusion
r. H' -»H, an z-equivariant morphism T: 5" ->• S, and an isomorphism of the universal
family (/', &c5', ^/b) and the pull-back of (/, bcb, &b) by T sending fcs, to hs. This
however follows readily from the fact that there exists a morphism v: E1 -> G such that
p(e) := v(e)(e) E E and ju(w') = w; then the map /r. E' -> £ clearly lifts to a map of the
corresponding families (pE,(bE,NE) and (p£,, d)£., N£.) sending the hermitian metrics h£.
to fi£, h being G»invariant.
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Proof of Theorem 11.2. Let (X, CD) be any extremal compact Kahler manifold In
9Jle. We recall the commutative diagram (9.4) associated to (X, co), and especially the
F-morphism a: P -»$JlHte . We set F = a*F and £ = a*fe, where (F, fe) is a (F-)hermitian
line bundle satisfying the condition of Theorem 11.1 on 3Wff>e. Then (F, k) Is a hermit-
ian line bundle in the usual sense on P and c1(F, k) = CCDWP, where c Is a positive
constant depending only on connected components of ^Jle containing (X, co), and a>WP =
a*cbWP(^JlHje). We take the determinant bundle with Quillen metric (Is, fcs) associated
to the virtual hermitian vector bundle (F — F"1)™"*"1 on F, where m Is the dimension of
the fibers of F -> S. Here, (As, fcs) admits a natural G-actlon since (F, k) Is G-Invariant,
where G = G(X9 CD).

On the other hand, by combining (10.6) and Theorem 11.1, as in Proposition 10.2
we get

r (I lr\ — _jm+l r ff £yn+l _ jm + lz mm + 1 r — rm+1

C i \A9 i\j — —Z. | C-j^i , K-J — —Z, C I UJyyp 9 C — C
JP/S Jp/s

By Proposition 9.5 the last term equals — 2m+1cC(m 4- IJcaJpJ1, where C Is a positive
constant depending only on the connected component of 9Jle containing (X9 CD).

We claim that 1 := {ls} determines a line F-bundle on 9We and fc := {fes} the
hermitian F-metric on it. Let (X'9 CD') be another extremal compact Kahler manifold in
me such that S'/G' £ S/G £ W!e, where S' = S(JT, co') and G' = G(A", co'). Let rc': F ->
S" and a':F'-3>M be the corresponding morphisms for (X'9co'). Then for any open
embedding /: S' -> S over S'/G' £ S/G which lifts to a morphism of corresponding
universal families lifts also to a morphism jp: P' -» P with a' = ajp. From this and the
construction the assertion follows immediately.

Finally, by taking a suitable power of (A, fe) on each connected component we get a
line bundle on 9We instead of a F-bundle in view of the following lemma.

Lemma 11.8. On each connected component the orders of the groups G(X, CD) are
bounded.

Proof. Let 9Wf be the image of 9W£jg. 9Kf Is open and closed in Wle. So It
suffices to prove that the orders of G(X9[co]) are bounded on SRf, where [co] denotes the
Kahler class. Let pv: Zv -> 17 be the restriction of the universal family to U £ HilbP*,
and Zu = ( p u , y ) the polarized family of Kahler manifolds with yu = c1(Hu)9 uell.
Then Aut^Zy := Isomc/(Zt/, Zv) is naturally a ZariskI open subset of an analytic space
which is proper over the closure of U in Hllbp* (cf. [Fu3]). From this one sees readily
that the number of connected components of each fiber of Aut^Z^ is bounded. This
implies the desired assertion.

Fix again a numerical polynomial F = P(Y) e Q[T]. Next, by using Theorem 10.5
we shall construct a natural positive F-line bundle on the (reduced) coarse moduli space
Rp of canonlcally polarized projective manifolds with Hilbert polynomial F. As a set
5^p is the set of isomorphism classes of projective manifolds X with ample canonical
bundle Kx such that P(m) = #(X9 K™) for all m. Let U £ (HilbpN)red be as in Lemma
11.5. Let U1 be the closed quasl-projective subspace of U defined by
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Then l^ is preserved by G and we have

RF has thus the natural structure of an algebraic space of finite type over C as the
action is proper. Each connected component of S^F is naturally identified with an
open and closed subset of one of the moduli spaces 9W = 5Ra in Theorem 5.4; further by
the uniqueness of an Einstein-Kahler metric K: KJ~1(ftpri50l) -> 51PD2H is biholomorphic
so that it can also be thought of as an open and closed subset of ^Re in Theorem
6.6. Hence by Theorem 7.10 we get:

Proposition 11.9. RF carries a natural complex V -structure, as a complex space and
a natural Kahler V-metric with respect to this V-structure.

We call the above Kahler F-metric the Weil-Petersson V-metric on RF. Our
purpose is to show that there is a natural algebraic line bundle RF, i.e. a line bundle in
the category of algebraic spaces, with a hermitian F-metric whose first chern F-form
coincides up to a constant the WP Kahler F-form cowp on ftF. Namely, we show the
following:

Theorem 11.10. There exist a natural algebraic line bundle F on RF and a natural
hermitian V-metric k on F such that the first chern V-form c^F, k) coincides with
the Weil-Petersson V-form on RF up to a constant; c^(F9 k) = ancoWP, where an =
(2/m)n(n 4- !)!/TC for some positive integer m, and n is the dimension of the manifolds.

Corollary 11.11. Any compact analytic subspace of RF is projective.

The idea is to globalize the hermitian line bundle (/l(G), fcG) in Theorem 10.5 to
5F. We first note the strong invariance property of these bundles. Let /: & -> S be a
family of canonically polarized manifolds in general. Then by the uniqueness of the
Kahler-Einstein metric mentioned above there exists a unique metric polarization co on
/ such that cos is a Kahler-Einstein form belonging to — c1(Xs) for any s. We may then
consider the determinant bundle A(G) and the Quillen metric kG as in Theorem 10.5.
From the above uniqueness together with the definition of (A(G), kG) we get:

Lemma 11.12. Let ft: 3Ci -> Si9 i = 1, 2, be families of canonically polarized mani-
folds. Then any isomorphism of these two families, i.e., isomorphisms u: ̂  -» 9£2

u:Sl^S2 of complex spaces with f2u = ufly induces canonically an isomorphism

Proof of Theorem 11.10. Take any point of 5^F represented by a canonically
polarized manifold X. Let f:2£-+S be a Kuranishi family of X. We then have a
natural morphism n: S -> RF and H := Aut X acts naturally on S inducing an isomor-
phism S := S/H ^ W := n(S). Such a pair (n: S -> W, H) is a member of the complex
F-structure of 5^F and any member is obtained in this way. Let now (A, fc) := (A(G), kG)
be the determinant bundle with Quillen metric associated to /. Since the action of H
on S is induced from its action on ^-^S, by Lemma 11.12 it lifts canonically to an
action on (A, /c), and hence also on (/lm, km) for any m > 0.
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On the other hand, for any ue Ul9 Gu is naturally identified with AntXu. Hence
the order of the group Aut Xu is bounded for all X in RF. Take m to be the common
multiple of these integers. Then for any s e S the stabilizer Hs acts trivially on the fiber
As

m. Hence, by Lemma 11.7 /lm descends to a line bundle Am:=Am/H on S with
7t*/lm ^ /lm. As in the proof of Theorem 11.1 we conclude that Am patch together to
give a global line bundle over the whole 5lp, which we shall denote by F. The
assertion about the first chern F-form is immediate from Theorem 10.5.

It remains to show that F is algebraic. Let p^. Zl^Ul be the restriction of the
universal family on Hilbp*. Applying Theorem 10.5 to p1 we obtain a determinant
bundle with Quillen metric on Ul9 denoted by ('A, '&), where 'A is naturally an algebraic
bundle by the construction of [K-M]. The natural G-action on Z1 -» U1 induces by
Lemma 11.12 an algebraic action on '^->U1 and hence also on 'Am. The quotient
space 'Am := 'Am/G has again a natural structure of an algebraic space with a natural
algebraic morphism onto U1 := Ul/G.

Now let u be an arbitrary point of L^ such that u = n(u), where /r. Ul -» U^ is the
natural projection. The quotient algebraic structure of Um is obtained locally at M by 1)
taking a Gu-invariant slice V = Vu at u which is an affine subscheme of U1 and then, 2)
identifying ('Am|F)/GM with 'AJ/i(F) on the open subset n(V). Since Gu acts trivially on
the fiber 'k™ for any u e Ul9 by Lemma 11.7 'km is indeed a line bundle on U1 = §ip.

We claim that F is naturally isomorphic to 'Am as a holomorphic line bundle, and
hence, has a natural algebraic structure.

Let u E U1 and V be as above. Denote by /: SF -»S a Kuranishi family of X = Zu.
Let Vs = vr\iTl(W) with the natural projection fj,s: VS-+W. We have then the univer-
sal morphism t:Vs-+S associated to the induced family Z x^ Vs -> Vs which is (GM, H)~
equivariant with respect to the natural identification H = Gu such that ns = m. Since
/is and TC induce isomorphisms VS/G ̂  W and S/H 3> W respectively, i is actu-
ally biholomorphic. It follows that i induces also a (GM, U)-equivariant isomorphism
'lm\Vs^lm, and hence, we get on W the canonical isomorphism r. 'lm\W^Am = F\W.
By the canonicity of the construction we see that these isomorphisms i patch together
to give a global isomorphism 'Am and F over the whole U± = Stp.

In this section we prove Theorem 10.1, a generalization of Theorem BGS for
singular parameter spaces. The proof is roughly divided into two parts. First, we
follow the construction of [B-G-S III] to get a determinant line bundle A = ABGS

and a Quillen metric k on S. The point is to show that (A, k) has a natural C°°
structure which extends the C°° structure on the smooth part defined in [B-G-S].
This is essentially a consequence of the observation that locally at any point of S our
holomorphic families {(XS9 gs)} and {(Es, hs)} extend to C°° families of almost heraiitian
manifolds and of almost hermitian vector bundles respectively over an ambient mani-
fold of S.

Secondly, we have to exhibit a natural C°° isomorphism between A and our
(holomorphic) determinant bundle 1KM = A(E). Our idea for this is to use the theory of
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relative analytic spaces of Forster-Knorr [F-K] (cf. also Schneider [Sch]) to define a C°°
version A£M of /1KM to get and use an intermediate of the above two bundles.

We start with explaining the smooth dependence of the analytic torsion on the
parameter, which is necessary to see the smoothness of k, in a somewhat general setting.

Let M be a compact C°° manifold and E a C°° complex vector bundle on M. Let
D be a domain in some Efc. Suppose that we are given a C°° family { g y } y e D of C°°
Riemannian metrics on M and a C°° family {hy} of hermitian metrics hy on E. Let
Dy: F(Ey) -> F(Ey\ y e D, be a C°° family of self-adjoint strongly elliptic operators with
respect to these metrics.

Let b be a positive real number which is not an eigenvalue of any of Dy. Let Kb
y

be the direct sum of the eigenspaces of Dy with eigenvalues A < b, and Pb: F(Ey) -> K*
the orthogonal projection. Set Qb = I — Pb, where 1 is the identity. Denote by C a
smooth path in the complex plane C encompassing all the eigenvalues > b of Dy for any
y. Then for any t with 0 ^ t < oo we define as usual

Ty
b = e-tD*Q» := l/2ny

c

This is a bounded linear operator F(Ey) -> F(Ey) with C°° kernel py(t, x, x'); namely we
have for any / e r(Ey)

Ty
b(f)(x)= f p b ( t , x , x ' ) f ( x ' ) d v y ( x ) ,

M

where dvy is the volume form associated to gy. In fact, by the proof of Proposition 2.8
of [Bi] py(t, x, x') is of class C°° in (y, t, x, x') e D x R+ x M x M.

For any fixed (y, t\ pb(t, x, x) is a C°° section of End Ey, whose trace we
shall denote by tr pb(t, x, x) e C°°(M). Then according to [B-G-S III; Def. 1.4] we
define

(12.1) #(*) = [" t*-1 Tr (Tb) dt, seC,
Jo

where

f
Tr Tb = tr pb

y(t, x, x) dvy(x) .
JM

Then it is known that £b(s) is holomorphic in s for Re (s) » 0, admits a meromorphic
continuation to the whole C, and is holomorphic at the origin o. In particular, its
derivative ££'(0) at o makes sense. The proof of the following proposition is essentially
the same as in [B-F] (cf. p. 168).

Proposition 12.1. CjT(o) is a smooth function of y e D.

Proof. One reduces the proof easily to showing that £y(s) is of class C°° on D x U,
where U is some open subset of C on which £y(s) are all holomorphic. First of all,
Tr Tb is C°° on D x R+ x M by the above mentioned result of Bismut. Hence, in
order to show that Cj(s) is of class C1, say, we need only to see that for any coordinate
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function y on D the integral

converges in locally uniform way with respect to (y, s) e D x L7. If we take 17 so that
Re (s) is sufficiently large for s e U this is true for t -> 03 i.e., for the integral over (0, 1]
because of the asymptotic expantion formula which holds for any strongly elliptic
operator (cf. [B-F; Th. 1.5]). For t — » oo this follows from:

Lemma 12020 For all y0 e D there exist a neighborhood U(y0) and constants 0 < A,
0 < C < 1, 0 < t0 such that

— tr pb(t, x, x) dvx for t^t09 yeU(y0).

Proof. First, from the definition of Tf, we get that pb(t + t', x, x') is the convolu-
tion lMpb(t,x,x")pb(t'yx",x')dvx». Then we use the n-fold convolution for nt, neN,
compute the partial derivative with respect to y and use the inequality

J1(X1 , X2)j2(X2'> X$) . • -Jnfany Xl) ®VXi . . .aVx

Mn

a f Y/2

/!2(x, x') dvx dvx,... fn(x9 x') dvx dvx,
U2 JM2 J

Now

r r
Tr (pb(t, x, x')pb(t, x'9 x)) dvx dvx, = tr pb(2t, x, x) dvx < 1

M2 JM

for t^t0 and y E U(y0). From this and a continuity argument we get the claim.
(Here Mk is the product of /c-copies of M.)

Now we work in the situation of Theorem 10.1. We shall recall the construction
of a hermitian line bundle (A, k) from [B-G-S] and show that its C°° structure on Sreg

extends naturally to the whole S (cf. Proposition 12.3 below.)
Let (/: 3E -» S, co) be a metrically polarized family of compact Kahler manifolds and

denote by gs the Kahler metric on Xs corresponding to cos. Let (E9 h) be a hermitian
vector bundle on 9C. Denote by (ES9 hs) the restriction of (E9 h) to each fiber Xs. Let
Dq(Es) be the space of Es-valued (0, g)-forms on Xs and dq: Dq(Es)-+Dq+1(Es) the
usual ^-operator on Xs with the formal adjoint (dq)* with respect to the metrics gs and
hs. Then D| := (Sq+1)*dq + 5€+1(5fl)* is a strongly elliptic self-adjoint operator. All
these operators depend smoothly on s.

Now we take a real number b > 0 and define Ub by the open subset of S such that
b is not an eigenvalue of D? for any q > 0 and s e I7b. Denote by Kb

s*
q the direct sum

of all the eigenspaces of Df with eigenvalues < b. Then we set



MODULI OF EXTREMAL KAHLER MANIFOLDS 175

where /1S
M = /\maxK^. Then Afc := (J As

b is a complex line bundle over Ub which may
seS

a priori not be of class C°°. However, the above construction shows clearly that the
restriction of Ab to be smooth part Ub

eg of Ub coincides with the original one defined in
[B-G-SIII;§l,b)].

First of all, hs and gs define on Kb
s'

q naturally a hermitian inner product, which in
turn gives rise to a natural C00 hermitian metric 'kb

s on As
b. Now we define a positive

real number TS by

(12.2) Ts = exp(-l/2 £ «Cf(
\ «^o

where £*(f) = C?'*(0 is the zeta function defined by (12.1) for the hermitian vector bundle
Es (x) /\« f* (instead of £ there). Then we define the Quillen metric kb on lb by

(12.3) kb = fkbis, seUb.

If we take another positive number c and the corresponding open subset Uc of S,
then exactly as in [B-G-S III; § 1, b), d)] we can construct a natural hermitian isomor-
phism cpbc: (lb, kb) ^ (Ac, kc) which is smooth on the smooth locus Ubc

eg of Ubc := Ub fl Uc.
Via the isomorphisms cpbc for various b and c, /lb on Ub patch together to give a
hermitian complex line bundle (A, fc) on the whole S. On the smooth locus Sreg it gives
precisely the one constructed in [B-G-S III; § 1] as is clear from the construction.

Proposition 123. The hermitian line bundle (A, k) constructed as above has a natural
C°° structure which restricts on Sreg to the canonical one constructed in [B-G-S III].

Proof. We consider the following situation, which is always realized locally in a
neighborhood of any point of S: 1) S is an analytic subset of a domain D in some CN. 2)
There exist a C°° trivialization (i//, \j/) of (/: SE -> S, E) over S as follows;

$
E ——+ E x S

M x S

Ps

s = s
where M is the underlying C°° manifold of Xs forseS and E -> M is the underlying C°°
complex vector bundle of ES-^XS. 3) There exist a C°° family {Jy}y6D of almost
complex structures Jy on M and a C°° family { J y } y e D of almost complex structures on E
which are induced for y e S by the isomorphism (^, (j/y): (Xy, Ey) ^ (M, E). 4) There
exist a C°° family {gy}yeD of C°° almost hermitian metrics gy on the almost complex
manifold (M, Jy) and a C°° family {/iy}ye0 of hermitian metrics on Ey which are induced
for y e S from the corresponding ones on Xs and £s via (\l/s, \j/s). Let DJ(E) be the space
of E-valued C°° (0, <?)-forms on the almost complex manifold (M, Jy) and let fl«: D?(E) ->
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D«+1(E) be induced by (Jy, Jy). By (i//, $), for s e S this Is Identified with the Dolbeault
operator on Xs.

In conclusion, the above consideration shows that the objects Dq(Es\ ds
q: Dq(Es) ->

Dq+1(Es), d*, nq
s defined naturally for s E S extends smoothly to a C00 family of similar

objects parametrized by D; In particular Qy is defined for all y E D and may be assumed
to be strongly elliptic by restricting D If necessary. Now by using these extended
objects we define Ub E D and Kq'b for y E D In the same way as above. Then K%b :=
(J Kq-b has a natural structure of a C°° complex vector bundle on the open subset

y e D
Ub in D, and hence also does ft := ®^0(/\

max^'b)(~1)(9+1). Then 1 has the natural
structure of a C°° complex line bundle as the restriction of ft to S.

Further, if we define the Quillen metric on ft by the same formulae as In (12.2) and
(12.3), then by Proposition 12.1 It Is smooth over D, and hence its restriction to S, which
is exactly the Quillen metric on 1 b on Ub, Is also smooth. Finally, the fact that (pbc Is
smooth can be shown similarly as In the smooth case.

Denote by ^/S(E) the sheaf of E- valued relative C°° (0, g)-forms on S£. We may
consider the relative Dolbeault complex (2°%IS(E\ d%ts\ which Is a fine resolution if the
sheaf &#-/s(E) by Proposition 1.4, where &%IS(E) is the sheaf of C°° sections of E which
are holomorphic on each fiber of /. Let 3$Tq'b be the sheaf of C°° sections of the C°°
vector bundle Kq'b on S. Then we have the natural Inclusion of complex of ^s-
modules

Lemma 12.4. i is a quasi-isomorphism.

Proof. This is due to [B-G-S III; Lemma 3.8] when S Is nonslngular. In the
general case the proof Is essentially the same. We use the notation of the proof of the
previous proposition. First, note that Jf°'& extends to a locally free ^-module JQ* as
the sheaf of C°° sections of K£'b -» D. Similarly, the Dolbeault sheaf f+2x,s(E) extends
to the Dolbeault sheaf f*@°z,D(E) on the whole D, where Z = M x D and fD:Z^B Is
the natural projection. Finally, f also extends to a natural Inclusion i'D: JT°'b ->
/*®Z/D(£) °f sheaves of ^-modules.

Now for any y e Y let Py: D
q(E) -> Kfb be the orthogonal projection and Gy: D

q(E) -*
D*(E) the Green operator for the strongly elliptic operator DJ- These depend smoothly
on y (cf. [Ko-Mo; p. 177]) and give therefore the maps P: f*@%/D(E) -> jfTg'b and
G'- f*®z/D(E) ~+ f*®z/o(E) of sheaves. Finally, as In [B-G-S] d*Gy(l - Py) gives a C°°
homotopy between 1 and P, In view of the formula

dydy*Gy(l - Py) + d*Gy(l - Py)dy =l-Py, yeD.

Now we want to apply the theory of a relative analytic space of Forster-Knorr
[F-K] to the induced morphism of ringed spaces:

We have to check that /°° satisfies the necessary conditions of [F-K]. We use freely
the terminology of [F-K].
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Let U SI S be an open subset embedded in a domain D in Cm as a closed analytic
subset. Denote by / S ®D the sheaf of C°° functions that vanish on U. Then F(2, /)
is a closed ideal of the mF-algebra F(D9 @D). (Roughly, a Frechet algebra whose
topology is defined by multiplicative seminorms (cf. [F-K; p. 11 8])). We shall
endow F(U9 @v) = /"(D, @D)/F(U9 /} with the quotient mF-algebra structure, which is
independent of the embedding as above. Then it is immediate to see:

Lemma 120§. The ringed space (5, ®s) lias the natural structure of an mFB-space
([F-K, p. 119]) such that for any open subset U = S as above the corresponding
mF-algebra structure on F(U9 @s) is the one defined above. Moreover, it is of type (L) in
the sense that every point admits a neighborhood basis 33 = {V} satisfying Hq(V, @s) = 0
for all q>0.

Next we consider the mFB-structure on (S£9 0#/s). Let P be a polydisc in C" and
U E S any open subset. Then we have a natural isomorphism

r(u9 @s) <§> r(p, Op) ̂  r(u x p, &(UXP)IU) ,
which defines an mFB algebra structure on the latter (cf. [F-K; p. 121]), where ®
denotes the topological tensor product. As [F-K; Prop. 1.1] shows, for any open
subset D E C " this introduces a natural mFB-structure on the ringed space (U x
D, ®(UxD)iu). The proof of the following lemma is also straightforward:

Lemma 12868 The ringed space (52T, ®gr/s) admits a natural structure of an mFB-
space such that on any open subset V of 3£ which is isomorphic over an open subset U of
S to the product U x D the induced mF B-structure coincides with the one induced from
(U x D, &(UxD)/u) via the given isomorphism. Moreover the morphism of mFB-spaces
/°°: (3E, &£/s) -» (S, @s) is smooth, so that in particular (3E, ®&/s) is a relative analytic space
oi?er(S,®s)(c/.[F-K;§3]).

Let now $ be the ^-module of germs of holomorphic sections of E. Set <f °° =
<? ®Gf &%•/$ = &gr/s(E) for brevity. In view of Lemmas 12.5 and 12.6 we can apply
Theorem II of [F-K] to the pairs (/, <?) and (/°°, <f°°).

Lemma 12.70 Rf*& (resp. Rf^S1™) is a perfect complex of @s-(resp. @s-) modules in
the sense that locally on S it is quasi-isomorphic to a bounded complex of finite free
Os- (resp. @s-) modules.

By virtue of this lemma we can apply the theory of determinants of Knudsen-
Mumford [K-M] to Rf?£" as well as to Rf^ so that, besides det Rf+S9 we can speak
also of the determinant det Rf£&c°9 which is an invertible ^s-module. (See [B-G-S III;
§ 3, a)] for a discussion about extending the theory of [K-M] from schemes to complex
manifolds. More generally one easily checks that Theorems 1 and 2 of [K-M] hold
true without any change on any analytic space S, or on the associated C°° space
(S, @s).) Now we set

AKM = (det Rf^r1, and /l£M = (det Rf^00)'1 .

Then our next purpose is to show the following:
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Proposition 12.8. There exists a canonical isomorphism of S>s-modules AKM ®QS@S ->
T K M

Aoo •

For any ^-module 2F we get a natural homomorpfaism of ^-modules f*^ ®®s

^s~* f*(^ ®&t®3£is\ giving the morphism of functors (—®Gs®s)'f*-*f*°(—®Gr

(9jfls). This induces in the derived category a homomorphism

(12.4) a: (Rf+g) ®%89S -> Rfff* .

Then we shall first prove:

Proposition 1289e The canonical homomorphism a above is quasi-isomorphic.

Proof. Since the problem is local, we may assume by Lemma 12.7 that there exist
1) a bounded free complex ^° (resp. J8) of finite free 0S- (resp. ®s-) module which realize
Rf+g (resp. Rf™^00) in the derived category, and 2) an ^-linear map u:0>°-»£° of
complexes which realizes the canonical homomorphism Rf+g -> Rf£g™ induced by the
inclusion $ d_» g™. Then u induces a ^s-linear map u^: ̂  := £P° ®®s@s ~^ ̂  which
realizes the map a. It thus suffices to show that u^ is quasi-isomorphic.

Since 0>* and J8 consist of free modules, this follows if we show that for any
s E S the induced map u'(s): ^°(s) -»J°(s) is quasi-isomorphic, where 0*'(s) = 0*° ®&sC(s)
and J8(s) = J° ®QS C(s) and also note that u°(s) := u^ ®^s C(s) = u ®GS C(s). (Use the
mapping cone of u^ and reduce the problem to showing that a finite bounded free
complex is exact if it is exact after tensorizing with C(s) for any s.)

For the latter purpose we shall realize a by using Cech complex. Take and fix a
locally finite Stein open covering S = {V^ of #\ For any open subset U of S we con-
sider the Cech complexes C(W\rl(U),f) and C(W\rl(V),f») on f~\U). Then after
passing to sheaves these give rise to an 05-module «"(93, f) and a ^-module ^"(35, ^°°)
respectively on S which realize Rf^ and Rf£&™ respectively. Moreover, the natural
inclusion j: ̂ °(S, g) -* ̂ (93, (f00) realizes the natural map Rf+g -> R/^00. Since ^c and
J° are bounded complexes of finite free modules, we can get a commutative diagram

where the vertical homomorphisms are quasi-isomorphic. Then by tensorizing C(s)
over (9S and over ^s respectively, we obtain a commutative diagram

where 93(s) = {VjnX5}. Here, the vertical arrows are again quasi-isomorphic since the
relevant modules are either &s- or <®s- flat modules; furthermore j°(s) is the identity.
Thus u'(s) is quasi-isomorphic.
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Proof of Proposition 12.8. By taking the determinant of both sides of (12.4), we get
natural isomorphisms

(12.5) (det Rf+g) ®0s @s ̂  det ((Rf+g) ®GS 2S) ^ det Rf?g"> ,

which is in fact realized by the isomorphisms
det u

(det &') ®GS 9S ̂  det (&• ®&s @s) - ^ det J'

in the notations of the above proof, where det denotes the Knudsen-Mumford deter-
minant of complexes. The proposition clearly follows from (12.5).

Lemma 12.10. There exists a canonical isomorphism w:/ l-»/lK M of @s-modules,
where A is the invertible @s-module corresponding to L

Proof. By Lemma 12.4 the natural inclusion Jf°'b <^>f£@k/s(E) is quasi-isomorphic
on Ub. On the other hand, since @%/s(E) is a fine resolution of <?°° we get canonical
isomorphisms

Thus JT°'b and Rf*$™ are canonically quasi-isomorphic. By taking the determinant of
both complexes we get a canonical isomorphism wb: /l& -»/l£M. Moreover, on Ubc we
have wb = wc%c. Hence, wb patch together to give a desired isomorphism w as above.

Together with Proposition 12.8 this yields:

Proposition 12.11. There exists a natural isomorphism A^AK M®^ s^ s which re-
stricts on the smooth locus Sreg to the one defined in [B-G-S III; Cor. 3.9].

The last assertion follows from the constructions.

Proof of Theorem 10.1. By definition A(E) is the holomorphic line bundle corres-
ponding to the invertible ^-module /1KM. By the isomorphism A 2» A(E) as C00 line
bundles given by the above proposition, the Quillen metric k is mapped to the Quillen
metric kE on A(£) by the definitions. Hence, kE is of class C°° by Proposition 12.3.
Moreover, by Theorem BGS the chern form c^(E)9 kE) coincides with the degree 2 part
of the fiber integral

ch (E, h) td (ar/S, g)

on Sreg. Hence if the latter is locally 55-exact on the whole S, it coincides with
C!(A(E), kE) on the whole S by Corollary 1.2.

Appendix

We shall give a proof of the relative Dolbeault and Poincare lemmas as stated in
Proposition 1.4. We shall follow the argument of [A-G] in the case where the base
space is smooth, but refer to general results on topological vector spaces as is exposed,
e.g., in [Bu].

In general let D be a poly disc in some Cm and S an analytic subset of D. Let / be
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the ideal sheaf of S in 2D. Then the exact sequence

turns @s into a Frechet sheaf since F(D, @D) is endowed with the usual Frechet
topology such that F(D9 /) is a closed subspace. Note also that F(S9 2S) is nuclear as
well as F(D, 2D) (cf. [Bu; Lemma 5.1]).

For a complex Frechet space E we shall denote by F(S, E) the space of C°° maps of
S into E, i.e., the maps which extend locally at each point to a C°° map from its
neighborhood in D.

Lemma A.I. There exists a canonical isomorphism F(S, 2S) ®E E ^ F(S, E), where
(x)£ is the s-tensor product in the sense of Grothendieck (cf. [Bu]).

Proof. We consider the following commutative diagram of Frechet spaces with
exact rows:

0 -> F(D, /) ®EE -» F(D, &D) ®EE^> F(S, &s) ®EE->®

0-> F(D,S;E) -> F(D,E) -» r(S, JE) ->0

where F(D, S; E) = {^ 6 F(D, E); \//(s) = 0 for any s e &}9 and the vertical maps are the
natural ones (cf. [Bu; Prop. 3.1]). (Here the first sequence is exact since F(S9@S) is
nuclear (cf. [Bu; Th. 5.3])). Since b is known to be isomorphic, it suffices to show that
a is isomorphic, i.e., surjective. But by the definition of a-product, for any / e F(O, E) f
is in the image of a if and only if vf vanishes identically on S for any continuous linear
form v on E (cf. the proof of [Bu; Prop. 10.3]). It follows that a is surjective.

Since F(S, @S)®E—i§ an exact functor ([Bu; Th. 5.3]) we get:

Corollary A020 E -» F(S, E) is an exact functor from the category of Frechet spaces
to itself.

Proof of Proposition 1.4. We treat only the case of Dolbeault complex. (The
other two cases are proved in a similar way.) The problem is local: so we may assume
that / is a projection /: X = U x S -»S, where U is a polydisc in C8 and S is a closed
analytic subset of a polydisc D of Cm. We first see that there exist natural isomor-
phisms F(X, 2X) ^ F(S, F(U, &v)) and F(X, 0X/S) = F(S, F(U, <5V)\ We show this for
the first case since the proof is parallel in the other case. We consider the following
commutative diagram of exact sequences (cf. Cor. A.2)
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where / is the ideal sheaf of X in ^/XD- Here, it is immediate to see that a and b are
isomorphic, and hence c also is isomorphic.

Now in order to prove the proposition it suffices to show that the sequence

o -> r(x, oxls) - r(x, 3X) - r(x, 3XIS) ->

is exact since X is arbitrary. By virtue of what we have proved above this sequence is
isomorphic to

o -> r(s, r(u9 0V)) -> r(s, r(u, @v)) -> r(s9 r(u, ̂ )) ->
which is exact by the above corollary since

o -> r(u, ®v) -> r(u, &v) -> r(u, aft -»

is exact, where ^% is the Dolbeault sheaf of (0, g)-forms on U.
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