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The Moduli Space of Extremal Compact Kahler Manifolds
and Generalized Weil-Petersson Metrics

By

Akira Funkr*! and Georg SCHUMACHER**?

Introduction

A basic problem concerning the classification of compact complex manifolds con-
sists of the construction of a moduli space—a complex space, whose points corre-
spond to isomorphism classes of compact manifolds—say with fixed underlying differen-
tiable manifold M. The complex structure of the moduli space reflects the variation of
complex structures on M in a holomorphic family. Here, the consideration of a
polarization turned out to be essential.

A polarized compact Kidhler manifold is a pair (X, y) consisting of a compact
Kéhler manifold X and a Kihler class y € H*(X, R). In the sequel we fix a compact
connected differentiable manifold M and a class o« € H?>(M, R), and consider only those
polarized manifolds whose underlying differentiable structure is difftomorphic to (M, a).
In [Fu3] and [Sch3] the (coarse) moduli space I = (M, a) of polarized, non-
uniruled, compact Kahler manifolds was constructed. When « is integral, the moduli
space M is naturally identified with the moduli space of non-uniruled polarized algebraic
manifolds in the sense of algebraic geometry.

The guiding principle of this article is the existence of a natural Kéhler structure on
the above moduli space, and also when « is integral as above, that of a natural
hermitian line bundle whose chern form gives the above Kéihler structure. A con-
ceivable approach for this is to represent the given polarization by a distinguished
Kéhler form such that biholomorphic maps are isometries. In the preceding paper of
the second-named author [Sch2] Calabi-Yau metrics were used to construct the moduli
space of polarized Kéhler manifolds with vanishing first chern class.

In general, a family of such distinguished Ké&hler metrics ought to yield a strong
relationship between infinitesimal variations of complex structures and of metrics tensors
in a holomorphic family. Let {X,},.s be an effective holomorphic family of compact
Kéhler manifolds over a reduced complex space S equipped with Kéhler metrics g; on
each member X;. Via the Kodaira-Spencer map we have an inclusion of each tangent
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space T,S of S into the cohomology group H!(X,, ®,), where O, is the tangent sheaf of
X,. Let us now assume that all g, are Kdhler-Einstein. Then the cup product of a
harmonic representative of a Kodaira-Spencer class with the metric tensor of the fiber is
a symmetric 2-tensor. The latter represents the infinitesimal variation of g, and the
L*-inner product of such representatives gives rise to a hermitian metric on S, which
was shown to be Kihler by Koiso in [Koi] (at smooth points.) It generalize the
classical Weil-Petersson metric for the Teichmiiller family of compact Riemann surfaces,
whose Kéhler property was first proved by Ahlfors [A].

Now our first idea in this paper is to use more generally the extremal Kéhler
metrics in the sense of Calabi [C1][C2] in the above situation—in principle we have
then the possibility to treat any polarized compact Kéhler manifold. Extremal Kéhler
metrics are exactly the metrics with constant scalar curvature if X is non-uniruled, or
more generally, if the automorphism group of X has compact components (manifolds in
class 7). We develop a deformation theory of extremal Kdhler manifolds with fixed
polarization. The basic fact we prove is the unique extension property of extremal
Kéhler metrics in a given polarized family. Using this, we show that the set 9%, of
isomorphism classes of extremal compact Kédhler manifolds in ./ has a natural structure
of a Hausdorff reduced complex space. (The treatment of non-reduced structures could
in principle also be done by the method of this paper.)

One of the main results of this paper is the construction of a natural Kéhler metric
on this moduli space M,. For its definition the description of the infinitesimal defor-
mations by harmonic representatives in the sense of Dolbeault-Kodaira does not seem
appropriate. Instead, we need to develop a harmonic theory which reflects the rela-
tionship between infinitesimal deformations of the complex structure and the metric
tensor mentioned above. Harmonic representatives in this sense satisfy a partial differ-
ential equation of fourth order rather than of second order. The resulting harmonic
space turn out to be the one suggested by the decomposition theorem of Berger-Ebin
[B-E] (cf. also [Fu-Sch]) in the extremal case. The L?-inner product yields a hermitian
metric on the base of a universal family £ — S. This hermitian metric turns out again
to be Kihler, and we call it the generalized Weil-Petersson metric. In the Kahler-
Einstein case it coincides with the Weil-Petersson metric mentioned above. Note that
S may possibly have singularities. (See Def. 1.1 for the definition of a Kdhler metric on
a general complex space.)

As a new aspect, related to our second problem, we consider families of extremal
Kéhler manifolds {X,} with rational polarization. Then our result is the existence of a
hermitain line bundle (F, k) on the base such that its first chern form ¢, (F, k) coincides
with the generalized Weil-Petersson form wyp up to a numerical constant. In particu-
lar, the Kéhler class of wyp is integral up to such a constant. In the Kéihler-Einstein
case such an (F, k) can even be chosen canonically.

By functoriality, the generalized Weil-Petersson metrics “descends” from the base
spaces of the universal families as above to the moduli space M,. In order to describe
this situation, as in the case of the classical Weil-Petersson metric on the moduli space
of compact Riemann surfaces, we have to introduce the notion of a V-structure. (In our
situation the base of a universal family may have singularities we get a V-space rather
than a V-manifold.) This implies that the Weil-Petersson form on the moduli space has
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locally a continuous potential which is differentiable with respect to local uniformizing
systems of the V-structure.

In the case of a rational polarization, combining our method with the classical
approach via the Hilbert scheme we show the existence of a hermitian line bundle
on the moduli space of rationally polarized extremal Kédhler manifolds (in the
V-sense) whose chern form equals up to a numerical constant the generalized
Weil-Petersson form. In particular, all compact complex subspaces of the moduli
space are projective.

We shall now explain our method of proof, first in the rationally polarized case.
This leads us to a variation of our moduli problem; namely the classification of extremal
Hodge manifolds (X, L, g), where (X, g) is an extremal Ké&hler manifold and L a
holomorphic line bundle whose chern class is represented by the Kéhler form associated
to g. One has the notion of a family of extremal Hodge manifolds and a deformation
theory. We prove the existence of the moduli space My , of isomorphism classes of
extremal Hodge manifolds in class /. (Here, we distinguish between objects with
non-isomorphic line bundles (cf. Def. 6.3).) Also in this case we construct a generalized
Weil-Petersson form dyp, and show that up to a constant it is the chern form of a
hermitian line bundle (F, k) on the moduli space My . (in the V-sense). In particular, it
is a Kéhler form.

This follows from two facts: One is the recent result of Bismut-Gillet-Soulé
[B-G-S] concerning the first chern form of a determinant bundle with Quillen
metric—the other is a fiber integral formula, which we show for the generalized
Weil-Petersson form on the base space of any family;

Owp = —1/n! J 2ne,(Z/S, g)wy + R/(n + 1)! f oyt
/S FAN

Here, R denotes the (constant) scalar curvature (independent of the parameter), and n is
the fiber dimension; furthermore, wy is the chern from of some hermitian line bundle on
the total space Z which restricts on each fiber to the extremal form. In fact, the right
hand side of this formula is interpreted as a chern form of a determinant bundle of the
base in the sense of Knudsen-Mumford equipped with the Quillen metric associated
with certain virtual hermitian vector bundle on the total space. As a matter of fact,
because of the possible singularities we need a generalization of the result of [B-G-S] to
the case of singular base space, and in applying the latter the recent result of Varouchas
[V] that the above fiber integrals are dd-exact on S.

The natural map p: My . - M, which sends the isomorphism class of an extremal
Hodge manifold to the class of the underlying extremal Kéahler manifold, is proper,
holomorphic and open. The fiber dimension g equals dim Pic X — dim Aut X;. The
generalized Weil-Petersson form wy» on M, equals essentially the fiber integral [, d§%,
and this can be interpreted again as the chern form as a certain determinant bundle
equipped with the Quillen metric. This in particular shows the desired Kéhler property
of wyp itself.

In the general case where the polarization is not necessarily rational, we follow an
analogous (but less intrinsic) method. We only note that if wg is any locally dd-exact
(1, 1)-form on & which restricts to an extremal form on each fiber, we can define the
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associated Weil-Petersson form ¢y p and the above fiber integral formula is still true in
this case.

In general, such an “admissible” form w, plays an important role in our whole
argument, especially via the horizontal distribution it defines on the tangent bundle on
Z%. Tt turns out that the latter gives rise to harmonic representatives of the Kodaira-
Spencer classes. In the Kihler-Einstein case we have a canonical choice of such an wy
and in this case the associated horizontal lift of the tangent vector coincides with the
“canonical lift” of Siu [Si].

As for the relation with the original problem we note that except for the Kéhler-
Einstein case very little is known about the existence and uniqueness of extremal Kahler
metrics in a given Kdhler class. If we denote by W, the open and closed subspace of
non-uniruled extremal K&dhler manifolds in 9%,, however, the unique extension property
of extremal metric implies that the canonical map x: M, — M is an open holomorphic
map with discrete fibers.

There is a natural application of the above result to the moduli space of canonically
polarized manifolds in algebraic geometry. In particular, we can show that any com-
pact analytic subspace of such a moduli space is always projective (cf. Sect. 11). For a
related result see Viehweg [Vi].

In this paper we treat systematically the families with possibly singular base
spaces. This is of course indispensable as our final objective is to study the moduli
space in general. We would like to emphasize, however, this gives rise to additional
difficulties to overcome, e.g.,, in proving the Kéhler property of generalized Weil-
Petersson metric. In fact, when the base space is nonsingular, it is also possible to
prove the Kéhler property by generalizing the method of Koiso [Koi] or Siu [Si] used
in the Kdhler-Einstein case.

In [Fu5] extremal Kéhler metrics will be studied from the view point of the infinite
dimensional moment map.

Now the arrangement of this paper is as follows. In Section 1 after summarizing
the basic notions used throughout the paper we introduce the notions of a complex
V-structure and related objects. In Section 2 we construct an elliptic complex naturally
associated to a compact Kéhler manifold with a fixed Kéhler form, which give harmonic
representatives of Kodaira-Spencer classes in our deformation theory. In Section 3 we
introduce the notions of (metrically) polarized families of Kdhler and Hodge manifolds
which are to be the basic objects of study in this paper. Then the infinitesimal
deformations associated to such families will be studied in Section 4. In Section 5 we
summarize the construction of polarized compact Kdhler and Hodge manifolds, and
then in Section 6 we construct the local and global moduli spaces for extremal compact
Kéihler and Hodge manifolds.

In Section 7, by using the results of Sections 2 and 4 we introduce the generalized
Weil-Petersson metrics and give statements of our results about the Kadhler property of
these metrics. The proofs of these theorems will be given in Sections 8 and 9. In
Section 9 we also give an important relation between two forms dyp and wyp in the
Hodge case. In Section 10 by combining the result of Section 7 and the main result of
[B-G-S] we construct a natural hermitian line bundle on the base space of any family of
Hodge manifolds as mentioned above. In Section 11 we consider the global moduli
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spaces of extremal Hodge and Kidhler manifolds and obtain the global version of the
above result as we have already explained. Finally, Section 12 is devoted to prove a
generalization of [B-G-S] to the case of singular base spaces.
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§1. Preliminaries

In this section we first fix our basic terminologies and notations on objects on a
general reduced complex space such as C® forms and Kéhler metrics. Subsequently,
we introduce the notion of a complex V-structure generalizing that of a V-manifold,
which we believe to be most appropriate to describe the structure of the global moduli
spaces considered in this paper.

a) We start with the notions of C* functions and forms on a complex space. We
denote by D a domain in a complex number space C™ of dimension m (which we do not
specify), and by 2, the sheaf of C-valued C® functions on D. Let S be a reduced
complex space. Then we also denote by &g the sheaf of C-valued C® functions on §,
which is characterized by the following condition: For any closed analytic embedding
j:U D of an open subset U S S, the restriction 9D5|U equals the image of the
canonical map j°9, — %, where j° denotes the topological inverse image, and % is the
sheaf of C-valued continuous functions on S. Thus we can identify Z4|U with
(9p/ #)|U, where ¢ S 2, is the subsheaf of functions which vanish identically on
S. We denote by 24(R) the subsheaf of R-valued functions.

We next recall the definitions of differential forms. Let j: U <, D be as above and
identify U with j(U). Let .# be the holomorphic ideal sheaf defining U and set
F =(F + #)D,, where ~ denotes the complex conjugation. For any integer k > 0 we
set & = (65/ 65 + d g A 571)|U, where &% is the sheaf of C-valued C® k-formes on
S. Forp,q=0, p+ q=k, one defines 257 by the natural image of the sheaf 257 of
C® (p, g)-forms on D in &% The usual exterior differentiation d on D, as well as its
(1,0)- and (0, 1)-parts & and @ respectively, give rise to the corresponding exterior
differentiations on &% and 2§49 (still denoted by the same letters). These notions
actually is independent of the choice of the embedding j as above, so that we obtain
global sheaves &% and 227 of differential forms on S with global exterior differentiations
d, and 8 and & respectively; for instance we have the d-operator 0: 929 — QL+,
Sections of 2%9 are called C*(p, q)-forms on S.

Observe that (0, 0)-forms give rise to another notion of C® functions on §. We set
Ds:= &) = 22° on U we have 5 = 2,/ ¢, and hence there exists a natural epimor-
phism
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& Ds— Ds .
(If S is locally irreducible, and hence in particular if S is normal, ¢ is an isomorphism,

but in general not (cf. [M])).

b) Denote by #%; the subsheaf of Z4(R) of pluriharmonic functions on S. By
definition a pluriharmonic function is locally an imaginary part of a holomorphic
function, so that we have the following exact sequence of abelian sheaves

(1.1) 0— R 05252, —0,

where j is the natural inclusion.

Proposition 1.1. Let S, be the set of smooth points of S. Let ¢ € I'(S, Z5(R)) be a
C*® function whose restriction to S,., is pluriharmonic. Then ¢ is pluriharmonic on the
whole S.

Proof. We extend the argument in the proof of [Fu2; Lemma 6]. Since the
problem is local, we fix a point 0 € S and prove that ¢ is pluriharmonic in a neighbor-
hood of 0. Let r: §— S be a resolution of S and set E = 7"1(0). Then we consider the
following commutative diagram with exact rows

r@, o) —— 1@ #) —— H'@G.R)

| I
I'(E, 0;) —— I(E,#) —— H'(E,R)

arising from (1.1), where the vertical arrows are restriction maps.

Suppose first that a is surjective. Then, since @ := r*¢ is in I'(§, %), we can find a
holomorphic function f on § with Im f = @, determined up to additive real constants
on each connected component of §. By adjusting these constants we may assume that
f descends to a (continuous) meromorphic function f on S whose imaginary part
coincides with ¢. Since ¢ is of class C*, by a theorem of Spallek [Sp; Satz 4.2] f is
holomorphic, and hence ¢ is pluriharmonic, on the whole S.

It remains to prove the surjectivity of a. First note that from the compactness of
E the surjectivity of a follows at once. Hence, b, and therefore bf = yb also, is the zero
map. On the other hand, if we replace S by a suitable neighborhood of o, we may
assume that vy is isomorphic. Thus b is the zero map and a is surjective.

Corollary 1.2. 1) Two locally dd-exact real C* (1, 1)-forms which coincide on Sreg
coincides on the whole S. 2) The map 00: 95— D! descends to 00: Ds— Di* with
respect to &: Ds — Ds.

Proof. 1) The problem is local. Let y, and ¢, be R-valued C* functions on S
with 80y, = 80y, on S, Then by applying Proposition 0.1 to ¥ :=y; — ¢, we get
that the equality is even true on the whole §. 2) Since the support of the kernel of ¢
is contained in S — S,,,, 00 vanishes identically on Ker ¢ by the above proposition.

We denote by
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&5 = i0095(R) S 24 '(R)

the subsheaf of locally dd-exact real (1, 1)-forms on S. The above proposition yields
the following exact sequence

(1.2) 0 Py —— DR) - by 0

as in the smooth case.
We further observe the exact sequence

(1.3) 0—s St — o2l p 0,
and the induced cohomology sequence
(14) — H'(S, 0) = H'(S, #5) — H*(S, ") —>

where S' = {z € C; |z| = 1}, identified with the constant sheaf on S. For any holomor-
phic line bundle L on S

(1.5) é(L) e HY(S, %)
is called the refined chern class of L. 1If, further, h is a hermitian metric on L, we set
(1.6) ¢,(L, h) = i/2n curv h = i/2n 00 log h

and call it the first chern form of the hermitian line bundle (L, h), where curv denotes
the curvature form. Then c¢,(L, h) is a section of @5 and we have

é(L) = ds(cy (L, h))
where dg: I'(S, @5) —» H'(S, %) is the coboundary map arising from (1.2).

c) Let f:Z — S be a proper smooth morphism of connected and reduced complex
spaces with connected fibers. For any C® (p, g)-form « on Z we can define its fiber
integral ff = jms“ along the fibers of f, which is a C® (p — n, ¢ — n)-form on S, where n
is the dimension of the fibers. For instance, in the case (p, q) = (n + 1, n + 1) we obtain
a (1, 1)-form and we are interested in the condition for p to be locally dd-exact on
S. Concerning this question the following special case of a recent result of Varouchas
[V] turns out to be very useful for our purpose.

Proposition 1.3. Let f:Z —S and n be as above. Let w,, ..., w, be real C®
(1, 1)-forms on % which are locally 00-exact on %. Then the fiber integral
fz/s®0 A+ A w, is again a locally 00-exact real (1, 1)-form on S, i.e., a section of ®s.

Proof. The problem is local. So by restricting S we may assume that H(Z, R) =
Ofori=2n+ 1 and H(Z, %) =0 for j = n + 1 and for any coherent analytic sheaf &
on . Then by [V; Th. 2] there exists a real C® (n, n)-form y on & such that

1.7 Wo A A @, = i00Y

on the whole Z. In fact, in [V] this is proved for the case where wy="=w, and w=w;
is a Kéhler form; however, the proof clearly shows that it suffices only to assume that w
is locally d0-exact and real. Thus for any real numbers r, ..., r,, (Lo, + - + r,0,)"*"*
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is 60-exact on the whole . From this one deduces that the same is true for @2 A - A o}
for any 0<i,, ..., i, with ig+---+i,=n+ 1. Hence, (1.7) holds. Finally, we
get

f wo/\-“/\a),,:if 65x=i65f X
Zs /s Zis

The proposition follows.

d) Let f: % — S be a smooth morphism of reduced complex spaces. We can then
define the relative holomorphic tangent (resp. cotangent) bundle Tys (resp. T7)s) as a
holomorphic vector bundle on #%. Then A’Ts® /\"Tjs is a complex C® vector
bundle on . We denote by 2%/% the sheaf of C* sections of this bundle. Sections of
D%/ are called C* relative (p, q)-forms on & over S. We set D45 = ,@%,‘g and &5 :=

® 95%. Then we set 999 = E9s=Dy. Also we denote by Qfs the sheaf of

germs of holomorphic sections of APTys (ie., the sheaf of relative holomorphic
p-forms), and by Oy, the subsheaf of P, consisting of those functions which are
holomorphic when restricted to each fiber.
Since f is smooth, we have differential operators
+1 7 +1
dg)s: ‘%’/s - fg’ekf/rsl s Ogjs: Qs = Qs Oayst Digys = Dirs
as in the absolute case, which give rise to complexes on &
. d d
dzr/s: 0—f'Ds—> Dy — c'?3%“/3 - ‘%’/S -
. 3 8
Ogis: 0= 05 = O = Qipjs = Qs —
= J d
015 0= Ogys > Dy — 931&”/5 - ge%’/s -

where f° denotes the topological inverse image, and in each line the second arrow is the
natural inclusion.

Propesition 1.4. The above three sequences are all exact, i.e., the relative versions of
Poincaré and Dolbeault lemma hold.

In the Poincaré cases this follows from the observation that the construction of the
homotopy for d or 0 in the absolute case depends smoothly on the parameter. The
Dolbeault case is due to Andreotti and Grauert [A-G; §7, b), ¢)] when S is nonsingular.
The proof in the general case, which can also take care of the Poincaré cases, will be
given in the Appendix.

The functions which are locally imaginary parts of functions in Oy form a
subsheaf 24,5 of Z5(R). Sections of Py are called relative pluriharmonic functions on
Z over S. We have the obvious exact sequence

(1.8) 0— f*D(R) > Og s —2 Pyrjs — 0
where j, is the natural inclusion. We also set
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Then Proposition 1.4 yields as in the absolute case:

Lemma 1.5. The following sequence is exact:

j 0750215
(1.0) 0 — Pgjs—> Dg(R) ——3 Pgys— 0
where j, is the natural inclusion.

e) We next define the notion of a Kéahler metric on a reduced complex space
S.  We start with that of a hermitian metric. Denote by T = Ty — S the tangent linear
fiber space, whose fibers over se€ S are naturally identified with the Zariski tangent
space T,S of § at s (cf. [Fi]). With respect to an embedding j: U =, D of an open
subset U S S into a domain D in some C™ we have a canonical embedding of the
restriction T|U into the holomorphic tangent bundle T}, of D:

T|IU = T,
(1.11) ! !
U o D.

Then a hermitian metric on S is by definition a collection h = {h}, s of hermitian inner
products A, on T,S It is said to be of class C® if for any point s of S, if we take U
sufficiently small around s in (1.11) {h},., can be extended to a C* hermitian metric h,,
on D.

Definition 1.1. A C*® hermitian metric h on S is called a C® Kdhler metric if for
any point s€ S there exist an embedding of a neighborhood U of s into a domain
D E C™ and a C* Kihler metric hj, which extends h|U (as a hermitian metric).

We have also an equivalent notion of Kéhler forms. First of all, note that any real
C*® (1, 1)-form ® on S determines at each point s € S a hermitian form (not necessary
positive definite) h(w); on T,S .

Definition 1.2. A Kdhler form on S is a locally dd-exact, real C* (1, 1)-form w on
S such that the induced hermitian form h(w), is positive definite at each point s of S.

Remark 1.1. 1) By the definition any Kéhler form w is locally written in the
form w = i0dy for some C* strictly plurisubharmonic function y, which is determined
up to additions of pluriharmonic functions. Thus the notion of a Kahler form given
above coincides with the standard one used, e.g., in [Fu2] or [V], which originates from
Moishezon.

2) A Kihler form induces naturally a Kihler metric as is clear from the defini-
tions. More precisely, by using 1) of Corollary 1.2 one sees easily that this sets up a
natural bijective correspondence between Kéhler forms and Kédhler metrics as in the
smooth case.

Let f: & — S be a smooth morphism of reduced complex spaces. Then a hori-
zontal distribution for f is a collection THZ = {TF}, 4 of subspaces T¥ of the Zariski
tangent spaces T,Z of Z such that f induces an isomorphism T/ — T;,S. THZ is
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called of class C* if for any point xe€ & we can find a neighborhood ¥ and a
realization of f by a projection

(1.12) Vel ,wxD

o

such that THZ is induced by a C® horizontal distribution for the projection n in the
obvious sense, where U S § and j are as in (1.11), W is a manifold and j is a closed
embedding.

Let now wy be a C* (1, 1)-form on & which induces a Kéhler form on each fiber
of f. Then define for any x the subspace TH(wy) of T,Z by the wgy-orthogonal
complement of T.%Z,, where s = f(x). Then:

(1.13) TH(wg) = Ug{ T (wg)

is a C® horizontal distribution for f.

Definition 1.3. Suppose that wg is a Kidhler form with the associated Kéhler
metric hy and S is given a hermitian metric hg. Then f is said to be a Kdhler
submersion if the linear isomorphism T (wg) 2 Ty, S is a hermitian isometry for any
X.

In this case we know that hg also is a Kéhler metric at least on the smooth locus

S, (See [Wa].)

reg*

f) For the description of the natural Kahler structure on the global moduli
spaces considered in this paper it seems most natural to introduce the notion of a
“complex V-structure” generalizing the notion of a V-manifold in the sense of Satake
(cf. [Ba]).

Definition 1.4. Let Y be a reduced complex space. Then:

1) A local (analytic) Galois cover of Y is a pair & = (n: U — U, G) consisting of a
holomorphic map n: U — U of a connected complex space U onto an open subset U of
Y and of a finite group G acting biholomorphically on U over U such that 7 induces an
isomorphism U/G S U of complex spaces. (We do not assume that the action is
effective.)

2) Let #' = (n': U — U’, G') be another local Galois cover of Y with U’ € U, then
a morphism of #' into & is a commutative diagram of complex spaces

ﬁl—j)U

|k

v — U

where j is the inclusion and j is an open embedding, together with an injective
homomorphism u: G' — G such that j is p-equivariant. Any such j is said to be
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associated to j. If such a morphism exists, # and &' are said to be compatible.
3) A complex V-structure on Y is a collection

={%, = (n, Ua - U, Ga)}aeA

of local Galois covers of Y such that 1) {U,},. 4 forms a basis for open sets of Y, and 2)
Z, and Z; are compatible whenever U, & Uj.

4) Let Y’ be another complex space with a complex V-structure ¥~ = {Z, =
U, > U,, G))}. Then a morphism f: Y — Y’ of complex spaces is said to be V-smooth if
for any point y € Y there exist #, € ¥", %, € ¥ and a homomorphism u,,: G, = G, such
that f(y) € U, y € U, and f|U, lifts to a u,,-equivariant smooth morphism U, - U .

Let Y be a complex space with a complex V-structure ¥ = {%, = (n,: U, -
Uaa Goz)}'

Definition 1.5. 1) A Kdhler V-metric on Y is a collection h = {h,} of G,-invariant
Kihler metrics h, on U, such that if U, S U; then ]aﬂhﬂ = h,, where ],,,; U,- U,; is
associated to the inclusion U, & U;. In a similar manner we can define differential
V-forms and Kihler V-forms etc. on Y.

2) Let Y and Y’ be complex spaces with complex V-structure and with Kéhler
V-metrics. A morphism f: Y — Y’ is said to be a Kdhler V-submersion if it is V-smooth
and a lift U, — U, as in 4) of Definition 1.4 can be taken to be a Kéhler submersion.

Let F be a holomorphic line bundle on Y. Then to each F,:= n}{F|U,) the action
of G, on U, lifts naturally. Moreover, any embedding Jug: U, — U, associated to an
inclusion U, & U induces naturally an open embedding ],,,, F, = F; of bundle spaces.

Definition 1.6. A C® hermitian V-metric on F is a collection h = {h,} of G,
invariant C* hermitian metrics h, on F, such that f:,,hﬂ = h, for any f,,ﬂ as above. In
this case the collection {c,(F,, h,)} of the first chern forms of (F,, h,) determines a
(1, 1)-V-form on Y, which we shall denote by c,(F, h) and call it the first chern V-form of
(F, h).

The following notion will also be useful in studying the moduli spaces.

Definition 1.7. Let Y be as above. An abelian V-sheaf on Y is a collection
L= {L,} of sheaves of abelian groups L, on U, with a lift of the G,-action to L, and
with the following property: For any open embedding fa,,: 0, c, Uﬁ associated to an
inclusion U, S U;, we are given an isomorphism v,,: L, —'1’>f;';,L,, which is 4~
equivariant, where u,z: G, — G is the given homomorphism, such that for any inclusions
U, & U,, U, and for any open embeddings j,g, jg, and j,, associated to these inclusions
with jg,jus _]ay: we get ]aﬂ(vﬁy) % = Vay-

From the definition we have:
Lemma 1.6. Let & ={%,} be an abelian V-sheaf on Y as above. Let ¥,:=

n8:%, be the G-invariant direct image sheaves on U,. Then %, for all o patch together
naturally to a global abelian sheaf ¥ on Y.
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Examples of abelian V-sheaves arise from sheaves naturally attached to each U,
such as Og, 25, Pg,, Po,, Pg, etc. We denote by @Y and 9} respectively the abelian
sheaves on Y determined by @y and %, and Lemma 1.6. Note that for Op, and Zg
the resulting sheaves are just ¢y and %y respectively. The exact sequence (1.2) induces
an exact sequence

(1.14) 0P — PYR)— Y -0

on Y.
Note that by definition we may consider a Kihler V-form wy as a section of @y.

Definition 1.8. The image é(wy) € H(Y, %) by the coboundary map I'(Y, ®})—
H(Y, %) induced by (1.14) is called the refined Kihler class of wy. Tts image wye
H?(Y, R) by the coboundary map arising from (1.1) is called the Kdhler class of
wy. The same terminology is used also for an (ordinary) complex space. (In this case
(1.14) is reduced to (1.2).)

If &, are all invertible Oy -modules in Definition 1.7, and L, is the corresponding
line bundle, we call the collection {L,} a line V-bundle on Y. The hermitian V-metric
on a line V-bundle is also defined analogously to Definition 1.6. If m is a common
multiple of the orders of G, for all «, {L}'} descends to an ordinary line bundle on Y;
indeed, in this case n2.%," are again invertible ¢y -modules.

Definition 1.9. Let Z be an (ordinary) complex space. Then a morphism f:Z —
Y of complex spaces is said to be a V-morphism if for any point z € Z, there exist a
neighborhood V of z in Z, a local Galois cover (n: U — U, G) in ¥ with f(z)e U, and a
morphism 1: ¥V — U such that f|V = nr.

In this case we can define the pull-backs f*B of V-objects B = {B,} on Y such as
C® V-forms, line bundles, hermitian metric etc.

Proposition 1.7. Let Y be a reduced complex space with a complex V-structure.
Suppose that there exists a Kdhler V-form wy on Y whose Kdhler class vy is integral, i.e.,
y is in the image of H*(X,Z)— H*X,R). Then there exists a positive line bundle L
with ¢,(L) = y. In particular, if Y is compact, Y is projective.

Proof. Let ¥ ={%, =, U,~U,G,)} be the complex V-structure on Y.
Suppose that wy is given by a system {w,} of G,-invariant Kihler forms w, on U,. For
o with small U, we may write w, = i65|/7a for some G,-invariant C* strongly pluri-
subharmonic (psh) function (/70, on U,. Then y, descends to a continuous strongly psh
function y, on U,. If U, £ Uy, then y, — Y, is C* pluriharmonic on U,. In fact, take
an open embedding faﬂ: 0,- Uﬂ associated to the inclusion U, & U;. Then U, —fa*,,xﬁﬂ
can be written as a real part of a G,-invariant holomorphic function ﬁa,, on U,; the latter
descends to a holomorphic function h,; on U, and we see that y, — y; is the real part of
h, on U,. Thus y, — i, is C* pluriharmonic on U,. Then by Theorem 1 of [V]
there exists a C* strongly psh function y, on U, such that y, — Y3 = h,;. Thus we get
a global C® Kéhler form wy by setting wy|U, = iddy, such that y = [wy] as both are
the image of {h,z} € H' ({U,}, %).
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Now we observe the following commutative diagram of cohomology exact se-
quences on Y

H'(0y) » H'(0F) > H*(Z)

l l
HY%y) = H'(Py)
! !

HXZ) - H*R) — H¥SY).

The assumption that y is integral shows that the element he H!(%;) determined by
{has} is in the image of H'(OF). Let L be a line bundle with the refined chern class
h. Then it is easy to construct hermitian metric k on L such that c¢,(L, k) = wy (cf.
Prop. 3.10 below). Thus L is positive, and further, is ample if Y is compact. (See

[Gr])

§2. Elliptic Complex Associated to a Compact Kihler Manifold

Fix a connected compact Kdhler manifold X and a Ké&hler form w on it through-
out this section. Accordingly, for any abelian sheaf & we write H{%) for HY X, %) for
short, and similarly, for a C* vector bundle E write /'(E) for the space of C* sections.
Let T and T* be holomorphic tangent and cotangent bundles of X respectively. We
denote by A? = AYX) (resp. D? = D%X)) the space A?=I(T® /\“’1_'*) (resp. DI =
I (/\‘17_’*)) of vector valued C* (0, g)-forms (resp. ordinary (0, g)-forms) on X which form
as usual the Dolbeault complex with respect to 6, where the bar denotes the complex
conjugate.

Now in this section, we shall construct a certain elliptic complex B' = B(X, w)
naturally associated to the Kahler manifold (X, w) (depending also on the Kahler form
w), essentially as a subcomplex of A°. The cohomology group HY(B’) of this complex
will be interpreted as a certain sheaf cohomology group H%Z,), where Z, is defined by
the Atiyah sequence associated to the Kihler class y of w (cf. (2.13)). Since HY(Z)) is
considered as the space of certain infinitesimal deformations associated to (X, w) (cf.
Sect. 4) this means that we get natural harmonic representatives for such infinitesimal
deformations. If w is of constant scalar curvature, these representatives are exactly the
ones coming from the decomposition theorem of Berger-Ebin [B-E] formulated in terms
of Riemannian geometry.

Denote by g the Kihler metric associated to w. Then g and w give natural
identifications of tangent and cotangent bundles; we denote these isomorphisms T —
T*and T* - T by |, |, and 1,, 1,, respectively.

We first define a bundle map

2.1) T NT* > N\N'T*,  ¢q20,
by the composition

2.2) T® /\"T* _Le®id, Tk g N T* C_i‘f"_ff:_)j‘“* ®@t) A, Na+1TH



114 AKIRA Fusiki AND GEORG SCHUMACHER

where j,: /\* T* — T*®1 is the natural inclusion and 4 is the alternation operator. We
denote by the same letter 1 the induced linear map

(2.3) 18: A7 DT

From the definition the following is immediate.
Lemma 2.1. 12 are all surjective in (2.1), and hence also in (2.3).

Lemma 2.2. The linear maps 13, q =0, induces a homomorphism 1,,: A" — D"*' of
Dolbeault complexes.

Proof. Write 1 =14. We have to show that di(V) =:9(V) for all V e A% Since
the problem is local, we may assume that ¥V is of the form a ® b, where a is a local
nonvanishing holomorphic vector field and b is a C*®(0, g)-form. Note first that
1(a ® b) = 1(a) ® b by the definition and that d(@a® b) = a ® 6b. We have thus only to
show that d(i(a) ® b) = 1(a) A 0b. This clearly follows from di(a) =0. So we shall
show the latter. It suffices to show that for any local vector fields U, V of type (1, 0)
such that a, U, V all commute, we have (di(a))(U,V)=0. In fact, noting that
1(a)(W) = w(a, W) for any W by the definition, we have

2(d((@)(U, V) = UG@)(V)) — V((a)(V))
= Uw(a, V) — Vw(a, U) + aw(U, V)
= 3(dw)(U,a, V)=0.
Now for ¢ >0 we define B? = BY(X, w) by the kernel of 14 and set 0y = 0: B4 —
B?*!, Namely
B? = Ker(14: 47— D).
We further set
B° = B°(X, w) = C*(X),

where C®(X) is the space of C-valued C* functions. We then get the following
commutative diagram of exact sequences

T 1
0-B*> A>->D*-0
T T 7
0—-B'-5A'-D?*-0
(24) T 1
A°x D!
T
0 -»D°
]

0.
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Then we see that the composite map
L:p°—2,ptte, go_2, g1
has image in B'. Hence we set d := L: B® —» B';
0p=01,0=1i01,0.

By Lemma 2.2 and the definition of g, (B", dg) is a complex. We note the cohomology
exact sequence which arises from (2.4):

25) — HY(0y) — H(B") —> HY(Oy) > H**'(0x) —
where we have used the canonical isomorphisms H%(A4") = HY(Oy) and HY(D") = H(Oy).
Proposition 2.3. (B’ 0p) is an elliptic complex.

Proof. Let x be any point of X. Fix any nonzero real cotangent vector v at
x. Then we have the following commutative diagram of symbol sequence of complexes
A’, B', and D" at (x, v):

T 1 T
0— K22 TQ N?T* —=5 N3T*—0

T 1 1
0— K!'-I's TT* —os N2T* — 0

oy

T = T*

1 1

0 — C

1

0

where K9 g = 1, is the kernel of ;2 in (2.1) and j? are the natural inclusions. Since the
Dolbeault complexes are elliptic, the middle and the right vertical sequences are exact.
It follows that the left vertical sequence is also exact except at degree O and 1. The
exactness at degree at 0 or 1 follows immediately if we note that o,(d,) = i6,(0,) T.,6.(0p),
where ¢, denotes the symbol.

We now consider elements of A':= I'(T® T*) as a homomorphism T — T of
vector bundles. Then B! is by definition the subspace of elements ¢ of A' which is
skew symmetric with respect to w;

(2.6) B' = B'(X, w) = {p e A; 0(p(U), V) + o(U, o(V)) = 0}
or
(2.7) ={peA';g(e), V) =g, o(V)},

where U, V e A° = I'(T), and note that g(U, V) = w(U, JV) with J the complex struc-
ture of X.

By virtue of the above proposition we may apply the usual harmonic theory to the
complex (B, d3). First of all, since X is given a Kihler metric, B, as well as A% and DY,
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carries a natural hermitian L?-inner product. For instance if ¢ and  are elements of
B! S A considered as homomorphisms T — T as above, this inner product is given
explicitly by

2.8) (o, ¥) = f tr (oy) o™,

where @™ := w"/n! is the volume form associated to the Kihler metric g, and the trace
tr is taken in End T. Let 0f be the formal adjoint of d; with respect to g. In our case,
the Laplacian []? = [J% is defined in each degree as follows:

DO == 5;53 s Dl = 535;: + (5*5)2
0% = (60*)* + (6*0)*, q=2.

(We shall write 0 = d, for degree = 1) We denote by #J the space of harmonic
forms. For instance we have

Ay = {feC™(X);05f =0},
Hy ={9eB ;0" =0} = {3p = 3§p = 0}
An immediate consequence of the harmonic theory is as follows (cf. e.g. [We]).

Theorem 2.4. 3 are all finite dimensional and the natural map v%: ¢ — HY(B’) are
isomorphisms.

Note that with respect to local coordinates, say zi, ..., z, on X, if ¢ € B! is written
as ¢ = Y ¢§d/0z, ® dz,, O takes the form

29) Yo’ =0,  05=10.:0%.

where g,5 is the metric tensor and @,5 = @4; by (2.7).
We further define subspaces 5, of A° and ! of #; by

Hyi={Ee A% 0¢ e A4},
and
Hy = 0Hy S Hy .

_ Definition 2.1. Define #; to be the orthogonal complement of #3' in J#'; # =
LA} We call #} the essential harmonic space in B!.

We shall give a cohomological interpretation of 5. We denote by y the Kihler
class of w; y = [w]. We first note that w = w': H'(@y) — H?(0y) is given by the cup
product with y considered as an element of H!(Q}), as follows easily from the definition
of the sequence (2.5). Therefore, we get the following exact sequence

(2.10) H'(0x) — H'(B') —> H'(6x), — 0
where ¢ = ¢!, a = a® and

H'(Oy), := Ker (y: H'(6x) - H*(0%)) -
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Note that if we set '#,; = #,/1,0#, 0 induces a linear map '# — #, which will still
be denoted by 0.

Theorem 2.5. 1) There exists a linear isomorphism &: H'(Oy) 2 '#, such that
v38 = ¢, where v =v' as above. 2) The map a' := av: #; — H'(Oy), induces by restric-
tion to A a natural isomorphism fi: # — H'(@y), such that a’ = fip, where p: 3 — H
is the orthogonal projection.

Proof. For simplicity, we write T = {,. Let G and H be the Green operator and
the harmonic projection operator respectively associated to the harmonic theory on
B'. Then we define 6: Z(X) — #, by

3(¢) = 1o — 335Ga1 9),
where Z'(X) is the space of d-closed (0, 1)-forms. In fact, if we set & = 61 ¢ we get
(2.11) 95(p) = & — 0,05Go¢ = HE ;

hence the image of § is certainly in #;. Moreover, if we set ¢ = df, f € C*(X), in the
definition of é we get

10f — 03§GOsF) = 1(0f — 0(f — Hf)) = 10Hf € 1045 .

Thus, & induces a linear map &: H'(Oy) »'#,. The formula (2.11) shows then the
commutativity vdd = ¢ in view of the definition of &. If d(¢) = 0, then ¢ = 905G 1 ¢ +
of for some f € #; hence d is injective. On the other hand, for any & € #,, if we set
& =1¢ for a unique ¢ € Z'(X), then since G0 1 ¢ = Go¢ = 0, we have & = §(¢p). Hence
6 is surjective. This proves 1).

2) then follows from 1) together with (2.10) and the fact that the orthogonal
complement 5 of #; is precisely the kernel of a’ by 1).

Propesition 2.6. In the above proposition suppose further that (X, w) is of constant
scalar curvature. Then 1, induces an isomorphism #* ~'#, such that 1, = dj, where
At is the space of harmonic (0, 1)-forms in D, and j: #' > H*(Oy) is the natural
isomorphism.

Proof. 1t suffices to show that 5|#* =1 in the above proof. By the definition of

§ this follows if we show that 0§d1¢ =0 for @ e #'. Let [1” be the Laplacian

operating on (0, 1)-forms and p the Ricci form of (X, w). By contraction with Te, p
defines again a (0, 1)-form, say Q(¢). Then we have (cf. [K; p. 158])
0=0"¢=) 95’ +Q0), ¢=§<pﬂdfp,

where in our notations we may further write
Y o5 dz’ = |,0%01,0 = |3*01 0,

v_vhere l=1,- On the other hand,_ since (X,w) is of constant scalar curvature
0*Q(p) = 0 (cf. [K; p. 98]). Hence, 8501 ¢ = (6* | 6%)6 1 ¢ = 0.

In the Kidhler-Einstein case there is a comparison result of our essential harmonic
space % and the harmonic space ;) with certain spaces of harmonic forms in
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Al. So suppose that (X, w) is Kdhler-Einstein. Recall that we have the following two
cases:

a) 7y =rc,(X) for some real number r # 0, and

b) 1y is arbitrary and ¢,(X) = 0.
Let #, be the space of harmonic 1-forms in 4! with respect to g. Let '3} := #} N B
and "# be the subspaces of #;' of those elements which are symmetric and anti-
symmetric with respect to g respectively (cf. (2.7)). Then by [Koi] (cf. also [Sch4] [Si])
we have the following:

Proposition 2.7. In the case a) we have ! ='#}. In the case b) we have the
direct sum decomposition H} = 'H} @ "H.L, and "} is mapped isomorphically to H*(Ox)
via the natural linear map ! ~ H'(Oy) — H*(Oy).

Proof. See [Koi; Prop. 8.2, 8.3]. As for the last assertion he proves that "#} is
in general isomorphic to the space of parallel (0, 2)-forms, considered as a subspace of
H?(04). But if ¢,(X) = 0, every anti-holomorphic 2-form is parallel (cf. [Bea]). From
this, the last assertion follows.

Proposition 2.8. Suppose that (X, w) is Kdihler-Einstein as above. Then the natural
inclusion B! —, A' induces a hermitian isomorphism of hermitian spaces h: #y — H}
which fit into the following commutative diagram with isomorphic arrows

(2.12) A 3 HY(Oy),
U U

Ay 3 HY (Oy)
in the case a). Similarly, in the case b) we get a hermitian isomorphism h': 5} ~ '#} of

hermitian spaces.

Proof. By the definition of the harmonic spaces we have clearly the inclusion
'#} <, #;. Further, by the fact that s#, is orthogonal to the image of A° by & we get
'#L S #}. On the other hand, we have in general

dim 7} = dim H'(0y), < dim H(8) = dim # .

Hence, by Proposition 2.7 we have % = #; in the case a) and % = '#! in the case
b). The commutativity of (2.12) is also obvious.

We now go back to a general (X, w) with the Kéhler class y = [w] as before.
Consider now y as an element of H'(Qy) = H'(Home (O, Ox)). Then it defines a
locally free extension

(2.13) 0-0x—2,—-05x—0
of @y by Ox. We then get the associated cohomology exact sequence
(2.14) — H'(Ox) —> H'(2,) —— H'(6x) — H*(Ox) —,

where the coboundary maps HY(@y) — H2"'(0y) are obtained by a cup product with
7; Uy
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If y = ¢,(L) is the chern class of a holomorphic line bundle L on X, then (2.13) is
nothing but the Atiyah sequence associated to the principal C*-bundle L* := L — 0 —
X. (See [At]) In this case 2} := X, is identified with the sheaf (on X) of C*-invariant
holomorphic vector fields on L; in other words, 2} is just the C*-invariant direct image
sheaf

(2.15) z, =0, .
We put Q := TL*/C*, the quotient of the holomorphic tangent bundle TL* of L*
by the natural C* action. Then Q is a vector bundle on X with Ox(Q)=2,. In

general we denote also by Q the vector bundle on X corresponding to X,. Then the
sequence (2.13) is associated to an exact sequence of vector bundles

(2.16) 0—1y—>0 -5 T—0.

Then in accordance with the case of line bundles we call any C*® splitting of the
sequence (2.16) a connection of type (1, 0) (of the class ). Such a connection is thus
given by a homomorphism 0: Q — 1, with 01 =id. As usual 8 is represented by a
system o = {a;} of C*(1, 0)-forms o; with respect to a suitable open covering # = {U;}
of X such that y; — y; = c;;, where ¢ = {c;;} is a representing cocycle of y in H*(y).

For the given Kéhler form w such connections with “curvature form” 2n/i w are
constructed as follows. Let % = {U;} be a sufficiently fine Stein covering of X so that
we may write w = 2n/i 0y, for some R-valued C® functions ¥; on U, and ¥, — y; =
Re f;; for some holomorphic function f; on U;NU;. Then it is easy to see that we can
take {df;;} as a representative ¢ as above and

2.17) o = {0y}

defines a connection of type (1, 0) of y with w = i/2n do. If w is the first chern form
¢ (L, h) of some hermitian line bundle (L, k) the unique hermitian connection for (L, k) is
a typical such connection.

We now compare the exact sequences (2.5) and (2.14). By the five lemma it is im-
mediately clear that H%(X,) is isomorphic to H¥(B"). It is important, however, to have a
canonical such isomorphism in defining generalized Weil-Petersson metrics later. In
the sequel we write X for ..

Theorem 2.9. Associated to any connection 6 of type (1, 0) of y with curvature w as
above, there exists a natural isomorphism A?: HY(B') — H4(X) for each q = 0 which extends
to an isomorphism of the sequences (2.5) and (2.14), where the other morphisms are all
identities.

In particular, if w = ¢,(L, h) for some hermitian line bundle (L, k), then by taking
the unique hermitian connection as 6, we have a canonical such isomorphism. More
generally, one can show that A! actually is independent of the choice of a connection 6
as above. By composing with the isomorphisms v?: # =~ HY(B’) we get isomorphisms

(2.18) ut: H3 - HY(Z)
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For the proof, first we note that the sequence (2.14) is obtained from the exact
sequence of the Dolbeault complexes

(2.19) 0—s D5 415 420, ¢20,

associated to (2.16), where we have put 4%:=I'(Q ® /\"T*). The splitting 6: 0 — 1,
determines naturally a homomorphism y: T—Q such that yn=id; and Imy =
Ker . Denote by 0% A7 - D? and y%: A?— A% be the induced homomorphisms.
Define a C-linear map j: B® = C*(X) — A° by

(2.20) JoUN) = —uf) + 2n/i x(1.0)(f) ,

where 1 = 1°: C*(X) = I'(1y) » A°. We first prove

Proposition 2.10. y": B — A" is a homomorphism of complexes.

The essential point is contained in the following:
Lemma 2.11. 0770y4V) = —i/2n:14(V) for any V € A9 .

Proof. The problem is local. So we may assume that V is of the form a ® b,
where a is a holomorphic vector field and b is a C*(0, g)-form on X. Then we have

09x(a ® b) = 00(x(a) ® b) = A(69x(a) ® b)

since (0y(a)) ® 0b = 0. This reduces the proof to the case =0 (and b=1). Fix a
local holomorphic splitting j: T — Q. With respect to j consider a as a holomorphic
section of Q and similarly 0 is identified with the C*(1, 0)-form which represents 0 with
respect to this splitting. Then we have

ox(a) = 0(a — B(a)l) = —0(1,0)l = —1,(00)] = —i/2n(,w)!,

where | is the section 1 of Oy and 1, is the contraction with a. Hence we get
00y(a) = —i2n 1,0 = —i/2m 1,(a) as desired.

Proof of Proposition 2.10. By Lemma 2.11, if ¥ € B%, g = 1, then dx(V) € x(B*).
Write (V) = y(V') for some V' e A™'. Then V' = ny(V') = ndy(V) = dny(V) = dV.
Hence dy(V) = yd(V) as desired. Similarly, again by using Lemma 2.11 we have

03j°(f) = —60u(f) + 2n/i(99%)(1,0f )
= —01(0f) + 1,(1,0f) = —3f +3f =0

since 1,7, = |1, = identity. It follows that §j°(f)eIm y. If we write §j°(f) = x(V')
for some V' e A', we get V' = d1,0f = 0pf by the same argument as above. Hence

() = x(Gsf).

Proof of Theorem 2.9. By Proposition 2.10 %, g =1, and j° induce a homo-
morphism 19: HYB’) —» H%(A4") = HY(X). Therefore the theorem follows by five lemma if
we show that A7 fit into the sequence (2.5) and (2.14). In view of the definitions of the
coboundary map in (2.5) this follows immediately from Lemma 2.11 and (2.20).



MobuLl oF EXTREMAL KAHLER MANIFOLDS 121

§3. Families of Polarized K#hler and Hodge Manifolds

In this section we introduce the notions of polarized and metrically polarized
families of compact Kahler and Hodge manifolds, which will be the basic objects of our
study throughout the paper.

First of all, the notions of polarized compact Kéhler manifolds and families of such
manifolds were introduced in [Fu3] and [Sch3] in slightly different but equivalent
formulations. Let X be a compact connected Kahler manifold. Any Kéhler form w
on X, being d-closed, determines a de Rham class [w] in H*(X, R). In general such a
class y is called a Kihler class, or a K&hler polarization, on X, and the resulting pair
(X, y) is called a polarized (compact) Kdhler manifold.

In what follows f: % — S always denotes a proper smooth morphism of reduced
complex spaces with connected fibers X, := f~!(s). In this case we shall call f also a
family of compact complex manifolds (over S). For an abelian sheaf # on & we write
(R, F)(S) = I'(S, RYf, 7).

Definition 3.1. A polarized family (f: & — S, 7) of (compact) Kdihler manifolds con-
sists of a family of compact complex manifolds f: Z — S and an element 7 € (R*f, R)(S)
such that all the restrictions y, := §|X, e H*(X,, R), se S, are Kihler classes on X,. In
this case y is called a polarization of the family f. Isomorphisms of two families are
defined in an obvious way.

In [Sch3] a Kihler class is considered rather as an element of H(X, 21), and
accordingly, a polarization y for a family is considered as an element of R'f, Qj s(S).
Moreover, f is assumed to be Kdhler (at least locally with respect to S) in the following
sense: There exist an open covering # = {U;} of & and R-valued C* functions p; on U;
such that p;, — p; are pluriharmonic on U;NU;, and that the resulting relative real
(1, 1)-form wys = i@msgmspj restricts to a Kidhler form on each fiber. However, as we
shall show in Lemma 3.2 below, in any polarized family (f: & — S, §) as in Definition
3.1 f is actually a Kdhler morphism in the above sense. Further, the equivalence of
the two notions of the polarizations of families follows from the next proposition.

Proposition 3.1. Let (f: % — S, §) be a polarized family of Kdhler manifolds. Then
7 induces a section yys of R'f, Q45 whose restriction to each fiber is a Kdhler class, and
vice versa.

Proof. Let a € (R*f, f°05)(S) be the image of § € (R*f,R)(S) by the natural homo-
morphism R*f,R = R*f, f'R — R%f, f°Os. Observe then that the sequence

0— le*dms(% — sz*f'(ﬁs - R f, 0y -0

coming from the short exact sequence 0— f“O5— Oy — dysOy -0 is exact with
R'f, dasOq locally free (as well as R%f, dy 50y for any other q). Here « is mapped to
zero in (R%*f,04)(S) since this is true fiber-wise. Hence o comes from a uniquely
determined section of R'f, dgsOq which gives rise to a desired section yys of R'f, 2} s.

Suppose conversely that we are given an element 45 of (R'f,25/5)(S) with the
property of the proposition. Consider the usual inclusions
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f*g.?ll"/s s le*dﬁ“/s(gﬂ’ s sz*f°(95
ull Ul ull

0) S((R*fQ%s)k S RS fR

where the second row is induced by the conjugation in R?f, f'0s. Then ygs clearly
induces 7 € (R%f,R)(S). One can see easily that the assignments y — yg,5 and ygs = §
above are inverses to each other.

Let now f: 4 — § be a family of compact complex manifolds in general. Then a
family & = {w;},.s of Kédhler forms w, on the fibers X, is called of class C* if it is
induced by a section of @y ;5 S Qéryé (cf. (1.9)), which is then uniquely determined by
@. We then identify & with the corresponding section of f, @4 5. The induced Kéhler
classes §:= {y,} € H*(X,, R) are then induced by the image 8,,(®) € (R*f,.f*Zs(R))(S)

of @ via the composite map
5‘ 62 o
(3.1) [ Pais — le*g)a"/s - sz*f Z5(R)

where d; and J, are the coboundary homomorphisms induced by the sequences (1.10)
and (1.8) respectively.

Definition 3.2. A metrically polarized family (f: & — S, @) of compact Kdhler mani-
folds consists of a family f: % — S of compact complex manifolds and a C® family
@ = {w,} of Kihler forms such that j:=§,6,(®) is constant, ie., 7e(R*f,R)(S) <=
R*f, *25(R)(S); thus (f, @) naturally gives rise to a polarized family (f, %) of Kéihler
manifolds. In this case @ is called a metric polarization for f, or for (f, 7).

We shall see below that any metric polarization is always induced by a Kéhler
form on the total space locally with respect to S§. First we give a definition.

Definition 3.3. Let (f: 2 — S, @) be a metrically polarized family as above and wy
a locally d0-exact real C* (1, 1)-form on % i.e., a section of @,. We shall call wg an
admissible (1, 1)-form for (f, @) if its restriction wg| Xy to each fiber agrees with w;.

Lemma 3.2. Let (f: % — S,7) be a polarized family. Then there exist locally with
respect to S a metric polarization & for (f,7), and an admissible (1, 1)-form w4 for the
resulting metrically polarized family (f, @).

We prove the lemma in a more general form for later use. Let (f: % — S, ) be as
above. Let §' S S be a closed analytic subset and &' := & xsS'. Set § = 7|Z’ and
f=f1Z". Then (f: %" — §',7) is again a polarized family. Then Lemma 3.2 follows
from the special case of the next lemma where S’ reduces to a single point.

~ .

Lemma 3.3. Let & be a metric polarization for (f',7) with an admissible
(1, )-form wg.. Then &' extends locally with respect to S to a metric polarization & for
(f, 9), and w4 to an admissible (1, 1)-form w4 for (f, @).

Proof. We consider the following commutative diagrams with exact rows, con-
sidered around an arbitrary point of §';
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fePa®R) — f by — > Rf, Py —— 0
* * *

fiPR) —2 fid, — % RIfPy — 0

and

R'f,0p —— Rf, Py —1> R*f,R —— R?*f, 0Oy

T

R'f;0y —— R'f;Dy. —%— R*f;R —— R*f,0y

coming from the short exact sequences (1.2) and (1.1) on & and Z'. Here, a and e are
surjective, and b is isomorphic. (For a we use the cohomological flatness of Oz with
respect to f.) Moreover, f:=b"1q'dy(wg) € (R2f,R)(S) is just the given polarization
7. Therefore, ¢c(f) =0, and B is in the image of g. From these, by a simple diagram
chase we can find a section wgy of f, P4 with r(wg) = wg.. Then this ws and the
associated metric polarization & clearly satisfy the requirement of the lemma.

Proposition 3.4. Let (f: % — S, ®) be a metrically polarized family. Then locally
with respect to S there exists always an admissible (1, 1)-form wg for (f, ®).

We need a lemma.
Lemma 3.5. The homomorphism 8,: R* [, Py ;s > R*f,.f"Ds(R) in (3.1) is injective.
Proof. By definition d, fits into the exact sequence

R, [ D5(R)— R, 05— RS, Prjs — R, " D(R)..

Hence it suffices to show that f is surjective. Note that R!f,f"Zs(R)=
R'f,R ®r%s(R) is a locally free Ig(R)-module, while R'f, Oy is a locally free %5
module of rank equal to dim H'(X,, Ox) by S (cf. Lemma 12.6 below). Then the
surjectivity of § follows from the following commutative diagram

(R, [ Ds(R)), —Pos (R, Ogs),

r!

H'(X,R) —2% H(X,, 0y),

where s is any point, the vertical arrows are the restriction maps, and both r; and S(s)
are surjective.

Proof of Proposition 3.4. Let (f,7) be the induced polarized family. By Lemma 3.2
we can find a metric polarization &' for (f,7) which possesses an admissible (1, 1)-
form wy. Then & — & € (f,Pays)(S) is mapped to zero by d, in (3.1) by Lemma 3.5.
Therefore we can find an element ¥ € I'(Z, Z4(R)) such that & = & + idy50,5% (cf.
(3.2) below). We then define wg = wjy + idy 04y, which is clearly admissible for (f, @).
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Let (f:Z — S, ®) be as above. We observe the following commutative diagram
with exact rows

fePaR) — 2% fdy — ", RfPy —— 0
(3.2) o ﬁJ
04/507ss 5,
[ Dy(R) —05 s f Bye —s RY,Pys — 0

Definition 3.4. We say that an element e (R'f,%¢)(S) is compatible with & if
B(n) = 6,(®). In such a case a triple (f, @, n) is called a refined metrically polarized
family (of Kédhler manifolds).

Remark 3.1. The proofs of Lemma 3.2 and Proposition 3.4 show that for any
refined metrically polarized family (f, @, n) we can always find an admissible (1, 1)-form
wy for (f, ®) with dy(wg) = n locally with respect to S.

We now fix a metrically polarized family (f: Z — S, @).

Definition 3.5. We say that two admissible (1, 1)-forms w4, and wy on X for (f, @)
are equivalent if the following equivalent conditions are satisfied:

(3.3) Solwg) = dp(wiy) as a section of R'f, Py

and
(3.4) we may write 0y = wy + f*wg for some locally dd-exact (1, 1)-form wg on S.

The equivalence of (3.3) and (3.4) follows easily from the commutative diagram
(3.2). If wy is admissible for (f, @), then any (1, 1)-form which is equivalent to it in the
sense of (3.4) is again an admissible (1, 1)-form. In particular, by taking wg to be a
suitable Kéhler form on S we may always take wg to be a Kédhler form (locally with
respect to S).

Definition 3.6. We call an admissible (1, 1)-form wgy for (f, @) normalized if the
fiber integral of wy, as a (1, 1)-form on S, satisfies the condition

(3.5) f w31 =0,
PN

where n is the dimension of the fibers.

Proposition 3.6. 1) Let (f, @) be as above. In each equivalence class of admissible
(1, )-forms for (f, ®) there exists a unique normalized form wg locally with respect to
S. 2) For any refined metrically polarized family (f: & — S, &, n) there exists a unique
normalized admissible (1, 1)-form wg such that dy(wg) =1n. 3) For any element ng €
HYZ, P) there exists an admissible (1, 1)-form wy on X such that dg(wy) = ng, where
Sy T(X, @y) » HY(X, Py) is the coboundary map coming from (1.2).

Proof. Fix any admissible (1, 1)-form wg4 according to Proposition 3.4. From the
equation ‘wy = wy + f*wg we obtain

‘ol =i + f*fos A 0 mod ffog A fFrog.
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By taking the fiber integral we then get

J ‘wyt = J oy + Cog,
ZIs Z|S

where C = [y w! is a positive constant which is independent of s€ S. Hence, if we set

U)S= —I/CJV 0);"4’1’
E2N

then by a theorem of Varouchas (cf. Proposition 1.3) we have wge I'(S, &5). Hence,
by this choice of wg the form 'wg satisfies (3.5), which determines C uniquely. This
shows 1).

2) follows from the uniqueness in 1) and Remark 3.1.

3) We observe the following commutative diagram of exact sequences

IS, o) —— H'(S, %) —— 0

I, &) —2 H'(ELPy) — 0

8 u

I'S, R f, Py)

where the right vertical sequence comes from the Leray spectral sequence for f, and the
horizontal one from (1.2). By 2) we can find an element wgy € I'(Z, @4) such that
0o(wg) = u(ng). Then a simple diagram chase shows the existence of an element
wg € I'(S, &) such that dp(wgy + f*wg) = ng.

Corollary 3.7. Suppose that the first Betti number b,(X,) vanishes for any se€S.
Then a normalized admissible (1, 1)-form is unique, and is defined globally on the whole
space X.

Proof. The exact sequence
> R'f, 0y > R f, Py > R*f R—

shows that v: (R!f,24)(S) — (R*f,R)(S) is injective, while if 7 is the polarization deter-
mined by @, we have vdy(wy) =7 for any admissible form wgz. Thus dy(wy,) is inde-
pendent of wy. The result then follows from Proposition 3.6.

We shall also give another characterization of the equivalence classes of admissible
forms.

Lemma 3.8. Let wy and wy be admissible (1, 1)-forms for (f, @). Then THwy) =
TH(wYy) if and only if wgy and wy are equivalent, where TH(wy) is the horizontal
distribution for f associated to wg and TH(wly) is similar (cf. (1.13)).

Proof. The sufficiency is obvious. The necessity is shown in [B-G-S II; Th.1.7]
when S is nonsingular (cf. Remark 3.2 below.) In the general case, let w;, and wy
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be two admissible (1, 1)-forms with TH(wg) = TH(wy), which we may assume to
be normalized. Then by the uniqueness in Proposition 3.6 and the above result of
[B-G-S] wgy — wy must vanish on the smooth locus of Z. By Corollary 1.2 wy = wy
on the whole Z.

Remark 3.2. For any (f, ®) and wy as above the resulting triple (f, wg, TH(wg))
is exactly the Kdhler fibration in the sense of [B-G-S II; Def.1.4]. Lemma 3.8 shows
that this notion is equivalent to our notion of refined metrically polarized family as
defined above.

For later applications we discuss admissible forms for families of complex tori.

Proposition 3.9. Let (f: Z — S, ®) be a metrically polarized family of complex tori
such that wg are flat Kdhler forms on X, for all s. Then, for any admissible (1, 1)-forms
wy and wy for (f, @), there exists locally with respect to S an automorphism g of Z over
S such that g*wg and wy are equivalent.

Proof. The problem is local with respect to S. Fixing a holomorphic section to f
we put on Z — S a natural structure of a relative Lie group over S acting on itself by
translations over S (cf. [Fu3; (2.1)]). (Namely, we identify Z — S with Auty Z/S — S.)
We consider the induced action of Z — S on the exact sequence

(3.6) R'f,R —> R'f, Oy —> R'f, Py —> R*f,R

arising from (1.1). Since the action on R2f,R is trivial, in view of Definition 3.5 it
suffices to show that Z/S acts transitively on the inverse image P,:= o' '(j) S
(R'f,24)(S) where 7 is the polarization associated to @.

We consider the associated infinitesimal action of f,, @4, where @ is the relative
tangent sheaf. The action on R'f, 0Oy is given by the coboundary homomorphism
w: f,Og;s > R f, 0y coming from the relative Atiyah sequence associated to (f,7)
generalizing (2.13) (cf. (4.2) below). Both f,O4 and R'f 04 are locally free Os-
modules and on each fiber w induces an isomorphism H°(X,, Oy ) = H'(X,, Oy ); hence
w itself is isomorphic. Now (R'f, Og)(S) acts transitively on P, by the exactness of (3.6),
and so the orbit map o: (R'f,0g)(S) = P,, { = a(l) + dp(wg), is surjective. Thus the
action of £ — § on P, is transitive.

We now look at families of compact Kéhler manifolds which are polarized by
chern classes of positive line bundles.

Definition 3.7. 1) A polarized Hodge manifold is a pair (X, L) consisting of a
projective manifold and a positive line bundle L on X. An isomorphism of two
polarized Hodge manifolds (X, L) and (X, L) is an isomorphism : X = X’ of complex
manifolds such that y*L' =~ L.

2) A polarized family of Hodge manifolds (f: % — S, ¥) consists of a family of
projective manifolds f: & — S and a holomorphic line bundle ¥ on # whose restric-
tions L,:= Z|X, to fibers are all positive. An isomorphism of two such families (f:
Z—S, %) and (f: %' -8, &) is an isomorphism ¢: & % %" of complex spaces over
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S such that Yy*¥' = ¥ ® f*F for some holomorphic line bundle F on S. This
amounts to considering, instead of line bundle itself, the induced section of relative
Picard variety.

Remark3.3. In 1) (X, L) gives rise naturally to a polarized Kéhler manifold (X, v),
where y = ¢,(L) € H*(X, R), which is in the image of H%(X, Z). Conversely, any (X, y)
with y € Im (H?(X, Z) - H*(X, R)) is induced by some (X, L) as above with L defined
up to numerical equivalence; hence a polarized Hodge manifold is just a projective
manifold with an (inhomogeneous) polarization in the sense of algebraic geometry (cf.
[P]). Similarly, in 2) (f, &¥) gives rise to a polarized family (f, @) of Kdhler manifolds,
where w, = c¢,(L,).

Definition 3.8. A metrically polarized family of Hodge manifolds is a triple
(f, @, &), where (f, ®) is a metrically polarized family of K&hler manifolds and (f, &) is
a polarized family of Hodge manifolds such that w, represents c¢,(L;) on X;.

Remark 3.4. As in Remark 3.3 (f, @, .¥) as above gives rise to a refined metrically
polarized family (f, @, n) of Kéhler manifolds, where n = é(&) with the refined chern
class ¢(%) identified with its image in (R'f,%qs)(S) (cf. (1.5)). In fact, one sees from
Lemma 3.5 that & and # are compatible in the sense of Definition 3.4.

Definition 3.9. Let (f: % —> S, @, ¥) be a metrically polarized family of Hodge
manifolds. We call a hermitian metric h on % admissible if the first chern form ¢, (%, h)
is an admissible (1, 1)-form for (f, ®). If, further, c¢,(%, h) is normalized, h is called
normalized also.

Propesition 3.10. Let (f: % — S, @, &¥) be a metrically polarized family of Hodge
manifolds. Then there exists an admissible (resp. normalized admissible) hermitian metric
h on &£ (resp. on & locally with respect to S). Moreover, the totality of such metrics is
given by h' = h-f*e? for all C* R-valued functions (resp. pluriharmonic functions) p on S,
where e” = exp (p).

Proof. By Remark 3.4 and Proposition 3.6 there exists an admissible (1, 1)-form
wg for (f, @) such that d4(wy) = é(&) in HY(Z, P4). Furthermore, wy can be taken to
be normalized if the family is considered locally over S. Take now any hermitian
metric i, on .. Since dg(c,(Z, h)) = é(Z), for some q € I'(Z, Z4(R)) we may write

wg = (%, h,) — (i/2m)00q = c,(Z, ),

where h = e?h,, thus proving the first assertion. The above proof further shows that if
¢, (& h’) is admissible for another hermitian metric h’, h=h'e? for some q'e
I'(%, 94R)). But since h/h’ is then on each fiber pluriharmonic, and hence is constant,
q is of the form g = f*p for some pe I'(S, Zs(R)). If ¢,(&, k') also is normalized, by
the uniqueness g, and hence p also, must be pluriharmonic.

Corollary 3.11. Locally with respect to S a normalized hermitian metric on & is
determined uniquely up to automorphisms of ¥ over Z.
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Proof. If h=h'-f*(e?) with p pluriharmonic as in the proposition and if p is
locally a real part of some g € I'(S, 0s), the multiplication by f*e%? on the fibers of &
transforms A’ into h.

Remark 3.5. Though h is determined only up to automorphisms of %, the result-
ing chern form c¢,(%, h) is independent of the choice of such an h. Hence we always
have a global normalized admissible (1, 1)-form w, which coincides with ¢,(%, h) on
any open subset on which a normalized admissible hermitian metric is defined. (This is
in fact a special case of Proposition 3.6 where n = ¢(L).)

Note however that the de Rham class of wg in H*(Z, R) (cf. Def. 1.8) may in
general not coincide with ¢ (%), or it may even not an integral class. The obstruction
for the latter and for the global existence of a normalized hermitian metric is detected as
follows.

Proposition 3.12. Let (f: % — S, &, &) be as above. Then there exists an element
& e H%(S, S') whose vanishing is equivalent to the existence of a holomorphic line bundle F
on S and a hermitian metric h on & ® f*F such that ¢,(¥ ® f*F, h) = wg.

Proof. We observe the following commutative diagram of exact sequences

0 —— H'(S, 08 —— H'(Z,05) —— (R'f,0F)(S)

é é
J

0 —— H(S,P5) —— H\Z Py) —2— (RY,25)(S)

v

H*(S,S') —— H*(%,§")

where the horizontal sequences come from the Leray spectral sequences for f and the
left and the middle vertical sequences are just the sequences (1.4) for S and #. Let
n e HY(Z, Py) be the image of wy € (%, ®y). Since b(n) = b(¢(¥)), we may consider
n—E&(&L)e H'(S, #s). Then we set & =v(n — é(&)). This vanishes if and only if there
is a line bundle F on S such that y — é(¥) = é(F), or equivalently, n = é(¥ ® f*F) on
Z. In this case, the proof of Proposition 3.10 shows the existence of an h with
¢ (¥ ® f*F, h) = wg as in the proposition.

§4. Infinitesimal Deformations for Polarized Families

In this section we shall introduce the Kodaira-Spencer maps associated to the
polarized families introduced in the previous section. In the case of a metrically
polarized family, we shall see that any admissible (1, 1)-form gives rise naturally to
representatives of the Kodaira-Spencer classes. In the special case of metrics of con-
stant scalar curvature these representatives turn out always to be harmonic, which is
closely related with the Kéhler property of generalized Weil-Petersson metrics defined
below.
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For a complex space S we shall denote by @ the holomorphic tangent sheaf of
S. Let f:2— S be a family of compact complex manifolds. Then the associated
locally free extension

0—Og;5— Of > f*Og—0
of f*@s by the relative tangent sheaf @45 gives rise to the commutative diagram
Os —Z > R, 044
4.1) J 1 ses,
T.S —%*— H\(X,, Ox,),

defining the Kodaira-Spencer map p, for the family f at s, where the vertical arrows are
the restriction maps.

Let n be any element of (R'f,%4)(S) and assume S to be Stein. The natural
homomorphism

gives a homomorphism (: R'f, Py — R'f, Q4. The space (R'f,Q2;)(S)=H(Z, Q)
classifies the set of isomorphism classes of coherent extensions 0 —» Oy — X — @4 — 0 of
O4 by 04 such that X is locally isomorphic to the direct sum Oy @ Oy; so v := (1)
gives rise to the following commutative diagram of exact sequences of Og-modules

0 0
! !
05042, —Ogs5—0
I ! !
4.2) 0-0y4—2, -6y -0
! !
f*65 = [*65
! !
0 0

where the top horizontal sequence is defined by the natural image yqs of y¢ in the space
H'(Z, Qis), which classifies the set of isomorphism classes of (locally free) extensions of
Ogs by Of. From the middle vertical sequence we get the following commutative
diagram

Os — le*zﬁr/s
(4.3) l ses,
TS —2> H(X,, Z),

where the vertical maps are the restriction maps and 2, = X, (cf. (2.13)).
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Definition 4.1. The C-linear map p,: T,S — H'(X,, Z;) obtained in (4.3) is called the
Kodaira-Spencer map at s associated to the family (f, ). We say that (f, n) is effective if
P 1s injective at any s € S.

From (4.1), (4.2) and (4.3) we get the following commutative diagram with exact
rows

H'(X,, Z,) —% HY(X,, 0y) —2

(44 1 '[

T.S = T.S

H?(X,, Ox,)

where y,€ H*(X,,R) is induced by 7=gq(n) e (R*/,R)(S) (cf. (3.2)). Denote by
H'(X,, 64 ), the kernel of Uy,.

Lemma 4.1. Let (f: ¥ — S, §) be a polarized family of compact Kdhler manifolds.
Then for any point s € § we have Im p, S H'(X,, 0y ),..

Proof. Since y is mapped to zero by « in the exact sequence
le*,@% — le*R —a—> sz*@g[ 5

7 can locally always be lifted to an element # as above. The result then follows from
4.4).

For any polarized family (f, 7) as above we call the induced map
ps: T.S = H'(X,, 6x,),,

the Kodaira-Spencer map associated to (f, 7) at s. We call (f, §) effective if p, is injective
for all s.

Next we consider a polarized family (f: & — S, ¥) of Hodge manifolds. Let 7 be
the natural image of the refined chern class é(%)e H (X, Z?y) in (R'f,P4)(S) (cf.
(1.5)). In this case we call the Kodaira-Spencer map g, associated to (f, #) the Kodaira-
Spencer map associated to (f, £); and (f, .£) is said to be effective if so is (f, n).

Note that in this case the diagram (4.2), and hence (4.3) also, can be constructed
geometrically from %, e.g., the top horizontal sequence of (4.2) is nothing but the
relative Atiyah sequence for the principal C*-bundle ¥#* := ¥ — 0, which yields on each
fiber the Atiyah sequence (2.13), associated to the principal C*-bundle L; on X;. In
view of this we write in this case 2y = 2, and 25 =2,  in (4.2).

We next discuss realizations of the above Kodaira-Spencer maps via differential
forms. Let f:% — S in general be a family of compact complex manifolds. Let
TH = THZ be any C* horizontal distribution for f (cf. (§1,€)). Fix an arbitrary point
oe S and set X = X,. Take a C® trivialization y: & — X x S over S of f such that

(4.5) THX = THY|X ,

where THy is the (real) horizontal distribution for f defined by the trivialization.
(Starting from a given trivialization it is easy to construct one satisfying (4.5).) Now ¥
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induces a C* family of almost complex structures on (the underlying C* manifold of) X
and this is given as usual by a C® family ¢ = {¢,}.s of elements ¢, of A' = A'(X) =
I'(T® T*) (cf. §2) with ¢, =0. Then for any vector ve T,S we may speak of the
derivative of this family at o with respect to v, say L,$, as an element of A!; the
resulting C-linear map T,S — 4, v — L,$, will be denoted by &,;

(i T,S— A,

This is actually independent of the choice of the above C* trivialization ¥ and depends
only on the restriction T#|X, which is a complex vector bundle on X.

Lemma 4.2. Let Z' be the kernel of 0 in A*. Then &(T,S) S Z'; moreover, if
p: Z' - HY(X, ©y) is the natural projection via the Dolbeault isomorphism, we have
p, = p&,, where p,: T,S — H* (X, Oy) is the Kodaira-Spencer map.

Proof. See e.g. [Ku].

Fix ve T,S. Take a local embedding (S, 0) = (C™ 0), C" = C™(sy, ..., Sm), Such
that v = 9/0s, s =s,, at 0. Choose a local coordinate system of the form (z,s), z =
(z45...,2,) and s =(s{,...,Sy,), on an open subset # of & such that f is given by
f(z,s) =s. Write the horizontal lift # of v as

(4.6) §=0/0s + Y, a%0/0z,

on U:= XN%. The following is also well-known:

Lemma 43. ¢&,(v) = 0(} a%3/0z,) = Y a%50/0z, @ dz; on U.

In the above situation if more generally 4 = {a,},.5 is a C* family of tensor fields
a, on X, and A = {a;} the induced family of tensor fields on X via ¥, we may consider
the tensor field L,A' on X. This is also independent of choice of ¥ and depends only
on T#|X and 4; so it shall be denoted by L,4. (This is in fact nothing but the relative
Lie derivative defined by T at o, at least when S is nonsingular. (See [B-G-S] [Si]
e.g.)

Suppose now that there exists a holomorphic line bundle & on %. Let ¢: L* >
be the associated principal C*-bundle. Denote by n: A' - A! be the natural homo-
morphism as in §2, where A' = I'(X, Q ® T*) with respect to the restriction L := L,
Let now f: % — S be the natural projection. Suppose that we are given a C*-invariant
horizontal subbundle TH.¥ for f such that for any / € #*, ¢ induces an isomorphism

4.7) THL STE, x=¢().

Suppose further that y is lifted to a trivialization of C*-bundles §: #* — L* x S such
that TEZ|L =~ THJ|L in a similar sense as before. In this case the resulting family of
almost complex structures on (the underlying C® bundle of) L is given by a C* family
¢ = {¢,} of elements ¢; of A with ¢, = 0 (cf. [Gri]). Then, as before, we can take the
derivative of this family at o with respect to any ve T,S and we denote by £,: T,S — A*
the resulting C-linear map.
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Lemma 4.4. Let Z' be the kernel of 8 in A'. Then: 1) E(T,S)SZ'. 2) If
p: Z' - HY(X, X)) is the natural projection with respect to the Dolbeault isomorphism,
pé, = p,, where p, is the Kodaira-Spencer map associated to ( £, %) at o. 3) The
following diagram is commutative

¢

T,S —=— Z' < A!

||

TS —o z' < 4.

Proof. The proofs of 1) and 2) are the same as that of Lemma 4.2. We only note
that the proof of Lemma 4.2 does not require the properness of f; so we apply it to f
and then restrict to the subspace of C*-invariant elements. 3) is obvious.

We now consider a metrically polarized family (f: & — S, @) with a fixed admissible
(1, )-form wg. We set T¥ = TH¥(wy) as in (1.13) in the above consideration. Then,
taking 4 to be @ = {w,} in the remark after Lemma 4.3 we have a 2-form L,® on X.

Lemma 4.5. L,& =0.

Proof. This was shown in [B-G-S II; Th. 1.7,d)] when § is nonsingular. The
general case can be reduced to this case as follows. The problem is local; we take a
local realization of f by a projection as in (1.12) such that wg extends to a d-closed
(1, 1)-form 4 on W x D. Then T# := TH(d4) extends TH(wy) to a horizontal distribu-
tion for n. Let &={d,} be the family of Kéhler forms induced by d4 on the fibers of .
Now applying the above result of [B-G-S] to T# and & we get L,d=0 for any ve T,D,
where L, is taken with respect to 7. The lemma follows since L,&d=L,® for ve T;S.

The kernel of 4 in B! = B}(X, w), = w,, is denoted by Z*(B) (cf. (2.6)).
Lemma 4.6. If TH = TH(wy) is as above, then the image of &, is contained in B*,
and hence in Z'(B).

Proof. With respect to a C® trivialization ¢ as above let {w,} be the family of
2-forms on X defined by @. Then w; must be isotropic on the graph 7, S TO®T of
o, T— T. Hence we get

0=+ o), w+ow), uwed.

On the other hand, L,& = 0 for any ve T,S by Lemma 4.4; so by differentiating with
respect to s (symbolically) and setting s = 0 we get

0 = (@), w) + w(u, ¢,(W)),
where w = w,. Hence ¢, € B.

Let p be any local potential function for wg. Then in local coordinates we see
that in the notation of (4.6)

4.8) ag = 0p/0zg, ag = g,5a",
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where * denotes the derivative d/ds, and g, is the metric tensor associated to w,. Note
that g,5 = 8?p/0z,0z; on U. (Lemma 4.6 also follows from (4.8).)

Next we treat the case of a metrically polarized family (f, @, ¥) of Hodge mani-
folds. We fix an admissible hermitian metric h on ¢ for (f, @) (locally over S) and set
wg = c¢1(Z, h). Let 04 := 0log h be the hermitian connection of (&, h), considered as a
C*-invariant 1-form on ¥ *. Define a C*-invariant horizontal subbundle T#(0y) =
U, T"(8) for f by

TH(0g) = {ve T;: 04(v) = 0, and §,(v) € TH(wg)} -

This clearly satisfies the condition (4.7).
On the other hand, 64 restricts to a hermitian connection 6, of (L,, h;) and we
apply the relative Lie derivative L, for f to this family of C* 1-forms 0 = {6,}:

Lemma 4.7. L,0 =0 for any ve T,S.

Proof. By the same method as in the proof of Lemma 4.5 we may assume that S
is nonsingular. L, is then the usual relative Lie derivative associated to TH(fy). It
suffices to show that (£,0)(u) = 0 for any C* vertical vector field u on .%. Let # be the
horizontal lift of v to #*. Noting that [, u] is vertical, we have

(L,0) @) = 5(0(w) — O([5, ul) = 50(u) — ube(3) — O([5, ul)
= (d0.9),(B, ) = ($*0z) (B, u) = W (B, fyu) =0
since @, € TH(wy) and ¢, u is vertical.

Now consider 6 =6, as a homomorphism 0: Q — 1 as in Section 2 and let 6':
A' - D' be the induced linear map. Recall also the associated linear map x!:
A' > A with ny = id,: and Im ! = Ker 6.

Proposition 4.8. Let £, T, - A' be the linear map associated to TH(0y). Then we
have &,(v) € y*(B*) for any ve T,S.

Proof. First of all, nfa(v) = ¢,(v) e B for any v by Lemma 44. On the other
hand, since each 6, is of type (1, 0), for any u € A° we must have

0 =6, + o(n(w)),

where § = {6} is the family of C*-invariant 1-forms on L* with 6, = 6 defined by v,
and where @, is considered a homomorphism T — Q. Then each 6, is considered a
homomorphism Q — 1,. By Lemma 4.7 6, = 0 (in the same notation as in the proof of
Lemma 4.6). Hence we have

0 = 0"(@,(n(w))) = 6"(,(v)) -

Hence, &,(v) = y'(u) for some ue A'; then &,(v)=né,(v)=ny'(u)=u; so ue B as
desired.

Lemma 4.9. Let (f,®, %) be as above. Then the following diagram is com-
mutative;
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LS =5 ') > H'(B)

(4.9) 2 2

LS —">  H'(XZ),
where p, is the natural projection and A, = A} is as in Theorem 2.9.

Proof. We drop the suffix 0. By the definition of 4 we have a C-linear map
x:ZY(B)— Z' := {¢ € A*; ¢ = 0} such that my is the identity and that the following
diagram is commutative

z'(B) —— HY(B)

22—, m\(x, Z).

Hence we have by Lemma 4.4 Apé = pyé = pxnf. On the other hand, by Proposition

A

4.8 we have yné = ¢ since yn is the identity on y(B'). Thus by Lemma 4.4 we get
ip¢ = pé = p.

In order to get an analogue of Lemma 4.9 for a general refined metrically polarized
family we shall look at the above construction in the Hodge manifold case in another
way. Let T#* be the tangent linear fiber space of #* and Qg = TL*/C* its
quotient with respect to the natural C* action. Then Q4 is a linear fiber space over &
which fits into the exact sequence

(4.10) 0013 2Qy—>T% —0

of linear fiber spaces; moreover, if we take the sheaf of holomorphic sections in (4.10) we
get exactly the middle horizontal sequence of (4.2). Let 84 be a connection as above
which defines a C*® splitting of the sequence (4.10).

On the other hand,  induces a C* trivialization of the sequences (4.10); in
particular a C® trivialization ¥,: Qe — S x Q;, over ¥ which preserves the vector
bundle structures and induces the given one y,: TZ - S x TX on T% and the canon-
ical one 14— S x 15. Then Y, induces a C® family of almost complex structures on
the vector bundle Q; — X which coincides with the standard one on the trivial sub-
bundle 1y =, Q,;. Such a family is easily seen to be represented by a C* family of
elements of A and can be identified with the above family ¢ (cf. [Gri]).

Now we consider a general refined polarized family (f: % — S, &, n) of Kéhler
manifolds. Let w; be an admissible (1, 1)-form with §,(wg) =% and Y: Z 3 S x X a
trivialization with T#y|X = T#(wg)| X as before. In this case we also have the linear
fiber space Q, — % and the corresponding exact sequence (4.10) which gives rise to the
middle horizontal sequence of (4.2). (Note that the situation are the same as in the
Hodge case at least locally with respect to &) Then a connection 64 of type (1, 0) with
curvature wy, defined in the same way as (2.15), defines a C* splitting of (4.10). Then
we set THQ := TH(0y) = Ker 0 < Q,. We take a C® trivialization Y of (4.10) lifting
and with the same property as above such that THy,|X = THQ|X, where Yo
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0,— 8 xQ, Q:=0Q,|X, is the induced C* trivialization. Then ¥, induces a C* family
of complex structures on the fibers of Q — X which induces the standard one on
1y =» Q; this family in turn is represented by a C® family of elements of A*;
¢ = {¢s}. Once such a family is obtained, just as above we get a linear map ¢:T.S—>
A' depending only on the given T#Q, which reduces to the previous one when (f, @, %)
comes from a family of Hodge manifolds. Then we get:

Lemma 4.10. The diagram (4.9) is commutative also in the general case.

Proof. If we show that Im &, S y'(B!), the rest of the proof is the same as in
Lemma 4.9. The proof of Proposition 4.8 shows that the assertion follows from the
equation 6, = 0, where & = {6} is the C* family of connections 6): Q — 1, defined by
0z and Y. In fact, the latter follows from Lemma 4.7 since the assertion is local with
respect to Z and hence we may assume that we are in the line bundle case.

In the cases of families of Kdhler manifolds with constant scalar curvature the
following phenomenon occurs which is basic for the Kéhler property of the generalized
Weil-Petersson metric below. ‘

Theorem 4.11. Let (f: & — S, ®) be a metrically polarized family of Kdihler mani-
folds and w4 an admissible (1, 1)-form for (f, ®). Let &, T,S — Z1(B) be the linear map
associated to (f, wg). Then if w, is of constant scalar curvature for an s, we have
E(T,S) € #;', where #' = Ay, is the space of harmonic forms in the complex Bj :=
B'(X,, ).

Proof. Fix any point o€ S and any element ve T,S. We have to show that

05¢,(v) = 0, or by Lemma 4.3 and (2.9), to show that a;3” = 0 in the notation of the
lemma. We use the summation convention:

(4.12) as3° = 9"(as,5 — Ry'5,8:) = 45”3 — Ry'a;,

where R{,—;y and R,; denote the curvature, and the Ricci, tensors
respectively. All w, are of constant scalar curvature R, which is independent of the
parameter by our polarization assumption. In view of (4.9) setting g = det (g,5) we get

(Ryg) = —(108 95 = —47(93) . = 45" -
Hence by (4.12) we have
(4.13) 0=R=g*(Rz) — R%(g3) = —a5°5 + R}az,
= a5 .
(The last equality holds since the scalar curvature is constant on the fiber.)

Remark 4.1. The above formula (4.13) is a special case of a formula for the
variation of the scalar curvature in Riemannian geometry (cf. [B-E]).

In the case of a family of Kihler-Einstein manifolds with nonvanishing Ricci
curvature we have a distinguished admissible (1, 1)-form for (f, @). First of all, &
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induces a hermitian metric, say h, on the relative anti-canonical bundle Kgjs and then
wq = rc,(Kgjs, h) is the admissible (1, 1)-form mentioned above, where w; € rc, (Xj).

Proposition 4.12. Let (f: % — S, @) be a family of Kdhler-Einstein manifolds, and
wg the distinguished admissible (1, 1)-form defined above. Then we have ¢(T,S) € #,. in
the same notation as in the previous theorem, where 3, is the space of vector valued
harmonic 1-forms on X,.

_Proof. In the same notations as in the previous proof we have to show that
a553° = 0. By (4.12) and the Kéhler-Einstein condition, we have

(4.14) a55° = as% — 2nfr az .
On the other hand, from (4.9) and the condition
9op = 1/2m 0% log g/0z,0Z .

we have 2n/r az = —0(log g)’/0zs, and 03;3 = —g’Eg'ﬁ = —(log g). From this and (4.14)
the desired equality follows.

§5. Deformations and Moduli Spaces of Peolarized Kéhler and Hodge Manifolds

In this section we shall review basic structures of the local and global moduli
spaces of polarized Kéhler and Hodge manifolds, with special regard to their natural
complex V-structures in the global case. We also study the structure of the natural
morphism between these two moduli spaces.

We start with the Kidhler case. In this case, the relevant results were shown in
[Fu3] and [Sch2,3]. We review the basic construction rather in detail since the con-
struction of the related moduli spaces treated in this paper follows more or less the
same pattern.

In accordance with the previous sections, for simplicity, the base spaces of deforma-
tions of complex manifolds are assumed to be reduced.

Definition 5.1. Let (X, y) be a polarized compact Kahler manifold and S = (S, 0) a
(reduced) complex space with a distinguished point 0 € S. Then a deformation of (X, y)
over S consists of a polarized family (f: & — S, §) of compact Kédhler manifolds together
with an isomorphisms (X, y) =% (X,, y,), Where y, is the restriction of § to the fiber X,.

We get as usual the notions of isomorphic deformations, pull-backs of deforma-

tions, and of complete, versal (effective + complete), and universal deformations.

Theorem 5.1. Let (X,y) be a polarized compact Kdhler manifold. Then (X, y)
posesses a versal deformation which induces complete deformations of all nearby fibers.

See [Fu3; Prop. 8, Remark 9] [Sch 3; 1.6]. A versal deformation is also called a
Kuranishi family and its base space S = S(X, y) a Kuranishi space of (X, y).

Remark 5.1. By the Kodaira-Spencer map p,: T,S - H'(X, @), the Zariski
tangent space T,S of S at the reference point o is naturally identified with a complex
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subspace of H'(X, Oy), (cf. Lemma 4.1). If we consider also Kuranishi families with
non-reduced base spaces as in [Fu3], T,S actually coincides with H'(X, @y),.

We shall recall that a Kuranishi family is actually universal under a certain
condition on the automorphism group Aut X of X. We first explain the condition.
Let 4 = Alb X be the Albanese variety of X and J: Aut, X - Aut A be the natural
homomorphism (Jacobi homomorphism), where Aut, X denotes the identity component
of Aut X. Let L(X) be the identity component of the kernel of J. Then L(X) has the
natural structure of a linear algebraic group and the quotient (Aut, X)/L(X) is a
complex torus (cf. [Ful]). (We call L(X) the linear part of Aut, X.) Hence, the
following conditions are equivalent: 1) Aut, X is a complex torus (of dimension = 0),
and 2) L(X) reduces to the identity.

Definition 5.2. A compact Kédhler manifold is said to be in (the class) o/ if X
satisfies the above equivalent conditions.

As follows from the definition, in the Lie algebra of all holomorphic vector fields
on X the Lie algebra I(X) of L(X) is characterized as the space of annihilators of
holomorphic 1-forms. Furthermore, given a Kaihler metric g on X it admits the
following identification;

(5.1) I0X) = {i1,0f =i Y f* 0/02% f € #3}.
(See [K; 4.4])

Now we come back to deformations. Let (X, y) be any polarized compact K&hler
manifold and (f: & — S, §) a deformation of (X, y) over § = (S, 0). Then we have:

Propesition 5.2. Suppose that X is in o/. Then in a small neighborhood of o, X
are all in 7, and the dimension dim Aut (X, y,) (= dim Aut X,) is independent of s;
moreover, Aut, /S — S is smooth.

Here, Aut, /S denotes the component of the identity section of the relative Lie
group Aut Z/S of relative automorphism of & over S. See [Fu3; 2.4 and Prop. 2] for
the first statement, and [Fu3; §4] and [Sch3; § 1] for the rest. From this, together with
a general principle of deformation theory one gets:

Propesition 5.3. If X is in </, a Kuranishi family of (X,7y) is universal, and gives
also universal deformations of all nearby fibers.

See [Fu3; Prop.8, Prop.9] and [Sch3; 1.8] for the proof. As a formal consequence
of Proposition 5.3 we get a natural action of Aut(X,y) on a Kuranishi space S =
S(X,v), which by Proposition 5.2 factors through the finite quotient group G =
G(X, y) ;= Aut (X, y)/Aut, X (cf. [Fu3; 5.3] [Sch2; (3.4), Sch3; 1.9]). However, S/G does
not necessarily classify the isomorphism classes of corresponding polarized manifolds
(X, ¥5)- Therefore, in order to get the moduli space in the analytic category, we have
to consider more restrictive classes than ..

First, recall that for any polarized family & =(Z — S,9) and 2" =(Z" - S, ') of
Kéhler manifolds the functor Isomy(Z,Z'). (An/S)— (Sets) which assigns to a
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space T — S the set of isomorphisms between pull-backs of & and &' to T is repre-
sentable by a complex space Isomg(%Z,Z’)—S. Here, and in what follows, (An/S)
denotes the category of complex spaces over S.

Now we consider in general a class 2 of polarized compact Kéhler manifolds
(X, y) such that 1) o is closed under local deformations and 2) the following condition
(B) is satisfied:

(B) For any polarized families & and X' as above with X, and X; all in A,
Isomg(Z, Z') is proper over S.

In particular, J is a subclass of <.

Then, as almost formal consequences of the above two conditions we get the
following:

(5.2) If (X, y) € A, then for any points r and s of a Kuranishi space S(X, y), (X,, y,) and
(X, ys) are isomorphic if and only if s =g(r) for some g e G(X,y). (See [Fu3; 6.2]
[Sch3; 1.9] and [Sch2; §3].)

(5.3) In the notations of (B) if a sequence of points s, € S converges to a point ¢t € S, and
if (X,,7,) and (X;,y,) are isomorphic, then (X,,7,)=(X;,y). (See [Fu3; Prop.10]
[Sch2; (3.4), Sch3; (1.9)]).

As a typical example of # we can take the class of nonuniruled manifolds (cf.
[Fu3]):

(5.4) The class of non-uniruled manifolds are closed under deformations and satisfies the
condition (B).

With (5.2), (5.3) and (5.4) in hand, it is standard to construct the global moduli
space of non-uniruled K&hler manifolds. First, we fix an underlying C* structure
(M, o) consisting of a compact connected C® manifold M and a class « € H*(M, R).
Denote by R, the set of isomorphism classes of polarized Kéihler manifold (X, y)
which are diffeomorphic to (M, «), ie., there exists a diffeomorphism ¢: X = M such
that ¢*a =y. We also denote by M = M, the subset of M, consisting of the classes
of non-uniruled manifolds. Since the underlying C® structure is invariant under
(polarized) deformations, for any point of 9t represented by a polarized Kéhler manifold
(X,y) we have the natural map =n: S(X,y) —» I which induces by (5.2) a bijection
SX,/GX, )3 UX,y):=n(S(X,y) &M Then from (5.2)-(54) we obtain the
following theorem, which is the main result of [Fu3] and [Sch3].

Theorem 5.4. The set W carries a natural structure of a Hausdorff complex space
with at most countably many connected components. It also carries a natural structure of
a complex V-structure induced by the collection {S(X, y) - U(X, y); G(X, y)} of all possible
such pairs.

See [Fu-Sch] for the countability of the components of 9t For the last assertion
we assume more precisely that besides having all the properties mentioned so far each
S(X,v) is connected and simply connected. Then the last assertion follows from the
above description of the local structure of I and the definition of V-structure (Def. 1.3),
in view of the next lemma.

Lemma 5.5. Let S=S(X,y) and §' =S(X',y’) be two Kuranishi spaces satisfying
the above conditions such that U(X,y) E U(X',y'). Then there exists an embedding
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7: § — §’ over the above inclusion which lifts to a morphism T & — %' of the corresponding
universal families.

We first recall some general fact. Let T=S8 x Sand p;: T— S, i = 1, 2, be the two
projections. Let Z; = (Z; — T, @;) be the pull-backs of the universal family by p;. Let
I, be the graph of the action of an element g of G = G(X,7) on S. Consider the
morphism I := Isom(Z;, Z,) —» T with its image denoted by R. Then by (5.2) R is the
union of I;. In this case, if I — R - R is the Stein factorization, we have

(5.5) R=]],I, (disjoint union).

More precisely, let g: Aut (X, y) > G be the natural projection, and I, the connected
component of I containing g '(g) with respect to the identification I, , = Aut (X, y).
Then I is a disjoint union I=][,I, and I,— 71, is smooth and admits a
holomorphic section.

Proof of Lemma 5.5. Pulling back both universal families to V:=S x S by
the natural  projections, we get families £ and 4. Let TI=
Isom, (%, £') and T 5 R — V the Stein factorization. Since I — R is locally isomorphic
to I - R by the local universality of both families, by (5.5) we see that the natural
projection R — S is an unramified covering. Since S is connected and simply con-
nected, each connected component R, of R is mapped isomorphically to S. This shows
the existence of 7 as in the lemma. The last assertion then follows from the existence of
holomorphic section to r *(R,) - R,.

P with the complex structure as in the theorem is called the moduli space of
polarized non-uniruled compact Kdhler manifolds (with underlying C* structures (M, a)).

We next consider the moduli problem for polarized Hodge manifolds in parallel
with the Kéhler case. First of all, starting from Definition 3.7, we get as in Definition
5.1 notions concerning deformations of (polarized) Hodge manifolds such as (universal)
deformation of Hodge manifolds, pull-backs of such deformations etc. The following
result is well-known (cf. [Gri; 3.2]).

Theorem 5.6. Any polarized Hodge manifold (X, L) possesses a versal deformation
which induces a complete deformation of all nearby fibers.

A versal deformation of (X, L) in the theorem is called a (reduced) Kuranishi family
of (X, L) and its base space S = S(X, L) a (reduced) Kuranishi space of (X, L).

Remark 5.2. By the Kodaira-Spencer map p,: T,S — H*(X, 2,) the Zariski tangent
space T,S of S at the reference point o is naturally identified with a complex subspace of
HY(X,X,). If we consider also Kuranishi families with nonreduced base spaces, we
have the identification T,S = H'(X, X,).

For a polarized Hodge manifold (X, L) denote by Aut (X, L) the group of auto-
morphisms of (X, L); Aut (X, L) = {¢ € Aut X; ¢*L = L}, and by Auty(X, L) its identity
component. It is known that Aut,(X, L) is exactly the linear part L(X) of Aut, X in
this case (cf. e.g. [K; 9.4]). Hence we get:
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Lemma 5.7. Let (X, L) be as above. Then X is in <, if and only if Aut,(X, L)
reduces to the identity.

In particular, if X is in o/, in a Kuranishi family (f: % — S, %) of (X, L),
dim Aut (X, L,) is independent of s. Then, similarly to Proposition 5.3 we get:

Proposition 5.8. If X is in of, a Kuranishi family of (X, L) is universal and gives
also universal deformations of all nearby fibers.

In this case G(X, L):= Aut (X, L)/Aut,(X, L) = Aut (X, L) is a finite subgroup of
G(X,7), y =c;(L). It acts naturally on the Kuranishi space S(X, L) as in the Kahler
case.

To consider the global moduli space we fix a pair (M, a) as in the Kihler case with
o€ Im (H*(M, Z) -» H*(M, R)) (cf. Remark 3.3). We denote by i, the set of iso-
morphism classes of polarized non-uniruled Hodge manifolds (X, L) such that (X, c¢,(L))
is diffeomorphic to (M, «) in the previous sense.

Theorem 5.9. The set My carries a natural structure of a Hausdorff complex space
with at most countably many connected components. Moreover, it carries a natural
complex V-structure.

M, with the complex structure in the above theorem is called the moduli space of
polarized non-uniruled Hodge manifolds.

Remark 5.3. If one fixes a Hilbert polynomial P for (X, L) and considers the
corresponding moduli space MY as a subset of My, then it is open and closed in MWy
and carries a natural structure of an algebraic space of finite type over C; in fact M
can be realized as a quotient of a suitable Hilbert scheme by a projective general linear

group (cf. Sect. 11).

We give a sketch of a proof of Theorem 5.9 along the same line as in the Kéhler
case. We need an analogue of (54). Let £, =(% —S,¥) and Z,=(Z' - S, &¥’) be
two polarized families of Hodge manifolds. Since we have the notions of isomorphisms
of such families we have the natural functor Isomy(Z,,%,): (An/S)— (Sets)
analogous to the Kéhler case. Denote by £ =(% —S,7) and Z' =(%' — S, 7) the
induced family of polarized Kéhler manifolds.

Propesition 5.10. The functor Isomg(%,, Z.) is representable by a closed complex
subspace Isomg(Z,, &,) of Isomy (%, Z'). Moreover, it is finite, i.e., proper with finite
fibers, over S if the fibers of & and &' are not uniruled.

Proof. Let @: % xgI > %" xgI be the universal isomorphism of the induced
polarized families of Ké&hler manifolds over I:=Isomg(Z, Z')— S. Denote by %
and % be the pull-backs of ¥ and ¥’ to & xgI and %' xgI respectively. Then
(P* %) ® %! defines a section of the relative Picard variety Pic (Z xgI/I)— 1. Tts
zero set I, := Isomg(%,, Z,) &1 provided with the restriction of @ to an isomor-
phism & xgI, 3 ' xgl, clearly represents Isomg(Z,, Z.). The last assertion follows
from (5.4) and the fact that each fiber I, , is either empty or is a principal homogeneous
space of Aut (X, L,), which is finite.
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The rest of the proof of Theorem 5.9 is now formally just the same as in the case
9%. We note that in particular for any polarized Hodge manifold (X, L) we have a
natural map n: S(X, L) - My which induces a bijection S(X, L)/G(X, L) U(X, L):=
n(S(X, L)), giving the local analytic structure of My; further, the collection {(S(X, L) —
U(X, L), G(X, L))} determines a complex V-structure of My in the previous notations.

We now compare the two moduli spaces considered so far. First, let (X, L) be a
polarized Hodge manifold in general with the associated polarized Kédhler manifold
(X,y). Then a Kuranishi family (f: % — S, %) of (X, L) gives rise to the associated
deformation of (X, y), which in turn induces a versal map

r:S(X,L)— S(X,7y)

between the corresponding Kuranishi spaces. Under the identifications of the Zariski
tangent spaces as in Remarks 5.1 and 5.2 the differential r, of r at o is induced by the
natural homomorphism

u: H\(X, £) — H'(X, Oy),

in the exact sequence (2.14).

We shall give a description of this morphism in terms of the relative Picard variety
associated to the Kuranishi family (f: & — S, §) of (X,y). Since the construction is
more or less standard, we omit some technical details for which we refer to [Fu4]. Let
I':=Im (R*f,Z - R*f,R), considered also as a local system on S. Then, correspond-
ing to the natural sheaf homomorphism R!f 0% — I" we get a homomorphism 1:
Pic Z/S - I over S of the relative Picard variety to I. Considering § as a section
S — T, we set Pic, Z/S := t"1(5(S)). Then Pic, Z/S is smooth over S. Since Aut, Z/S
is also smooth by Proposition 5.2, with respect to the natural action of Aut, Z/S — S
on Pic, Z/S over § we can construct the relative quotient of Pic, Z/S over S:

u: P(Z/S)—>S .

Furthermore, both the quotient map q: Pic, /S — P,(%/S) and the structure morphism
P,(%/S)— S turn out to be smooth.

The fiber over o of u is naturally identified with the quotient abelian variety
P,(X):= Pic, X/Aut, X, where Pic, X = {LePic, X;c,(L)=7y}. Let I and I be the
points of Pic, X (& Pic, Z/S) and P/(X) (S P,(%/S)) determined by L. We fix a
Poincare line bundle %, on 2 x5 Pic, Z/S, associated to some section S — Z of f. It is
then formal to prove the following:

Proposition 5.11. Set P = P(Z/S). Let ;’Zy be the pull-back of &, to & xsP via
holomorphic section a: (P, 1) — (Pic, /S, 1) to q. Then the family (fp: Z xsP — P, Z,) is
a Kuranishi family of (X, L) with respect to any given isomorphism of (X, L) with
(X Ly). In particular, r:S(X,L)—S(X,y) is smooth with its fiber dimension
dim H'(X, Og) — dim H°(X, ©y).

Moreover, the natural action of G(X, y) = Aut (X, y)/Aut, X on S lifts naturally to
an action on P and we get the induced proper surjective morphism

q: P(Z/9)/G(X, ) = S(X, 7)/G(X, 7).
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At le P,(%Z/S) this also is isomorphic to the morphism 7: S(X, L)/G(X, L) - S(X, y)/
G(X, y) induced by r and the inclusion G(X, L) — G(X, y).

By the definitions of the moduli spaces %y and 9 we have a canonical map
v: M, — P which assigns to the isomorphism class of a polarized Hodge manifold
(X, L) the class of the induced polarized Kihler manifold (X, y). The induced map
v Y (U(X,y)) = U(X,y) is naturally identified with the morphism g above. Together
with Proposition 4.10 this shows the following:

Theorem 5.12, The canonical map v: WMy — WM above is a proper V-smooth mor-
phism of complex spaces with complex V-structures.

In particular, if a point m of 9 is represented by a polarized Kdhler manifold
(X, y), then the fiber over m is naturally identified with Pic, X/Aut (X, y).

§6. Extremal Kihler Manifolds—Their Deformations and Moduli Spaces

In this section we first review the definition and the basic properties of extremal
Kéhler manifolds, and then, construct the local and global moduli spaces of extremal
Kéhler and Hodge manifolds in the class o/ introduced in the previous section. The
main point here is to show that for any metrically polarized family of Kihler manifolds
in o/ an extremal Kéahler metric given on a fiber extends uniquely and smoothly to all
nearby fibers as a family of extremal Ké&hler metrics. This also forms the basis of
the relations between these moduli spaces and those of the corresponding polarized
manifolds defined in the previous section.

Let (X, y) be a polarized compact Kihler manifold. Let U be the space of all the
C® Kihler forms w on X which represent the Kihler class y € H*(X, R). According to
Calabi [C1] [C2] we shall introduce the notion of extremal Kahler metrics as follows.
First, we consider the functional @ on U defined by:

(6.1) d(w) = J R%0", weU, n=dimX .
X
where R = R(w) is the scalar curvature of the associated Kédhler metric g,. Then the
Euler-Lagrange equation of @ is given by the following (cf. [C1]):
(6.2) R =i01,0R=0, or Rz;=0.

Definition 6.1. Let w be a Kdhler form on X. Then w, or the associated Kahler
metric g,, is called extremal if it gives a critical point of the functional @. If w is
extremal, we call the pair (X, w) an extremal (compact) Kdhler manifold.

From the definition it is clear that a metric with constant scalar curvature is
extremal. Conversely, by (5.1) and (6.2) we obtain:

Proposition 6.1. If X is in o, then a Kdhler form w is extremal if and only if it is
of constant scalar curvature.

Remark 6.1. Any Kihler-Einstein metric is of constant scalar curvature, and hence
is extremal. Precisely, it occurs in one of the following three cases: 1) ¢;(X) <0, and
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y = —ecy(X), 2) ¢;(X) =0 and y is arbitrary, and 3) ¢,(X) > 0, and y = ec,(X), where e
is any positive real number. Indeed, a Kéihler-Einstein metric is exactly a Kéhler
metric with constant scalar curvature in y in one of the above three cases. In the cases
1) and 2) X is always in &/(cf. e.g. [Ful; Prop. 6.5]), and hence any extremal metric in y
is Kédhler-Einstein.

For any compact Kéhler manifold (X, w) we set
Aut(X, w) = {he Aut X; h*o = 0} .

This coincides with the group of isometries of (X, w). Denote by Aut, (X, w) its identity
component. There are some necessary conditions on the structure of Aut (X, w)E
Aut, X for X to admit an extremal metric due to Matsushima, Lichnerowicz, and Calabi
(cf. [K] [C2]):

(6.3) Suppose that w is extremal. Then Aut,(X, w) is a maximal compact subgroup of
Aut,X. If, further, it is of constant scalar curvature, L(X) is a complexification of
Aut, (X, w)L(X). In particular, if X is in &/, Aut,(X,w)= Aut,X. If X is not of
constant scalar curvature, then dim (Aut,(X, w)NL(X)) > 0. Here L(X) is the linear
part of Aut,X (cf. Sect. 5).

The last condition gives a necessary condition for the existence of extremal Kahler
metrics which gives rise to many examples of compact Kéhler manifolds (not in /) with
no extremal metrics (Levine). On the other hand, Burns and de Bartolomeis [B-B]
recently have found examples of ruled surfaces in o/ and Kéhler classes on them in
which no extremal metrics exist (cf. also [Fu6]). For non-uniruled manifolds such
examples seem to be unknown.

By Calabi [C2] it is also known that L(X) acts transitively on each connected
component of the set of extremal K&hler metrics; in particular if X is in «, this set is
descrete (cf. Theorem 6.3 below).

Now we consider deformations of extremal manifolds.

Definition 6.2. A metrically polarized family (f: & — S, @) is said to be a (polar-
ized) family of extremal Kdhler manifolds if o, is extremal on X, for any s. An
isomorphism of two such families (f: % — S, ®) and (f': &' — S, @') is an isomorphism
Y: & - Z' of complex spaces over S with y*@' = @ in the obvious sense.

Starting from these notions we get as in Definition 5.1 the notions of deformations
of an extremal Kéhler manifolds, universal deformations of such, etc.

Theorem 6.2. Let (X, w) be an extremal compact Kdhler manifold with X in <.
Then (X, w) posses a universal deformation (f:Z — S, ®) which induces also universal
deformations of all nearby fibers. Furthermore, the associated deformation of the as-
sociated polarized Kdhler manifold (X, y) is a Kuranishi family of (X, 7).

We shall call a universal deformation of the theorem a Kuranishi family of (X, w)
and its base space S = S(X, w) a Kuranishi space of (X, w). The proof of the above
theorem follows formally from the universality of a Kuranishi family of (X, y) and the
following extension theorem of an extremal metric. (See also [Fu5].)
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Theorem 6.3. Let (f: % — S, 7) be a polarized family of compact Kdihler manifolds
and o € S a point. Suppose that X, is in o/ and vy, is represented by an extremal Kdhler
form w, on X,. Then over a sufficiently small neighborhood U of o, w, extends uniquely
to a C* family & = {w,}scy of extremal Kihler forms w, on X, which represents y; for all
seU.

Proof. The proof depends on the fact that the equation “R = const” leads to a
(non-linear) elliptic equation of order four, and uses the implicit function theorem.

Now fix any metric polarization @' for (f, ) with w, = w, by Lemma 3.2. Any
other metric polarization is then of the form @’ + idy504,5¢ for some real C* function
@ on & locally over § (cf. Lemma 3.5 and (3.2)). Thus our w, should be of the form
W), + i0,0,¢p, for some C® function ¢, on X,, which is uniquely determined if we assume
] x, @sws" = 0, where n is the dimension of the fibers of f.

In order to treat the case of a singular base space rigourously, we first remark the
following: The problem is local with respect to S. So we can assume that S is a
closed analytic subset of a domain D in C™ and there exist a C*® trivialization
: % — X x S over S and a C* family {J;},.p of almost complex structures on X which
induce for s e S the complex structures of X via 1,:= t|X,, where X = X (cf. [Ku]).
Thus 0- and J-operators on the fibers X, come from a C® family of differential
operators 0, and d,, s € D.

Take and fix a positive integer k = n + 5. Let H*(X) be the Sobolev space of real
functions on X, whose derivatives up to order k exist in the distributional sense and are
square integrable. By Sobolev’s lemma every element of H*(X) is at least of class C*.
We set

W = {(s, ¥) e S x H(X); w + id,0,(ty - ;) is Kéhler on X,} .

Set w = w, and denote by Hy(X) the closed subspace of H*(X) defined by [y yw" = 0.
Then the map

F: (S x H(X))N W - H**(X),

(6.4)
F(s, ) = R(s, ¥) — (L R(s, )" / JX w) ;

where R(s, §) is the scalar curvature of ] + i6,0,(¥7,) pulled-back to X by 7., One can
see that F is of class C® (also for singular S). We first look for a solution of
F(s, ¢(s)) = 0, where ¢: S — H¥(X) is a C* map.

Now the second partial derivative D,F of F at (o, 0) is the linear map D: H¥(X) —
H**(X) which assigns to a function ¥ € H(X) the function —d3dzy in the notations of
Sect. 2. (See (2.5) and Lemma 2.1 of [C2]. The contribution from the second term
of (6.4) clearly yields zero.) Thus (D,F) () =0 implies gy = 0. By (5.1) and our
assumption that X, € o/ we get that y is constant, which means by our normalization
Y =0.

Since D is a strongly elliptic operator, this implies that D possesses a bounded
inverse. Hence, by the implicit function theorem, over a neighborhood of o there exists
a unique C® map ¢: S — HXX) with ¢(0) =0 and F(s, ¢(s)) = 0. It remains to show
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that ¢(s) is of class C* for all s. Since ¢(s) is at least of class C* as we have remarked
above, this in fact follows from the next lemma, (thus completing the proof).

Lemma 6.4. Let (X, w) be a Kdhler manifold with a C* Kdhler form w. Let ¢ be
a real function of class C* on X such that w + id0¢ is again a Kdhler form and its scalar
curvature is constant. Then ¢ is a C® function.

Proof. We use the regularity theorem of Agmon-Douglis-Nirenberg [A-D-N; Th.
12.17 (cf. also [Bes]). For any real function y on X such that w(y) is a Kéhler form,
denote by R(y) the scalar curvature of w(y¥). Then the condition “R(y) = const.” leads
to a nonlinear differential equation P()) = 0 of order 4 in { with C® coefficients, and ¢
is a C* solution of this equation. The first variation of this equation at ¢ is exactly the
elliptic equation d3dzy = 0 as we have noted in the previous proof, where 8, and 97 are
now taken with respect to the Kdhler form w(¢). Therefore, by [A-D-N] we get that ¢
is of class C*.

Remark 6.2. The above lemma and Theorem 6.3 are also true even if we replace
“C*®” by “real analytic” there.

In order to pass from Theorem 6.2 to global moduli space we need a result
analogous to (5.4). In this case, however, we can stay in the class / which is larger
than the class of non-uniruled manifolds. Let Z,:=(Z — S, ®) and Z= (2" - S, @')

be two families of extremal compact Kéhler manifolds. Since we have the notions of
isomorphisms of such families we have the natural functor

Isomg(Z, Z;): (An/S) — (Sets) .

Denote by & and 2’ the underlying polarized families of Kéhler manifolds so that we
have the natural morphism of functors Isomy(Z,, Z.) = Isomg(Z, Z').

Proposition 6.5. Suppose that X, and X; are in o/ for all s. Then Isomg(%Z., Z.)
is representable by an open and closed subspace Isomgy(Z,,%.) of Isomy (Z,Z')
which is proper over S.

Proof. The fact that Isomg(Z,, Z.) is representable by an open subset of
Isomg(Z, Z') follows easily from Theorem 6.3. In fact, let @: & xgI > %’ xg5I be the
universal isomorphism, where I = Isomg(%, Z’). Then the zero of &*@&; — &,;, con-
sidered on I, is an open and closed subset of I by Theorem 6.3. This serves as
Isomgy(Z,, Z.). It remains to show that this set is proper over S. Take any sequence of
points s, of S converging to a point o € §, and a sequence of isomorphisms ¢,: (X;, o, )—
(X;,» @5,).  Since these are isometries with respect to the underlying Riemannian metrics,
by Lemma 6.8 of [Fu-Sch] for any m>0 a sequence of {¢,} converges in the C™ topology
to a C™ isometry ¢:X,— X, with respect to the underlying Riemannian metrics.
However, as a C™-limit of biholomorphic maps ¢,, ¢ also is biholomorphic. Hence the
convergence actually takes place in Isomg(Z,, Z.). So the latter is proper over S.

Now let (X, w) be an extremal compact Kéhler manifold, and (f: % — S, ®) a
Kuranishi family of (X, w). By the universality of (f, @) combined with (6.3) and
Proposition 5.2, we have a natural action of the finite group G(X, w):= Aut(X, w)/
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Aut,X on S(X, w). Moreover, from Proposition 6.5 we conclude that for any points r
and s of S(X, w), (X,, w,) and (X,, w,) are isomorphic if and only if r = k(s) for some
ke G(X, w).

It is then standard to construct a global moduli space of extremal Kéhler manifolds
as in the case of moduli space of compact Kdhler manifolds. We first fix a compact C*
manifold M and a class « € H?>(M, R). Denote by R, the set of isomorphism classes of
compact extremal Kédhler manifolds (X, w) with X in o/ such that (X,y), y = [w], is
diffeomorphic to (M, a).

Theorem 6.6. The set I, carries a natural structure of a Hausdorff reduced com-
plex space with a natural complex V-structure.

We call 9%, with the above complex structure the moduli space of extremal compact
Kdihler manifolds (in the class o/). The complex V-structure, and hence also the local
analytic structure, of 9%, is described as follows. If m is a point of 9, represented by
an extremal Kéhler manifold (X, w), the image U(X, w) of the natural map S(X, w)—
I, forms an open neighborhood of m and it is identified with S(X, w)/G(X, w). Then
the collection {S(X, w) —» U(X, w); G(X, w)} with S(X, w) sufficiently small as in Sect. 5
give the complex V-structure of 9,.

Let 9 be the subset of M, consisting of the classes non-uniruled manifolds. Then
we have a natural map x: M, — M of M into the moduli space M of polarized Kéhler
manifolds considered in Sect. 5.

Theorem 6.7. MM, is an open and closed subspace M,. The natural morphism
k: M, — M is an open holomorphic map of complex spaces with discrete fibers, which
correspond bijectively to the set of extremal Kdhler metrics of the given polarized Kdhler
manifolds considered modulo the action of Aut(X, y).

For the first assertion see (5.4). The second assertion follows from the following
local description of the map k in terms of V-structures. Let me I, S M, and (X, w)
be as before. Let (X, y) be the associated polarized Kdhler manifolds. By Theorem 6.2
we may identify § = S(X, w) with S(X, y). The natural inclusion Aut(X, w) E Aut(X, )
induces an inclusion G(X, w) € G(X, y), and then a finite morphism '

S(X, 0)/G(X, w) = 8(X, )/G(X, y) .

This can be identified with the map x in a neighborhood of m with respect to the
natural identifications of S/G(X, w) and S/G(X, y) with open neighborhoods of m € I,
and x(m) € M respectively.

We shall study a variation of the previous result for Hodge manifolds.

Definition 6.3. An extremal Hodge manifold is a triple (X, w, L), where (X, w) is an
extremal Kéhler manifold and (X, L) is a polarized Hodge manifold such that w
represents the first chern class ¢,(L). A (polarized) family of extremal Hodge manifolds
is a metrically polarized family (f: & — S, w, £) of Hodge manifolds (cf. Def. 3.8) such
that (f, ®) is a family of extremal Kéihler manifolds. An isomorphism of two such
families (f: ¥ - S, @, &) and (f': X' — S, @', &’) is an isomorphism ¢: ¥ =5 %' of com-
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plex space over S which induces the isomorphisms (f, ®) > (f’,®) and (f, ¥) >
(f', &') of the underlying families (cf. Def. 6.2 and 3.7).

Theorem 6.8. Any extremal Hodge manifold (X, w, £) with X in &/ posesses a
universal deformation (f: % — S, &, £) which also induces universal deformations of all
nearby fibers. Furthermore, the associated deformation (f: % — S, %) of the polarized
Hodge manifolds is a Kuranishi family of (X, L).

Proof. Let (f:% —S,%), (X,,L,)=(X,L), be a Kuranishi family of (X, L).
Then by Theorem 6.3 there exists a unique extremal metric polarization & = {w,} for
(f, &) with w, = w. It is immediate to see that the resulting triple (f, @, %) gives a
desired universal family.

As before, we get a Kuranishi family S = S(X, o, L) and the group G(X, w, L) :=
Aut(X, o, L)/Aut,X acting on S. From the last assertions of Theorems 6.2 and 6.8
together with Proposition 5.11 we have:

Corollary 6.9. The natural morphism S(X, o, L) = S(X, w) is smooth.

As before, in order to pass from a local to global moduli space we need a result on
the structure of isomorphisms of families. Let (f: Z — S, @, ) be a family of extremal
Hodge manifolds. We set Z,=(f,®), Z,=(f, %) and Z,.=(f,0, %) L (f:Z —
S, @', £') is another such family, Z,, Z,, and Z, . are defined similarly. We get then a
functor Isomg(Z, ., 2, .): (An/S) — (Sets) in the obvious way. Then the following is
immediate from the definitions and Propositions 5.10 and 6.5.

Proposition 6.10. Suppose that X, and X, are in o/ for all s. Then the functor
Isomg(Z,, ., Z...) defined above is representable by the subspace I, ,:= Isomg(Z,, Z,)N
Isomg(Z,, Z.) (S Isomg(Z, Z')). In particular, the natural morphism I, ,— S is finite.

Let M be a compact C® manifold and o € Im(H?(M, Z) - H*(M, R)) be an integral
element. Denote by %ty . the set of isomorphism classes in the obvious sense of
extremal Hodge manifolds (X, w, L) with X in &/. From Proposition 6.10 we get as
before:

Theorem 6.11. The set My , carries a natural structure of a Hausdorff reduced
complex space with a natural complex V-structure.

Let 9ty . be the subset of My , consisting of isomorphism classes of (X, w, L) with

X non-uniruled. Then we have the following commutative diagram of natural maps

A
’
th,e 2 g“’?H,e ‘JRH

« TTT

M, 2 M, —— M

Then as Theorems 5.12 and 6.7 we get:

Theorem 6.12. 9ty , is an open and closed subspace of My ., and all the maps in
(6.5) are morphisms of complex spaces, where A and k are open with discrete fibers, and p,
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W and v are proper surjective and V-smooth. The fiber of u over a point of M,
represented by an extremal Kdihler manifold (X, w) is naturally identified with Pic,X/
Aut(X, w), where y = [w].

The local description of u similar to the one for v in Theorem 5.12 is given by the
following commutative diagram

P(Z/S) —— PZ/S)/G(X,w) = My,

(6.6) . Jﬂ.
S(X, w) — S(X, 0)/G(X,w) c—_, M,

Here, as a map into My ., a is clearly a V-morphism in the sense of Definition 1.9; in
fact, locally at each point of P,(Z/S) m is locally isomorphic to the natural morphism
S(X, w, L) = S(X, w).

§7. Generalized Weil-Petersson Metrics and their Kihier Property

In this section, first for any polarized (effective) family of extremal Kihler and
Hodge manifolds we define the generalized Weil-Petersson metric, which is a hermitian
metric on the base space of the family. This will be done here as a formal consequence
of the results of Sections 2 and 5. We also see that this agrees with the classical
definition in the Kéhler-Einstein case. We then proceed to state our results concerning
its Kdhler property in a series of theorems. In the Hodge case our result gives more
precisely the representation of the Weil-Petersson form as a certain fiber integral along
the given family. The Kéhler property is a direct consequence of this in the Hodge case,
even for singular base spaces thanks to the recent result of Varouchas [V]. The proof
of the integral formula, which we formulate more generally for any refined metrically
polarized families of Kdhler manifolds, will be given in Section 8. The Kihler property
for families of Kdhler manifolds will be deduced from this in Section 9. The global
consequence of the above results on the moduli spaces 9ty , and 3¢, will also be given.

In the rest of the paper, “Weil-Petersson” will often be abbreviated to WP.

We now give the definitions of generalized WP metrics. For the definition how-
ever we may consider any polarized family (not necessarily extremal). We start with
the Kéhler case. Let (f: % — S, @) be a metrically polarized family of compact Kéhler
manifolds. For any s e S, composing the Kodaira-Spencer map p,: T,S — H'(X,, Oy ),
associated to the underlying polarized family (f, ) with the natural isomorphism
jit: HY(X,, Oy ), — #" (Theorem 2.5), we get a C-linear map

pe: TS — A

where #,! = A} is the essential harmonic space in B! := B*(X|, w,) (cf. Def. 2.1). Then
by pulling back the hermitian inner product of the hermitian space &' by g, we get a
natural (positive semi-definite) hermitian inner product h, on T.S. If (f, @) is effective,
ie, so is (f, 7), then h is positive definite. Denote also by w, the imaginary part of h;,
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which is an alternating form on the (real underlying space of) the Zariski tangent space
T.S, considered also as an element of A T*S.

Definition 7.1. Suppose that (f, @) is effective. Then the generalized Weil-Peters-
son metric on S associated to (f, @) is the collection hyp:= {h};.s Of hermitian inner
products h; on TS defined above. The collection wyp:= {w}s is called the general-
ized Weil-Petersson form on S associated to (f, @).

By the functoriality of g; it is immediate to see that if (f": &' — §’, @) is another
such family and ¢ is an isomorphism of two families (f, @) and (f’, @'), then ¥ induces
a biholomorphic isometry of hermitian spaces (S, hyp(S)) and (S', hy(S")).

Next, we consider the case of a polarized family (f: & — S, @, ¥) of Hodge mani-
folds. Composing the Kodaira-Spencer map p,: T,S — H!(X,, X;) associated to the
underlying polarized family (f, L) with the natural isomorphism u;*: H(X,, X,) » #!
(2.15) we get a C-linear map

ps: TS - A,

where X, = X, and #' = #5.. Then, by pulling back the hermitian inner product on
the hermitian space #,' by p, we get a natural hermitian (possibly semidefinite) inner
product A, on T.S. If the family is effective, ie. if so is (f, &), then h, is positive
definite. As in the Kidhler case denote by o, the imaginary part of ﬁs.

Definition 7.2. Suppose that (f, @, #) is effective. Then the generalized WP met-
ric associated to (f, &, &) is the collection Ay p = {ﬁs}se s of hermitian inner products on
T,S defined above. The collection dyp:= {d,}scs is called the generalized WP form
associated to (f, @, &).

Similar assertion on the functoriality of Ay, is true as for the case of a family of
Kéhler manifolds.

It turns out to be useful to consider Ay, also for a general refined metrically
polarized family (f: & — S, @, n) of Kihler manifolds (cf. Def. 3.4). Let p,: T,S — H* (X,
2) be the Kodaira-Spencer map associated to the pair (f, #) (Def. 4.1). Then in the
same manner as above, composing g, with u;! we get a naturally induced hermitian
inner product A, on each TS, and ﬁs is positive definite if (f, @, n) is effective, i.e., so is
(f,n). Similarly, @, is defined for each s.

Definition 7.3. Let (f, @, #) be an effective, refined metrically polarized family as
above. Then the collections hyp = {A};cs and dpp= {d;}ses are respectively called
the generalized WP metric, and form, associated to (f, @, n).

Remark 7.1. 1) If (f, ®, n) comes from a family (f, @, &) of Hodge manifolds (cf.
Remark 3.4), then the generalized WP metrics in Definitions 7.2 and 7.3 coincide as is
clear from the definitions. 2) If the first Betti number b,(X,) =0 for any s, then
AL = #' and p, = j; therefore we always have hyp = hyp and dyp = wyp. In this
case 1 is uniquely determined by (f, @) (cf. Cor. 3.7) and hence Ay, depends only on

(f, @)
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We shall obtain a more manageable expression for dyp by using admissible
(1, 1)-forms. So for (f, @, n) as above, we fix an admissible (1, 1)-form wy which is
mapped to n (cf. Prop. 3.6) and let &: T,S — B! be the linear map associated to
the horizontal distribution TH(wg). Composing ¢ with the orthogonal projection
B! —» #' we get a natural C-linear map py(wg): T,S — #!. Then we get as before
a hermitian inner product A(wg) and an alternating form & wg) on T.S. We set
Owplwy) = {dy(wg)} and call it the generalized WP form associated to (f, wg). Then
by Lemmas 4.9 and 4.10 and the above definitions the following is clear.

Lemma 7.1. Let (f: % — S, @, n) be an effective refined metrically polarized family.
Let wy4 be an admissible (1, 1)-form for (f, @) with n = do(wg). Then the generalized WP
forms associated to (f, @, ) and (f, wg) coincide; Owp = Dy p(wg).

We now consider the special case of families of Kédhler-Einstein manifolds. Let
(f: Z — S, @) be an effective family of Kéhler-Einstein manifolds. First, if w, € mc,(X)
for some nonzero integer m, (f, @, K%/s) is a family of extremal Hodge manifolds and we
have the associated generalized WP metric hyp. Propositions 4.12, 2.8 and Lemma 7.1
yield:

Proposition 7.2. Let (f: Z — S, ®) be as above. The two generalized WP metrics

hwp and hyp on S coincide.

Next, we compare the generalized WP metric with the original Weil-Petersson
metric considered in [Koi], [Sch4], [Si]. In this case by Proposition 2.7 we have the
natural isomorphisms

H(X,, Oy ),, = HY(X,, Ox) = %Als if w, = rcq (X)), r#0
and
H'\(X, 6y), ' #L i c(X)=0

where ] is the space of vector valued harmonic (0, 1)-forms with respect to the given
Kahler-Einstein metric, and ', is its symmetric part. Composing these isomorphisms
with p;: T,S - H'(X,, ©x ), we obtain a natural C-linear map p?: I,S — #, (resp.
'#4). This induces as before a natural hermitian inner product on T;S, denoted by hg.

Definition 7.4. The Weil-Petersson metric on S is the collection h%p:= {h®}, s of
the hermitian inner product A2 on T.S.

Thus, we have a priori two notions of WP metrics hyp and h9p in this case. How-
ever, these actually coincide.

Proposition 7.3. In the Kdhler-Einstein case as above, both notions coincide: hyp =

h%’P-
Proof. This follows from Proposition 2.8 and the above definitions at once.

The proposition implies that our generalized WP metric is a correct generalization
of the classical one. In what follows we write hyp for hy, and identify both. In the
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Kéhler-Einstein case it is known that hyp is actually a C* Kéhler metric on S if S is
smooth and X; is in o/ for any s. (See Remark 7.2 below).

We shall generalize this result to families of extremal Kéhler and Hodge manifolds
with any reduced base space S. (See Definition 1.1 for the notion of a Kihler metric
on a complex space.)

Theorem 7.4. Let (f: & — S, w) be an effective family of extremal compact Kdihler
manifolds with constant scalar curvature. Suppose that X is in &/ for any s if b;(X)> 0.
Then the generalized WP metric hyp is a C* Kdhler metric on S.

Combined with Proposition 7.3, Theorem 7.4 yields:

Corollary 7.5. Let (f: & — S, @) be an effective family of Kdhler-Einstein manifolds.
Then the associated WP metric on S is a C® Kdhler metric.

Remark 7.2. When S is nonsingular, this is due to Koiso [Koi] (with some
additional conditions when c,(X,) = 0). (See also [Sch4] for polarized families.) Note
that if ¢, (X;) > 0, then b,(X,) = 0.

In the Hodge case we can weaken the assumption slightly.

Theorem 7.6. Let (f: % — S, @, ) be an effective family of extremal Hodge mani-
folds with constant scalar curvature. Then the generalized WP metric hyp is a C®
Kdhler metric on S.

In particular, for any compact extremal Kahler manifold (X, w) and any extremal
Hodge manifold (X, w, L) with X € .o/, associated Kuranishi spaces S(X, w) and
S(X, w, L) carry natural C*® generalized WP Kaihler metrics, denoted by hy (X, ®)
and ﬁWP(X , 0, L) respectively.

In the sequel, it is also convenient to consider non-effective families. The same
definitions as above give us hyp, hyp, Wwp, and dyp though they may be degenerate.
We call wyp and dyp generalized WP form in the general case also.

We show Theorem 7.6 in a more general form.

Theorem 7.7. Let (f: & — S, ®) be a family of extremal compact Kdihler manifolds
with constant scalar curvature. Let wg be any admissible (1, 1)-form for (f, ®). Then
the generalized WP form dyp(wg) associated to (f, wg) is induced by a unique element of
I'(S, @), i.e., by a unique real C* locally dé-exact (1, 1)-form on S.

In fact, Theorem 7.6 follows from this theorem as follows.

Proof of Theorem 7.6. For any family (f, @, ¥) as in Theorem 7.6, if we take any
admissible (1, 1)-form wg for (f, @) such that dg(wy) = é(F) in H(Z, Z5) by Proposi-
tion 3.6, then by Lemma 7.1 we have ﬁWp = hyp(wg). Hence, by Theorem 7.7 the
associated WP form dyp is induced by a section wg € I'(S, @s), which is clearly a Kéhler
form since h, is positive definite at each point.

The proofs of Theorems 7.4 and 7.7 can be obtained by modifications of the
proofs of Koiso [Koi], or of Siu [Si] in the Ké&hler-Einstein case, at least when S is
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nonsingular. There is also another proof from the view point of infinite dimensional
moment maps. (See [Fu5].)

Here, however, we follow a method which takes care of the cases of singular
parameter spaces as well. This consists of representing the WP form dyp(wg) in
Theorem 7.7 as a certain fiber integral along the fibers of f. To state the result we
introduce a notation. Let (f: & — S, @) be any metrically polarized family of compact
Kéhler manifolds. Then & induces a hermitian metric g on the holomorphic relative
tangent bundle Ty, and hence a metric /\"g on the relative anticanonical bundle Kg/s,
where n is the dimension of the fibers. Then we write ¢,(Z/S, g) for the first chern form
¢ (K7s /\"g) and call it the relative first chern form for (f, ). We further set

(7.1) b=>b(f, @) =c;(X) W,y =lw]

which is independent of s as long as S is connected, where y = y*/k!

Theorem 7.8. Let (f: & — S, @) be a family of extremal compact Kdhler manifolds
with constant scalar curvature with S connected. Let wg be an admissible (1, 1)-form for
(f, ®). Then we have the following equality:

(7.2) f ¢1(Z/S, g)oly — bf oy = =121 dypl0yg) »
z/s Z/s

[k]
T

where wy' = wl/k! for any k.

Remark 7.3. When wg is normalized (cf. Def. 3.6), (7.2) takes a simpler form

(7.3) J ¢1(Z/S, g0y = —1/2n dyp(0g) .
ZIs

Conversely, (7.2) can be deduced formally from (7.3). These fiber integral formulas are
inspired by the results of [B-G-S] (cf. Sect. 10) and of Wolpert [Wo].

Theorem 7.7 is deduced from Theorem 7.8 as follows.

Proof of Theorem 7.7. The fiber integral on the left hand side of (7.2) belongs to
I'(S, &5) by Varouchas (cf. Prop. 1.3). Hence dyp(wy) is induced by an element of
I'(S, @) by Theorem 7.8. See Corollary 1.2 for the uniqueness assertion.

Thus our remaining task is to show Theorems 7.4 and 7.8. We shall prove
Theorem 7.8 in the next section, and then in Section 9 Theorem 7.4 will be deduced
from Theorem 7.7.

On the other hand, in the Kihler-Einstein case with non-zero first chern class there
is another canonical representation of the Weil-Petersson form wyp, as a fiber integral
which has a more invariant form than (7.2).

Theorem 7.9. Let (f: % — S,®) be a family of Kdihler-Einstein manifolds with
ci1(X,) # 0 for all s. Then we have

(7.4) r/(n + 1)! f e (Z/S, gt = =121 owp,

Z/s
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where w; € rc((Xj).

Proof. We set wg =rc,(%/S,g) in (7.2). Then since b =n/r in this case, we
get the formula (7.4) with wyp replaced by dyp. The theorem then follows from
Proposition 7.2.

Remark 7.4. When n = 1, ie., the case of a family of compact Riemann surfaces,
this was first shown by Wolpert in [Wo] by a different method.

Finally, we draw immediate global conclusions from Theorems 7.4 and 7.6.

Theorem 7.10. Let 9, and My, . be the moduli spaces of extremal Kdihler and
Hodge manifolds in sf respectively. Then there exist natural C* Kdhler V-metrics (cf.
Def. 1.5) on these spaces with respect to their natural complex V-structures. Moreover,
the natural morphism p: My ,— M, is a Kdhler V-submersion with respect to these
Kdhler V-metrics.

Proof. Let (X, w) be any extremal compact Kéhler manifold in 7. Since the
action of the finite group G(X, w):= Aut(X, w)/Aut,X on a Kuranishi space S =
S(X, w) is induced by an automorphism of the Kuranshi family, we see, from the
functoriality, that the generalized WP metric hyp(X, w) on S is invariant by G(X, w).
In view of the definition of a Kédhler V-metric and the functoriality of hyp(X, w) it is
easy to check that the collection {hy (X, w)} gives a global Kdhler V-metric on 9, in
the sense of Definition 1.5. The proof for My . is quite the same. Finally, the last
assertion follows from Proposition 9.1 below (based only on the results of Sections 2
and 4) and the definitions of complex V-structures on both the spaces.

We call the Kdhler V-metrics obtained in the above theorem the generalized WP
V-metrics on My, or M, and the associated Kdahler V-forms the generalized WP
V-forms. The Kéhler classes of the latter in H*(N, R), N = My , or M,, (cf. Def. 1.8) is
called the generalized WP class on N.

§8. A General Fiber Integral Formula

In this section we give a proof of the fiber integral formula (7.2), and hence of
Theorem 7.8. In fact, we shall formulate and prove a more general fiber integral
formula (8.2) which is true for any metrically polarized family and which specializes to
(7.2) in the case of constant scalar curvature. This formula (8.2) can be proved directly
starting from the set-up in Lemma 4.3 and formula (4.8). Here we proceed in a
different way.

In general, let (f: & — S, ®) be a metrically polarized family and w,; an admissible
(1, D)-form for (f, @). Let &: T,S — B} be the linear map associated to TH(wg) (cf.
Lemma 4.6). By the pulling-back from the hermitian space B! we get a natural hermitian
inner product on 7S, whose imaginary part we shall denote by @, = 2 (w4). Explicitly,

(8.1) QU, V)= f tr (E(U)E(V)) ™, U, Ve,
X,
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where n is the fiber dimension of f. The collection {€2,} of (1, 1)-forms on 7,S on S will
be denoted by Qg = Qg(wg). Since the definitions contains no harmonic projection
operator it is clear that Qg is induced by a C® (1, 1)-form on S. Note that when (f, @) is
extremal, £(U) and £(V) are harmonic by Theorem 4.11; hence Qg(wg) = Dyp(wg) by
the definitions. Thus, (7.2) is a consequence of the following fiber integral formula which
is true for any metrically polarized family.

Theorem 8.1. Let (f: % — S, @) and wy be as above. Then we have
1
(8.2) f c1(Z/S, 90 —5- | Rog™ = —1/2n Qs(wy),
s 2n a5

where R is the R-valued C® function on & which restricts to the scalar curvature of wg on
each fiber X,. In particular, Qs(wy) is locally d0-exact on S.

Note that the last assertion follows from Varouchas [V] and (8.2). If the family
(f, n) defined by (f, wg) is effective, Qg(wy) is thus a Kidhler form (cf. Lemma 4.9). The
left hand side of (8.2), say A(wg), can also be interpreted as follows. For any real
C*(1, 1)-form o on & we set

(8.3) B(o) := f c,(Z/S, gy, o™ = o"/n! .
/s
We decompose wy into the vertical and horizontal components with respect to the
associated horizontal distribution TH(wy);
(8.4) wg = dg + 0F ,

where @, and w¥ are real C*(1, 1)-forms on & such that d4(U, V) = 0 whenever U is
horizontal, and w®(U, V) = 0 whenever U is vertical.

Lemma 8.2. We have A(wg) = B(dg).
Proof. Denote by c¢,(%/S, g), the restriction of ¢,(%/S, g) to X,. Since &y =0

and ¢, (Z/S, g); A " Y = 1/2n R,w!™ for any s, we get

B(wg) = f 1 (Z/S, 9O + j ¢ (Z/S, g)dF N A wf
Z/s xS

= B(dg) + I/an RO A 0¥,
/s

and
f Ry = f RO A 0¥,
s s

from which the lemma follows immediately.
Thus Theorem 8.1 is equivalent to:

Theorem 8.3. Let (f: % — S, ®) and wgq be as in Theorem 8.1. Let dy be the
vertical component of wy defined in (8.4). Then the following equality holds true:
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(8.5) B(dg) = f c1(Z/S, g)dy = —1/2n Qs(y) -
EAN

The proof depends on three lemmas. The first two give a proof of the theorem in
a special situation; the general case is then considered as an approximation of this
special situation.

Let D be a neighborhood of the origin o of C™ =C"(t,,...,t,). Let M be a
compact connected C® manifold of even dimension 2n. Set Y = D x M and denote by
p: Y > D the natural projection. We assume that there exists an almost complex
structure on Y such that p is almost complex and D(m):= D x m is an almost complex
submanifold for all me M. In particular, we may speak of the relative canonical
bundle Ky,,, whose restriction to each D(m) = D is holomorphic line bundle.

Let now & = {w,},.p be C* real d-closed 2-forms such that w} is a volume form on
the almost complex manifold Y,:= p~*(t). Then as a family of volume forms on Y,{w/'}
is considered as a hermitian metric h on Kyj,. Denote by c¢,(Y/D, h) the associated
chern form.

Let m be the ideal at o of germs of C-valued C® functions on D generated by t¢;,
1<i<m, and m its complex conjugate. We assume that @, =0, where the dot
denotes the derivative with respect to t; or equivalently, we may write

(8.6) W, =+ ) tlwg  mod(m? fi?)

for some C* complex 2-forms w,; on M, where w = w,. Denote by & = {w;} the
constant family w; = w on M and by h’ and ¢,(X/S, h’') the corresponding hermitian
metrics on Ky, and the first chern form respectively.

Lemma 8.4. Set X =Y,. Suppose that the de Rham classes of w, is independent
of t. Then we have

f c,(Y/D, ho" = f ¢,(Y/D, k)"

X X

as an element of )\ T,*D, where [ denotes the value of the fiber integral {45 at o, and @"
is considered as an n-form on Y via the natural projection Y — M.

Proof. Let m be any point of M. We compute ¢,(Y/D, h) and c¢,(Y'/D, h’) on
D(m). Let #(t) be any non-vanishing holomorphic section of Ky, on D(m). Then

8.7) In@®1* = p@) (I,

where |n(¢)] and |#(t)]' are the norms of #(t) with respect to the metrics 4 and A’
respectively; further p(t) = p(t, m) is the restriction to D(m) of the global C* function

(8.8) p(t, m) = " /™
defined on Y. Applying —i/2n 80 log to both sides we get on D(m) the relation
8.9) ¢1(Y/D, h) = —i/2m 80 log p(t) + c,(Y/D, h’).

On the other hand, from (8.6) we get

wf = 0"+ Y t,lv,y  mod (m? f?),
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where v,z = nw,z A @" ! is a C® 2n-form on M. Further, if we define C* functions ¢,z
on M by ¢,z = v,5/w", then from (8.7) and (8.9) we get

p®) =1+ cgt,ty;  mod(m? m?).
Hence,

log p(t) = Y cpt,ty;  mod (m?, m?).
Applying 30 on D(m) to both sides and then evaluating at ¢t = 0, we have

00 1og p(t)e=o = Y. Cz dl, A diy.
Substituting this in (8.9) we have on D(m) at t = 0
¢ (Y/D, h) = ¢,(Y/D, h') — i/2n Y c g dt, A diy.

In view of the definition of c,z, from this we get

(8.10) f ¢, (Y/D, h)o" = f ¢, (Y/D, h')w" — i/2n f Dgg dty A diy .
X X X

But since the de Rham classes of w, are constant, w,5, and so v,; also, must be
d-exact. Hence the last term of (8.10) vanishes. The lemma follows.

Retaining the previous notations we assume for simplicity that X := Y, is a complex
manifold. Let A' = AYX)=I'(X, T® T*) as before. Then we may represent the
family of almost complex structures on Y, canonically by a C* family ¢ = {¢,} of
elements of A' (cf. §4). For any vector v e T,D one can take the derivative L,$ € A! at
o of this family. Denote by &, the resulting linear map &,: T,D — AY, £,(v) = L,@.
Then we get an element Q, of A\"'T,*D by

Qo(u, v) = J; tr oo™  u,veT,D,
where elements of A' is regarded as a map T — T and tr is taken in End T.
Lemma 8.5. In the above notations we have
J ¢ (Y/S, i)™ = —1/2n Q,
X

in the same convention as in the previous lemma.

Proof. Fix any meM. Then D = D(m)— Hom (T,, T,) = Hom (T*, T*), x—
@,(x), is a holomorphic map into a finite dimensional vector space, where x = (o, m).
Take any C-basis e, ..., ¢, € T,*. Then

n

wo) == /\ (e; + o(ey)

1

gives a nonvanishing holomorphic section of Ky, on D(m). Then the norm |u(t)| of
u(t) with respect to h is given by:



MobuLl oF EXTREMAL KAHLER MANIFOLDS 157

ue) A Ei(t) = |u(®)>p(o) A f().

From this we get that if we set
I ¢ _
B(r) = ( ""> € End (T* @ T*)
o 1
we have |u(t)|? = det B(t) = det (I — ¢,®,), where I denotes the identity. Hence we have

¢ (Y/S, h') = i/2m 80 log | u(1)]* =0
= - 1/277: tr (5#/):(0)5:@(0)) s

where 0,¢,(0) is the symbolical expression for £,. Hence, by taking the fiber integral
with respect to the volume form ™ yields the lemma.

In order to realize the situation of the above lemmas in the situation of Theorem
8.2 we recall a result of Kuranishi [Ku]. Let f: 2 — S be as in Theorem 8.2. Then a
C*® trivialization : Z - S x M of f is said to depend holomorphically on se§ if
for any point me M, S;(m):= ¢ 7'(S x m) is an analytic subset of 4. In this case
T =) THY, TE@W) = T,S,(m), with y(x) = (f(x), m), is the horizontal subbundle
associated to .

Lemma 8.6. Let o€ S be any point. Suppose that we are given a C* complex
horizontal subbundle TH for f. Then there exists a C* trivialization W of f depending
holomorphically on s such that THy|X = T?|X.

Proof. The result is due to Kuranishi [Ku] if we neglect the additional tangential
condition. However, as the proof there shows it is immediate to see that the construc-
tion can be carried out with the given initial data TZ|X = TH | X ® T.

Proof of Theorem 8.3. Fixing an arbitrary point o€ S we show the equality
B(dg) = —1/21Q4(wg), as an element of ! T*S. By Lemma 8.6 there exists a C®
trivialization ¥: % 5 S x M depending holomorphically on se S such that TH(y) =
T"(wg) along X. We may assume that S is an analytic subset of a domain D in C™, o
is the origin of C", and T,S = T,D. By y we consider @ = {w,};.s as a C* family of
symplectic forms on M with a fixed de Rham class; i then defines a C* family of
Kihler structures J = {Js}ses on (M, o;). We may assume further that J and & extends
to a C* family {J,} and {w,}, t € D, such that w, are d-closed with fixed de Rham class
and J, depends holomorphically on ¢ also. Hence on Y:=D x M we get a natural
almost complex structure for which the projection p: Y — D is almost holomorphic
and D(m), me M, are almost complex submanifold of Y. Finally by Lemma 4.5 the
condition (8.6) is fulfilled. Therefore, all the conditions of Lemmas 8.4 and 8.5 are
satisfied. The theorem then follows from these two lemmas.

§9. Comparison of Generalized Weil-Petersson Metrics and Proof of Theorem 7.4

In this section first we compare two generalized Weil-Petersson metrics hyp and
hwp for Hodge manifolds. In global terms our results says that 1) the natural morph-
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ism p: My, — M, is a Kéhler V-submersion, 2) Wty . admits a natural foliation which is
transversal to the fibers of u, 3) the generalized WP metric is V-flat on each fiber, 4) the
generalized WP V-form on 9, is a fiber integral of a power of that on My ., and 5) the
locus of canonical bundles on %ty , is a union of leaves of the foliation in 2). As an
application of these considerations we also prove Theorem 7.4 in the second half of this
section.

We consider it locally. Let (X, w, L) be an extremal Hodge manifold in /. Let
§:=S(X,w,L) and S:=S(X,w) be Kuranishi spaces of (X,w, L) and (X,w) with
generalized WP metrics hyp and hyp respectively. In this section we first study a
relation between Ay, and hyp with respect to the natural smooth morphism r: § — S.
This will then give a proof of Theorem 7.4 immediately in this case (cf. Corollary 9.3
below) and also give us the idea how to proceed in the general case.

Recall that ﬁWP is a C® Kéihler metric by Theorem 7.6. Hence, it defines a C®
horizontal distribution T#S := TH(cbyp). Recall that r is said to be a Kihler submer-
sion if for any §e S with s = r(§) the induced isomorphism r,: 77§ — T,S is isometric
with respect to the hermitian metrics ﬁw,,,gl ZI';-H§ and hyp  (cf. Def. 1.3).

Proposition 9.1. 1) r is a Kdhler submersion. 2) The restriction of ﬁWP to each
fiber of r is flat.

Proof. 1) We first observe the following commutative diagram which we get from
(4.4) and Theorems 2.5 and 2.9:

HY(X,, Oy) —2s

v, 0,
©.1) .5 2 H(x, z) 2
Ty Ug Ds

v—1
¥

LS —> H(X, 6,), —— &'

where X, =%, =%, , # = #,, and p, is the orthogonal projection. The assertion
then follows from this, the fact that p«(T:S.) = Im v,, and the definitions of 7', hyp and
hyp. Here, S; = r1(s).

2) For simplicity of notations we show 2) only for the fiber F through 6 €S,
where 6 is the base point of §. (The proof in the general case is completely the same
since X is in &/.) Let I e Pic X be the point corresponding to L. Take an abelian
subvariety T of Pic X passing through [ which is transversal to the Aut,X-orbit O of |
in Pic X with dim T + dim O = dim Pic X. Let % be the restriction of a universal
line bundle on X x Pic X to X x T. Then the universal morphism T — § associated
to the family (p: X x T — T, &y, &) of extremal Hodge manifolds induces an iso-
morphism (T, I) = (S, 6), where p is the natural projection and @, = {w} is the constant
family.

So we have only to show the flatness of the generalized WP metric for the extremal
family (p, &g, £). By our construction the tangent space of T at t € T is identified via
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the Kodaira-Spencer map with the image I of the homomorphism v: H(Of) —» H*(Z}),
independently of t. Thus it suffices to show that the hermitian metric on I induced by
the isomorphism p;': HY(Z,) = # of (2.15) actually is independent of t, or more
specifically, that u, v is independent of ¢. In fact, this can be seen from the following
commutative diagram (cf. Theorem 2.9):

y A
Hf = H'(B) = HY(Z,)

9.2) e .

H'(0x),

where u, = 4,v, and ¢ and v are independent of t € T.

By 1) of the above proposition and a theorem of Watson [Wa] if we restrict T#S
to the set S:eg of smooth points, then THS is integrable with each leaf F a complex
submanifold. F turns out to extend across the singularities of S.

Proposition 9.2. The closure F in S of each leaf F as above is an analytic subset of
S which is mapped isomorphically onto S by r. Moreover, the Zariski tangent space T:F
at each point § € F coincides with THS.

Corollary 9.3. For any F above, r induces a biholomorphic Kdhler isometry (F,
hwplF) = (S(X, w), hyp). In particular, the generalized WP metric hyp on S(X,w) is a
C*® Kdbhler metric.

Proof. The first assertion is immediate from the above two propositions. Then,
since hyp is a C* Kahler metric, the same is also true for hyp.

The last assertion of the corollary is exactly the statement of Theorem 7.4 (for
S(X, w)) in the Hodge case. Before proceeding to the proof of the proposition we
make an observation related with the above result in the case L = K%, meZ —0. In
this case we have a natural holomorphic section o: S — § with ¢(0) =6 of r, ie., the
universal morphism associated to the family (f: % — S, @, K%;) of extremal Hodge
manifolds, where (f, @) is a Kuranish family of (X, w).

Proposition 9.4. The image o(S) coincides with the leaf F passing through 6 of the
horizontal distribution THS as in Proposition 9.2.

Proof. Let § be any point of § with () =s. By Proposition 9.1 and Proposition
7.2 we have the hermitian isomorphisms (T#S, ﬁwp):,(TsS, hyp) and (Tio(S), hyp)
(TS, hyp) respectively, both induced by r,. This implies that the orthogonal projection
T:§ — THS restricted to the subspace Tio(S) is an isometry. This implies that T#S =
T:a(S).

As an application of Proposition 9.1 we also give a formula which essentially gives
the generalized WP V-form on IR, as a fiber integral of a power of that on My, .. Let
(X, w) be an extremal Kéihler manifold with integral Kéhler class [w]. We recall the
commutative diagram (6.6):
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P 25 PG, My,

1T

S _— S/G [ G We

where P = P(Z/S), S =S(X,w) and G = G(X, w); further a is a V-morphism into
My.. So we get a lift wyp = a*wyp(Wy ) of the generalized WP V-form wyp(Piy )
on M, . to an (ordinary) Kéhler form on P.

Proposition 9.5. Let m be the dimension of the fibers of n. Let C = fPS(T)WP(s),
which is independent of s. Then we get on S = S(X, w) the fiber integral formula

f owp = (m+ 1)Coyp,
P/s

where wyp = Owp(X, W).

Proof. Decompose @y p into vertical and horizontal components with respect to
TH(@wp); Owp = Oyp + Opp. Then we get

f ontl = (m + 1)f one A 0, =(m+ 1)Copp
P/S P/S

as desired, where the last equality follows from Proposition 9.1, 1).
Now we are in a position to prove Proposition 9.2.

Proof of Proposition 9.2. In the notations of Proposition 5.11 let Q be the con-
nected component of P,(%/S) which contains 1. This is a smooth fiber space of abelian
varieties over S. By the definition of @y p, ((Q, 1), @yp) and ((S, 6), dyp) are isomorphic
over S (cf. Proposition 5.11). Hence, it suffices to prove the corresponding assertion for
the fiber space n:(Q, @wp) — (S, wwp). Let THQ = TH(@wp). (Q, Dyp) is a Kaihler
space with 7 a Kdhler submersion; furthermore, on each fiber @y, » induces a flat Kahler
form @ on an abelian variety, and on the smooth locus Q,,, of 0, T#Q is integrable
and each leaf, say F, is a complex submanifold of Q,,,. We have to show that the
closure F of F in Q is an analytic subspace which is mapped isomorphically onto S and
that T,F = T!Q for any g € F.

Now, considered as an extremal deformation of (Q,, w,), where w, = @y5p|Q,, ©
is induced from a Kuranishi family (ny: Qo — S,, @) of (Q,, w,), where S, is smooth.
For (my, @y) from its construction it is immediate to see that we have an admissible
(1, I)-form wq, such that the corresponding horizontal distribution THQ, is integrable
and each leaf is a complex submanifold mapped isomorphically to S,.

Let @g be the pull-back of wg to @ by the given morphism u: Q — Q,. Then by
Proposition 3.9 there exists an automorphism g of Q over S such that g*@, and @y
are equivalent. Therefore, by Lemma 3.8 we have only to prove the corresponding
assertion for g*@,. But the closure of each leaf of T#(g*®,) on Q,,, is just the inverse
image of some leaf on Q, of TH(a)QO) via ug. Hence, for g*@, the assertion is
immediate to see.
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As the above proof and Corollary 9.3 indicate, even in the general case, if we
construct a family of complex tori over s which has the same property as Q — S in
the above proof, Theorem 7.4 could be deduced from Theorem 7.7 in the same
manner. We first construct such a fiber space.

Let (X, ) be an extremal compact Kéhler manifold in /. Let S = S(X,w) be a
Kuranishi space of (X, w) and (f: & — S, @) the associated Kuranishi family.

Proposition 9.6. There exist a family of complex tori n: Q — S over S and an
admissible (1, 1)-form wy for the induced family (f: % — Q, Bg)y Z =X XsQ, with the
following properties: 1) If we set ng = 50(wg)e(R1ﬁ?g) (Q), then for any point qe Q
the Kodaira-Spencer map p,: T,Q — H'(X,, X;) associated to (fing) (cf. Def. 4.1) is
injective and induces an isomorphism T,Q, = I,, where s = n(q), Q, = n~'(s), and I is the
image of the natural homomorphism v: H'(X;, Ox ) - H'(X,, Z). 2) Let hyp = hyp(wy)
be the generalized WP metric associated to (f, ®Bg, Nz), or equivalently to (f, wg). Then
the map : (Q, hyp) = (S, hyp) is a Kdhler submersion and the restriction of hyp to each
fiber of m is a flat Kdhler metric.

Proof. a) Construction of the fiber space Q — S. Since R'f, Oy is locally free on
S and commutes with base changes, there exists holomorphic vector bundle V on
S such that for any base change u: ' — S we have a canonical isomorphism Og.(u*V) =~
RYf,. Oy, where X' = & x5S and f: %" — S is an induced morphism. In particular,
we have the identification V =U H'(X;, Ox). The natural sheaf homomorphism
R'f,R - R'f, Oy induces isomorphisms H'(X,, R) — H'(X,, Ox ) over the reals; so we
may consider also

(9.3) V= H(X,R)

as a family of real vector spaces.

Similarly, f, @45 is locally free and commutes with base changes since X is in .«/;
so we get a holomorphic vector bundle U — S with similar properties for f,Ogs;
moreover, the natural homomorphism f, @4 ;s — R!f, Oy arising from (4.2) is injective
and its cokernel is locally free; hence it is realized by a vector bundle embedding
U — V. Take any holomorphic subbundle u: W —>S of ¥ > S such that ) U® W x V,
and 2) there exists a local subsystem N of R'f,R such that we have W = U N; in the
identification (9.3). Take then a discrete local subsystem I” of N such that Q := W/I is
proper over S. Then Q is a fiber space of complex tori over S.

b) Construction of a refined Kdihler polarization ny: We set % =% xgW and let
f:% —>W be the natural morphism. We consider the tautological section ¢ of
R? f* O; namely with respect to the canonical isomorphisms

RY, Oy = Op(u*V) = Op(V x5 W) 2 Op(W x5 W),

o corresponds to the diagonal section of W x¢ W.

We fix a section g4 of R'f, 25 which is mapped to § = §,0,(®) with respect to the
natural homomorphism Rf, 2, — R*f,R. By pulling it back to W, we obtain a section
1% of RYf, Py over W. We then set

Ny =Ny + a(o),
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where « is the natural homomorphism R'f, Uy — Rf, 2.

Any section §: S — I & N, considered as a holomorphic section of W, induces by
translation an automorphism B* of W over S, and then of f: % — W and also of the
sheaf R!f,2,. But in view of the exact sequence (u*N S) RYf,R — R'f, 0y —
le*g’@, v* leaves fixed the section 75 in the last action. Hence 74 descends to a
section 774 of RYf, P

¢) We take any admissible (1, 1)-form wg which is mapped to g for (f, dg).
(See Proposition 3.6.) We check first the condition 1). For any point g€ @ with
s =n(g), by our construction T,Q; is naturally identified with the subspace of
H'(X,, Ox ), and then by the definition of 54, g, restricted to T,Q; is induced by the
canonical homomorphism v;: H'(0x ) - H'(Z,) and is isomorphic onto the image of
vs by our choice of W. Since S is a Kuranishi space, it follows that g, itself is injective.

Finally, the first property of 2) is verified in the same way as for 1) of Proposition
9.1 by using the diagram (9.1), and the second property also is proved in the same way
as the second half of the proof of 2) of Proposition 9.1 replacing 2; by 2, in (9.2).

Proof of Theorem 7.4. The case b, = 0 follows from Remark 7.1 and Theorem 7.7
as in the proof of Theorem 7.6. So we may assume that X, € &/ for all s. In this case,
to the fiber space 7:(Q, fiwp) = (S, hyp) in Proposition 9.6 we can apply the proof of
Proposition 9.2 (instead of to (Q, @yp) = (S, wwp) there). As a conclusion we get that
the horizontal distribution T#Q := TH(dyp) is integrable so that for each point g€ Q
there exists an (analytic) leaf F passing through ¢ which is mapped isomorphically to S
and 7;17 = THQ. Finally, the theorem follows from the Kéhler isometry (F, hyelF) 5
(S, hyp) as in Corollary 9.3 because of the universality of S(X, w).

§10. Determinant Line Bundies, Quillen Metrics, and their Applications

In this section, combining our fiber integral formula (Theorem 7.8) and the main
result of [B-G-S] we construct a hermitian line bundle (F, k) on the base space of
any family (f: & — S, @, ) of extremal Hodge manifolds whose first chern form gives
up to a constant the associated generalized Weil-Petersson form. Thus F is obtained
as a certain determinant line bundle associated to a virtual vector bundle on & and
hence is canonically determined: k is the Quillen metric depending on the choice of an
admissible hermitian metric on & for (f, @). In the Kidhler-Einstein case k also can be
chosen canonical.

When we deal with families with singular parameter spaces we need [B-G-S]
with singular parameter spaces also. In this respect we have formulated such a
generalization also in this section, the proof of which will be given in Section 12.

We shall first recall the main result of [B-G-S]. Let X be a compact Kéhler
manifold with a fixed Kdhler metric g. Let E be a holomorphic vector bundle on X
with a C® hermitian metric . Then we define a 1-dimensional complex vector space
A(E) by

(10.1) ME)=AMX,E)= X (/\™ HY(X, E) bt

920
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where /\™* denotes in general the highest exterior power. Let s#9(E) be the space of
harmonic forms on X with values in E with respect to the metrics g and h. This is
naturally a hermitian vector space. Hence, the natural isomorphism #%(E) =~ HY(X, E)
induces a natural hermitian metric on each HYX, E), and hence on A(E) also. We
denote by 'k the hermitian metric on A(E) thus obtained.

Further, one associates to any pair Q = ((X, g), (E, h)) as above a real number
7 =1(Q) as follows. Let (D(E), d) be the Dolbeault complex associated to E. Then,
letting 0* be the formal adjoint of & with respect to g and h we consider the Laplacian
0, = 00* + 0*0 operating on DY(E). Then the associated zeta function L) =2ZA7°,
where the summation is over all the nonzero eigenvalues A of [J, counted with
multiplicities, converges absolutely if Re s is sufficiently large and has a meromorphic
continuation to the whole complex plane C. Moreover, it is holomorphic at the origin
so that its derivative {;(0) at o makes sense. Then the analytic torsion t is defined by

t= Y (~1)'ql0).

920

Now by using © we define a new hermitian metric k on A(E) by
(10.2) k = kg :="ke 2

Then k is called the Quillen metric of A(E) associated to the pair Q.

We next consider the relative version of the above construction. Let (f: % — S, @)
be a metrically polarized family of compact Kéhler manifolds and E — Z a holomorphic
vector bundle. First, by [F-K; Th.II] the direct image Rf,& (in the derived cate-
gory) is a perfect complex, i.e., locally on S there exists a bounded complex " of finite
free Os-modules which is quasi-isomorphic to Rf, 8. (We denote by & the locally free
sheaf corresponding to E.) Then the theory of Knudsen-Mumford [K-M] associates
with Rf,& canonically an invertiblae Og-module det Rf, &, called the determinant of
Rf,&. (Most of the theory of [K-M] also works in the analytic category.) Then we
define A(E) to be the holomorphic line bundle on S corresponding to (det Rf,&)™'. We
note that there exists a canonical isomorphism

(10.3) ME), = MEy) ,

where A(E) is defined by (10.1).

On the other hand, @ defines a C* family §:= {g,},.s of Kdhler metrics g, on each
fiber X,. Let k, be the Quillen metric on A(E,) associated to the pair ((Xj, g,), (E;, hy)),
where (E,, hy) is the restriction of (E, h) to X,. Via the natural isomorphism (10.3) we
consider k = {k};.s as a hermitian metric on A(E) and call it the Quillen metric on A(E)
associated to the pair Q = (%, g), (E, h)).

Now the chern character ch E of E is written as a certain universal formal power
series in the chern classes c,(E) of E, while for a hermitian vector bundle (E, h) its
chern classes are canonically represented by d-closed C* forms c,(E, h) of type (g, q),
constructed universally from the curvature form of (E, h) (cf. [K-N]). (This is true
also on any complex space as the arguments of [K-N] shows.) By substituting these
in the formula for ch E we get a C® d-closed differential form ch (E, h) on X; for
example if E is a line bundle ¥, we have
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ch(Z, ) =14 c (L h) + ¢, (L, 22+

Similarly, by using the total todd polynomial td (Z/S) associated to the relative
tangent bundle Ty we define a d-closed C* form td (%/S, g) on &

(10.4) td (Z/S, g) = 1 + ¢, (Z/S, g)/2 + higher degree terms .

Here g is the hermitian metric of Ty s defined by 4.
Now in [B-G-S] the following is proved:

Theorem BGS. Let the notations and assumptions be as above. Suppose that S is
nonsingular. Then the Quillen metric ky on A(E) is smooth. The first chern form
¢1(A(E), kg) of the hermitian line bundle (A(E), kg) is given by

(10.5) ¢ (AE), kg) = —[f td (Z/S, g) ch (E, h):| ,
Z/s

2
where [ ], denotes the components of degree 2.

Under a certain assumption on the fiber integral in (10.5) the result turns out to be
true even when S has singularities. Namely, from the above theorem we shall deduce
in Section 12 the following:

Theorem 10.1. For any reduced complex space S the conclusion of the above theo-
rem still holds true, provided that the right hand side of (10.5) is locally d6-exact on S.

Remark 10.1. We call any expression of the form E = F — G, where F and G are
holomorphic vector bundles on X, a virtual vector bundle. Then a chern character is
extended to any such E simply by setting ch (E) = ch (F) — ch (G). Correspondingly, if
F and G carry hermitian metrics hy and hg respectively, we can also define the chern
character form ch (E, hg) by

Ch (Ea hE) = Ch (F’ hF) - Ch (G9 hG) )

where hg is the “virtual” hermitian metric on E determined by hp and hg. In this
situation we define the determinant bundle A(E) similarly by A(E) = A(F) ® 4(G)™! with
Quillen metric k; defined by kr® kg'. Then under these extended definitions the
above theorems still hold true for any virtual hermitian vector bundles, as is immediate-
ly seen from the fact that the both sides of (10.5) is additive in (E, h).

Let (&, h) be a holomorphic hermitian line bundle on . Let K45 be the relative
canonical bundle with the hermitian metric induced by g. We are interested in the
following virtual hermitian bundles:

E=(% - AZ_I)@'l ® (K.%’/S - Kﬂ-r}s)
F=2¢Q@(% -2,
where n = dim X and in general

(Ey — E;)®(Ey — E3) =(E,®E\)®(E,®E3) — (E,®E}) ® (B, Q Ey) .



MobuLl oF EXTREMAL KAHLER MANIFOLDS 165

By Remark 10.1, for E and F the chern characters and the determinant bundles with
Quillen metrics are defined. We get

(10.6) ch (£ — L7 =26 (&, hfF*t + -+
and then

ch (E, hg) = —2"c (&L, b)'c, (Z/S, g) + -
(10.7)
ch (F, hg) = 2%¢,(Z, hY* + 2" e, (L, by + -+

where - -- denotes the higher degree terms.

Propesition 10.2. Let E and F be as above. Then the first chern forms c,(A(E), kg)
and c,(A(F), kg) are given respectively by

-2 J (&, h'e (%S, g) »
s

and

2n-t <f c (&L, h)'c (%/S, g) — 2 J
xS

ZIs

(&, h)"“) .

Proof. By Varouchas (cf. Proposition 1.3) the above fiber integrals are both locally
d0-exact on S. Hence the result follows from Theorem 10.1, (10.4) and (10.7).

The idea of using virtual vector bundles in a similar situation is due to Donaldson
[D].

For a polarized Hodge manifold (X, L) of dimension n we define integers d(X, L)
and e(X, L) by d(X, L) = ¢;(X) ¢, (Ly"* and e(X, L) = c,(L)" respectively. Let (f: & —
S, #) be a polarized family of Hodge manifolds with S connected and with fiber
dimension n. Then we define a virtual vector bundle E(f, &) on & by

(10.8) E(f, &) = E®nd=20+1)e) 4 p@4nd

where d = d(X,, L) and e(X,, L) are independent of s. If we have a hermitian metric h
on &, we get the Quillen metric kg, &) (h) on the corresponding determinant line bundle

ME(f, £)).

Theorem 10.3. Let (f: % — S, @, &) be a family of extremal Hodge manifolds with
S connected, and h an admissible hermitian metric on & for (f, ®). Then the first chern
Jorm of the hermitian line bundle (4, k) := (ME(f, £)), ks, #)(h)) is given by

ci1(4, k) = A4,dwp, A, = —(2"ten)/n.
Proof. Set r=b/(n+ 1) = (n/n + 1)(d/e), where b = b(f, ®) is as in (7.1). By Pro-
position 10.2 we get

2" 2(n 4 1)e<j c(Z/S, g)c (L, hy —r j
AN

EAN

Cl(g, h)"+l>

= (n + De((r — 2)c1(AUE), kg) + 4re, (A(F), kg))
=c,(L k).
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The theorem then follows from Theorem 7.8 applied to wg = ¢ (%, h), in view of
Lemma 7.1 and Remark 7.1.

Corollary 10.4. Let (f: % — S, ®, £) be any family of extremal Hodge manifolds.
Then A,Qwp is a first chern form of some hermitian line bundle on S. In particular,
A [Owp] is an integral class.

Proof. By Proposition 3.10 there exists a hermitian metric # on % which is
admissible for (f, @). The corollary thus follows from Theorem 10.3.

Remark 10.2. If h is normalized in the above theorem (cf. Def. 3.9) we have
similarly the following simpler formula:

¢;(A(E), kg) = B,Qwp , ¢1(A(F), kp) = —(B,/4)Dwp

where B, = 2"n!/n. But the global existence of such a metric is not guaranteed (cf.
Proposition 3.12).

On the other hand, in the Kédhler-Einstein case there exists a similar construction of
a hermitian line bundle on S which turns out to globalize naturally to the correspon-
ding moduli space (cf. Sect. 11).

Let (f: % — S, @) be a family of Kdhler-Einstein manifolds with c¢,(X,) # 0 for any
s.  We then consider the following virtual hermitian vector bundle

G =(Kg)s — Kzls)'™', n=dimX,,
whose chern form is given by
ch (G, hg) = (— 1y 12" e (XS, gyt + -+
Then by Theorem 7.9 we get similarly

Theorem 10.5. Let (f: % — S, ®) be as above. Let (A(G), kg) be the determinant
line bundle with Quillen metric associated to G. Then we get

¢1(A(G), kg) = (=1)"(2/r")(n + 1)l/m wwp

where w, € rc,(X;).

§11. Pesitive Line Bundles on the Moduli Spaces of Extremal Hodge and
Kéhler Manifolds

In this section, by globalizing the construction of the previous section we construct
a line bundle with a hermitian V-metric on the moduli spaces of extremal Hodge and
Kéhler manifolds whose chern V-form coincides with the generalized Weil-Petersson
V-form up to a constant. A similar but a slightly better result will be obtained for
the moduli space of canonically polarized manifolds also. Especially, we shall see
that any compact subvariety of these moduli spaces is projective. The method is to
compare our construction with the (global) Hilbert scheme construction in algebraic
geometry.

We now state the results precisely. Fix a compact connected C® manifold M and
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a class « € H*(M,R). We assume that « is integral, i.e., « € Im (H*(M, Z) » H*(M, R)).
We consider the moduli spaces My , and M, of extremal Hodge and Kihler manifolds
respectively with the underlying C* structure (M, ).

Theorem 11.1. There exist a holomorphic line bundle F on My ., and a hermitian
V-metric k on F with respect to the natural complex V-structure on My , such that the
first chern V-form c,(F, k) coincides with the generalized WP V-form on My . up to
positive constants which may depend on the connected components of My ..

See Definition 1.6 for the terminologies. By using this theorem we also obtain:

Theorem 11.2. The same statement as in Theorem 11.1 is true also for IM,.

In particular, the generalized WP classes [®yp] and [wyp] (cf. Def. 1.8) are integral
classes up to positive constants. By Proposition 1.5 we get:

Corollary 11.3. Any compact analytic subspace My, . and M, is projective.

Corollary 11.4. Let (f: % — S, ®) be a family of extremal Kdhler manifolds such
that the Kdbhler classes of wg are all integral. Then there exists a hermitian line bundle
(Fs, kg) on S whose first chern form coincides with the generalized WP form wyp
associated to (f, @) up to a positive constant on each connected component of S.

Proof. The natural map =n: S —> I, is clearly a V-morphism in the sense of
Definition 1.9. Therefore, the hermitian V-metric n*k on n*F is actually an ordinary
metric, where (F, k) is a hermitian line bundle on 9, in Theorem 11.2. Since the
pull-back of the generalized WP form on 9, is that on S, the corollary follows from
Theorem 11.2.

We now turn to the proof of Theorem 11.1. We need some preliminary considera-
tions. For any numerical polynomial P = P(Y)e Q[Y] let M be the set of isomor-
phism classes of polarized Hodge manifolds (X, L) with Hilbert polynomial P, ie.,
P(m) = (X, L™) =X 50(—1)"dim HYX, L™) for every m. Each 9} is open and closed
in My, and My is a disjoint union My = [[,M);. We set My .= A7 (Mf). Then
My . also is decomposed into a similar disjoint union My , = [ [, ..

We shall first recall the algebraic construction of % mentioned in Remark 5.3,
which is based on Matsusaka’s big theorem [Ma]. Namely, the latter implies the
following lemma (cf. [P]). We denote by PV the complex projective space, by Hilbpy
the Hilbert scheme of P¥ and by H the hyperplane bundle on P".

Lemma 11.5. There exist positive integers N and m, and a Zariski open subset U of
(Hilbpy),.q4 with the following properties: For any ue U: 1) The corresponding subspace
X, of P¥ is smooth. 2) There exists a positive line bundle L, on X, such that the
isomorphism class of (X,, L,) belongs to Wt and (X,, L™) = (X,, H,), where H, is the
restriction of H to X,. 3) Conversely, any point of Iy is represented by some (X,, L,) as
above. 4) The restriction map I'(PY, H) - I'(X,, H,) is isomorphic for any u. Finally, 5)
U is invariant under the action of G := PGL(N + 1, C) on Hilbpy and the action is with
finite stabilizer 0t u where X, is in .
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Let V={(u, L,);, ue U, L,ePic X,, LT ~ H}. Then the natural projection f: ¥V —
U makes V a finite unramified covering of U, the natural action of G on U lifts to a
proper action on ¥V, and by construction we have a natural isomorphism Rk ~ V/G of
complex spaces.

Let po: Z, — V be the pull-back of the universal family over Hilbpy by the natural
map B: ¥V — U & Hilbpy, and N, — Z, the pull-back of H¥"' — PV via the projection
Z,—PY We get the polarized family (p,, N,) of Hodge manifolds, to which the
G-action on V¥ naturally lifts. We further set

W = {(v, w,); ve V, w, is an extremal Kéhler form on X, with w, € ¢;(Np,)} .

Then by Theorem 6.3 we can put a natural structure of a complex space on W such
that the projection §: W — V is locally bibolomorphic. Moreover, by the definition of
W the pull-back (p: Z — W, N) of (py, Np) is turned naturally into a family (p: Z —
W, @&, N) of extremal Hodge manifolds. The natural G-action on (p,, N,) lifts further to
a natural action on the family (p, @, N). Then by the construction we get a natural
isomorphism of complex spaces

My .3 W/G.

Lemma 11.6. There exists a G-invariant hermitian metric h on N which is admissible
Jor (p, @).

Proof. Let a: W — W:= W/G be the natural projection. For any point we W
take a point we W with a(w) = w. Take a local slice for the action of G on W, ie., a
locally closed G,-invariant analytic subset E of W passing through w such that the
natural map E/G, — E := «(E) S W is isomorphic, where G, is the stabilizer at w (cf.
[H]). Take any G,-invariant hermitian metric hy; on N|Zg, which is admissible for the
restricted family (Z; — E, wg) over E (cf. Proposition 3.10). Then define a G-invariant
C® hermitian metric hz on N over « '(E), which is admissible for (p, @) by the
condition; hg , = g*hg ;-1(,), Where g is any element of G with g7'(z) € Z;. It is then
standard to see that the definition is independent of the choice of such a g and gives a
G-invariant C* hermitian metric. The admissibility is clear by the definition.

Now cover W by a locally finite open covering & = {E;} such that E; is obtained
as E as above. Let h; be a G-invariant hermitian metric on N over E; = «!(E;) which
is admissible for (p, ®). Then by Proposition 3.10 over EiﬂEj we have h;/h; = p*et
for some C® function g; on E;NE; which is G-invariant by the G-invariance of
h; and h;. Hence, g; is considered as a section on E;NE; of the G-invariant direct
image sheaf 0%y, on W. Thus {g,} defines a 1-cocycle with respect to the covering &
with coefficients in a$%Py,. Since 0Py, is a fine sheaf, H(&, a¢Py,) = 0. Therefore we
can find elements g; € I'(E;, 2$9y,) such that q;; = q; — q;- Then if we set h; = h;p*e®,
these patch together globally to give a desired hermitian metric on N.

We also note a simple general lemma.

Lemma 11.7. Let Y be a complex space and F a holomorphic line bundle on Y. Let
G be a finite group acting on F — Y as bundle automorphisms. Suppose that for any
y€Y the stabilizer G, at y acts trivially on the fiber F,. Then the induced map
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F/G — Y/G makes F/G again a line bundle over the quotient analytic space Y/G such that
n*(F/G) = F canonically, where n: Y — Y/G is the projection.

Proof. Let y be any point of Y. Take a local trivialization F|V = ¥V x C on some
G,-invariant neighborhood V¥ of y such that g¥'NV =¢ for any g¢ G,. Then any
element g of G, acts on ¥ x C in the form f(v, {) = (g(v), {), (v, {) e V x C. Hence, in a
neighborhood of the image of y in Y/G, F/G — Y/G is isomorphic to the projection
(V/G) x C—>V/G. 1t follows that F/G is a line bundle on Y/G with the desired property.

Proof of Theorem 11.1. We need only to prove the statement for each Mf .. By
Lemma 11.6 there exists a G-invariant hermitian metric A on N which is admissible for
(p, ®). Take any extremal Hodge manifold (X, w, L) in Mf .. In the notations of
Section 6 let S = S(X,w, L) and H = G(X, w, L). Let & = (n: S — S, H) be the asso-
ciated local Galois cover of Mf ,. Take and fix any point we W such that (Z,, w,, N,,)
is isomorphic to (X, w, L). Then by a standard argument we can find a local G,-
invariant slice E at w for the G-action and an isomorphism of the induced family
(pg: Zz — E, ®p, Np) and the universal family (f: & — S, b®d, £°) over S, where b =
m(N + 1). Moreover, there exists a natural isomorphism u,: G, = H such that the
isomorphism E — S is u,-equivariant. We consider the induced hermitian metric hg on
#* from h|Z; by the above isomorphism. Similarly to G,, the action of H on S then
lifts canonically to an action on the family (f, b®, &) preserving hs.

We take the determinant bundle Ag:= A(E(f, £”)) associated to the virtual vector
bundle E(f, #”) (cf. (10.8)). Let kg = kg, ov)(hs) be the corresponding Quillen metric
on Ag. The action of H on § lifts naturally to the action on (4, k), and hence on
(4§, k) for any integer ¢. By Theorem 10.3 we get c,(4g, ks) = A4,b"Dyp, Where dyp is
the generalized WP form for the family (f, @, £).

On the other hand, the action of G on U is algebraic with U quasi-projective; so
the set of the orders of the stabilizers of this action is finite. Hence the same is true for
the action of G on W because G, S Ggsyy- Take ¢ to be a common multiple of the
orders of G, for all we W. Then by Lemma 11.7 4§ descends to a line bundle, say Fy
on $/G S My, ..

We show that {15} defines a line ¥-bundle on My , and {ks} defines a hermitian
V-metric on this V-bundle (cf. the remark before Definition 1.9). By what we have seen
above and Lemma 11.7 this would then imply that 1§ descends to a line bundle, say F,
on MM , and {k3} defines a hermitian V-metric on F. It is clear that the pair (F, {k2})
satisfies the condition of the theorem.

Let (X', o', L") be another Hodge manifold and write ' = S(X', ', L') and H' =
G(X',w',L’). Assume that S'/H' S S/H S M}, and that £ is given a hermitian
metric hg. via an isomorphism of (', b@', £'*) with (pg: Zg — E', @, Ng.), where E' is a
fixed local slice at a point w’ € o~ («(E)). It suffices to show that there exist an inclusion
1: H — H, an r-equivariant morphism 7: S’ — S, and an isomorphism of the universal
family (f’, b&', £'®) and the pull-back of (f, b®, #°) by t sending hg to hg. This
however follows readily from the fact that there exists a morphism v: E' — G such that
ule):=v(e)(e) e E and u(w') = w; then the map u: E' - E clearly lifts to a map of the
corresponding families (pg, @g, Ng) and (pg., @, Ng) sending the hermitian metrics hg
to hg, h being G-invariant.
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Proof of Theorem 11.2. Let (X, w) be any extremal compact Kdhler manifold in
9,. We recall the commutative diagram (9.4) associated to (X, w), and especially the
V-morphism a: P - My ,. We set F = a*F and k = a*k, where (F, k) is a (V-)hermitian
line bundle satisfying the condition of Theorem 11.1 on 9y ,. Then (F, k) is a hermit-
ian line bundle in the usual sense on P and c¢,(F, k) = c@,p, where ¢ is a positive
constant depending only on connected components of M, containing (X, w), and @y p =
a*Qwp(My ). We take the determinant bundle with Quillen metric (Zs, ks) associated
to the virtual hermitian vector bundle (F — F~1)"*! on P, where m is the dimension of
the fibers of P — S. Here, (g, ks) admits a natural G-action since (F, k) is G-invariant,
where G = G(X, w).

On the other hand, by combining (10.6) and Theorem 11.1, as in Proposition 10.2
we get

m+1

Il
o

CI(F, k")m+1 — _2m+16j mw;l, P
S

P/S

q@m=_rﬂf

P

m+1

By Proposition 9.5 the last term equals —2™"1¢C(m + 1)wi}!, where C is a positive
constant depending only on the connected component of 9, containing (X, w).

We claim that A:= {ig} determines a line V-bundle on 9, and k:= {ks} the
hermitian V-metric on it. Let (X', ') be another extremal compact Kéhler manifold in
91, such that S'/G' € §/G € M,, where §' = S(X', w') and G’ = G(X', w'). Let n": P' —
S’ and a': P"—> M be the corresponding morphisms for (X', w’). Then for any open
embedding j: S’ — S over §/G'S S/G which lifts to a morphism of corresponding
universal families lifts also to a morphism jp: P" — P with a’ = ajp,. From this and the
construction the assertion follows immediately.

Finally, by taking a suitable power of (4, k) on each connected component we get a
line bundle on M, instead of a V-bundle in view of the following lemma.

Lemma 11.8. On each connected component the orders of the groups G(X, w) are
bounded.

Proof. Let MM be the image of ML ,. M’ is open and closed in M,. So it
suffices to prove that the orders of G(X,[w]) are bounded on 9%, where [w] denotes the
Kaéhler class. Let py: Zy; — U be the restriction of the universal family to U & Hilbps,
and Zy = (py,§) the polarized family of Kihler manifolds with y, =c,(H,), ue U.
Then AutyZ, := Isomy(Zy, Zy) is naturally a Zariski open subset of an analytic space
which is proper over the closure of U in Hilbps (cf. [Fu3]). From this one sees readily
that the number of connected components of each fiber of Aut,Z, is bounded. This
implies the desired assertion.

Fix again a numerical polynomial P = P(Y) e Q[Y]. Next, by using Theorem 10.5
we shall construct a natural positive V-line bundle on the (reduced) coarse moduli space
RKF of canonically polarized projective manifolds with Hilbert polynomial P. As a set
RP is the set of isomorphism classes of projective manifolds X with ample canonical
bundle Ky such that P(m) = y(X, K%) for all m. Let U < (Hilbpy),,; be as in Lemma
11.5. Let U, be the closed quasi-projective subspace of U defined by

U ={ueU;K¥ =H,}.
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Then U, is preserved by G and we have
K>V, /G.

KF has thus the natural structure of an algebraic space of finite type over C as the
action is proper. Each connected component of Kf is naturally identified with an
open and closed subset of one of the moduli spaces M = M, in Theorem 5.4; further by
the uniqueness of an Einstein-Kihler metric x: k"1 (RF N M) —» KT NIM is biholomorphic
so that it can also be thought of as an open and closed subset of 9, in Theorem
6.6. Hence by Theorem 7.10 we get:

Proposition 11.9. K* carries a natural complex V-structure as a complex space and
a natural Kdhler V-metric with respect to this V-structure.

We call the above Kihler V-metric the Weil-Petersson V-metric on KF. Our
purpose is to show that there is a natural algebraic line bundle K%, ie. a line bundle in
the category of algebraic spaces, with a hermitian V-metric whose first chern V-form
coincides up to a constant the WP Kihler V-form wyp on ], Namely, we show the
following:

Theorem 11.10. There exist a natural algebraic line bundle F on KF and a natural
hermitian V-metric k on F such that the first chern V-form c,(F, k) coincides with
the Weil-Petersson V-form on KF up to a constant; c(F, k)= a,0wp, where a,=
(2/m)*(n + 1)!/m for some positive integer m, and n is the dimension of the manifolds.

Corollary 11.11.  Any compact analytic subspace of K is projective.

The idea is to globalize the hermitian line bundle (A1(G), kg) in Theorem 10.5 to
KF.  We first note the strong invariance property of these bundles. Let f: % — S be a
family of canonically polarized manifolds in general. Then by the uniqueness of the
Kéhler-Finstein metric mentioned above there exists a unique metric polarization @ on
f such that w, is a Kéhler-Einstein form belonging to —c,(X;) for any s. We may then
consider the determinant bundle A(G) and the Quillen metric k; as in Theorem 10.5.
From the above uniqueness together with the definition of (A(G), kg) we get:

Lemma 11.12. Let f: %, > S;, i =1, 2, be families of canonically polarized mani-
folds. Then any isomorphism of these two families, i.e., isomorphisms ii: &, — %, and
u: S, — S, of complex spaces with f,ii = uf;, induces canonically an isomorphism A(u):
(A(G), ke)1 3 (A(G), k),

Proof of Theorem 11.10. Take any point of KF represented by a canonically
polarized manifold X. Let f: % — S be a Kuranishi family of X. We then have a
natural morphism 7: S > K" and H := Aut X acts naturally on S inducing an isomor-
phism §:= S/H % W :=n(S). Such a pair (n: S — W, H) is a member of the complex
V-structure of & and any member is obtained in this way. Let now (4, k) := (A(G), kg)
be the determinant bundle with Quillen metric associated to f. Since the action of H
on S is induced from its action on & — S, by Lemma 11.12 it lifts canonically to an
action on (4, k), and hence also on (4™, k™) for any m > 0.
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On the other hand, for any u € U;, G, is naturally identified with Aut X,. Hence
the order of the group Aut X, is bounded for all X in K*. Take m to be the common
multiple of these integers. Then for any s € S the stabilizer H; acts trivially on the fiber
A" Hence, by Lemma 11.7 A™ descends to a line bundle 4, :=A"/H on S with
n*l, = A™. As in the proof of Theorem 11.1 we conclude that A, patch together to
give a global line bundle over the whole RF, which we shall denote by F. The
assertion about the first chern V-form is immediate from Theorem 10.5.

It remains to show that F is algebraic. Let p;: Z, — U, be the restriction of the
universal family on Hilbpy. Applying Theorem 10.5 to p; we obtain a determinant
bundle with Quillen metric on U, denoted by (4, 'k), where ‘A is naturally an algebraic
bundle by the construction of [K-M]. The natural G-action on Z; — U, induces by
Lemma 11.12 an algebraic action on ‘A — U, and hence also on 'A™. The quotient
space ‘A, :='A"/G has again a natural structure of an algebraic space with a natural
algebraic morphism onto U, := U, /G.

Now let u be an arbitrary point of U, such that # = u(u), where u: U, —» U, is the
natural projection. The quotient algebraic structure of ‘A™ is obtained locally at # by 1)
taking a G,-invariant slice ¥ = V, at u which is an affine subscheme of U, and then, 2)
identifying ('A™|V)/G, with '4,,|u(V) on the open subset u(V). Since G, acts trivially on
the fiber ‘A™ for any u € U,, by Lemma 11.7 A, is indeed a line bundle on U; = K7,

We claim that F is naturally isomorphic to '4,, as a holomorphic line bundle, and
hence, has a natural algebraic structure.

Let u e U; and V be as above. Denote by f: & — S a Kuranishi family of X = Z,.
Let Vg = VN u~}(W) with the natural projection ug: Vs — W. We have then the univer-
sal morphism t: V5 — S associated to the induced family Z x, Vg — V5 which is (G,, H)-
equivariant with respect to the natural identification H = G, such that ug = nt. Since
us and 7 induce isomorphisms V5/G 3 W and S/H ~ W respectively, 7 is actu-
ally biholomorphic. It follows that t induces also a (G,, H)-equivariant isomorphism
‘A™ Vs = A™, and hence, we get on W the canonical isomorphism 7:'A,|W= 4, = F|W.
By the canonicity of the construction we see that these isomorphisms 7 patch together
to give a global isomorphism 'A,, and F over the whole U, = K".

§12. Determinant Bundles and Quillen Metrics with Singular Base Spaces
—Proof of Theorem 10.1

In this section we prove Theorem 10.1, a generalization of Theorem BGS for
singular parameter spaces. The proof is roughly divided into two parts. First, we
follow the construction of [B-G-S III] to get a determinant line bundle A = ABSS
and a Quillen metric k on S. The point is to show that (4, k) has a natural C*
structure which extends the C® structure on the smooth part defined in [B-G-S].
This is essentially a consequence of the observation that locally at any point of S our
holomorphic families {(Xj, g,)} and {(E,, h,)} extend to C® families of almost hermitian
manifolds and of almost hermitian vector bundles respectively over an ambient mani-
fold of S.

Secondly, we have to exhibit a natural C* isomorphism between A and our
(holomorphic) determinant bundle A*¥™ = A(E). Our idea for this is to use the theory of
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relative analytic spaces of Forster-Knorr [F-K] (cf. also Schneider [Sch]) to define a C*
version AXM of 1¥M to get and use an intermediate of the above two bundles.

We start with explaining the smooth dependence of the analytic torsion on the
parameter, which is necessary to see the smoothness of k, in a somewhat general setting.

Let M be a compact C* manifold and E a C® complex vector bundle on M. Let
D be a domain in some R*. Suppose that we are given a C* family {g,},., of C®
Riemannian metrics on M and a C* family {h,} of hermitian metrics h, on E. Let
D,:I'(E,) > I'(E,), ye D, be a C* family of self-adjoint strongly elliptic operators with
respect to these metrics.

Let b be a positive real number which is not an eigenvalue of any of D,. Let K}
be the direct sum of the eigenspaces of D, with eigenvalues A < b, and P}: I'(E,) > K}
the orthogonal projection. Set Qb =TI — P!, where I is the identity. Denote by C a
smooth path in the complex plane C encompassing all the eigenvalues > b of D, for any
y. Then for any t with 0 <t < oo we define as usual

TP = e Qb :=1/2n J e (¢l — D)1 dE.
C
This is a bounded linear operator I'(E,) — I'(E,) with C* kernel pl(t, x, x'); namely we
have for any f e I'(E,)

T()(x) = fM py(t, x, x')f(x") dv,(x") ,

where dv, is the volume form associated to g,. In fact, by the proof of Proposition 2.8
of [Bi] pJ(t, x, x') is of class C* in (y,t,x, x)e D x R x M x M.

For any fixed (y,1), pl(t,x,x) is a C® section of End E,, whose trace we
shall denote by trpl(t, x, x) € C*(M). Then according to [B-G-S III; Def. 1.4] we
define :

(12.1) £o(s) = fm e Tr(T)dt,  seC,

0

where

Tr T} = f tr pl(z, x, x) dv,(x) .
M

Then it is known that (%(s) is holomorphic in s for Re (s) > 0, admits a meromorphic
continuation to the whole C, and is holomorphic at the origin o. In particular, its
derivative {}'(0) at o makes sense. The proof of the following proposition is essentially
the same as in [B-F] (cf. p. 168).

Proposition 12.1.  (Y'(0) is a smooth function of y € D.

Proof. One reduces the proof easily to showing that (2(s) is of class C* on D x U,
where U is some open subset of C on which (}(s) are all holomorphic. First of all,
Tr T} is C*® on D x R* x M by the above mentioned result of Bismut. Hence, in
order to show that {}(s) is of class C', say, we need only to see that for any coordinate
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function y on D the integral

f 57t <f tr ip;’(t, X, X) dvx> dt
0 m 0y

converges in locally uniform way with respect to (y,s)e D x U. If we take U so that
Re (s) is sufficiently large for s e U this is true for ¢t — 0, i.e., for the integral over (0, 1]
because of the asymptotic expantion formula which holds for any strongly elliptic
operator (cf. [B-F; Th. 1.5]). For t — oo this follows from:

Lemma 12.2. For all y, € D there exist a neighborhood U(y,) and constants 0 < A,
0<C<1,0<t, such that

SACTY for  t=t,, yeU(®,).

0
_ tr p?
’ 2 L 1 py(t, x, x) du,

Proof. First, from the definition of T, we get that pb(t + t', x, x) is the convolu-
tion [, p2(t, x, x")p(¢', x", x') dv,.. Then we use the n-fold convolution for nt, neN,
compute the partial derivative with respect to y and use the inequality

Ji0x1s X2)f5(%5, X3) - fulXns X1) Ay, . dy,
Mn

12
< < fi(x, x') dv, dv,. f falx, x7) dv,, duxl> )
M2 M2
Now

f Tr (p3(t, x, x")p2(t, x', x)) dv, dv,. = Jv tr pb(2t, x, x) dv, < 1
M2 M

for t =2 t, and ye U(y,). From this and a continuity argument we get the claim.
(Here M* is the product of k-copies of M.)

Now we work in the situation of Theorem 10.1. We shall recall the construction
of a hermitian line bundle (4, k) from [B-G-S] and show that its C* structure on §,,,
extends naturally to the whole S (cf. Proposition 12.3 below.)

Let (f: & — S, &) be a metrically polarized family of compact Kéhler manifolds and
denote by g, the Kdhler metric on X, corresponding to w,. Let (E, h) be a hermitian
vector bundle on Z. Denote by (E,, h,) the restriction of (E, k) to each fiber X,. Let
D(E,) be the space of E.-valued (0,g)forms on X, and 97: DYE,) —» D*"'(E,) the
usual d-operator on X, with the formal adjoint (62)* with respect to the metrics g, and
h,. Then [1%:=(38*')*04 + d9*1(09)* is a strongly elliptic self-adjoint operator. All
these operators depend smoothly on s.

Now we take a real number b > 0 and define U® by the open subset of S such that
b is not an eigenvalue of []¢ for any g > 0 and s € U®. Denote by K> the direct sum
of all the eigenspaces of [] with eigenvalues < b. Then we set

A= Q) (@A,

920



MobuLl oF EXTREMAL KAHLER MANIFOLDS 175

where 127 = A™* K29 Then A*:= () A{ is a complex line bundle over U which may
seS

a priori not be of class C*. However, the above construction shows clearly that the
restriction of A? to be smooth part U?,, of U? coincides with the original one defined in
[B-G-S IIL; § 1, b)].

First of all, h; and g, define on K27 naturally a hermitian inner product, which in
turn gives rise to a natural C® hermitian metric ‘k? on A’.. Now we define a positive
real number 1, by

(12.2) Ty = eXp <— 1/2 qC;"(O)> ;

920
where (4(t) = {2°(¢) is the zeta function defined by (12.1) for the hermitian vector bundle
E,® /\"T.* (instead of E there). Then we define the Quillen metric k> on 4’ by

(12.3) kb ='kPz,, seUP.

If we take another positive number ¢ and the corresponding open subset U° of S,
then exactly as in [B-G-S III; § 1, b), d)] we can construct a natural hermitian isomor-
phism @,.: (4, k,) 3 (4., k.) which is smooth on the smooth locus UL, of U := U*NU-
Via the isomorphisms ¢, for various b and ¢, A* on U’ patch together to give a
hermitian complex line bundle (4, k) on the whole S. On the smooth locus §,

reg

precisely the one constructed in [B-G-S III; § 1] as is clear from the construction.

it gives

Propesition 12.3. The hermitian line bundle (1, k) constructed as above has a natural
C® structure which restricts on S,,, to the canonical one constructed in [B-G-S III].

Proof. We consider the following situation, which is always realized locally in a
neighborhood of any point of S: 1) S is an analytic subset of a domain D in some C¥. 2)
There exist a C*® trivialization (, ¢) of (f: & — S, E) over S as follows;

E-", Exs

where M is the underlying C* manifold of X, for s € S and E — M is the underlying C*
complex vector bundle of E,— X,. 3) There exist a C* family {J,},.p of almost
complex structures J, on M and a C* family {.7y}yG p of almost complex structures on E
which are induced for y e S by the isomorphism (y,, &y):(Xy, E)) 3 (M,E). 4) There
exist a C® family {g,},.p of C® almost hermitian metrics g, on the almost complex
manifold (M, J,) and a C* family {h,},., of hermitian metrics on E, which are induced
for y € § from the corresponding ones on X; and E; via (y;, ). Let D}(E) be the space
of E-valued C* (0, g)-forms on the almost complex manifold (M, J,) and let 67: DYE) -
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D**'(E) be induced by (J,, y) By (, §), for s€ S this is identified with the Dolbeault
operator on X.

In conclusion, the above consideration shows that the objects DU(E,), J: DY(E,) —
DI*Y(E,), 0%, [1? defined naturally for s € S extends smoothly to a C® family of similar
objects parametrized by D; in particular (7 is defined for all y € D and may be assumed
to be strongly elliptic by restricting D if necessary. Now by using these extended
objects we define U® € D and K%* for y € D in the same way as above. Then K%”:=

(J K%® has a natural structure of a C® complex vector bundle on the open subset
yeD
U’ in D, and hence also does A3 := ®,50(/A\™K%?)"V“"". Then A has the natural

structure of a C® complex line bundle as the restriction of 13 to S.

Further, if we define the Quillen metric on A}, by the same formulae as in (12.2) and
(12.3), then by Proposition 12.1 it is smooth over D, and hence its restriction to S, which
is exactly the Quillen metric on A% on U?, is also smooth. Finally, the fact that ¢, is
smooth can be shown similarly as in the smooth case.

Denote by 24%/s(E) the sheaf of E-valued relative C* (0, g)-forms on Z. We may
consider the relative Dolbeault complex (Z7s(E), 535,5), which is a fine resolution if the
sheaf Oy 5(E) by Proposition 1.4, where Og/s(E) is the sheaf of C* sections of E which
are holomorphic on each fiber of f. Let #%? be the sheaf of C® sections of the C®
vector bundle K%® on S. Then we have the natural inclusion of complex of %s-
modules

riAt = f«Das(E).
Lemma 12.4. 1" is a quasi-isomorphism.

Proof. This is due to [B-G-S II[; Lemma 3.8] when S is nonsingular. In the
general case the proof is essentially the same. We use the notation of the proof of the
previous proposition. First, note that 5#? extends to a locally free Z,-module J;;° as
the sheaf of C® sections of K;® — D. Similarly, the Dolbeault sheaf f*ggz"/s(E) extends
to the Dolbeault sheaf f*QZ,D(E) on the whole D, where Z = M x D and fp: Z — D is
the natural projection. Finally, r also extends to a natural inclusion 1p: 4% —
f+@7,p(E) of sheaves of Z,-modules.

Now for any y € Y let P,: DI(E) — K%® be the orthogonal projection and G,: D{(E) —
D}(E) the Green operator for the strongly elliptic operator (7. These depend smoothly
on y (cf. [Ko-Mo; p. 177]) and give therefore the maps P: f*gg,D(E ) — AFP and
G: f; % p(E) — f* 2 (E) of sheaves. Finally, as in [B-G-S] 8*G,(1 — P,) gives a C®
homotopy between 1 and P, in view of the formula

0,0*G,(1 — P,) + ,*G,(1 — P)o,=1—P,, yeD.

Now we want to apply the theory of a relative analytic space of Forster-Knorr
[F-K] to the induced morphism of ringed spaces:

e, @Bl’/s) - (S, Ds) .

We have to check that f* satisfies the necessary conditions of [F-K]. We use freely
the terminology of [F-K].
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Let U & S be an open subset embedded in a domain D in C™ as a closed analytic
subset. Denote by # S 9, the sheaf of C* functions that vanish on U. Then (2, #)
is a closed ideal of the mF-algebra I'(D, 2,). (Roughly, a Fréchet algebra whose
topology is defined by multiplicative seminorms (cf. [F-K; p.118])). We shall
endow (U, 9y) = I'(D, 2p)/I'(U, #) with the quotient mF-algebra structure, which is
independent of the embedding as above. Then it is immediate to see:

Lemma 12.5. The ringed space (S, 9s) has the natural structure of an mF B-space
([F-K, p.119]) such that for any open subset U S S as above the corresponding
mF-algebra structure on I'(U, 9D) is the one defined above. Moreover, it is of type (L) in
the sense that every point admits a neighborhood basis B = {V} satisfying HY(V, 95) = 0
for all g > 0.

Next we consider the mFB-structure on (%, Ogs). Let P be a polydisc in C" and
U £ S any open subset. Then we have a natural isomorphism

I'(U, 25)® I'(P, Op) 3 I'(U x P, Ow xpyv) »

which defines an mFB algebra structure on the latter (cf. [F-K; p.121]), where ®
denotes the topological tensor product. As [F-K; Prop. 1.1] shows, for any open
subset D & C" this introduces a natural mFB-structure on the ringed space (U x
D, Oy xpyv)- The proof of the following lemma is also straightforward:

Lemma 12.6. The ringed space (Z, Og;s) admits a natural structure of an mFB-
space such that on any open subset V of & which is isomorphic over an open subset U of
S to the product U x D the induced mF B-structure coincides with the one induced from
(U x D, Oy xpyy) via the given isomorphism. Moreover the morphism of mFB-spaces
fHE, Ogs) = (S, Ds) is smooth, so that in particular (%, Ogs) is a relative analytic space
over (S, D) (cf. [F-K; §3]).

Let now & be the Og-module of germs of holomorphic sections of E. Set §* =
€ o, Og)s = Ogs(E) for brevity. In view of Lemmas 12.5 and 12.6 we can apply
Theorem II of [F-K] to the pairs (f, &) and (f®, £°).

Lemma 12.7. Rf,& (resp. Rf,°€%) is a perfect complex of Us-(resp. Ds-) modules in
the sense that locally on S it is quasi-isomorphic to a bounded complex of finite free
Os- (resp. 2g-) modules.

By virtue of this lemma we can apply the theory of determinants of Knudsen-
Mumford [K-M] to Rf.°6” as well as to Rf, & so that, besides det Rf, &, we can speak
also of the determinant det Rf,°¢™, which is an invertible Zg-module. (See [B-G-S IIL;
§3, a)] for a discussion about extending the theory of [K-M] from schemes to complex
manifolds. More generally one easily checks that Theorems 1 and 2 of [K-M] hold
true without any change on any analytic space S, or on the associated C® space
(S, Z5).) Now we set

XM = (et Rf, &)™), and  AKM = (det Rf2&®)!.

Then our next purpose is to show the following:
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Proposition 12.8. There exists a canonical isomorphism of ZDs-modules 1™ @y Ds —
g™

For any Uy-module & we get a natural homomorphism of Zs-modules f,F ®q,
Ds — [(F ®o, Og)s), giving the morphism of functors (—®g,%Zs)" f, = f°( - ®o,
Oys)- This induces in the derived category a homomorphism

(12.4) a: (Rf, &) ®p,Ds — RfFLE™ .
Then we shall first prove:
Proposition 12.9. The canonical homomorphism a above is quasi-isomorphic.

Proof. Since the problem is local, we may assume by Lemma 12.7 that there exist
1) a bounded free complex 2 (resp. 2°) of finite free Os- (resp. Ds-) module which realize
Rf, 6 (resp. Rf,°€®) in the derived category, and 2) an Os-linear map u': " — 2° of
complexes which realizes the canonical homomorphism Rf, & — Rf.°6* induced by the
inclusion & = &°. Then u’ induces a PDs-linear map u;,: 2, := #* ®p, D5 — 2’ which
realizes the map a. It thus suffices to show that u;, is quasi-isomorphic.

Since 2° and 2° consist of free modules, this follows if we show that for any
s € S the induced map u’'(s): 2°(s) = 2°(s) is quasi-isomorphic, where 2°(s) = Z° ®, C(s)
and 2'(s) = 2" ®4,C(s) and also note that u'(s) := u;, g, C(s) = ' ®y,C(s). (Use the
mapping cone of u,, and reduce the problem to showing that a finite bounded free
complex is exact if it is exact after tensorizing with C(s) for any s.)

For the latter purpose we shall realize a by using Cech complex. Take and fix a
locally finite Stein open covering B = {V;} of Z. For any open subset U of S we con-
sider the Cech complexes C(B|f'(U), &) and C(B|f1(U), &) on f~}(U). Then after
passing to sheaves these give rise to an Og-module €°(B, &) and a Dg-module €°(B, %)
respectively on S which realize Rf, & and Rf°6™ respectively. Moreover, the natural
inclusion j: €°(B, &) » €'(B, £~) realizes the natural map Rf.& — Rf,°6®. Since #° and
2° are bounded complexes of finite free modules, we can get a commutative diagram

gl u. Q'

|

@B, &) —— @(B, 6°)

where the vertical homomorphisms are quasi-isomorphic. Then by tensorizing C(s)
over 05 and over 9 respectively, we obtain a commutative diagram

u(s)

P(s) 2(s)

| |

€(BE), £6) LD €(B), 6°6) = €(BE), £6))

where B(s) = {V,N X,}. Here, the vertical arrows are again quasi-isomorphic since the
relevant modules are either O5- or 9Ds- flat modules; furthermore j°(s) is the identity.
Thus u’(s) is quasi-isomorphic.
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Proof of Proposition 12.8. By taking the determinant of both sides of (12.4), we get
natural isomorphisms

(12.5) (det Rf, &) ®o, D5 = det ((Rf,6) Qo, Ds) =3 det RFXPE®

which is in fact realized by the isomorphisms

(det 2) ®g, D = det (" ®g, D) —— det 2
in the notations of the above proof, where det denotes the Knudsen-Mumford deter-
minant of complexes. The proposition clearly follows from (12.5).

Lemma 12.10. There exists a canonical isomorphism w: 1 — AXM of Dg-modules,
where A is the invertible Dg-module corresponding to A.

Proof. By Lemma 12.4 the natural inclusion ™" <, f,°9ys(E) is quasi-isomorphic
on U®. On the other hand, since Py ;(E) is a fine resolution of £ we get canonical
isomorphisms

RfFE* 3 RIS Dy s(E) S £ D s(E) -

Thus %" and Rf°6* are canonically quasi-isomorphic. By taking the determinant of
both complexes we get a canonical isomorphism w®: 1* — AXM. Moreover, on U* we
have w® = w°p,.. Hence, w® patch together to give a desired isomorphism w as above.

Together with Proposition 12.8 this yields:

Proposition 12.11. There exists a natural isomorphism 13 A*™ ®q %5 which re-
stricts on the smooth locus S,,, to the one defined in [B-G-S III; Cor. 3.9].

The last assertion follows from the constructions.

Proof of Theorem 10.1. .By definition A(E) is the holomorphic line bundle corres-
ponding to the invertible Pg-module AXM. By the isomorphism 43 A(E) as C* line
bundles given by the above proposition, the Quillen metric k is mapped to the Quillen
metric k; on A(E) by the definitions. Hence, kg is of class C* by Proposition 12.3.
Moreover, by Theorem BGS the chern form ¢, (A(E), kg) coincides with the degree 2 part
of the fiber integral

f ch (E, h) td (%S, g)
AN

on §,,. Hence if the latter is locally do-exact on the whole S, it coincides with
¢1(A(E), kg) on the whole S by Corollary 1.2.

Appendix

We shall give a proof of the relative Dolbeault and Poincaré lemmas as stated in
Proposition 1.4. We shall follow the argument of [A-G] in the case where the base
space is smooth, but refer to general results on topological vector spaces as is exposed,
e.g., in [Bu].

In general let D be a polydisc in some C™ and S an analytic subset of D. Let ¢ be
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the ideal sheaf of S in 2,. Then the exact sequence
0—1(D, #)—I(D, 2, —I(U,2)—0

turns Py into a Fréchet sheaf since I'(D, 2,) is endowed with the usual Fréchet
topology such that I'(D, #) is a closed subspace. Note also that I'(S, &) is nuclear as
well as I'(D, 9p) (cf. [Bu; Lemma 5.1]).

For a complex Fréchet space E we shall denote by I(S, E) the space of C* maps of
S into E, ie., the maps which extend locally at each point to a C* map from its
neighborhood in D.

Lemma A.l. There exists a canonical isomorphism I'(S, D5) ®, E = I'(S, E), where
®, is the e-tensor product in the sense of Grothendieck (cf. [Bu]).

Proof. We consider the following commutative diagram of Fréchet spaces with
exact rows:

0-ID, AYR.E—-TD,2p)R.E—TI(S,95)R,E—0

R
0-» I'(D,S;E) » I(D,E) — I(S,E -0

where I'(D, S; E) = {y € I'(D, E); Y(s) =0 for any se S}, and the vertical maps are the
natural ones (cf. [Bu; Prop. 3.1]). (Here the first sequence is exact since 7S, Ds) is
nuclear (cf. [Bu; Th. 5.3])). Since b is known to be isomorphic, it suffices to show that
a is isomorphic, i.e., surjective. But by the definition of e-product, for any f e I'(D, E) f
is in the image of a if and only if vf vanishes identically on S for any continuous linear
form v on E (cf. the proof of [Bu; Prop. 10.3]). It follows that a is surjective.

Since I'(S, 95)®,—is an exact functor ([Bu; Th. 5.3]) we get:

Corollary A.2. E — I'(S, E) is an exact functor from the category of Fréchet spaces
to itself.

Proof of Proposition 1.4. We treat only the case of Dolbeault complex. (The
other two cases are proved in a similar way.) The problem is local: so we may assume
that f is a projection f: X = U x § — §, where U is a polydisc in C" and S is a closed
analytic subset of a polydisc D of C™. We first see that there exist natural isomor-
phisms I'(X, D) = I'(S, I'(U, 2y)) and I'(X, Ox;s) = I'(S, I'(U, Oy)). We show this for
the first case since the proof is parallel in the other case. We consider the following
commutative diagram of exact sequences (cf. Cor. A.2)

0—» I(UxD, 2 —-I(UxD,Pyp)~> I(X,2x) -0

N
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where # is the ideal sheaf of X in 9y ,,. Here, it is immediate to see that a and b are
isomorphic, and hence c also is isomorphic.
Now in order to prove the proposition it suffices to show that the sequence

0 I'(X, Oxs) > I'(X, Dx) > I'(X, Ds) —

is exact since X is arbitrary. By virtue of what we have proved above this sequence is
isomorphic to

0 IS, I'(U, 0y))— IS, I'(U, 9y)) - IS, (U, 2})) -

which is exact by the above corollary since
0-TI'(U, Oy)-> (U, 2y) - T'(U, 2%) -

is exact, where 2§ is the Dolbeault sheaf of (0, g)-forms on U.
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