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Second Microlocalization at the Boundary
and MIcrohyperbolicity

By

Motoo UCHIDA* and Giuseppe ZAMPIERI**

Abstract

The purpose of this paper is to construct the "sheaf" of 2-hyperfunctions at the boundary along
an involutive submanifold and to generalize the notion of microhyperbolicity at the boundary. Let
M be a real analytic manifold, X a complexification of M, and let Q be an open subset of M with
Cw-boundary N. Let Fbe a conic involutive submanifold of T^X which intersects transversally to

N x T%f X with regular involutive intersection. Then we define the complex of ^j-Modules $2$x °f

2-hyperfunctions at the boundary along V, which appears to be a useful tool in studying non-
characteristic boundary value problems. Remark that the complex ^Q\X

 was first introduced by P.
Schapira [S 3] for the microlocal study of boundary value problems. Next we introduce the notion
of O-F-hyperbolicity of a system M of microdifferential equations and prove that it implies
"propagation of zeros up to the boundary" of cohomology groups of the complex Rjf#mSx(Jt,
^2Q\x}- This implies in particular "D-regularity" of M in the sense of [S 3].

§ 1. Microlocalization

Let X be a real C2-manifold, T*X the cotangent bundle to X, n: T*X -> X
the natural projection.

D+(X) denotes the derived category of complexes of sheaves of modules on
X bounded from below. Refer to [H] for the notion of derived categories and
derived functors.

Let M, Y be two closed submanifolds of X with M c Y, and A, B two
locally closed subsets of Y with A = B{]M. For &eOb(D+(X)) we define
fJLA(^)9 the microlocalization of 3F along A, by

(1.1) liA(P) = ^hom(ZA, #•),

where /jhom ( , ) is the bifunctor defined in [K-S2] (cf. also [S3]). We note
that there are a natural morphism

Communicated by M. Kashiwara, February 23, 1988. Revised September 27, 1989.
Department of Mathematics, Faculty of Science, University of Tokyo, Hongo, Bunkyo-ku,
Tokyo, 113 Japan.
Seminario Matematico, Universita di Padova, Via Belzoni, 7, 35131 Padova, Italy.



206 MOTOO UCHIDA AND GlUSEPPE ZAMPIERI

(1-2) Mx(^)

and an isomorphism

(1.3) R n^A(^) =* R "*

Thus we have a commutative diagram

(1-4) A - M ™
\ /

Refer to [K-S2] for the details about microlocalization, functors and the
notation that we use in this paper.

§2. The Complex %2
Q]X

In this section we assume that M is a real analytic manifold of product type
M = M' x L with complexification X = X' x Z and dimension n = nl

+ n2. We denote by (9X the sheaf of holomorphic functions on X, and &x the
sheaf of microdifferential operators on T*X. For a locally closed set A' a M',
we put A =A' x L and define

(2-1) <$\\x = UA'

(2-2) «J|, = Mr**

(2.3) @2
Alx = *^|^XL

with coM>ix>9 WL/Z being the relative orientation sheaves (cf. [S3], [S4]). ^h
A\x

and ^\\x are complexes of ye"1 ^-modules on T*X' x Z and T*Xf x L
respectively, and ^A^x is a complex of n^1 n~l ^-modules on T* X' x TfZ
(nL: T* X' x TfZ ^> T*X' x L). X being the complexification of M, we

identify M x T* X and T^ X © T* M in the following statements of this

section. Let p e T^ X' x L, n(p) = x.

Theorem 2.1. Let A = A' x L be an open subset (resp. a closed subset) of
M = M' x L such that

(2.4) N*(A)^T*M.

Then any germ 0 of complex contact transformation at p preserving T^> X' x L
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and (A xT^X)®N*(A)a(resp. (A x T&X) © N*(A)) may be quantized to

quasi-isomorphisms of complexes

Proof. We first note that 0 preserves Int(v4) x T^X, the J-symplectic
M

regular part of (.4 x TffX)® N*(A)a. Thus (f> preserves

A, = l(A*T*MX)^N*(An(}(T*X' x Z)

the union of complex bicharacteristic leaves of T* X' x Z issued
from A i,

M

and

,

= the union of complex bicharacteristic leaves of T* X' x Z issued
from Alo.

Now let 0: D + (X; p) -+D+(X ; 0(p)) be a quantized contact transformation
over (/) with shift n (cf. [K-S2]). Since for A open (resp. closed) SS(Z^xZ)
( = the microsupport of the sheaf Z^xZ on X) c A2 (resp. c= Aa

2) and the sheaf

ZA'XX i§ simple with shift i on A20, by Lemma 2.2 below (Cor. 1.2 of [U2])5

By using a quantization 3>(®X}~>(9X (cf. [K-S2]), we have a quasi-isomorphism

(0h /^ (V7'1
^^|X,p = ^|X,0(p)-

This induces also a quasi-isomorphism on ̂ ^x - ^^(^

Lemma 2.2. (cf. [U 2]). Ler X be a C2 -manifold, Y a closed submanifold of
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X, and B an open (resp. closed) subset of Y such that N*(B) / TJ 7. Suppose that

be simple with shift ^codim Y on lnt(B) x T^X and, in a

neighborhood of p e ( T f X ) x ,

(2.5) SS(J^) c WYp~1 (B x N*(B)a) (resp.

E7r, pr &ez>?0 /Ae natural mappings T*Y< — Yx T* X — » T*J^ associated to

Yc^ X. Then 3F is microlocally isomorphic to ZB at p.

Proof. By Prop. 6.2.1 of [K-S2] it is not restrictive to assume

(2.6) & ~ jFy.

We have SS(JF|y) c JV*(5)a(resp.SS(^"|y) c N*(S)) at p, and therefore

(2.7) #"lr^(#"Wi, (resp.Jny^Rr^]y)).

We observe now that, for a system of neighborhoods U of x, U ft Bis contractible

due to (2.4). From this and from the simpleness of 3F in B x T^ X, we get

(2.8)

From (2.6)- (2.8) the conclusion follows.

We choose now A = M in (2.1)-(2.3). Then ^M\X (resp. $M\X) i§ nothing but
the sheaf of Kashiwara's 2-microfunctions (resp. 2-hyperfunctions) along V
= fff.X' x L(cf. [X], [K-L]). The complex ^M\X^P-^M\X) is concentrated in
degree 0 and intrinsically defined on Tj^F^ Tf^X' x Tf Z (resp. F); moreover
the canonical morphism

(2.9) %M\f*M,X'xL^@M\X

is injective, where ^M is the sheaf of Sato's microfunctions.
Next we consider the complexes $x\x and ^\x for a closed analytic

submanifold N = N' x Lof M = M' x Lof codimension d > 1. ^^(resp.^j^)
is concentrated in degree 0 and intrinsically defined on T^X' x L
(resp. on T%NiX,xL(f%,X' x Z) ^ f^X' x TfZ). Moreover there is a natural
injective morphism

^ixIr^'xL - >^,x(cf-[K-K] as for VN}X).

The injectivity of this morphism can be proved by reducing it to that of the
morphism ^M\v -* ̂ ((2.9)).

We now describe the stalks of W^x* ^M\X by means of cohomology groups
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of @x in degree 1. We take a system of local coordinates

z = (z',z",zMl)eCd x C"1^-1 x C1 - X' with Y' = N'c = {zf = 0},

n2-1 x C1 -Z,

T*X' x T*Z.

We set

(2.10) G'M = {zeX'i Imzni ^ (Imz')2 + (Imz")2}, GM = G^ x Z,

(2.11) G;v = {zeJf;Imzn i^(Imz")2}, G* = G^ x Z,

(2.12) D = {weZ; Imwn2 > (Imw')2}5

and take a point

P = (pi,P2)e(N' x T^Xr) x T*Z with £ni ^ 0, TM2 ̂  0 at p.

With these notations we introduce contact transformations c/>1 on T* X' \ T^ X'
o

and 02 on r*Z which transform

^(T^X1) = TjG.MX', 4>l(T$.X') = TfG,NXf, 02(T*Z) = T$DZ,

and

^(Pi) = (0; idzni), 02(p2) = (0; idwB2).

We then quantize c/)1 on T* X and thus get isomorphisms

(2.13) <

(2-14) </>
o o o o

where we identify (T^X' x Z, T%,X' x Z) and (TfGM X, TfGNX) via (j)l x idr*z

from a neighborhood of (p1? (w; 0)) to a neighborhood of (<j)l (px), (w; 0)). Next
we quantize <£2 on T*(ffGk X' x Z) ̂  T* Tab^' x T*z and 8et

= -^ dG'Mx(Z\D) \^ GM \yx)\dG'MxZ)(Q,Q)

, W

lim F(Wn(3G^ x Z), 3?GM(®x)\dG' x
~wT* M

^,TTM ~"« v J"' x / "^r

for W(resp. WM) ranging through the family of neighborhoods of (0, 0) (resp. of
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Wn(dG'M x D)). (In doing the above calculation one has only to remark that
rGM(®x}\dGM = 0-) We refer to [S-Z 2] and [U 1] for the above quantization
with respect to holomorphic parameters. At the next step we replace by
excision WM with W'M = WM[j((X\GM)r\ W) in (2.15). We also notice that the
sequence

H^(W9 Ox) — > HlM (W'M9 Gx) — » H\W'M9 Gx) —+ 0,

is exact. Thus from (2.15) we obtain our basic representation

(2.16) V2
M]x,p^ljmHl(Wr

M, Gx).
W'M

In similar way one proves that

fj ii\ &>2 ~ s^1 ("&i (/n \\ \
{Z"L f) ^N\X,p = <*- dG'Nx(Z\D) (^GN (Ux)\dG'Nxz)(0,0)

slim Hl(wN9 ox)
W'N

for W'N varying in the family of open neighborhoods of ((dG'N x D)(j
(X\GN))n W. We note that the restriction from W'N to W'M induces a morphism

(2.18)
W'N W'M

Lemma 2.3. The morphism (2.18) is injective

Proof. Let /be a 5-closed (0, l)-form with coefficients in F(WN, ax*)9

being the sheaf of Sato's hyperfunctions on XR ~ E2n. Assume that there exists
a solution u of the system

du=f,

Since X\GN is Stein, we can solve in a neighborhood of 0

Thus u — w is holomorphic in X\GM and also in {(z, w)eZ x Z; ImzMl

> (Imz")2, Imwn2 - (Imw')2 = e, |Imzr| < (5}(Ve « 1 and for 6 = de). Applying
the Bochner's theorem to M - w in the variables (z'5 wn2) one then sees that u
extends uniquely to X\GN as a solution of dw =/.

Next by the same argument in the variables (z',zni) one proves that u
extends also to a neighborhood of dGN n (Xr x D) as a solution of 3w = /. In
conclusion / is exact in a set of type WN which proves the lemma.

We note that by applying /ur*X'XL( ) ® &>L/z[n2] (resP-R^r*;rxL( )®
coL/z[n2]) to the natural morphism

(2.19) ^5v|X —» ^M\X
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we get a morphism

(2.20) V2»\x—+«M\x

(resp.

/^) ^i\ /£j2 _ . 0%2(2.21) 9§N\X - > MM\X.

This morphism is clearly compatible with (2.18).

Theorem 2.4. Let N = Nf x L be a closed Cw-submanifold of M = M' x L.

(i) The morphism (2.20) is injective on (AT x T^, X') x TJ Z. /« particular
M'

&N\x\(N'x T*M,x')xL-+#M\x\(N'x r* X')XL » infective.
M" M' M'

(ii) Sections of ^N\X^ ^N\X ^ave tne unique continuation property along the

complex bicharacteristic leaves of Y' x T*X'.

Proof. Consider the commutative diagram with exact rows;

(2.22) 0 — > (n^)r^x'xL — *lv —»KL* V2
Nx — 0

0 — > (VhMlx)T*,X'xL — ^ *2rJf — ^L «iX — ^ 0.

(^L being the projection T* X ' x TJ Z -» T* Jf ' x L). Thus it is enough to
prove the theorem for ^\x on T* X' x Tf Z. We use now the trick of the
dummy variable due to Kashiwara. We put M' = M' x R, JT = ^T' x C, Y'
= Y ' x C, and set M = M' x L and so on. We denote

T*X+£- T*X x VA^T*RC=^ T*l,

and denote by t the new variable in R (or C). Then we have an exact
commutative diagram in T* X

(2.23) 0 — .S.p- ' «}„ S4 «J, -i. «} — , 0

0

The rows of this diagram are obtained by microlocalizing the short exact
sequence

0— > 0 - U 0 — f l— *0 ,



212 MOTOO UCHIDA AND GIUSEPPE ZAMPIERI

where j denotes the embedding X c; X . Because of (2.22) and (2.23) it is enough
to prove the theorem in (T*X'\T$,Xf) x t|Z. Then (i) follows from
Lemma 2.3. We prove now (ii). As seen in (2.17) we can identify

(2-24) V^x * ^aVx(z\z» WhM \6G J

via quantization of contact transformations (f)1 on (T*X'\T^Xf) x r*Z and (/>2

on T*(fgG.NX') x T*Z. (Here we are identifying Tf^lX.xL(T^Xr x Z) and

^G^'X^^SGW^' x z) via 02(0i 7 r x f * z ) in a neighborhood of p.) We set
G = {(z", zJeC"1"'1; Imzni ^ (Imz")2}. For a complex manifold W, we define
a sheaf J*v of 6V-modules on dG x W by

(2.25) J*V = ^Gxw(®C"

Then (2.24) can be rewritten as

In order to prove (ii) we use the following lemma, a conclusion of the abstract
edge of the wedge theorem due to Kashiwara-Laurent ([K-L]).

Lemma 2.5. Suppose that we are given a contravariant functor which
associates to each complex manifold W a sheaf 3FW of (9x-modules on dG x W
satisfying the following (H. 1)-(H. 3):
(H. 1) (Analytic continuation) If U => V are open subsets of W such that U is
connected and V ^ 0, and if Q is an open subset of dG, then we have

/W\K)(0* £7, JV) = 0.

(H.2) Let f be a holomorphic function on W with df^O. Put Y =f~1(Q) c W
and j: dG x Y-> dG x W. Then we have a short exact sequence

0 - >ywJ^fw - >j^Y - >0.

(H. 3) Let W and Y be complex manifolds with Y compact. Let q denote the
projection from dG x W x Y to dG x W. Then

Rh4*^wxY - &w ®Hh(Y, 0Y) (V/zeZ).

Under the hypotheses (H. 1)-(H. 3) we have the following properties for ^w.

(i) For any pair of holomorphically convex compact subsets Kl9 K2 ofCm with K±
=3 K2 and for any complex manifold W, we have

x (C"\K2) x W, ^Cmxw) = Q(Vh< m).
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(ii) (Bochner-Kashiwara-Komatsu). For 0 < a ̂  -, we set

GE = {(*! + iyl9 x2 + z>2)eC2; 0 g yl9 0 ^ j;2, 3^1 + ̂ 2

/0r fl«y complex manifold W, the restriction map

r(GE x w; &C2XW) — >r(Ft x ^ *W),
is surjective.

Our ^"jjr defined by (2.25) satisfies the conditions (H. 1)-(H. 3) of the above
lemma, and thus it satisfies the principle of Bochner-Kashiwara-
Komatsu. From this the unique continuation in the variables z'eCd for
sections of 3!?8Gxc*x(z\D)(^cdxz) follows. This corresponds to the unique
continuation in the variables C'eCd for section of C^\x by (2.24)'. The proof of
Theorem 2.4 is complete.

Now we introduce the complex of ^-modules ^2
n\x

 and the complex of
TijT 1 ̂ -modules ^2

n]x for an open subset & = £ 2 ' x L o f M = M ' x L with Cw-
boundary N = N' x L (or Q = M\N with a closed C^-submanifold N = N' x L
of codimension d ^ 2).

Note that our definition of 382^x ^ different from that of [S-Z2].
We first observe that there exists a distinguished triangle

/O o/;\ C^2 _ ^ 6?2 _ s. 6^2 £& &>2 + y ff^f^A \T _ 1 ^(2.20) <#Nix - > ̂ u\x - ^ ^> n\x t& v n- \x - > lcocl " - ^

(/?2 _ . (/?2 _ . (^2 + lv (r*r\A \T -^ 1 ^
^N\X - ^ ^>M\X - > ^/3|A: - ^ lcocl ^ > !)>

where Q~ = M\Q.

Theorem 2.6. (i) ^nixlr^.x'x^z ^ concentrated in degree 0. /« particular

$2n\x\T* ,xrxL is concentrated in degree 0.

(ii) R^L*(^2|x)lr* ,X'XL Z5 concentrated in degree 0 (^L: T*A"' x TfZ^>T*X'

x L).

(iii) The natural morphism %hn\x\T*Mtx'xL^ @2n\x\T*M,x'xL ™ injective.

Proof, (i) follows from (2.26) and Theorem 2.4 (i). (ii), (iii) : Let us apply
the functor R^L*( )\T* X'*L to (2.26). Then we have the long exact sequence
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0 » M KL*& OX)T*X'XL ® ^ n * ( ( ^ - \ * '

If wercL*(^|x)l:r*M,;rxL and w = 0 in rcL*(^M|x)lr*M,*'xL> then w = 0 in
^L*((^Nix)r* x'xr* z) by Theorem 2.4 (i). w is then zero in the whole T%,X'

O ' M'' L'

x TfZ by Theorem 2.4 (ii). This implies

(")' R^L.(«V)lr.M,;rxL = 0 (i < 0).

On the other hand we have Sato's triangle for #5^:

By this triangle, (ii) and (iii) follows from (i) and (ii)'.

Remark 2,7. The morphism

is not injective. In fact let codMN = 13 dim L= 1, set

X' = Cl x F-C1 x C"1'2 x ClB(zl9 z", zj, Z-C^w,

and define

Ul = {Imzni > (Imz")2 + (Im w)2/(l - c(ImZl)
2

+)}, c > 0,

l/2 = {Imzni > (Imz")2 + (Imw)2}?

(where (Imz^ = sup(0, ImzJ). Let fErVl(Ox)Q\ then / represents a germ of
* 'aix at (0; *'dzni) which is 0 in &2

n\x. But /is not 0 in ^ a\x as far as it does not
extend holomorphically to U2 in a neighborhood of 0. From this and from the
fact that Ul9 U2 are Stein, the non-injectivity of (2.27) follows.

The above remark does not affect the importance of df^x at least when
dealing with non-characteristic boundary value problems. In fact we have

Theorem 2.8. Let Ji be a coherent $x-module at p e Tf , X' x L. Assume
that Y is non-characteristic for <M at p. Then the morphism

(2.28)

is injective.

Proof. The case d = 1 (d = codMN): Set F = N x (T^X ^ N*(Q)a) and

consider the commutative diagram
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%>f2\X\T*N,X'xL * ^ Q\X\T*N,X'xL

Apply the functor R 3F#*nSx(Jt, ) and take the 0-th cohomology. Then the
first vertical (resp. the second horizontal) arrow becomes injective by the
watermelon-cut theorem (cf. [S3]) (resp. by the division formulas for ^N\
$N\X( = Lemma 2.9 below)) and by the injectivity of the morphism ^N\Y\f*

The case d > 1 : We have

HJ(Rjr*mfx(Jt, VN}X)) = o, H'(Rjr#m,x(j(9 #*„)) = o (j = o, i)
by Lemma 2.9. Thus we get isomorphisms

The injectivity of (2.28) then follows from the injectivity of ^M\f*Mrx'xL^ ^M\X
((2.9)). The proof is complete.

Lemma 2.9. (Division formulas for <gN\x and J^|X;cf. [K-S 1], [S-Z1])
Let Jt be a coherent $x-Module defined in a neighborhood of peT%,X'
x L. Assume that Y is non-characteristic for Jt at p. Then we have

(2.29)

(2.30) p* RjP#mfx (Jt, Vh
Nlx) [d] ^

and

where p denotes the natural projection T*X x Y-» T*Y, and Ji^ denotes the

tangential system of Ji. In (2.30) the suffix h means the holomorphicity in weZ
(see (2.1)).

Proof. (2.29) and (2.30) are proved by Kashiwara and Schapira [K-
S 1]. The formula (2.31) is obtained by applying the functor
R/VN,rxL( )®coL|z[>2] to (2.30).

At the end of this section we remark that our ^2
Q\x can be defined for some class

of involutive submanifolds V of T^X.

Remark 2.10. We can define $2
Q\x = ^2n\x with respect to any conic

involutive submanifold Fez T^X such that
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(2.32) Fand N x T&X intersect transversally and N x FIs regular involutive
M M.

(N = 8Q). In fact we can then assume, in suitable symplectic coordinates

(2.33) V = T& X'xL, Qxf*IX = (Qf x T£. X') x Tf Z,
M

and use (2.1), (2.3). On the other hand this definition is independent of the
choice of the symplectic coordinates due to Theorem 2.1.

§ 3. Q- F-MkrohyperboIIeity

Let M be an analytic manifold of dimension n, X a complexification of M,
Q a connected open subset of M. We assume that N = dQ is a submanifold of
M of codimension d ^ 1 and denote by 7 a complexification of N. Let V be a
conic regular involutive submanifold of T&X which satisfies (2.32), and let $2

M\x,

&SMX and 382
Q\X be the complexes associated to V and Q x V defined in §2

M.

(cf. Remark 2.10). Let gx be the sheaf of finite order microdifferential operators
on T*Z, and let Ji be a coherent ^-module in a neighborhood of

peN x F. We will consider the problem whetherj^f

(3.1) R/Vw R^^./T Mr, 0^), = o.
The vanishing of HQRrn-i(N)Rj^^mfx(Jf9 ^Q\X}P (i>e., the O-regularity of Jt at
p) is already discussed by several authors (cf. e.g. [Kat], [O 1], [S 2], [S-
Z2]). We note here that if Fis non-characteristic for Jt, then the vanishing of
the 0-th cohomology in (3.1) implies O-regularity on account of Theorem
2.8. Let x = n(p). X being the complexification of M, we have the embedding
TJ M -» TJ X. Composing it with TU* : TJ X -> TJ T* JT, we have the embedd-
ing TJM^T*T*Z. Let H:T*T*X^TT*X denote the Hamiltonian
isomorphism.

Theorem 3.1. Le£ Q a M be an open connected set in a neighborhood of x
with analytic boundary N, and let V be an involutive submanifold of T^X which

verifies (2.32). Let Jt be a coherent $x-module at psN x F, and assume that
M

(3.2) - H(0)i Cp(char J(, VQ\ MB e(f * M)x n JV* (O)a

w/z^re F^ w /Ae union of the complex bicharacteristic leaves of Fc issued from

Q x F 0ftd C( , ) w r/ze normal cone in the sense of [K-S 1].
M

Then (3.1) holds.
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Proof. The statement is independent of the choice of a system of
o

homogeneous symplectic coordinates of T^ X (cf. Remark 2.10).
We choose symplectic coordinates such that (2.33) is fulfilled. We set 3F

(Jt, %h
nlx) and observe that SS(J^) c C(char J(, SS(Z^xZ)) where

denotes the microsupport of J^ in the sense of [K-S 2]. Let d = codMN
= 1. By (3.2) we get

(3.3)

By the definition of microsupport, we have in a neighborhood of p

(3-4) R/;- Wxz) Rtf»m,x (Ji, ^x) = 0.

If we then apply to (3.4) the functor RFr* X'XL( • ) ® WL|Z ["2] ("2 = dim L), we
get (3.1).

Let d ^ 2 ; we first note that in this case
y&=V= the union of the complex bicharacteristic leaves of Vc issued from

V.
We need a preliminary result (valid even for d = 1) whose proof is immediate.

Lemma 3.2. Let p, to be the canonical maps from Y x T* X to T* Y and

T* X respectively. Let (3.2) be fulfilled; we then have, for some neighborhood U
of P'

(3.5) tu"1 (char Jf(}U)r\p~1p(N x V) c T^JT,
A/

(3.6) in'1 (char ^n ( / )np~ 1 p({p}) c {p}.

of Proof of Theorem 3.1. Using (3.2), (3.5), (3.6), and applying
Theorems 2.3.1 and 6.3.1 of [K-S 1], one easily checks that the natural
morphism

(3.7)

is a quasi-isomorphism. Hence we have

By applying R/YVJrxL( . ) (g) coL/z[n2~] to (3.8), we get (3.1).

The above theorem is the 2nd microlocal version of similar results of [Kat],
[O 1], [S2], [S-Z 1], and [S-Z2].

Remark 3.3. Let d ^ 2 and suppose that Y is non-characteristic for Jt;
then we have in a neighborhood of p, as is shown in the proof of Theorem 2.8,

(3.9)
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Suppose in addition that there exists 0e(T%M)x(x = n(p)) with #<£Cp(char J(,
V). Then by (3.9) and by the microlocal Holmgren theorem due to Kashiwara
(cf. [K], [B]), one gets the vanishing of the 0-th cohomology of (3.1). The
cohomology of degree ^ 1 is not necessarily 0 in this case.

Corollary 3A (cf. [S-Z 1, 2]) Let Q c M, V and Ji be as in Theorem 3.1.
Assume that Y is non-characteristic for Ji at p, and

(3.10) -H(0)<£Cp(char J/t, Vn) (for some 9<=(f%M)x(]N*(Q)a).

Then M is Q-regular at p in the sense of [S 3], that is, the natural restriction map

is injective.

Proof. The statement is independent of the choice of a system of
homogeneous symplectic coordinates of T^X (cf. [Kat], [U2]). Hence it is
enough to prove it in the case of (2.33). Then this is a corollary of Theorem 2.8
and Theorem 3.1 (resp. Remark 3.3) for d = 1 (resp. d ^ 2).

Remark 3.5, In this corollary we do not need to assume that V and V x N

be regular, using the trick of a dummy variable due to Kashiwara. This result
comprises as special cases O-regularity of Q -hyperbolic and that of non-
microcharacteristic systems (cf. [S 2], [S-Z 1, 2]).

Example 3.6. Let x = (xl9 x', x")eM = R" with x' = (x29--9 xk). Let Q
= {*! > 0}, and let V= {(x; iri)eT&X\ri" = 0}. Let

P(x9 D) = D\- £ a/*" *)DtDj + B(x9 D") + R(x, D),
i,j = 2

where m is an integer > 2, Q^t, x') (i, j = 2, • • • , k) is a real valued C^-function in
(t, x')eRfe such that Qtj = Qjt and the symmetric matrix (Qij(t9 x'))^j=2 is positive
semi-definite for any t > 0 and x'eR*"1, B(x, D") is a differential operator of the
second order, and R(x, D) is a lower order term. Then Ji = @X/@XP satisfies
the condition (3.10).
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