Newton Polygons and Formal Gevrey Classes

Ву

Akiyoshi Yonemura*

Introduction

Following to the fundamental study of Malgrange [7], Ramis elucidated the analytic meaning of slope of Newton polygon for ordinary differential operators [10]: In generic cases the index of operator in formal Gevrey class of order s equals to the ordinate at the origin of supporting line of Newton polygon with slope k = 1/(s - 1). He also demonstrated various comparison theorems.

The purpose of this note is to generalize one aspect of Ramis theory to partial differential operators. There seems to be three ways of generalization:

- 1. To consider holonomic systems.
- 2. To consider operators of Kashiwara-Kawai-Sjöstrand type [1, 3].
- 3. To consider Cauchy problems.

For 1, 2, we refer to Laurent theory [4, 5, 6]. We shall discuss from the standpoint 3.

On the other hand, our study is closely related to the Cauchy-Kowalewski theorem. Mizohata's inverse Cauchy-Kowalewski theorem asserts that if the operator is not Kowalewskian, there exists a divergent formal solution [8]. It is well known that the formal solution of heat equation belongs to Gevrey class of order 2. The problem is what determines the Gevrey order of formal solutions.

From a different point of view, Ouchi developed the theory concerning the analytic meaning of formal solutions [9]. It is certain that his theory implies one part of our theorem. There exists, however, more elementary and straightforward method to our problem.

§ 1. Notations

For $x = (x_1, x_2, ..., x_n) \in \mathbb{C}^n$, we set $|x| = \max_{1 \le j \le n} |x_j|$. Let $\mathcal{O}(|x| < r)$ be the set of all holomorphic functions in $\{x \in \mathbb{C}^n; |x| < r\}$. We also set

$$\mathcal{O}(|x| \leq r) = \mathcal{C}^0(|x| \leq r) \cap \mathcal{O}(|x| < r)$$

where $\mathscr{C}^0(|x| \le r)$ is the set of all continuous functions on $\{x \in \mathbb{C}^n; |x| \le r\}$.

Communicated by S. Matsuura, March 22, 1989.

^{*} Faculty of Engineering, Osaka Institute of Technology, Asahi-ku, Osaka, 535, Japan.

It is obvious that $\mathcal{O}(|x| \le r)$ is a Banach space with maximum norm $\|\cdot\|_r$.

Let $\mathbb{C}[[t, x]]$ be the set of formal power series with complex coefficients in n + 1 indeterminates t, x. Let $\mathbb{C}\{t, x\}$ be the set of convergent power series in n + 1 variables $(t, x) = (t, x_1, ..., x_n)$. When we set $A = \mathcal{O}(|x| \le r)$ or $\mathbb{C}\{x\}$, we denote by A[[t]] the set of formal power series in t with coefficients in A. These are subspaces of $\mathbb{C}[[t, x]]$.

We shall use standard multi-indices notations:

$$D_t = \frac{\partial}{\partial t}, \qquad D_j = \frac{\partial}{\partial x_j} \qquad (j = 1, 2, ..., n),$$

$$D_x^{\alpha} = D_1^{\alpha_1} ... D_n^{\alpha_n} \text{ for } \alpha \in \mathbb{N}^n.$$

§ 2. Definitions

Let P be a differential operator with coefficients $\in \mathbb{C}[[t, x]]$:

$$P = P(t, x; D_t, D_x) = \sum_{j,\alpha} a_{j,\alpha}(t, x) D_t^j D_x^{\alpha} = \sum_{j,\alpha} t^{\sigma(j,\alpha)} \tilde{a}_{j,\alpha}(t, x) D_t^j D_x^{\alpha}$$

where $\tilde{a}_{j,\alpha}(0,x) \neq 0$ in $\mathbb{C}[[x]]$. Let Q be the second quadrant of \mathbb{R}^2 and for $(u,v) \in \mathbb{R}^2$, we set

$$Q(u, v) = (u, v) + Q.$$

Definition. The Newton polygon of P, denoted by N(P), is defined by the convex hull of the union of $Q(j + |\alpha|, \sigma(j, \alpha) - j)$ for j, α such that $a_{j,\alpha} \neq 0$ in $\mathbb{C}[[t, x]]$:

$$N(P) = ch\left(\bigcup_{\alpha, \gamma \neq 0} Q(j + |\alpha|, \sigma(j, \alpha) - j)\right).$$

Let $0 = k_0 < k_1 < \dots < k_l$ be the slopes of sides of N(P).

Remark. If P is a differential operator with holomorphic coefficients, this definition is a special case of more general one [4, 5, 6]: If we choose

$$X = \mathbb{C}^{n+1} = \mathbb{C}_t \times \mathbb{C}_x^n$$
, $Y = \{t = 0\} \subset X$, $\Lambda = T_Y^*X$ and $O = (o; o) \in X$,

then according to Laurent's notation [5] we have

$$N(P) = N_{\Lambda, O}(P)$$
.

Let us notice that this definition is different from that of Mizohata [8]. For example, it suffices to consider the operator $P = D_t^2 + D_t D_x^2 + t^2 D_x^5$.

To examine the analytic meaning of k_j , we define the functions of formal Gevrey class.

Definition. Let $s \ge 1$, $\rho > 0$ and r > 0. Then we denoted by $G_{\rho,r}^s$ the set of all $u = \sum_{j=0}^{\infty} u_j t^j \in \mathcal{O}(|x| \le r)[[t]]$ such that

$$|u|_{\rho,r}^{s} \stackrel{\text{def}}{=} \sum_{j=0}^{\infty} \frac{\|u_{j}\|_{r}}{(j!)^{s-1}} \rho^{j} < +\infty.$$

Lemma 1. $G_{\rho,r}^s$ is a Banach space with norm $|\cdot|_{\rho,r}^s$.

The proof is obvious.

We set

$$G^s_{
ho} = \bigcup_{r>0} G^s_{
ho,r} \text{ and } G^s = \bigcup_{
ho>0} G^s_{
ho}.$$

Note that $G^1 = \mathbb{C}\{t, x\}$. If we also set $G^{\infty} = \mathbb{C}\{x\}[[t]]$, then we have interpolation spaces G^s between the space of convergent power series and that of formal power series: for $1 < s < \infty$,

$$\mathbb{C}\{t,x\} = G^1 \subset G^s \subset G^\infty = \mathbb{C}\{x\}[[t]] \subset \mathbb{C}[[t,x]].$$

§ 3. Statement of Theorem

Let P be a differential operator of the following form:

$$P = D_t^m + \sum_{0 \le j \le m} a_{j,\alpha}(t,x) D_t^j D_x^{\alpha},$$

where $a_{j,\alpha} \in G^s$. We assume that P is not Kowalewskian:

ord
$$P > m$$
.

We consider the Cauchy problem

$$(CP)\begin{cases} Pu = f(t, x) \\ D_t^j u|_{t=0} = g_j & \text{for } 0 \le j \le m-1 \end{cases}$$

where

$$f \in G^s$$
, $g_i \in \mathbb{C}\{x\}$.

There exists a unique formal solution $u \in G^{\infty}$. The Cauchy-Kowalewski theorem asserts that, if P is Kowalewskian, u is convergent. We investigate precisely the relation between the divergence order of u and the Newton polygon of P.

Theorem 1. Let $s = 1 + 1/k_1$. Then there exists a unique solution $u \in G^s$, satisfying (CP).

Remark 1. Particularly for f, $a_{j,\alpha} \in \mathbb{C}\{t,x\}$, a fortiori the assertion of theorem holds. We rediscover one corollary of $\overline{O}uchi's$ results [9].

Remark 2. This result is best possible: In general one cannot lower the Gevrey order s. For example, let

$$n=1, P=D_t-t^{\sigma}D_x^m, f=0 \text{ and } g=\sum_{j=0}^{\infty}x^j\in\mathcal{O}(|x|<1),$$

where $\sigma \in N$, $m \ge 2$. Then we have

$$u = \sum_{i \ge 0} \frac{(mi+j)!}{(\sigma+1)^i i! i!} t^{(\sigma+1)i} x^j, \quad k_1 = \frac{\sigma+1}{m-1} \quad \text{and} \quad s_1 = \frac{\sigma+m}{\sigma+1}.$$

It follows that

$$u \in G^s$$
 for $s \ge s_1$, but $u \notin G^s$ for $s < s_1$.

§ 4. Formal Norm and Lemmas

For $u \in G_{\rho,r}^s$, we shall use the formal norm:

$$N_r^s[u](t) \stackrel{\text{def}}{=} \sum_{j=0}^{\infty} \frac{\|u_j\|_r}{(j!)^{s-1}} t^j$$
.

If $|t| \leq \rho$, then we have

$$|N_r^s[u](t)| \le |u|_{\rho,r}^s, \quad N_r^s[u](\rho) = |u|_{\rho,r}^s.$$

We set

$$(D_t^{-1}u)(t) = \sum_{j=0}^{\infty} u_j \frac{t^{j+1}}{j+1} \quad \text{for} \quad u \in \mathcal{O}(|x| \le r)[[t]].$$

Lemma 2. Let $a, u \in G_{\rho,r}^s$. The following properties hold for $0 \le t \le \rho$:

$$(1) N_r^s[au](t) \le N_r^s[a](t) \cdot N_r^s[u](t)$$

$$(2) N_{r'}^{s}[D_{i}u](t) \leq \frac{1}{r-r'}N_{r}^{s}[u](t)$$

for
$$0 < r' < r, i = 1, 2, ..., n$$
.

The proof is straightforward. Inequality (1) asserts that $G_{\rho,r}^s$ is a Banach algebra. Notice that in general D_t nor D_i do not operate on $G_{\rho,r}^s$.

We define the operators A_s , B_s acting on $\mathbb{R}\{t\}$:

(3)
$$N_r^s[D_t^{-1}u](t) = A_s(N_r^s[u])(t)$$

(4) where
$$A_s: \sum c_j t^j \mapsto \sum c_j \frac{t^{j+1}}{(j+1)^s}$$

(5)
$$N_r^s[tu](t) = B_s(N_r^s[u])(t)$$

(6) where
$$B_s: \sum c_j t^j \mapsto \sum c_j \frac{t^{j+1}}{(j+1)^{s-1}}$$

Proposition 1. Let T and s be non-negative real numbers. Let $f(t) = \sum_{j=0}^{\infty} c_j t^j \in \mathbb{R}\{t\}$ with radius of convergence > T. If $f(t) \ge 0$ for $0 \le t \le T$, then

$$(L_s f)(t) \stackrel{\text{def}}{=} \sum_{j=0}^{\infty} c_j \frac{t^j}{(j+1)^s} \ge 0$$

for $0 \le t \le T$.

Since the assertion is trivial for s = 0, we assume s > 0. It suffices to prove that L_s has the following integral representation: for f stated above,

(7)
$$(L_s f)(t) = \frac{1}{\Gamma(s)} \int_0^\infty e^{-\tau} \tau^{s-1} f(t e^{-\tau}) d\tau .$$

The convergence of integral is proved in the same way as that of Euler's expression of Gamma-function. For $f(t) = t^n$, we have

$$\begin{split} \frac{1}{\Gamma(s)} \int_0^\infty e^{-\tau} \tau^{s-1} (t e^{-\tau})^n \, d\tau &= \frac{t^n}{\Gamma(s)} \int_0^\infty e^{-(n+1)\tau} \tau^{s-1} \, d\tau \\ &= \frac{t^n}{(n+1)^s} \frac{1}{\Gamma(s)} \int_0^\infty e^{-\tau} \tau^{s-1} \, d\tau \\ &= \frac{t^n}{(n+1)^s} \, . \end{split}$$

This implies that (7) holds for f polynomial. The right side of (7) is a continuous operator in $\mathscr{C}^0[0,T]$ and $f_n = \sum_{j=0}^{j=n} c_j t^j$ converges to f in $\mathscr{C}^0[0,T]$. In addition $L_s(f-f_n) \to 0 (n \to \infty)$ in $\mathscr{C}^0[0,T]$ by the fact that Taylor series are absolutely and uniformly convergent on any compact subset in the circle of convergence. Thus (7) holds for any f stated above.

Since we have $A_{s-1} = B_s$, $A_s f = t(L_s f)(t)$, the proposition means that operators A_s , B_s preserve inequalities.

§5. Proof of Theorem 1

First we show that the assumption $s = 1 + 1/k_1$ implies that

$$|\alpha| \le (s-1)\sigma(j,\alpha) + s(m-j).$$

Indeed, Newton polygon of P has both vertex (m, -m) and side of slope k_1 through (m, -m). Since the points $(j + |\alpha|, \sigma(j, \alpha) - j)$ are included in the upper half plane defined by $y \ge k_1(x - m) - m$, we obtain

$$\sigma(j,\alpha)-j\geq k_1(j+|\alpha|)-(k_1+1)m\Longleftrightarrow |\alpha|\leq \frac{1}{k_1}\sigma(j,\alpha)+\left(1+\frac{1}{k_1}\right)(m-j),$$

which proves (8).

Let $P = D_r^m - Q$ where

$$Q = -\sum_{i=0}^{m-1} \tilde{a}_{j,\alpha} D_x^{\alpha} t^{\sigma(j,\alpha)} D_t^j.$$

We define a sequence $\{u_k\}$ as follows:

$$\begin{cases} D_t^m u_0 = f \\ D_t^j u_0|_{t=0} = g_j \qquad (0 \le j \le m-1) \,. \end{cases}$$

For $k \geq 0$,

$$\begin{cases} D_t^m u_{k+1} = Q u_k + f \\ D_j^t u_{k+1}|_{t=0} = g_j & (0 \le j \le m-1). \end{cases}$$

Next we set

$$v_0 = u_0 ,$$

$$v_{k+1} = u_{k+1} - u_k \quad \text{if} \quad k \ge 0 .$$

Then we have for $k \ge 1$,

$$\begin{cases} D_t^m v_k = Q v_{k-1}, \\ D_t^j v_k|_{t=0} = 0 & (0 \le j \le m-1). \end{cases}$$

We also set $w_k = D_t^m v_k$, then we have for $k \ge 1$, $v_k = D_t^{-m} w_k$. Then the sequence $\{w_k\}$ satisfies the following equation:

$$w_0 = D_t^m u_0 = f$$
,
 $w_{k+1} = Q D_t^{-m} w_k \qquad (k \ge 0)$

where

$$QD_t^{-m} = \sum_{0 \le j \le m, \alpha} \tilde{a}_{j,\alpha} D_x^{\alpha} t^{\sigma(j,\alpha)} D_t^{-(m-j)} w_k.$$

Let T and r_0 be positive real numbers such that f, $\tilde{a}_{j,\alpha} \in G^s_{T,r_0}$. We fix $r_1 \in]0, r_0[$. It follows immediately that for $0 < \rho < T$ and $0 < r < r_0$,

$$u_k, v_k, w_k \in G_{o,r}^s$$
.

Let K and M denote positive constants such that

$$N_{r_0}^s[f](T) = K$$
 and $N_{r_0}^s[\tilde{a}_{i,\alpha}](T) \leq M$

for any $\tilde{a}_{j,\alpha}$ which appears in P. We prove the following inequality by induction on k: There exist a positive constant C such that for $k \in \mathbb{N}$ and $r \in [r_1, r_0[$,

(10)
$$N_r^s[w_k] \le KC^k \frac{e^{dk}t^k}{(r_0 - r)^{dk}}$$

where $d = \max\{|\alpha|; a_{j,\alpha} \neq 0\}.$

Let us take $r \in]r_1, r_0[$ and r' > r. From (1), (2), (9), we have

(11)
$$N_{r}^{s}[w_{k+1}] \leq \sum \frac{M}{(r'-r)^{|\alpha|}} N_{r'}^{s}[t^{\sigma(j,\alpha)}D_{t}^{-(m-j)}w_{k}]$$

$$= \sum \frac{M}{(r'-r)^{|\alpha|}} (B_{s}^{\sigma(j,\alpha)}A_{s}^{m-j})N_{r'}^{s}[w_{k}]$$

$$= \sum \frac{M}{(r'-r)^{|\alpha|}} (B_{s}^{\nu(j,\alpha)}A_{s}^{j})N_{r'}^{s}[w_{k}]$$

where we set $v(j, \alpha) = \sigma(m - j, \alpha)$ for $1 \le j \le m$. Then from (8), we have

$$|\alpha| \le (s-1)\nu(j,\alpha) + sj.$$

If we assume that (10) holds for k, we get from Proposition 1 and (11),

$$N_r^s[w_{k+1}] \le KMC^k e^{dk} \sum \frac{1}{(r'-r)^{|\alpha|}(r_0-r')^{dk}} (B^{\nu(j,\alpha)}A^j)[t^k].$$

We now choose $r' = r + (r_0 - r)/(k + 1)$, so that $r_0 - r' = (r_0 - r)/(1 + 1/k)$. Then for the coefficients of $t^{k+j+\nu(j,\alpha)}$ under sigma sign, we have

$$\frac{1}{(r'-r)^{|\alpha|}(r_0-r')^{dk}} \frac{1}{((k+1)\dots(k+j))^s((k+j+1)\dots(k+j+\nu(j,\alpha))^{s-1}} \\
= \frac{(1+1/k)^{kd}}{(r_0-r)^{|\alpha|+dk}} \frac{(k+1)^{|\alpha|}}{((k+1)\dots(k+j))^s((k+j+1)\dots(k+j+\nu(j,\alpha))^{s-1}}$$

By (12), the second fraction is less than or equal to

$$\left(\frac{(k+1)^j}{(k+1)\dots(k+j)}\right)^s \left(\frac{(k+1)^{\nu(j,\alpha)}}{(k+j+1)\dots(k+j+\nu(j,\alpha))}\right)^{s-1},$$

which is less than or equal to 1. Thus we obtain

$$N_r^s[w_{k+1}] \le KC^k \frac{e^{d(k+1)}t^{k+1}}{(r_0-r)^{d(k+1)}} M \sum_{j>1,\alpha} (r_0-r)^{d-|\alpha|}t^{j-1+\nu(j,\alpha)}.$$

It suffices to take the constant C by

$$C = M \sum_{j \ge 1, \alpha} (r_0 - r_1)^{d - |\alpha|} T^{j - 1 + \nu(j, \alpha)}.$$

If we choose $\varepsilon \in]0, T]$ such that

$$\frac{Ce^d\varepsilon}{(r_0-r)^d}<1\;,$$

it follows from (10) that $\sum_{k=0}^{\infty} w_k$ is convergent in $G_{\varepsilon,r}^s$. Since D_t^{-m} is a continuous operator in $G_{\varepsilon,r}^s$ and that D_t^m , $Q: G_{\varepsilon,r}^s \to G_{\varepsilon_1,r_1}^s$ are continuous operators for $\varepsilon_1 \in]0, \varepsilon[$, it follows that

$$u = \lim_{k \to \infty} u_k = \sum_{k=0}^{\infty} v_k \in G^s_{\varepsilon, r} \subset G^s_{\varepsilon_1, r_1}$$

and u satisfies (CP) in G_{ε_1,r_1}^s . The proof is complete.

§ 6. Further Generalizations

To make the assertions clear, we stated Theorem 1 under more restrictive assumptions, which we shall make less strict as follows.

1. Theorem 1 also holds for operators of the following type:

$$P = \sum_{i,\alpha} a_{j,\alpha}(t,x) D_t^j D_x^{\alpha}$$

where $a_{m,0}(t, x)$ is a unit in $\mathbb{C}[[t, x]]$ and the point (m, -m) is a vertex of N(P). Notice that in this case order of P with respect to D_t may be larger than m.

2. For P, we denote its principal part by

$$\sigma(P) = \sum_{i}^{\prime} a_{i,\alpha} D_{i}^{j} D_{x}^{\alpha}$$

where \sum' means that sum is taken for all (j, α) such that $\sigma(j, \alpha) - j = \min [\sigma(j, \alpha) - j]$, namely sum of the terms of P which correspond to the points lying on the side of N(P) parallel to abscissa. The operators discussed so far have the term D_t^m as principal part.

Theorem 2. The assertion of Theorem 1 also holds for operators P such that $\sigma(P)$ is Fuchsian in the sense of Baouendi-Goulaouic under the usual conditions on characteristic exponents [2].

Needless to say we have to modify the number of Cauchy data in this case.

These assertions are proved in the same way as Theorem 1.

Acknowledgement. I would like to thank the referee for his critical reading the manuscript and useful comments. Especially, I owe to him the example in Remark 2, section 3.

References

- [1] Aoki, T., Kashiwara, M. and Kawai, T., On a class of linear differential operators of infinite order with finite index, Adv. in Math. 62 (1986), 152-168.
- [2] Baouendi, M. S. and Goulaouic, C., Cauchy problems with characteristic initial hypersurface, Comm. Pure App. Math. 2 (1973), 455-475.
- [3] Kashiwara, M., Kawai, T. and Sjöstrand, J., On a class of linear partial differential equations whose formal solutions always converge, Ark. Mat. 17 (1979), 83-91.
- [4] Laurent, Y., Théorie de la Deuxième Microlocalisation dans le Domaine Complexe, Progress in Math. 53, Birkhäuser, 1985.
- [5] ——, Calcul d'induces et irrégularité pour les systèmes holonômes, *Astérisque* 130 (1985), 352-364.
- [6] ———, Polygône de Newton et b-foctions pour les modules micro-différentiels, Ann. Sci. École Norm. Sup. 20 (1987), 391-441.
- [7] Malgrange, B., Sur les points singuliers des équations différentielles, Enseign. Math. 20 (1974), 147–176.
- [8] Mizohata, S., On the Cauchy-Kowalewski theorem, Mathematical Analysis and Applications, Part B; Adv. in Math. Supplementary Studies, 7B (1981), 617-652.
- [9] Ouchi, S., Characteristic Cauchy problems and solutions of formal power series, Ann. Inst. Fourier (Grenoble) 33 (1983), 131-176.
- [10] Ramis, J.-P., Théorèmes d'indices Gevrey pour les équations différentielles ordinaires, Memoirs of the Am. Math. Soc. Vol. 48, No. 296, 1984.
- [11] Treves, F., Basic Linear Partial Differential Equations, Academic Press, 1975.