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Solvability In Distributions for a Class of Singular
Operators9 III

By

Hidetoshi TAHARA*

We say that a linear partial differential equation Pu = f is locally solvable in 2' at
p, if for any / e <&' there exists a u e <&' such that Pu = f holds near p. The following is
one of the most fundamental problems: under what condition is Pu = f locally solvable
in®'?

When P is non-singular, this problem has been studied by many authors (for
example, see the survey in [6, Chapter 26]). When P is singular, in [14, 15, 16] the
author has established the local solvability in &' for singular differential operators of
various types: in [14] for operators of Fuchsian type, in [15] for operators of non-
Fuchsian hyperbolic type, and in [16] for operators of non-Fuchsian elliptic type.

In this paper, the author will establish the local solvability in Q)' for a class of
non-Fuchsian singular partial differential operators under much more general condition.

It should be noted that the following cases were already treated as to the local
solvability for singular differential operators P. When F is a Fuchsian operator of
hyperbolic type, the solvability in C°°, ®' or ^ (where J* means the set of all hyperfunc-
tions) was discussed in [1, 2, 3, 4, 5, 11, 12]. When P is a Fuchsian operator of elliptic
type, the solvability in 38 was discussed in [9]. When P is a non-Fuchsian operator of
hyperbolic type, the solvability in C°° was discussed in [10, 13]. See also [7].

By the author's results (in [14, 15, 16] and this paper), we can conclude that the
class of operators for which the local solvability in ®' is valid is much wider than the
class of Fuchsian operators.

§ 1. Main Theorem

Let (£, x) = (t, xl9..., xn) E Rf x RJ and let us consider

(i.i) p = (tdtr+ z aj.t(t,x)(tdtyd;9
J+\*\£m

j<m

where me{l , 2,...}, dt = d/dt, dx = ( d / d x l 9 . . . 9 d / d x n ) , a = (a1 ? . . . , aj e {0, 1, 2,...}»,
|a| = at + ••• + an, 3* = (d/dx^*1 ... (d/dxj*", and the coefficients ajja(t, x) (j + |g ^ m
and j < m) are C°° functions defined in an open neighborhood U of (0, 0) in Rt x R£.
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Denote by <&'(U) the set of all distributions in (t, x) defined on U. Put p(t? £) and
Z as follows:

(1-2) p(T, £) = T"< 4- X ty«(0>°)T7r,
j+|a|=m

j<m

(1.3) Z = { ( T , « 6 R t x R 5 ; p ( T 9 f ) = 0}.

Assume the following three conditions:
(A-l) Whenj + |a| = m, fl/,a(t, x) is real-valued on C7.
(A-2) IT n {(05 f ) e ET x R-;' ̂  0} = 0.

(A-3) (t, 0 ^ 0, when (0, 0) \ (T, §) e 27.
W

Note that P is not of Fuchsian type in t (by (A-2) and (A-3)).
Then, we can state our main theorem as follows.

Theorem 1. Let P be the operator in (1.1). Assume (A-l), (A-2) and (A-3). Then,
for any f(t,x)(=f)e &'(U) there exists a u(t, x)( = u) e &'(U) such that Pu = f holds
near the origin (0, 0) in Rf x E"; that is, Pu = f is locally solvable in 2' at (0, 0).

As a special case, we have

Corollary. Let P be the operator in (1.1). Assume (A-l) and the following: for any
£ e R|*\{0} the equation p(A, £) = 0 (in A e C) has only simple and non-zero roots. Then,
Pu = f is locally solvable in Q)' at (0, 0).

Remark. More precisely, we can see the following result. For any k E Z+
( = {0, 1,2,...}) there are jk£Z+ and an open neighborhood Uk of (0,0) in Rf x R"
which satisfy the following: for any f £ H ~ k ( U k ) there exists a ueH~Jk(Uk) such that
Pu = f holds on Uk. Here, H~p(Uk) denotes the usual Sobolev space on Uk.

Example. Our result can be applied to the following operators:

P = (tdt)
2 ± Ax + a(t, x)(tdt) + <6(t, x), dxy + c(t, x) ,

where Ax is the Laplacian in x.

Let us compare the above result with the result for Fuchsian operators in [14], and
let us make clear the difference between them. Let

where (tkdx)* = (t^/dx^1 ...(tkd/dxn)*» ( = tk^). Denote by pf(x) (i^i^m) the
roots of pm + Xj<mfl7-,o(0?^)PJ = 0- Define p(r, f) as in (1.2) (where 0,^(0,0) are the
ones in (1.4)). Then, we already know the following result.

Theorem 2 (Fuchsian case: Tahara [14]). Let L be the operator in (1.4). Assume
fee {1,2,...}, A-(0) <£{-!, -2, ...} (1 ̂  i ^ m), (A-l) and the following: for any £ e
R^\{0} the equation p(/i, <!;) = 0 (in A e C) has only simple roots. Then, Lu = f is locally
solvable in 3>' at (0, 0).
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Note that P in (1.1) corresponds to L with k = 0 and that the case k = 0 is
excluded from the consideration in Theorem 2.

§ 2. A Priori Estimates

Before giving a proof of Theorem 1, let us establish here the following proposition.

Proposition 1. Let P be the operator in (1.1), put

for seR, and let (P_s)* be the formal adjoint operator of P_s. Assume (A-l) and
(A-3). Then, there are sk > 0 ( f c e Z + ) w/iic/i satisfy the following: for any k e Z+ and
any s > sk there are 5ktS > 0 and an open neighborhood VktS o/(0, 0) in Rr x R" swc/i t/zat
£/ze estimate

(2-2) ll(f-.)*Vll^^,Htm+k->L+k-i

/zo/ds /or any cp e C£(VktSr\ {t > 0}) (or q> e C£(VktSr\{t < 0})), w/zere ||w||p denotes the
norm of w in the Sobolev space Hp(VktS n{t> 0}) (or Hp(Vk,s n {t < 0})).

First, we remark a fact on the decomposition of the following polynomial (in i)

t, x, T, f = T" +
j+|a|=m

j<m

Let FF be a sufficiently small neighborhood of (0,0) in Rr x R". Then, by (A-l) and
(A-3) we can see that all the real roots of the equation

(2.3) p(t9x,i,t) = Q ( i n A e C )

are simple for any (t, x, £) e W x (R"\{0}), and that no roots of (2.3) change con-
tinuously from "real" to "non-real" when (t,x,£) moves in W x (RJ!\{0}). Therefore,
denoting by /Lf(t, x, £) (1 g i ^ p) the real roots of (2.3) we have the following: (i) the
number p of the real roots of (2.3) is independent of (t, x, £) e W x (RJ\{0}), (ii)
A,.(f, x, £) e C°°(^ x (R;\{0})) (1 ̂  i^ p), and (iii) A,(t, x, f ) ^ A/t, x, ^ for 1 ̂  i ^7 ^ p.
Hence, by putting

we obtain a decomposition of p(t, x, T, £) as follows:

(2-4) p(t, X, T, (J) = /Z(t, X, T, £)£(£, X, T, £) ,

where e(t, x, T, £) has the form

m—p

e(t, x, T, ^) = rm"p + X «i(^ ̂  ^m~p'i

and satisfies the following: (iv) et(t, x, ̂  e C™(W x (RJ\{0})) (1 ̂  i ^ m - p), (v)
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et(t, x, £) is positively homogeneous of degree i in f, and (vi) e(t, x, T, £) ^ 0 for any

Next, let us show two preparatory lemmas. In the discussion below, we use the
following notation: (t, x) e [0, T] x E" (T > 0), Dx = -^/^ldx, (w, i;) denotes the inner
product of w and v in L2((0, T) x R"), ||w|| denotes the norm of w in L2((0, T) x En),
|| w ||fc denotes the norm of w in Hk((Q, T) x Ew), and

(2.5) IIMIk s= I \\(tdt + s)ldZ<p\\.
i+\<x\^k

Obviously we can see the following: for any k E Z+ and s e E there are AktS > 0 and
BktS > 0 such that

(2-6) AkJtk
9\\k

holds for any <p E Hk((Q, T) x R").

Lemma 1. Let

Hs = (tdt + sY + t at(t9 x, Dx)(tdt + sr<- ,
i=l

where a^t, x, DJ (1 ^ / ^ p) are pseudo-differential operators with symbols at(t, x, £)
/j;m^ tAe following: (i) a,.(t, x, f ) E C°°([0, T] x E" x RJ), (ii) at(t, x, ^) is positively ho-
mogeneous of degree i in £ (for \£\ ^ 1), and (iii) a£(t, x, £) is independent of x /or
sufficiently large |x|. Assume that all the roots of the equation

(in X) are real and simple for any (t, x, f ) E [0, T] x E" x E^ satisfying \£\ ^ 1.
/or aw^ fc E Z+ t/i^re ar^ fe& > 0 and cfe > 0 SMC/J t/iat r/i^ estimate

holds for any cp E qj>((0, T), H°°(En)) and s > bk.

Proof. We will prove this by reducing the problem to the one for a first-order
system of pseudo-differential operators.

Denote by A the pseudo-differential operator on E" corresponding to the symbol
(1 + |£|2)1/2

? by S*([0, r]) the set of all pseudo-differential operators of order k on E£
depending smoothly on t e [0, T], and by £fe([0, T], p x p) the set of all p x p matrices
with components in 5*([0, T]).

For (peCg>((0,nH°°(R-)) we put i>,e C?((0, T), H°°(EW)) (j = 0, 1, . . . ,p - 1) as
follows:

Then, under the notations
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ft. = L/Tiyfl.(t5 x, DxM~m, i = 1,..., p ,

/O - / f
0

1 1

\ / vn / 0
-yi

0 -A
1

(
\j

v*
v'_

°
Ha,

we have the following relation:

(tdt + s + y^L^t; - g .

Moreover, by the standard argument for regularly hyperbolic systems (for example, see
[8, Proposition 6.4]) we can see that there are D e Sl([Q, T], p x p) and M, N e

0, T], p x p) satisfying D - D* e S°([0, T], p x p), NA-DNe S°([0, T], p x p) and

Thus, to have Lemma 1 it is sufficient to show the following result: for any k e \
there are bk > 0 and c& > 0 such that

(2.7) X IK*5* + s)lAJ(tdt + s + y^L4)i;|| ^ cfcs £ ||(rSt -

holds for any v e (^((O, T), H™(Rn))p and s > 5fc.
Let us prove (2.7) from now. Take any v e CJ((0, T), H°°(R"))P. Then we have

N(tdt + s + ̂ /-lA)v = (tdt + s + V - IDJJVi; - fAT/i; + V~ 1(JV^ - DN)v .

Since the operators tNj, NA - DN and D-D* are bounded in L2((0, T) x Rn)p, we
have

= \ IK^r + ̂ ~lD)Nv\\2 + S- \\Nv\\2

+ s Re ((t3, + y^TDJNi?, ATi;) - Q ||t;|

^ \ 11(4 + y1^^)^!!2 + y ll^il2 - s

for some Ct > 0 and C2 > 0. Therefore, if s > 4C2, we obtain

(2.8) \N(tdt + s H- y17!^)^!2 ^ ^ H^ll2 ~ ci

On the other hand, since

A~l(tdt + s + y^L4)z; = (t5t + s)A~lv

holds and since A"1 A is bounded in L2((0, T) x R")p, for s > 1/2 we have
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(2.9)

- C3\\v\\2

^S-\\A-lv\\2 - C3\]v\\2

for some C3 > 0. Hence, by (2.8) and (2.9) we obtain

(2.10) \\N(tdt + s + ̂ lA)v\\2 + \\A~l(tdt + s + ^lA)v\\2

^ ~(\\Nv\\2 + \\A~lv\\2) - (d + C3)\\v\\2 .

Here, we note the following: there are C4 > 0 and C5 > 0 such that

(2.11) Q|M|2 ^ IIJVvvll2 + \\A'lw\\2 ^ C5||w||2

holds for any weCJ((0, T), //°°(R"))P. In fact, this is verified by ||Nw|| + \\A~lw\\ ^
(\\N\\ + M-1 ID INI and \\w\\ ̂  HMJVWII + IK/ - MNHI ^ HMH \\NW\\ + IK/ - MJVMII •
IM^wll ^ (||M|| + IK/ - MN)A\\)(\\Nw\\ + \\A-lw\\).

Therefore, by (2.10) and (2.11) we have

c4 - Q - C3\ \\v\\2 .

Thus, by choosing b0 = max (4C2, 1/2, 8(Q + C3)/C4} and c0 = (C4/8C5)
1/2 we obtain

for s > b0. Thus, we have proved (2.7) for k = 0.
Note that

(212) [A(tdt + s + ̂ ^A)v = (td<+ s + v 1 ^ 4

\(tdt + s)(tdt + s + J^lA)v = (td, + s + J^lA)(tdt + s)v

hold and that \_A,A]A~\ tA'.A'1 eS°([0, Tip x p) are bounded in L2((0? T) x ET-
Therefore, by using (2.12) and by Induction on k we can prove (2.7) for k ^ 1 In the
same way as above. Q.E.D.

Lemma 20 Let

Es = (tdt + sY + J at(t, x, DJ(taf + s)^f,

where at(t, x, Dx) (1 ^ i ^ g) are pseudo-differential operators with symbols at(t, x, f) satis-
fying the following: (i) at(t, x, ^) e C°°([0, T] x M" x R^), (II) a{(t, x, ^) is positively ho-
mogeneous of degree i in £ (for |£| ^ 1), a^ (ill) a^t, x, ^) is independent of x /or
sufficiently large |x|. Assume that
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(2.13) U/ - IT)«+Yfl , (0 ,0 ,

/or any (T, ^) e ET x R| satisfying \£\ ^ 1. T/zen, t/zere are an open neighborhood W
of (0, 0) in R, x R;, dk > 0 (fe e Z+) and CfcjS > 0 (fc e Z+ and s e R) swc/z that the estimate

(2.14) ll|£,<pllk, ^

fco/ds for any <p e C%(Wr\ {t > 0}), fc e Z+ and s e R.

Proo/. Put fl(r) = {x e R"; |x| < r}, and assume that <p(t, x)( = q>) 6 C?((0, s) x B(
Let jj,r(x) e Co)(B(2r)) be such that ^r = 1 holds on B(r). Obviously we have <p = /^r(p.

Put

a,(0, 0, J

and choose b^t, x, Dx), c^t, x, Dx) e S'([0, T]) so that the following relation holds:

a;(t, x, Dx) = a;(0, 0, Dx) + tbt(t, x, Dx) + £ x,-c0-(t, x, Dx).
i — 1J"-1

Then, for (p e CJ((0, e) x B(r)) we have

£s^? = £5°'°^ + V tbi(tdt + s)q~l(p

£ n
^ (XjiJ,r)cv(tdt + s)a~>

Therefore, by the conditions |t| ^ e, ^^(x)! ^ 2r and [c^-, /^r] ( = cij^ir — jUrc0-) 6
we obtain

(2-15) \\E,9\\ ^

for some A1 > 0 (independent of e and r) and Cr > 0 (depending on r). Thus, in order
to estimate \\Es<p\\ from below we need to estimate ||£^°'0Vll from below.

Note the following fact. Put

Then, by (2.13) and by using the Fourier transformation we can see the following: there
are \JL > 0 and A2 > 0 such that

(2.16) ||/ty||(ZiJC)^/i X l|3^VII(,.,,-^2 Z ll^>ll(z,,)

holds for any ^ = ^(z, x) e Q?(RZ x R;), where ||w||(riJC) is the norm of w in L2(R2 x R;).
By using (2.16), let us estimate ||£j°'0)<p|| from below. Note the following: by the

change of variables (0, T) x R" 3 (t, x) -> (z, x) = (log t, x) e Rz x R" , tflt is transformed
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into flz, £(
0°'0) Is transformed into R, j(t, x) e Cg)((0, T) x RJ) Is transformed Into

^(z, x) = ^(ez, x) 6 Co(Rz x RJ), and dt/t Is transformed into dz. Therefore, by (2.16)
we have

J_

sA
for any $ = ^(t, x) E CJ((0, T) x RJ). Moreover, by putting $(t, x) = y/i<p(t, x) we obtain

(2-17) I|£(1A2°VII ^

for any <p E C%((0, T) x Rn
x). Since

(2-18) l l l l < p | | l i , 5 -

holds for some CltS > 0, by (2.17) and (2.18) we obtain

(2.19)

for some ^3jS > 0 and Bs> 0 (depending on s).
Hence, by (2.15) and (2.19) we have

q-l,s

for any q> e CJ((0, s) x 5(r)). Thus, by putting e = 1/4^413 r = 1/4419 W = (-e,s)x
B(r\ d0 = fjL/2 and C0>s = Bs + Cr we can obtain

||Es<p|| ^ d0

Thus, we have proved (2.14) for k = 0. (2.14) for k ^ 1 may be proved by Induction
on k. Q.E.D.

Now, by using Lemmas 1 and 2 let us give a proof of Proposition 1.

Proof of Proposition 1. Let F_s be as In (2.1). Then, for any <p E C°°(l/) we have

3_s)*cp = ( — tdt — 1 — s)m + ]T ( — tdt — 1 — sy( — dx)*ajta[(t9 x)cp

for some ^-^(r, x) e C°°(L/) such that b^(t, x) = ^-^(t, x) for j + |a| = m and therefore

Since we are discussing (F_s)* only In a small neighborhood of (0, 0) in Rt x RJ, we may
assume that bjt<K(t, x) is constant outside a small neighborhood of (0, 0) In R, x E".



SOLVABILITY FOR SINGULAR OPERATORS 193

Then, by (2.4), (A-l) and (A-3) we can see that (P_s)* is decomposed into the following
form:

m-1

(2.20) (P_J* = (-l)mHsEs + £ Qt(t, x, Dx)(tdt + s)"'1"',

where Hs is an operator of order p satisfying the conditions in Lemma 1, Es is an
operator of order q( = m — p) satisfying the conditions in Lemma 2, and Qt(t, x, Dx) e
5*([0, T]) (1 ̂  i ̂  m - 1).

Choose bk, ck, W, dk and QjS so that the conditions in Lemmas 1 and 2 hold for the
operators Hs and £s in (2.20). Let k e Z+. Then, by choosing a constant Mk > 0
suitably we have

(2.21)

for any q> e CJ(P^n {t > 0}) and s > bk.
Here, we put W(r) = {(t, x) e W\ xt\ < (r/v/2)(i = 1,..., n)} and note the following:

if q> e CS(W(r) H {t > 0}), we have

(2.22) m+fc-l,s

by using Poincare's inequality with respect to the x-variable.
Therefore, by (2.21) and (2.22) we have

Hence, by putting sk = (4Mk)/(ckdp+k_l), rktS = dp+k.1/(4Cp+k.liS)9 Vk,s= W(rk,s) and by
taking s > sk we have

(2.23) III(P-S)>IL,S ̂  ^r

for any (p e Q?(FM n {t > 0}). Thus, by (2.6) and (2.23) we can obtain (2.2). Q.E.D.

§ 3. Proof of Theorem 1

As in [14], we put 0'0, ®'( + X ®'(-)> ^'{f=o}, ®;jrt( + ) and &'ext(-) as follows:

®o = ind - lirr; 2'(W),
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@[t=0} = {ue 9'0-9 supp (u) c {t = 0}} ,

2'ext( + ) = {UE 2'(±)\ there exists a v e ®'0 such that u = t; on { ± t > 0}} ,

where W is an open neighborhood of (0, 0) in Rt x RJ. Note that 2'ext(±) is the set of
all distributions ue@'(±) which is extendable to a full neighborhood of t = 0 as a
distribution.

Then, we can see that Theorem 1 is obtained by the following two facts:

(S-l) Pu=fis solvable in 2\t=Q}.

(S-2) Pu = f is solvable in @'ext( ± ).

In fact, if we know (S-l) and (S-2), the solvability of Pu = / in <^'0 is obtained by the
following commutative diagram:

0 - > ^'r=0 - > ®'0 - >&

o — > 0'{,=0} — > ®'0 — >®
Note that the horizontal line is exact, since for any uE@'ext(±) we can find a v e
such that M = u o n { ± t > 0 } and supp (i;) c { + 1 ̂  0}.

Hence to have Theorem 1 it is sufficient to prove (S-l) and (S-2).

Proof of (S-l). Put

Let u and / be of the form

(3.1)

where N E Z+, 5(i)(t) = 5/5(t), 5(f) = ^(0)(t) is Dirac's delta-function, and ^(x), ̂ .-(x) are
germs of distributions in x at the origin in E". Then, by using the relations

we can see that Pu = f is equivalent to the following recursive system:

C(-N - 1; x, dx)\l/N = IJLN ,

(3.2)

N

(-1, x, dx)\l/0 = no + X
1=1

where L£§z(x, 5J (0 ̂  i ^ JV — 1 and i + 1 ̂  / ^ N) are differential operators of order m
determined by P. Since C(p, x, 3,) is assumed to be elliptic near x = 0 (by (A-2)), we
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know that the equation C(p, x, dx)\j/ = /x (where \j/ = \l/(x), n = //(%) are distributions in x
near x = 0) is solvable in the germ sense. Therefore, by solving (3.2) successively we
can determine {^JiL0 ^om the given {/-ijjlo so tnat PU = f holds under (3.1). This
proves (S-l), because any w, /e ®{t=0} are expressed in the form (3.1). Q.E.D.

Proof o/ (S-2). Let / 6 ®'ext( + ). Then we have / 6 H~m-k+l(Vn {t > 0}) for some
k e Z+ and some open neighborhood F of (0, 0) in R, x R". Let sfc be the one in
Proposition 1. Choose s e Z satisfying s > max {sfe, m + k — 1} and fix it. Let (5fejS and
VktS be the ones in Proposition 1 corresponding to these k and s. Put W = FflF f c j S .
Then, we can see the following two facts:

(3.3) ts-m-k+lf e H-m-fc

(3.4) ll(P-,)*9ll*^^..Pm+*">L+*-i for any 9 e Cg>(Wn {t > 0}) .

Let H%(WH {t > 0}) be the closure of C$(Wn {t> 0}) in the Sobolev space Hk(Wf}
[t > 0}), define a linear subspace Z of H%(Wn {t > 0}) by Z = {(P_s)>; <p e C$(Wt\
{t > 0})}, and define a linear functional T on Z by T((P_s)*<p) = O, fs/>. Then, by
(3.3) and (3.4) we have

and therefore T is continuous on Z with respect to the topology induced from
{t > 0}). Since H~k(Wn {t > 0}) is the dual space of H^(Wr\ {t > 0}), we can find a
v e H~k(W n {t > 0}) such that T(z) = <z, u> for any z e Z. This means that <<p, ts/> =
<(P_S)>, i?> holds for any <p e CJ(PFn {r > 0}). Hence, we have P_su - tsf on WC]
{t > 0}; this is equivalent to P(t~sv) = f on FKH {t > 0}. Thus, by putting u = t~sv we
obtain a solution w e ®'ext( + ) of Pw = /. Q.E.D.
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