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Newton Polygons and Formal Gevrey Classes

By

Akiyoshi YONEMURA*

Introduction

Following to the fundamental study of Malgrange [7], Ramis elucidated the an-
alytic meaning of slope of Newton polygon for ordinary differential operators [10]: In
generic cases the index of operator in formal Gevrey class of order s equals to the
ordinate at the origin of supporting line of Newton polygon with slope k = 1/(s — 1).
He also demonstrated various comparison theorems.

The purpose of this note is to generalize one aspect of Ramis theory to partial
differential operators. There seems to be three ways of generalization:

1. To consider holonomic systems.
2. To consider operators of Kashiwara-Kawai-Sjostrand type [1, 3].
3. To consider Cauchy problems.

For 1, 2, we refer to Laurent theory [4, 5, 6]. We shall discuss from the standpoint 3.

On the other hand, our study is closely related to the Cauchy-Kowalewski theorem.
Mizohata’s inverse Cauchy-Kowalewski theorem asserts that if the operator is not
Kowalewskian, there exists a divergent formal solution [8]. It is well known that the
formal solution of heat equation belongs to Gevrey class of order 2. The problem is
what determines the Gevrey order of formal solutions.

From a different point of view, Ouchi developed the theory concerning the analytic
meaning of formal solutions [9]. It is certain that his theory implies one part of our
theorem. There exists, however, more elementary and straightforward method to our
problem.

§1. Notations

For x = (x4, X5, ..., x,) € C", we set |x| = max,.;,|x;|. Let O(]x| <r) be the set
of all holomorphic functions in {x € C"; |x| <r}. We also set

O(x| <r)=%°x| <rNO(x| <7)

where #°(|x| < r) is the set of all continuous functions on {x € C"; |x| < r}.
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It is obvious that @(]x| < r) is a Banach space with maximum norm |||,

Let C[[t, x]] be the set of formal power series with complex coefficients in n + 1
indeterminates ¢, x. Let C{t, x} be the set of convergent power series in n + 1 variables
(¢, x) =(t, X1, ..., X,). When we set A= 0(|x| <r) or C{x}, we denote by A[[t]] the
set of formal power series in t with coefficients in 4. These are subspaces of C[[f, x]].

We shall use standard multi-indices notations:

0 0 .
Dt=5’ D‘I:g (]:1,2,...,”),
J

Di=Df ...Di» for aeN".

§2. Definitions

Let P be a differential operator with coefficients € C[[t, x]]:

Ja

P=Pt,x;D,D,)= ; a; ,(t, x)D{DZ = " t°U-2g, (t, x)D{D;

where d; (0, x) # 0 in C[[x]]. Let Q be the second quadrant of R? and for (u, v) € R?,
we set

Qu,v)=(u,v)+ Q.

Definition. The Newton polygon of P, denoted by N(P), is defined by the convex
hull of the union of Q(j + ||, a(j, @) — j) for j, & such that g; , # 0 in C[[z, x]1:

N(P)=ch< U Q(j+|al,0(j,a)—j)>-

Q5 #0

Let 0 = ky < k; <--* < k; be the slopes of sides of N(P).

Remark. If P is a differential operator with holomorphic coefficients, this definition
is a special case of more general one [4, 5, 6]: If we choose

X=C"=C,xCLY={t=0cX,A=T¥X and 0 = (0;0)e X ,
then according to Laurent’s notation [5] we have
N(P) = NA,O'(P) .

Let us notice that this definition is different from that of Mizohata [8]. For example, it
suffices to consider the operator P = D? 4+ D,D? + t2D?.

To examine the analytic meaning of k;, we define the functions of formal Gevrey
class.

Definition. Let s>1, p>0 and r>0. Then we denoted by G, , the set of all
u=Y%out’ € O(x| <[] such that

C!

def & lyll, pi
—Z |)s1 < +0o0.
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Lemma 1. G, is a Banach space with norm |-[; ,.
The proof is obvious.
We set
G=G,and G =) G.

r>0 p>0

Note that G' = C{t, x}. If we also set G® = C{x}[[¢]], then we have interpolation
spaces G* between the space of convergent power series and that of formal power series:
for1 <s < oo,

C{t,x} = G! = G* = G* = C{x}[[]] = C[[t, x]] .

§3. Statement of Theorem
Let P be a differential operator of the following form:

P=D"+ ) a;,(txD/D;,

0<j<m
where g; , € G°. We assume that P is not Kowalewskian:
ord P>m.

We consider the Cauchy problem

©n {z?“Lf(: 2 for 0<j<m-—1
where
feG,g,eC{x}.
There exists a unique formal solution u € G*. The Cauchy-Kowalewski theorem asserts

that, if P is Kowalewskian, u is convergent. We investigate precisely the relation
between the divergence order of u and the Newton polygon of P.

Theorem 1. Let s =1+ 1/k,. Then there exists a unique solution u € G*, satisfying
(CP).

Remark 1. Particularly for f, a;,€ C{t,x}, a fortiori the assertion of theorem
holds. We rediscover one corollary of Ouchi’s results [9].

Remark 2. This result is best possible: In general one cannot lower the Gevrey
order s. For example, let

n=1, P=D,—tD}, f=0 and g=) x'e0(x|<1),
=0

where 0 € N, m > 2. Then we have

(mi + j)! Jo+ Uiy g+1 _o+m

= — N k = d = .
. i,j>0 (O' + l)ll"]' x ! m—1 an 51 o+ 1
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It follows that

ueG* for s>s;, but u¢G for s<s;.

§4. Formal Norm and Lemmas

For u € G5 ,, we shall use the formal norm:

p,rs

def & ”u ”r £

L OCEWe

If |t| < p, then we have

INFLu] (@) < |uly,,,  NP[ul(p) = |ul;,,

We set
tj-l—l

Orw0 =3 u for ueO(|x| <AI[].

=0 j+1
Lemma 2. Let a,ucG;,. The following properties hold for 0 <t < p:
(1) Ny[aul(z) < N7[a](®) N7[u](®)

@ N;

FLul(®)

forO<r' <ri=12,...,n

The proof is straightforward. Inequality (1) asserts that G;, is a Banach algebra.
Notice that in general D, nor D, do not operate on G ,.

We define the operators A, B; acting on R{t}:

(3) N[D7'ul(t) = AN [ul) (@)

(4) where A Y cti-Y ¢ ’(J Ty

(%) Ny [tul(t) = By(N;[ul)(@)
t1+1

(6) where B:Y ¢t/ ¢ ,( G

Proposition 1. Let T and s be non-negative real numbers. Let f(t) =Y 2ocit’ €
R{t} with radius of convergence >T. If f(t)>0 for 0 <t < T, then

@nméi,(+w_o

for0<t<T

Since the assertion is trivial for s = 0, we assume s > 0. It suffices to prove that L,
has the following integral representation: for f stated above,
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7 (L)) = ﬁ J:O e 5T (te ") dr .

The convergence of integral is proved in the same way as that of Euler’s expression of
Gamma-function. For f(¢) = t", we have

1 © t" ©
- e—rrs—l(te—r)n dT.' — j e—(n+1)trs—1 d‘[
I'(s) fo () Jo

t" 1 [* L
— - —T,.5— d
(n+1)sr(s)L crE

—_— t"

T m+ 1
This implies that (7) holds for f polynomial. The right side of (7) is a continuous
operator in %°[0, T] and f, =)iZ4c;t/ converges to f in %°[0,T]. In addition
L(f—f)—-0n- o) in €°[0, T] by the fact that Taylor series are absolutely and

uniformly convergent on any compact subset in the circle of convergence. Thus (7)
holds for any f stated above.

Since we have A, , = B, A,f = t(L,f)(t), the proposition means that operators A;,
B, preserve inequalities.

§5. Proof of Theorem 1
First we show that the assumption s = 1 + 1/k, implies that
®) la| < (s — Do (), o) + s(m — j) .

Indeed, Newton polygon of P has both vertex (m, —m) and side of slope k; through
(m, —m). Since the points (j + |a|, 0(j, @) —j) are included in the upper half plane
defined by y > k,(x — m) — m, we obtain

1 1
o(j,0) =j 2 ki(j + lal) — (ky + Dme=a| < ;~0(j, o) + <1 + k—)(m -7
1 1

which proves (8).
Let P = D" — Q where

=

m—

Q= — Z 5j,aD§'§t"‘j'“)D{.
i=0

We define a sequence {u,} as follows:
{D,’"uo =f
Diugli=0 = g; O<j<m-—-1).
For k > 0,
{Dtmuk-rl =Qu + f

Diugiili=o=9; (O<j<m—1).
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Next we set
Vo = Ug ,
Vppg = Uy — U if k=>0.
Then we have for k > 1,

Di"v, = Qv
D{Uk|t=0=0 (OSjSm—l).

We also set w, = D"y, then we have for k > 1, v, = D;™w,. Then the sequence {w,}
satifies the following equation:

Wo = Dtmuo = f >
Wers = 0D "W, (k= 0)
where

© oD "= Y 4, DittOD " .

0<j<m,a

Let T and r, be positive real numbers such that f, d; ,€ G1,,. We fix r; € 10, ro[.
It follows immediately that for 0 < p < T and 0 <r <y,

Uy, Uy, W €Gj .
Let K and M denote positive constants such that
Ny [f1(T) =K and N; [4;, ](T) < M

for any 4; , which appears in P. We prove the following inequality by induction on k:
There exist a positive constant C such that for k e N and r € Jry, 1o [,
edktk

(10) Ni[wd < ch(ro—_—r)-d;

where d = max {|«l; a; , # 0}.
Let us take r € Jry, ro[ and ¥’ > r. From (1), (2), (9), we have

M . .
an N [Werr] < Z ——— NE[t°POD =iy, ]
' —r)e

)

M o
=X g (BTN

M S
=2 W(BE(”“)AQN," [we]

where we set v(j, 2) = o(m — j, ®) for 1 <j <m. Then from (8), we have
(12) le] < (s — Dv(j, @) + 57 .

If we assume that (10) holds for k, we get from Proposition 1 and (11),
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1
— (o — 1Y

N [Wes1] < KMCte™ 3 = p (B AN [14] .

We now choose r' =r + (r, — r)/(k + 1), so that r, —r' = (r, — r)/(1 + 1/k). Then for
the coefficients of t**i**U:® ynder sigma sign, we have

1 1
= —r)Y* (kK +1)...(k+ )P (k+j+1)...(k+j+v(j,a)?
(4 1k (k + 1)

T = (ke 1)k PPk + D)k V(@)

By (12), the second fraction is less than or equal to

( (k+ 1y >S< (k + 1)U >S'1
k+1)...k+j)) \(k+j+D...(k+j+v(j, ) ’

which is less than or equal to 1. Thus we obtain

d(k+1)tk+1

€ M Z (rO _ r)d—laltj—1+v(j,a) .

(ro — )" 57,

It suffices to take the constant C by

Ny [Wei ] < KC*

C=M (ro — rl)d-IaITj—HV(j,a) .

j=z1,a
If we choose ¢ € 10, T] such that
Ce'e
(ro — 1)’
it follows from (10) that )2, w, is convergent in Gf,. Since D,™ is a continuous

operator in G;, and that Dy, Q: G}, — G;, , are continuous operators for &, € 10, g[, it
follows that

<1,

0
u=limu =Y neG,cG
k— o0 k=0

and u satisfies (CP) in G The proof is complete.

17"

§6. Further Generalizations

To make the assertions clear, we stated Theorem 1 under more restrictive assump-
tions, which we shall make less strict as follows.
1. Theorem 1 also holds for operators of the following type:

P =Y a;,(t x)DiD}
Jra
where a,, o(t, x) is a unit in C[[t, x]] and the point (m, —m) is a vertex of N(P). Notice

that in this case order of P with respect to D, may be larger than m.
2. For P, we denote its principal part by
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o(P) =} ;,D{D;

where Z’ means that sum is taken for all (j, «) such that o(j, ) — j = min [o(j, &) — j]1,
namely sum of the terms of P which correspond to the points lying on the side of N(P)
parallel to abscissa. The operators discussed so far have the term D" as principal part.

Theorem 2. The assertion of Theorem 1 also holds for operators P such that o(P) is
Fuchsian in the sense of Baouendi-Goulaouic under the usual conditions on characteristic
exponents [2].

Needless to say we have to modify the number of Cauchy data in this case.
These assertions are proved in the same way as Theorem 1.

Acknowledgement. 1 would like to thank the referee for his critical reading the
manuscript and useful comments. Especially, I owe to him the example in Remark 2,
section 3.
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