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Introduction

In [19] we defined the polarizable Hodge Modules which correspond
(philosophically) to the perverse pure complexes in the [-adic theory
[3, 10]. For the definition, we used the stability by iterations of the vanishing
cycle functors along locally defined holomorphic (or algebraic) functions. Then
a polarizable Hodge Module with strict support (i.e. its underlying perverse sheaf
is an intersection complex) is generically a polarizable variation of Hodge
structure [19, 5.1.10 and 5.2.12]. In this note we show the converse: any
polarizable variation of Hodge structure defined on a Zariski open subset can be
uniquely (and functorially) extended to a polarizable Hodge Module with strict
support. Combined with a result of Kashiwara-Kawai [16] and [19, 5.3.1], we
get a natural Hodge structure on IH*(X, L) the intersection cohomology with
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coefficient L, if X is compact and bimeromorphic to a compact Kéhler manifold
X, i.e. of class % in the sense of Fujiki (here X can be taken so that we have a
projective morphism of X onto X) and if Lis a local system on a Zariski open
smooth subset of X and wunderlies a polarizable variation of Hodge
structure. We get also the decomposition theorem of Beilinson-Bernstein-
Deligne-Gabber for the direct image f ICyL, if Lis as above and f is projective
(or proper, in the algebraic case). Here X is assumed irreducible, and ICyLis
the intersection complex, i.e. j,,L[dim X] in the terminology of [3].

In this note we define also the Mixed Hodge Modules which correspond to
the perverse mixed complexes [3, 10]. Roughly speaking, a mixed Hodge
Module .# is obtained by extension of polarizable Hodge Modules, i.e. ./ is
endowed with an increasing filtration W, called the weight filtration of .#, such
that Gr} . are polarizable Hodge Modules of weight i. Here the extension can
not be arbitrary; we control this using again the vanishing cycle functors. The
imposed condition is a natural generalization of that of Steenbrink-Zucker
[22, (3.13)], i.e. the existence of the relative monodromy filtration, cf. (2.3.1),
and the compatibility condition of the Hodge filtration F, the weight filtration W
and the filtration V of Malgrange-Kashiwara (indexed by @), cf. (2.2.1) and
(2.2.8). We also add the condition for the existence and the uniqueness of the
open direct images j, and j, for open immersions j whose complements are
locally principal divisors, and assume that the above conditions are satisfied
inductively for iterations of the vanishing cycle functors and the open direct
images as above, after taking the smooth pull-backs, cf. (4.2.1). Here we
consider the algebraic case for simplicity (in the analytic case we replace j, and j,
by j.j ! and jj~!, cf. (2.17.3).) Let X be a separated and reduced complex
algebraic variety, and MHM(X) the category of mixed Hodge Modules. By
definition we have a natural functor rat: MHM (X ) — Perv(Qy), where rat means
the underlying rational structure and Perv(Qy) is the category of Q-perverse
sheaves on X* with algebraic stratifications [3]. By [19, 5.1.14] and by
definition, MHM (X)) is an abelian category, and rat is faithful and exact. The
main result of this note is

0.1. Theorem. We have the natural functors f,, f,, f*, ', ¥,, ¢,1, D, X, ® and
H om between DPMHM (X)) the derived categories of mixed Hodge Modules, such
that these functors are compatible with the corresponding functors on the
underlying Q-complexes via:

rat: DPMHM(X) — D"Perv(Q,) —*D(Q)y)

(cf. [3, 3.1.10] for the definition of the functor real), where f is a morphism of
algebraic varieties, ge I'(X, Oy) and ¢, = Ker(T, — 1) with T, the semi-simple
part of the monodromy T of ¢,.
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If X is smooth, MHM(X) is a full subcategory of MF,,W(Zy, Q)
= {(M, F, K; W)} the category of filtered regular holonomic Zyx-Modules with
Q-structure given by an isomorphism o : DR(M) = C ) K compatible with finite
increasing filtrations Won M and KePerv(Qy). Here the morphisms are the
pairs of morphisms of filtered Zy-Modules and Q-perverse sheaves compatible
with @ and W. By definition rat(.#) = K if 4/ = (M, F, K; W). We say that a
mixed Hodge Module is smooth (on X) if rat(#)[ — dim X] is a local system
on X and X is smooth. In this case .# is a variation of mixed Hodge structure
satisfying some good condition at infinity, i.e. admissible in the sense of
Steenbrink-Zucker (one dimensional case) [22] and Kashiwara [13]. For the
converse we have (cf. 3.27):

0.2. Theorem. An admissible variation of mixed Hodge structure is a smooth
mixed Hodge Module.

As a corollary, a polarizable variation of Hodge structure (and a polarizable
Hodge Module) is a mixed Hodge Module. By definition the condition for
mixed Hodge Modules is Zariski local. We can construct locally the mixed
Hodge Modules by induction on dimsupp.# by the following:

0.3. Proposition. Let X be an algebraic variety, and Y a principal divisor defined
by g,ie. Y=g 1(0),.q. Put U= X\Yandlet j: U— X be the natural inclusion.
Then MHM(X) is equivalent to MHM(U, Y),, the category whose objects are
(M'y M"; u, v) where M'e MHM(U), A"e MHM(Y), ueHom(y, ,j M, M")
and veHom(AM", Y, 1 joM'(— 1)) such that vu = N(:=log T, ® (2ni) ™).

Note that the stability of mixed Hodge Modules by X follows from 0.2 and 0.3,
because the admissibility condition is a generic one by [13] and stable by
X. To define the functors f, and f, in 0.1, it is enough to define the
cohomological ones #f, and #7f, for quasi-projective morphisms, because we
can derive these functors in the affine case and the general case is reduced to
this case by [1], cf. 4.3. If .# is pure and f is projective, the cohomological
direct images are defined in [19, 5.3.1] and it is not difficult to check the
stability of the condition for mixed Hodge Modules, cf. 2.14. Then for f quasi-
projective, we define #'f, = (#'f,)],, etc. for a factorization f= foj such that
f is projective and j is an open immersion whose complement is a locally
principal divisor. Then the independence of the factorization follows from the
uniqueness of j, and j,. We define /* and f* by the adjoint functors of f, and
fi. Then their existence is reduced to the case where f is a closed immersion
i or a projection pr: X x Y— Y. For the first case we use an affine covering
of the complement U of X and calculate i* and i' using the Cech complex, cf.
(4.4.1). Here we use the equivalence of categories

i,: DP'MHM(X) <> DYMHM(Y)
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where the right hand side is the full subcategory of DPMHM/(Y) whose objects
have cohomological supports in X, cf. (4.2.10). In the projection case we show
that pr* (resp. pr') is represented by the external product .# for
M € DP°MHM (X) such that rat(.#) = Qy (resp. DQ,). For the existence of .#
we use a kind of Mayer-Vietoris argument, cf. (4.4.2). The stability of
MHM (X) by the vanishing cycle functors is almost clear by definition, and that
by the dual functor D follows from the compatibility of the algebraic and
topological dualities with respect to the vanishing cycle functors. For &) and
H om we use the well-known formula:

MRQN = AMRN), Hom(M, V)= ADMRN),

where 4: X - X x X is the diagonal immersion.

For the proof of 0.2, we have to prove that an admissible variation of mixed
Hodge structure can be extended to a Mixed Hodge Module on X a completion
of X, where we may assume that X is smooth and X\X is a normal crossing
divisor. We first treat the pure case, where a polarizable variation of Hodge
structure is naturally extended to a filtered 2z-Module with Q-structure by the
intermediate direct image j, = Im(j, —j,), cf. 3.10. We can calculate the
vanishing cycle functors along g if the union of X\ X and g~ !(0) is a normal
crossing divisor. Here the key point is the compatibility of the dim X + 1
filtrations F, VM, .., V@mX where V®are the filtration V along the coordinate
hyperplanes x; '(0). Then, for the decompositon of Gr’y,, we use a lemma of
Kashiwara on nilpotent orbit (cf. 3.19). For a general g we can reduce to the
above case using Hironaka’s desingularization and the stability by projective
direct images. In the mixed case, we use j, for the extension. In this case we
prove the compatibility of the dim X + 2 filtrations F, V1, ., V@™ and W,
where W on the extension is defined by Kashiwara [13]. Then we can show the
stability by the vanishing cycle functors and the open direct images as in the
definition of mixed Hodge Modules.

For the proof of 0.3, we use Beilinson’s functor £, whose corresponding
functor on the Q-complexes is the mapping cone of id — i, ;shifted by one to
the right. This functor is also used in the proof of the equivalence of categories
which appeared in the construction of the functors i*, i

As a corollary of 0.1 and 0.2, we get a natural mixed Hodge structure on
H*(X, L) if L underlies an admissible variation of mixed Hodge
structures. (This result can be generalized to the analytic case, where we assume
X has a compactification X which is smooth and Kihler, or of class C.) Note
that this mixed Hodge structure is compatible with the perverse Leray spectral
sequences, because, for the composition of f: X - Y and g: Y= Z and for
M € D"MHM(X), the natural truncation t on f, # induces the perverse Leray
spectral sequence:
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E% = HPg Hf, M —> HP*4(gf),.#  in MHM(Z).

We say that .# e D"MHM(X) is of weight < n (resp. > n) if Gr’ Hi.// =0
for i>j+n (resp. i <j+n). This condition is stable by f,, /*(resp. f,, f"), cf.
2.26. We say that .#eD"MHM(X) is pure of weight n if Gr! H'.#/ = 0 for
i#j+n Then this condition is stable by the direct images for proper
morphisms. Moreover a pure complex .# is isomorphic to the direct sum of
HiAM [ — j], because Ext/(4, &) = 0 for .4, N pure of weight m, n with m <n
+j, cf. 4.25. These facts are analogue of the results in [3].

For an algebraic variety X, we define Q¥ =a}QX, where ay: X - pt
(= Spec C) and QX = (C, F, Q, W) with Grf = Gr’ =0 for i # 0. Then for an
irreducible closed subvariety Z of dimension d in X, we can define the Hodge
cycle class cl¥ of Z in

(*) Hom(Q¥, DQ¥)(— d)[— 2d]) = Hom(Qy, (ax),(DQY)(— d)[— 2d])

using a natural morphism QZ[d]—IC,Q"(=,Q7 [d]) and its dual
morphism, where j:Z.,— Z. If X is smooth, D Q¥ = Q¥ (dy)[2dy] with dy
=dim X, and the right hand side of (x) is isomorphic to the Q-Deligne
cohomology if X is smooth proper.

The plan of this note is as follows.

In §1, we develop the theory of relative monodromy filtration in the exact
categories, which gives easily the compatibility of some results with the Hodge
filtration. The main results are Kashiwara’s canonical splitting [13, 3.2.9]
where we use the primitive decomposition for the proof (cf. 1.5), and the
generalization of Steenbrink-Zucker’s formula for the weight filtration on the
open direct images [22, (4.8)] to the case where neither can nor Var are bijective
(cf. 1.9).

In §2, we study the mixed Hodge Modules in the analytic case. Almost all
the arguments in this section can be applied also to the algebraic case, and the
results which are particular only to the algebraic case will be written in §4. (Note
that the definition of mixed Hodge Module is different in the algebraic and
analytic case due to the difference of the topologies: in the algebraic case the
mixed Hodge Modules are always assumed to be extendable and polarizable.) In
(2.a) we introduce the notion: the vanishing cycle functors are well-defined along
a holomorphic function, which is a natural generalization of [22, (3.13)], and we
prove the stability by dual and subquotient in MHW (X) the category whose
objects are obtained by extensions of Hodge Modules, i.e. #/ € MHW (X)) has the
weight filtration W such that Grl #eMH(X,i). In (2.b), we study the
extensions over the locally principal divisors in the case of MHW(X), and prove
an analogue of Deligne-MacPherson-Verdier’s formula [23] where the vanishing
cycle functors are used for the gluing, cf. 2.8. Here we use 1.9 to define W on
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the extension. We also show the polarizability of the open direct images
(cf. 2.11) where we use Verdier’s specialization. In (2.c) we show the stability of
the well-definedness of vanishing cycle functors by the proper direct images,
assuming some stability of Hodge Modules which appear as the graduation by
W, cf. 2.14. In (2.d) we define the mixed Hodge Modules in the analytic case,
and construct the cohomological direct images and pull-backs for some
morphisms. In (2.€) we define Beilinson’s functor &, in the category of mixed
Hodge Modules. Using this, we prove some equivalence of categories
associated to a closed immersion (cf. (2.23.2)) and the estimation of the weight
for the cohomological direct images and pull-backs, cf. 2.26. In (2.f) we show
the analogue of Deligne-MacPherson-Verdier’s formula in the case of mixed
Hodge Modules, cf. 2.28. We also prove MacPherson’s version, cf. 2.32. In
(2.g) we prove the generalization of the Kodaira vanishing (cf. 2.33) which
implies the Ohsawa-Kollar vanishing, cf. 2.34, and the Guillen-Navarro-Puerta
vanishing, cf. (2.33.2).

The aim of §3 is to relate the variations of (mixed) Hodge structures to the
(mixed) Hodge Modules. In (3.a) we calculate the vanishing cycle functors for
the perverse sheaves in the normal crossing case, cf. 3.3-5. As a corollary, we
prove that the (polarizable) mixed Hodge Modules on a point are identified with
the (polarizable) Q-mixed Hodge structures, cf. 3.9. In (3.b) we study the
intermediate direct image of a polarizable variation of Hodge structure. We
show the compatibility of F, V¥ (1 <i<dimX), cf. 3.12, and calculate the
vanishing cycle functors, cf, 3.17. Then, combining with Kashiwara’s result on
nilpotent orbit, we prove the stability by vanishing cycle functors and this
intermediate direct image is a polarizable Hodge Module. In (3.c) we study the
usual direct image of an admissible variation of mixed Hodge structures. Here
we also show the compatibility of F, W, V(1 < i < dim X), and calculate the
vanishing cycle functors. In this case the difficulty is to show the existence of
the relative monodromy filtration and (3.23.14) is proved for this purpose.

In §4 we study the mixed Hodge Modules on algebraic varieties. We give
the second definition of mixed Hodge Modules to show the equivalence of
categories (4.2.4), and prove the equivalence of these two definitions,
cf. 4.2. We define the direct images in 4.3 using a result of Beilinson [1, §3],
and the pull-backs in 4.3 as the adjoint functors of the direct images. The
Hodge cycle class of an irreducible closed subvariety is defined in 4.5.

I would like to thank Professors P. Deligne and M. Kashiwara for useful
discussions and their stimulations. A part of this work was done during my
stay at the Institute for Advanced Study in 1985/86. I would like to thank the
staff of the institute for the hospitality.
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§1. Relative Monodremy Filtration (cf. [10, 13, 22, etc.])

1.1. Let % be an exact category, i.e. there is an abelian category &/ such that €
is an additive full subcategory of &/ stable by extensions, and a short sequence in
% is called exact if it is exact in /. We assume % has an additive
automorphism S which is extended to «/. (For example, € is the category of
filtered objects of an abelian category and S is a shift of filtration; or S
=1id). Let L be a finite increasing filtration of Me®% (cf. [19, 1.3.1]), and
N:(M, Ly—S (M, L) a filtered morphism such that N'=0 for i » 0, where
the filtration L= S'Lon S'M is defined by L;(S'M) = S/(L;M) for i, jeZ. Then
there exists at most one finite increasing filtration W of (M, L)[loc. cit], called
the relative monodromy filtration, such that:

(1.1.1) N induces a morphism N:(M; L, W) — S™Y(M; L, W[2]),
(1.1.2) Ni: Gr%, GrEM = S7'Gr”,,,GriM for i >0,

where W[m]; = W,_,,. In fact, in the case ¥ = &/, we have Deligne’s inductive
formula [10, 1.6.13](if W exists):

(1.1.3) W_i LM = Wiy Ly (M + N (S'W,  LiM) (i >0),
(1.1.4) Wy LM = Ker(N'"*': LM — S~ YL, M/W_,_, ., L M))

(i=0),
where W, L, M =L, M(i > 0) follows from (1.1.4). In general, the relative
monodromy filtration W of (M, L) in € is the relative monodromy filtration of
(M, L) in o such that Grl GrEM e (cf. [19, 1.3.2]). In the case GrfM =0
for k # 0 (or k # n, more generally), Wis called the monodromy filtration (shifted
by n, if n # 0) of M, and we define the primitive part by
(1.1.5) PGr¥M = Ker(Gr" N"*1: G’ M — S771Gr%,_, M)

for i >0 and O otherwise,

if Gr” N'**'has the kernel in 4. In this case PGr! M is the kernel in .« (and
belongs to %), because Gt N'*2: Gr/.,M 3 S72Gr”,_, M (hence Gr" N'*lis
a strict epimorphism by definition). In particular, we have the Lefschetz
decomposition :

(1.1.6) Y Gt N": @ S"PGrY,,,M = Gr’M

where the summation is taken over m > 0 such that i + m > 0.
In general the relative monodromy filtration does not always exist. In the
case of abelian category, an inductive criterion is given in [22, (2.20)]:

1.2. Lemma. With the notation as above, assume € = o/ and the relative
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monodromy filtration of (L,_, M, L) exists, then it exists on (L,, M) iff:
(1.2.1) N+ Ker(N**': S 1GrfM — GrEM) — L /(NP (ST IL,_ M)
+ W_ 5k Ly—1 M) is zero for i = 0.
(See [loc. cit] for a proof.)
1.3. Remark. 1t is easy to see that (1.2.1) is a necessary condition, because
Ker(N'*!: GitM — S 'GrEM) < W, GrEM.

(In fact, N**': Grl 1+ GrEM - S™71Gr?,_, .. GrEM (1> 0) and Ni*1:
GriM /W, . Grr —» S~ " YGri M /W_;_, . Gri M) are injective.) For the converse,
we have a direct proof, if ¥ = .o/ is the abelian category of R-modules for R
an algebra over a field K and S =id. In fact, the assertion is reduced to the
case R=K by (1.1.3-4), then we may assume ¥ is a semi-simple abelian category
(i.e. every exact sequence splits). We shall construct a splitting s: M := GritM
— LM such that (sN — Ns)(W;M) c W,_, L,_, M, where W is the monodromy
filtration of M shifted by k. First we take §;: PGrl, M — W,.,, M, such that
its composition with the projection W, M — Grl%,, M is the natural inclusion.
We can modify 5; inductively so that Im(N**'5) <« W_,_,_,,,M for any [ >0,
ie. Im(5;) = Ker N**'. By (1.2.1) we can lift §; to a morphism s;: P Gr, M —
WewLiM such that Im(N**'s)c W_,_,,. L,_.;M. By the Lefschetz
decomposition, we have an isomorphism:

Y N"5: @ PGrl, M — M.
O<m=<i O<m=<i

We get the section s by replacing §; with s; in the above morphism. Then (Ns
— sN)(WM) = W,_,L,_M is clear and we get the relative monodromy
filtration of (LM, L) by

WL M = WLy, M + s(W).

(This argument can be generalized to the filtered case.)

1.4. Remark. With the notation of 1.1, the relative monodromy filtration of
(M, L) exists, iff (1.2.1) is satisfied in ./ and each Grf M has the monodromy
filtration in € (i.e. Grl Grt M €%).

The following proposition and two corollaries are variants of Kashiwara’s
result [13].

1.5. Propositon (cf. [13, Th. 3.2.91). With the notation of 1.1, assume the relative
monodromy filtration W of (M, L) exists and

PG, , GrEM := Ker(Gr” GrE! N+t Grf,  GrEM — S 1Gr”,_, ., G M)
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belongs to € (i.e. the kernel exists in €, cf. (1.1.5)). Then there exists a unique
splitting of (Grl' M, L) for any i, satisfying the following conditions:

Let s;,: Grl¥ Gri M — Gr¥ L M be the section corresponding to the splitting,
and {14 PGt GriM — Gl , L M the restriction of s;,, to the primitive
part. Then:

(1.5.1) Im(S;4r) = D IM(N™sj,s) (the summation is taken over j, m >0 such
that m < j, j — 2m =),

(1.5.2) Im(s{4rp) = Ker(N*"': Gl LM — ST YGr”,_, LM/ Vi)
where Vi, = ZIm(N"‘s}H,,) (the summation is taken over j,m >0,
I<k—2 such that m<j,j+Il<i+kj+1—2m=k—i—2).

Moreover, N™s}.;,: PGl GriEM — S "Grl,y—ym LM are strict monomorph-
isms for m < j, the summations in (1.5.1-2) are direct sums and the morphism in
the right hand side of (1.5.2) is a strict epimorphism.

Proof. 1f there is a splitting of (Gr)Y M, L) satisfying (1.5.1) in ., the Lefschetz
decomposition (cf. (1.1.6)) implies the isomorphism:

Y. N"sjs,: @ S"PGr}, ,GrfM — Grf' M

where the summation is taken over j, m >0, l[eZ such that m <j, j+1—2m
=i In particular N™s;,,, are strict monomorphisms for m <j and the
summations in (1.5.1-2) are direct sums. Therefore it is enough to show that
the morphism in (1.5.2) is surjective in ./ and the right hand side of (1.5.2)
projects isomorphically onto PGr!,,GryM by induction on k, because the
sections are uniquely determined by their image and V., is defined by s},
with [ <k.

Assume the assertion is verified for (j, [) such that [ <korj>i, =k We
define a morphism by

§i+k.k:= @ NmS}H,l: Ui+k,k:= @ SmPGI‘]W:_IGI'{‘M —_— GrkakM

where the summation is taken over j,m >0, [ <k such that m<j, j+1—2m
=i+ k,j>i({fl=k). Then the Lefschetz decomposition implies the short
exact sequence:

Si+k, r
0 —— Ujppp —= Gt LM —>— PGt GtEM —— 0

where pr is the composition: Gr?,L M — Gr¥, GriM - PGr?,, GriM.
Moreover N ™15, ., Uity =S 1GrY,_,, LM is injective (in &) and
Viirx 18 a complement to its image. Then the assertion follows from the
diagram in &/:
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0o — Ker N'*? —— KerN*! —— 0
l | |
00— Ui+k,k M’ Griu_:.kLkM _L) PGrin_:_kLkM — 0

|

0 —— Uiy —— STENGY kLM Vi) —— 0
1.6. Corollary. Let (M; L, W,N) and (M'; L, W,N) be as in 1.1, and
u:(M; L, N> (M'; L, N) a morphism compatible with L, N. If GrEu induces
(1.6.1) Griu: (GrEM, W) — (GrEM', W[1])  for any k,

u induces u:(M;L, W)—»(M'; L, W[1]). (Note that u induces always
u:(M; L, W)—»(M'; L, W) by (1.1.3-4).)

Proof. We may assume ¥ = &/, cf. 1.1. We prove by induction on k:
Gr"u: Gr LM — Gr L M’ are zero for any i.

Let s;44, and t;,,, be the sections for M and M’ corresponding to the splitting

in 1.5. Then it is enough to show the composition:

PGr¥,,GrtK - Gr¥,,L,M - Gr¥, L M’

is zero. Because Im(N**'s/,,,) = Gr”,_,,,L,_,M, the composition:
Nt oGr¥uos) = GrPue N losl,
si*1pGrV,  GrEM — Gr%,_,, L M’
is zero by inductive hypothesis. This implies
Im(Gr”ue Si+e) < IM(Ei 14 )-
Therefore it is enough to show
Gr" Grtu: PGt GrEM — Gr¥, ,Gri M’

is zero, because Im(t;,, ) projects isomorphically onto PGr}; ,Gri M'. But this
follows from the assumption (1.6.1).

1.7. Corollary (cf. [13, Lemma 3.3.2]). Let (M; L, W, N) and (M'; L, W, N) be
as above, and u: (M, L) — (M’, L) and v: (M', L) — S~ (M, L) filtered morphisms
such that uw= N and vu = N. Assume:

(1.7.1) GriM' = Im(Grfu) @ Ker(Grfv)  in o (cf. 1.1)
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for any k. Then u and v induce the morphisms:
u:(M; L, W) — (M'; L, W[1]),  v:(M'; L, W) — S~ *(M; L, W[1]).

Proof. We may assume ¥ = &/. Then the assertion follows from the next
proposition:

1.8. Proposition. Let u: M - M’ and v: M’ — S~ 1M be morphisms in of (cf. 1.1)
such that N = vu and N = uv are nilpotent. Let W be the monodromy filtration of
M and M'. Then the condition:

(1.8.1) M =Imu @ Kerv
implies
(1.8.2) u and v induce strict morphisms
u: (M, w)— (M', W[1]), v: (M, W) — S~ (M, W[1]),
(1.8.3) G u: G, ,M — Gr¥ M’ is surjective for i > 0,
Grlv: Gt M’ — S7 Gt | M is injective for i <O.
(1.8.4) u: M/W,M — M'/W,M' is surjective
v: W, M — S™YW_, M is injective.

Conversely, let u: (M, W)— (M', W[1]) and v: (M', W) - S~ (M, W[1]) be
filtered morphisms in o/, where W is a finite increasing filtration on M and M’ (in
particular, N := vu and N := uv are nilpotent). Assume (1.8.4) holds and W on M
is the monodromy filtration, then so is W on M' and (1.8.1-3) hold.

Proof. If (1.8.1) holds, (M 2 M’) is the direct sum of (M =Imu) and
(0 2 Kerwv), and the action of N and the filtration W are compatible with this
decomposition. Then (1.8.2) follows from [19, Lemma 5.1.12], and (1.8.3)
(hence (1.8.4)) from

Coker(Gr¥, ,u) ~ Gr¥ Cokeru ~ Grl¥Kerv
~ Ker(Gr¥v) = 0 for i #0.

Conversely, the isomorphisms Gr” N': Gr M 3 S™!Gr” ;M imply:

u: (M/WoM, W) — (M'/W_,M’', W[1]) is strictly injective,

v: (WoM', W) — S™Y(W_, M, W[1]) is strictly surjective,

because GrY, ,u is injective for j > 0 and Gr/¥ v is surjective for i <0. Therefore

u: (M/W,M, W) = (M'/W,M’, W[1])
v: (Wo,M', W) = S™Y(W_,M, W[1])
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by the condition (1.8.4), and we get:

(1.8.5) Gt u is bijective for i > 0, injective for i =0
and surjective for i <O.

(1.8.6) Gr!v is injective for i > 0, surjective for i =0
and bijective for i < 0.

In particular, u and v are strict, because (1.8.5) implies:

u:M/W,, 1M — M'/W,M' is injective for i > 0,

u: W, 1M — WM’ is surjective for i <0
(same for v). Moreover we have

Coker(GrY, ;u) = Ker(Grlv) =0 for i #0
by (1.8.5-6), and the isomorphism
Gt N=GrlvoGtVu: Gt M — S 'Gt", M

implies the decomposition:
(1.8.7) Gr" M’ = Im(Gr"” u) @ Ker(Gr"v).

Then (1.8.1) follows from (1.8.2) and (1.8.7), and W on M’ is the monodromy
filtration, because the action of Gr” N is compatible with the decomposition
(1.8.7) and

Coim(Gr”u) ~ Coim(Gr" N: Gr" M — S~ 1Gr"21 M),
The following is a generalization of [22, (4.11)].
1.9. Corollary. Let u: (M, L)— (M', L) and v: (M’', L)— S~ Y(M, L) be filtered
morphisms such that N = vu and N = vu are nilpotent on M and M', where Lis a
finite increasing filtration and M, M' are objects of o/ (cf. 1.1). Let W be a finite
increasing filtration of M, M' such that u(W,M)c W,_ M', v(W.M')

S 'W._ M. If Won (M, L) is the relative monodromy filtration, the following
conditions are equivalent:

(1.9.1) W on (M', L) is the relative monodromy filtration
and GriM' = Im(Grfu) ® Ker(GrEv) for any k,

(1.9.2) LM =uL M)+ @ (S L M)nW,M') for any k,
(1.9.3) LM =v Y (STL M)n(u(L M)+ W,M') for any k.
(Note that (1.9.1) is self-dual and (1.9.2-3) are dual to each other.)

Proof. The equivalence of (1.9.2-3) is clear. We show the equivalence of
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(1.9.1-2). We first verify that (1.9.2) is equivalent to:
(1.9.4) W,M'no Y (S"*L M) = W, L .M’
(1.9.5) u: LM — L,M'/W,L,M' is surjective.

(In fact, (1.9.2) implies (1.9.4), because u(L,M)c< v~ }(S™1L,M).)
Then (1.9.4) is equivalent to

W.M'nv Y(S"'L,M)= W,L,M’ for i <k,
i.e. to the injectivity of
v: WM' /WL M — S (W, M /W._,L,M) for i<k
By the commutative diagram:

0— WGr, M — WWM'/L M) — WM/Ly M) —0
0— ST'W,_,Griy )M — ST'W_((M/L M) — S™'W,_(M/Ly M) — 0
this condition is equivalent to the injectivity of

v: W,GrEM' — S™*W,_,GriM for i< k.

Similarly, (1.9.5) is equivalent to the surjectivity of
u: Gri(M /W, M) — Gri(M'/W,M')  for i > k.
Therefore the assertion follows from 1.8.

1.10. Lemma. With the notation and the assumption of 1.5, assume € is an
abelian category. We define a filtration L' on M by:

(1.10.1) LM = N(SL,M) + W,_,L,M,  cf. (1.9.2).

Then W[1] is the relative monodromy filtration of (M, L'), the three filtrations
L, L', W are compatible, and the decomposition in 1.5:

(1.10.2) G M = Y Im N™s},px
j+k-2m=i,0<m<j
gives a bi-splitting of L, L' such that
ImNmS}+k’k ’;f l = k

jtk—2m=i,0<m<j
Ims;, fl>k i=1-1
0 otherwise.

(1.10.3)  GrrGrF'Gr M ~

Moreover the induced decomposition on Grk' Gt M is compatible with Grl¥ of the
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canonical decomposition in (1.9.1):
Gr Gri'M = Gt Im Grfu @ Grl KerGrE'v,  of. (1.8.7),

where Grru: SGriM — Gre'M and GrE v: Gri'M — Gri M are induced by N
and id respectively (and strictly compatible with W) and we have:

Gr? Im Grfu ~ Grf Grt' Gr¥ M (= N(S GrEt Gt , M))
(1.10.4)
, Ims; ifi=l-1
Grl KerGrF' v ~ { L ok 4
0 otherwise.
Proof. The first assertion is clear by 1.9. We verify as in the proof of 1.9:

L, WM for i<

(1.10.5) LWM = { ;
N@SL,W,, ,M)+ L,W,_ M fori>1
In fact the assertion for i > [ is equivalent to the strictness of
N: (LM /W, LM, W) — S™HL,M/W,_ LM, W[2])

and follows from the injectivity of N:Gr¥, ,GrfM —» S ! Gr’GrEM for
i > k. Similarly we verify

(1.10.6)  N:(L,Grf.,M, L) — S~ Y(L,Gr¥ M, L) is strictly injective
for k <i.

Then (1.10.5-6) imply:

Lgingeny Gr'M for i<
N(SL minge,)) Gl 2 M) for i>1
Therefore L, L', W are compatible by [19, (1.2.14)], and we have:

(1.10.7) L.L,Gr¥ = {

GrY GriM fori<l k<l
(1.10.8) LiGr¢Gr M = { N(SGt¥,,GriM)  for i> 1, k<1
0 otherwise,

N(SGrY. ,GrE M) for k=1
(1.10.9) GriGr{' Gr’M =\ P Gr¥ Gr:tM for k<l=i+1

0 otherwise,
by the Lefschetz decomposition (and the surjectivity o N: Grl,,GriM
— S YGr/GrEM for i < k). Thus we get (1.10.3), and the inclusions > in

(1.10.4) are clear by the strictness of Griu, Griv (cf. (1.8.2), (1.8.7)), then the
equality follows from (1.10.3).

1.11. Remark. Let M, M’ be objects of an abelian category with finite
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filtrations L, W and a nilpotent endomorphism N, preserving L, such that
WM on M is the relative monodromy filtration for L, N;. Let u: M - M/,
v: M’ - M be morphisms compatible with L, W and N, such that N,:= vu
on M and N,:=uv on M’ are nilpotent. Put M; = GrfM, M{=ImN, c M;
with the morphisms u;: M; > M|, v;: M{ - M; induced by N, and the natural
inclusion. Let W), W@, W12 be the monodromy filtration on M;, M; for
N, N,, N, + N, respectively. Assume:

(1.11.1) Gt M; = ImGr?“u, @ Ker Gr7"v, for any i, k,

(1.11.2) W12 is the relative monodromy filtration on M;, M for W®, N,
and for W@, N,

(1.11.3) the relative monodromy filtration W® for L, N,exists on M, M,
2
(1.11.4) uW® < WA, vW2 < W2, and the equivalent conditions (1.9.1-3)
are satisfied for
(M; L, W) & (M'; L, W)
(1.11.5)  the relative monodromy filtration W2 for W®, N, exists on
M, M',

(1.11.6) L, W, w2 and L, W, W2 are compatible three filtrations on
M, M.

Then W12 on M, GrtM is the relative monodromy filtration for W, N,, and
the following two conditions are equivalent:

(1.11.7) W™ on M’ is the relative monodromy filtration for L, N,,
(1.11.8) W12 on M’', Grf M’ is the relative monodromy filtration for W,

N, and the equivalent conditions (1.9.1-3) are satisfied for

(M; WO, WD) = (M3 Wb, wi2)
(GrEM; W, W‘”’)% (GrEM'; W, w2 for any i.

Here note that u W12 < W2, » W12 < W% follow from (1.11.4) and the
functoriality of the relative monodromy filtration. By (1.11.4) we have the
decomposition

(1.11.9) GrfM' = Im GrFu @ Ker Grfv

compatible with the action of N;, N,, and ImGrFu is identified with
M;. Therefore the conditions (1.11.1-2) are satisfied by replacing M;, M/, u;, v,
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with GrfM, GrfM’, GrFu, GrFv respectively. Then W2 on M, M’ is the
relative monodromy filtration for L, N; + N, by (1.11.2) and (1.11.6), because
N, W12 « W2 (a=1,2) is clear and the canonical splitting 1.5 with the
compatibility (1.11.6) implies

N%: Gr) Gr7? GrfM — Gt GrlV” GrF M (same for M').

Similarly W"?on M, GrFM is the relative monodromy filtration for W), N,,
and this holds for M’ if (1.11.7) is satisfied. Therefore (1.11.7) implies (1.11.8),
because it is enough to show the assertion for GrF using the canonical splitting
of L on Gr" compatible with u, v and W®?. Conversely (1.11.8) implies
(1.11.7), because N, WM’ = WL M’ follows from (1.9.2-3) and the assertion
is reduced to that for Grf by the compatibility (1.11.6).

The above argument can be used to prove a result of Kashiwara [13, 5.5.1]
on the existence of the weight filtration of the open direct image of an
admissible variation of mixed Hodge structure in the normal crossing case. In
this case (M, Wt2), (M', Wi2) underlie mixed Hodge structures, and
(GrfM; N, N,) (GtEM’; N,, N,) nilpotent orbits of weight i — 1, i. Then the
condition (1.11.1) is satisfied by [8, 1.16][15,2.1.5] and [19, 5.2.15](cf.
also[13, 5.6.5]), and (1.11.2) by [6,§3]. Here the compatibility condition
(1.11.6) is trivial, because W), W L are filtrations in the abelian category of
mixed Hodge structures and W2 is the weight filtration. In this case we
define the filtration WY on M’ by (1.9.2-3). Then the condition (1.11.8) for
Gr?f is satisfied by the functoriality of (1.9.2-3) and the strictness of W), cf.
also 3.22.

§2. Mixed Hodge Modules on Complex Spaces

(2.a) Vanishing Cycle Functors and Specializations (Divisor Case)

2.1. Let X be a complex manifold, MH(X, n)? the category of (polarizable)
Hodge Modules (with @Q-structures) of weight n (cf. [19, (5.1.6), (5.2.10)]), and
MHW (X)®Pthe category of (polarizable) W-filtered Hodge Modules, i.e.
MHW (X)®is the full subcategory of MF,W(%y, Q) such that
(M, F, K, W) e MHW (X)®) iff Grl’(M, F,K)eMH (X, i) for any i, where
MF,W (94, Q) is the category of holonomic filtered 2y-Modules with Q-
structure, endowed with a compatible (locally) finite increasing filtration:
(M, F, K, W), cf. [19,(5.1.14)]. (Here MHW (X)® means MHW (X) (resp.
MHW (X)?).)

Let X be a reduced separated complex analytic space, and X =UU; a
locally finite open covering with closed immersions U; — V; where V, are
smooth. Set U; =0, U;, V; =11V, then U, is a closed subspace of V;. Let
pry;: V, = V; be natural projections for I = J. By definition [19, (5.3.12)],
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an object .# of MH(X, n) is {#,e MH(V;, n)} with isomorphisms:
upy: (Prg)s My = M; on VI\(UN\U,)

for I < J, such that supp M; < U, and u;x = ug;°(pryy),usx on V\(U\Ug).
Here this definition is independent of the choice of U;, V,, because we have
locally a section of pr;; on a neighborhood of U, and the independence of the
section follows from [19, (3.2.6)]. In particular, for any open set U with a
closed immersion U — V such that V smooth there exists uniquely a Hodge
Module on V¥, which represents .# on V> U (called the local representative of
M associated to U — V). We define MHW (X) similarly, where Gri M, are
assumed to be Opy,-Modules (cf.[19,(2.1.20)]). Then for 4 = {4, =
(M, F, K;)}eMH (X, n), there exists uniquely KePerv(Qy) such that K|, ~K,
for any I by [1]. Similarly (K, W) exists globally for #e MHW (X). (Here
W is locally finite on X.) We say .# e MH(X, n) is polarizable, if there is a
pairing S: K ® K — a4 Q(— n), called a polarization of .#, whose restriction to
any local representative is a polarization in the sense of [19, (5.2.10)]. We
denote by MH(X, n)? (or MHW (X)?) the full subcategory of polarizable objects.
We say # has strict support Z, if the underlying perverse sheaf of .# is an
intersection complex with support Z (and if Z is irreducible).

2.2. Let X be a complex manifold, and D a (positive) divisor on X. Let E be
the line bundle associated to D, and s, (resp. s;) the zero section (resp. the
canonical section corresponding to the global section 1 of Ox(D)). Put E,;
=1Ims; (i=0,1). Then, by definition, each (local) defining equation g of D
determines a (local) trivialization: E ~ X x C such that Ey(resp. E,) corresponds
to X x {0} (resp. Imi,), where i, is the immersion by graph. Conversely each
(local) trivialization of E (as a line bundle) determines a (local) defining equation
of D. Let #=(M,F, K, W)eMHW(X) and put .#=M,F, K, W)
= (S1)# € MHW (E). Then M has the filtration V along E,, and if the
condition:

(2.2.1) the three filtrations F, W, V are compatible on M, cf. [19, (1.1.13)],

is satisfied, (M, F) is quasi-unipotent and regular along E,, i.e. (M, F) is so
along any (local) defining equation D (cf. [19, §3.2]), because the assertion is
verified for each Gr/ (M, F) by definition. If the condition (2.2.1) is satisfied,
we define the specialization by

(2.2.2) Spo(M, F, K) = (Gt (M, F) ® 6va(Zr, F), SppK),

where Gr¥(M, F) = @ Gr/(M, F) is a filtered graded Gr"(Z, F)-Module,
SppK is Verdier's specialization (cf. [23]) and we have the canonical
isomorphism (cf. [12]):

(2.2.3) Dr(Gr' M ® gv o P) ~ SppK ® C.



238 MORIHIKO SAITO

Here we identify E with the normal bundle of E, ~ X, and E|, with the normal
cone of D in X(~ E,;). We have the filtration L= Sp,W on Sp,(M, F, K) by:

(2.2.4) L;Spp(M, F, K) = Spp(W(M, F), WK).

Let T be the monodromy of K, T= T,T, the Jordan decomposition and N
= (2ni)"'log T,. Then the action of N corresponds to the action on Gr”M
defined by s — « on Gr/ M, where s is the Euler vector field corresponding to
the natural C*-action on the line bundle E,i.e. s = Gr td, in the notation of
[19,§3.1]. Put

SphK = Ker(T, — 1: SppK — SppK),
then DR((P o, Gri M) ® 6,v9(P5) ~ SppbK ® C and we define
(2.2.5) Spp(M, F, K) = (D 4e, G13 (M, F) @ 61v2 (P, F), SppK).

Because L;SppK are stable by the action of T and L,Gr"(M, F) are compatible
with the decomposition Gr¥(M, F) = @,Gr" (M, F), we have also the filtration
L= Sp) Won SpL(M, F, K). If E is trivial, i.e. D is a principal divisor defined
by some function g on X, SppK is isomorphic to Deligne’s total nearby cycle
functor ¥,K and Gr"(M, F) have the structure of filtered Zy-Modules
(depending on g) so that DR GrJ M ~ ¢, ,K ® C[— 1] or ¢, K ® C[— 1],
cf. [19, (3.4.12)] (because the choice of g determines the trivialization: E ~ X
x C and the isomorphism: Grl 9, ~ D4 [s].) In this case, we define

¥y(M, F, K) = (_1@<0GIZ(J\7I, F[1]), "Y,K)

¢g,1(Ma F’ K) = (GrOV(Ma F)a pd’g,lK)

where Yy = Y[ — 1], etc. We also define the filtration L on y,(M, F, K) and
¢g,1(Ma Fa K) by

(2.2.6)

Liwg(M, F, K) = lpg(VVi+1(M: F, K))
(2.2.7)
Li¢g,1(M5 F: K) = ¢g,1(VVi(M’ F, K))

Here the condition (2.2.1) is always assumed. Note that (Spy(M, F, K),L) is
equivalent to (,(M, F, K), ¢,,(M, F, K); L), and the shift of the filtrations F
and Lon y,(M, K) comes from the external products with (Q¢, F, Q.[1], W) (in
the non characteristic case), where Gr{ Q¢ =0 (i # — 1) and Grl"(Q¢, Q_[1])
=0 (@(#1).

If X is not smooth, we assume X is reduced separated and D is a positive
locally principal divisor. Then the normal cone of D in X is a closed subspace
of the line bundle E associated to D on X (by identifying X with
E,). Therefore Spil’K e Perv(Qy), L and the action of N are globally well-
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defined. Put A= (s,),# as above. We say that the condition (2.2.1) is
satisfied for .4 if the following condition is satisfied:

(2.2.8) there is an open covering X = U,;U; with U; > ¥ as in 2.1, such that
Ely, are trivial (hence E|y, o ¥; x C) and the condition (2.2.1) is
satisfied for the represent .# of .4 on V; x C (and for the filtration
V along V; x {0}) for any i.

This condition is independent of the trivialization E|,, ~ U; x C and the choice
of U;, V.. From now on, we shall always assume this condition. If E is trivial
and D = g~'(0), we can define Sp{’(M, F, K), y,(M, F, K), ¢, (M, F, K) and
L, using U;, V; as above, where we use the covering: E = U,;U; x C and the
embeddings U; x C— V; x C. We can also define Sp,(M, F, K) and L, even if
E is not trivial

2.3. Let X be a separated reduced complex analytic space, and D a (positive)

locally principal divisor on X. We say that the specialization along D is well-

defined for 4 € MHW (X), if the condition (2.2.8) and the following condition

are satisfied for 4 = ((M, F), K; W):

(2.3.1) the relative monodromy filtration W (with respect to the action of N)
exists on (SppK, L), cf. 1.1.

Note that this condition is local (by the uniqueness of W) and (2.3.1) is
equivalent to the existance of Won (SppK ® C, L) or on (Gr¥M,, L) for any i
(cf. (2.2.8)) by 1.2. 1In this case we define

(2.3.2) SpPM = (Sp (M, F), K), W).
If D =g~ !(0), the condition (2.3.1) is equivalent to:

(2.3.3) the relative monodromy filtration W exists on (*y,K, L), (°¢, K, L),
cf. (2.2.6-7),

and we say that the vanishing cycle functors along g are well-defined for
M € MHW (X)), if the conditions (2.2.8) and (2.3.3) are satisfied. In this case we
define:

(2.3.4) Yyl =M, F,K), W),  ¢,M =(¢,,(M, F, K), W).

The following proposition gives a generalization of [22, (4.11), (A.9)] and
was pointed out by Kashiwara (cf. [9]). Note that the conditions (2.4.1),
(2.4.3-4) were a part of definition in [21] and we have a non canonical splitting
(2.4.2) in the polarizable case.

2.4. Proposition. Let X be as above, g a holomorphic function on X and M
= ((M, F), K, Wye MHW (X ) (resp. MHW (X)?). Assume the vanishing cycle
functors along g are well-defined for M. Then:
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(2.4.1) the filtration W in (2.3.3) induces the relative monodromy filtration on
,(M, F,K), L), (¢,:(M, F,K), L) (i.e. F, W, L are compatible on
Y,M, ¢, ;M and the monodromy filtration exists on Griy, (M, F),
Grf ¢, (M, F), cf. 1.4),

(2.4.2) there is a canonical splitting of L on Grl'y,(M,F, K),
Ger¢g,1(Ms F> K),

(2.4.3) Y,M, ¢, 1 M e MHW (X) (resp. MHW (X)?) and L induces a filtration

Yol , ¢, M in MHW (X) (resp. MHW (X)),
(2.4.49) can and Var induce morphisms in MHW (X):
can: Y, M —> ¢, M, Var: ¢, M — Y, M(— 1),
ie. can(WPy, K) =« Wr¢, K, Var(Wr¢, K) = W,_,",  K(—1).

Proof. By the condition (2.2.1) we have the canonical isomorphisms:

Grﬁlpg(M, Fa K) =~ lngrZV-i-l(Ms F, K),
Grk ¢, (M, F, K) ~ ¢, Gt} (M, F, K).

Therefore the monodromy filtration W (shifted by k) exists on Griy, (M, F, K),
etc. so that

(Grlel//g(Ma Fa K)a W)s (Grﬁgbg,l(M, Fa K)s VV)EMHW(X)F,

and (2.4.3) follows from (2.4.1-2). By 1.5 we have the canonical splitting of L
on the Q-part Gr} 7y, K, etc., therefore for the proof of (2.4.2), it is enough to
show its compatibility with the Hodge filtration, and the assertion is local by the
uniqueness of the splitting. Thus we may assume X is smooth, and the
assertion follows from 1.5 applied to (@ ,F,¥,M, L). The remaining assertions
(2.4.1)(2.4.4) are also local, and we may assume X smooth. Then (2.4.4) follows
from 1.7. We prove the restriction of (2.4.1) to (L,(M’, F), L) by induction on
k, where (M', F) = y,(M, F) or ¢, (M, F). By 1.2 and 1.4, it is enough to
show:

NFUF LMLy (M < NTVF, Ly (M + Fpy \Woi Ly M,
because Gr” Gr:N’ are strict by [19,(5.1.14)]. But the left hand side is
contained in

Fpsivi Loy M'O(NT L M+ Wiy Ly M)

by 1.2 and (2.3.1). Therefore the assertion follows from the strictness of the
morphism:
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(N1 ad): (L M, FLO+ 1) @ (W_ iy Ly M, F) — (L M, F),

cf. [loc. cit], because (L,_,M’, F), etc. and N'*!, etc. underlie objects and
morphisms in MHW (X) by inductive hypothesis.

2.5. Proposition. Let X be as in 2.4, #/ e MHW (X)), and M’ its subquotient in
MHW (X). Then M’ is polarizable, if so is M. Let D be a (positive) locally
principal divisor. Then the specialization along D is well-defined for M', if it
holds for M. Moreover, for an exact sequence in MHW (X):

(2.5.1) O— M — M — M —> 0,

we have the canonical (and functorial) exact sequence in MHW (X):

(2.5.2) 0— Yy ll' — Yyl —> Y, M" — O (same for @, ,),

if D =g~Y0) and the vanishing cycle functors along g are well-defined for M.

Proof. The first assertion follows from [19, 5.2.13] and the exactness of the
functors Gr (cf. [19, 5.1.14]). (In fact, Gr! of (2.5.1) splits by the polarization
on Gr¥ # so that Grl¥.#' and Gr? 4" are polarizable.)

For the other assertions we may assume X is smooth and D
=g~ 1(0). Taking the direct image (s,), (cf. 2.2), we may assume (2.5.1) is an
exact sequence in MHW (E). Then by [19, (3.1.5)] the underlying 2 ;-Modules
M', M, M" has the filtration V along E(~ X) and

253)0—M; F,W,V)— M; F, W, V)— (M"; F, W, V) — 0
is separately exact for F, W, V. By the proof of [19, (5.1.14)],

0— GI¥*M';F,V)— GI¥(M; F,V)— Gt (M"; F, V) — 0
is exact (i.e. F,V,Gr¥ (2.5.3) are exact). Using the commutative diagram:

0 — F VW M — F,V,W,_\M —> FV,W,_ M’

1 1 1

0— F WM — F,,WM — F,V,WM"

l | l

0— F,V,Gt!M' — F,V,Gt M — F,V,Grf M" — 0

we verify by induction on i that F,V,WM" — F,V,Grl’ M" are surjective, i.e.
F, V, W are compatible on M” (cf. [19, (1.2.14)]), and F,V,W;M — F ,V,W,M" are
surjective, i.e. (M; F, V, W)—>(M"; F, V, W) is a strict epimorphism. Therefore
(M'; F, W, V) must be the kernel of this strict epimorphism by the separate
exactness, and F, W, V are compatible on M’. We now show the condition
(2.3.1) for M” in (2.5.4), because the assertion for M’ follows from the strict
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surjectivity of

(2.5.4) (R; L, W) — (K"; L, W)

where K =7y K, ?¢, | K (same for K”). (Here the surjectivity of Gr} Grf(2.5.4)
follows from [19, (5.1.14)], and the strict surjectivity of (2.5.4) implies that the

kernel of (2.5.4) gives the relative monodromy filtration on (K, L).) Let W be
the monodromy filtration on GriK” shifted by k, then by [loc. cit],

GrEN'* Y (GrER™, W) — (GrER™, W[2i + 2])
is strict and Gr¥ Ker(GriN‘*') ~ Ker(Gr” GrEN'*'). Therefore
Ker(Ni*!: GrER — GrERK) — Ker(N*!': GrkR" — GrEK")
is surjective by Lefschetz decomposition. Thus we get the assertion by 1.2.

2.6. Proposition. Let X be as in 2.4 and M = (M, F, K, W)e MHW (X)), where
(M; F, W):= {(M;; F, W)}, cf. 2.1. We define

D =DM F, W), DK, W))
by DIM; F, W)= {D(M,; F, W)} so that
(2.6.1) W(DM) =DM/ W_,_, M), GI¥ DM = DGr", M.

Then DA e MHW (X) (it is independent of the choice of U, V,), and it is
polarizable if so is M. Let g be a holomorphic function on X, then the vanishing
cycle functors along g are well-defined for M iff it holds for D M ; in this case we
have the canonical isomorphisms:

(2.6.2) Y, DM = DY, M)(1), ¢, DM > Do, M.

Proof. By the compatibility of topological and analytic dualities for closed
immersions of complex manifolds, we see that D.# is well-defined (i.e.
independent of U,, V). Then the second isomorphism in (2.6.1) implies that
MHW (X)? is stable by D. For the stability of MHW (X), we may assume X is
smooth, then the assertion follows from the compatibility of topological and
analytic dualities for the vanishing cycle functors (see [25]):

(2.6.3) n,DK = (D?y,K)(1), *¢, ;DK = D¢, K,
(2.6.4) Y,D(M, F) = Dy, (M, F)(1), ¢,,D(M, F) = D¢, (M, F),

where the morphism in (2.6.3) are defined in [19, (5.2.3)]. In fact, we can verify
inductively the condition of Hodge Modules of Gr’ D.# (for example, the
stability of the regularity and the quasi-unipotency along g by D follows from
the proof of [19, (5.1.13)].) Here note that the (relative) monodromy filtration
is self-dual. Therefore it remains to show the stability of the condition (2.2.1)
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by D (because (2.3.1) follows from the above remark). Put (M, F, W)
= (i,)«(M, F, W), where we may assume X is smooth. We take locally a free
resolution as in [19, (5.1.13)]:

(L; F, V, W) —> (M; F, W, V)

such that each L’ has a splitting of W compatible with F, V (hence F, V, W are
compatible) and Grf(L/, F, V) are finite direct sums of (2, F[p], V[«])
(—1<ax<0). Here note that a filtered morphism: (M;F, V, W)
—(M"; F, V, W) is strictly surjective iff F,V,W.M — F,V,W.M" are surjective for
any p, o, i (this is not true for a strict monomorphism), cf. [19,§1.2]. We
define D(L; F, V, W) by (2.6.1)(for W) and

D@, F[pl, V[e]) = (@ ® 2, F[— p], V[— 1 — a]) [dy].

Then Gr’ D(L; F, V) is strict by [loc. cit], and #'GrD(L; F, V) =0 for j #0
by the holonomicity of M. Therefore D(L; F, V, W) is strict and F, V, W are
compatible on #°DL by [19,(1.2.9)]. By definition and by the proof of
[19, (5.1.13)] we have the isomorphism: D(M; F, V, W) = #°D(L; F, V, W).
Thus we get the assertion.

(2.b) Extensions over Locally Principal Divisors

2.7. Let X be a complex manifold, put E = X x C, E*=X x C* E; = X x {0}
and let j: E¥—>E be the natural inclusion. If #'=((M’, F), K'; W)eMHW (E*)
is extended to . = ((M, F), K; W)e MHW (E) (i.e. j~'.# = .4’) such that the
specialization along E, is well-defined for .#, the following conditions are
satisfied :

(2.7.1) Jj«K' (or equivalently jK’) is cohomologically constructible
(i.e. j K', K € Perv(Qpg)),

(2.7.2) F,V.oM =V _oMnj,F,M" are coherent over (g,

(2.7.3) F, V, W are compatible on V_y M,

(2.7.4) the relative monodromy filtration exists on (Y, K, L),

(2.7.5) Gr? ' are extended to Hodge Modules on E.

If moreover ./ is polarizable, we have

(2.7.6) Grl M’ are extended to polarizable Hodge Modules on E.

Note that (V.oM; F, W, V) depends only on j~'.# = .4’ (independent of
the extension %), cf. [12][19, (13.1.7)] for V_,M, and the conditions (2.7.1-6)
are concerning only .#'. (We shall see later that ' is extended if these
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conditions are satisfied.) If (2.7.1-5)(resp. (2.7.1-6)) are satisfied,
‘pt'ﬂ:: (@ —1sa<0Gra‘z,(M7 F[l])s plptK; W)

(cf. (2.2.6)(2.3.4)) belongs to MHW (E,)(resp. MHW (E,)?) by the same argu-
ment as in the proof of 2.4, and y,.# will be sometimes denoted by V.4,
because it depends only on ' = 1.4.

If X is singular and .4’ is extended to .# so that the specialization along E,
is well-defined, the conditions (2.7.1-5)(resp. (2.7.1-6)) are satisfied for the
representative of .4’ on V x C* associated to any closed immersion U — ¥V as in
2.1. Then we can define y,.#' € MHW (E,)® similarly. Let MHW (E*)® be
the full subcategory of MHW (E*)® whose objects are satisfying the conditions
(2.7.1-5) (or (2.7.1-6)), i.e. their local representatives as above satisfy the
conditions. Let MHW (E*, E,)® be the category whose objects are
(M', M", u,v) where A eMHW(EHE, #"e MHW (E))? and wu:y,, M’
M, v: M >, M(—1) are morphisms in MHW(E,) such that wvu
= N. Here the morphisms are the pairs of morphisms in
MHW (E*), MHW (E,) compatible with u, v. Finally, let MHW (E)® be the
full subcategory of MHW (E)P defined by the condition: the specializations
along E, is well defined. Then we have a natural functor

2.7.7) MHW (E)® — MHW (E*, Eg)®
which assigns (j~'/4, ¢, M, can, Var) to 4.

2.8. Proposition. The functor (2.7.7) is an equivalence of categories.

Proof. We first assume X smooth. Let (A, A", u, v)e MHW (E*, E;)®. By
Deligne-MacPherson-Verdier's theory on extensions of perverse sheaves
(cf. for example [23]) and by [12][14][18][19, (3.4.12)], there exists uniquely
(M, K) with isomorphisms:

(2.8.1) Jj7UM, K) ~(M', K'), ¢,,(M, K) ~(M", K")

such that can, Var are identified with the underlying morphisms of u, v. We
define the filtration F on VoM by

(2.8.2) meF, VoM <>j*me F,M', Grgme F ,M",

where we use (2.8.1). Then (V,M, F)— (M", F) is surjective (i.e. Gry(M, F)
~ (M", F)), because for me VoM such that Gryme F,M", we have Gr” (mt)e
F,Gt” M and mt =m'+m"t with m'eF,V_ M, m"eV_,M, i.e. mn—m"eF VoM.
We define

(2.8.3) FpM = Zi(Fp._iVoM)a;..

Then the induced filtration F on V,M coincides with the original one and (M, F)
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is quasi-unipotent and regular along E(cf. [19, §3.2]), because
VoM N(F,VoM)d, = VoM n(F,V_ M)3, = F,., VoM

(cf. the proof of [19, (3.2.2)]). Then, by (2.7.2), F,V,M and F,M are coherent
over Og, and (M, F) is a coherent filtered 2g-Module, because (V,M, F) is
coherent over (V,%g, F). We now define the filtration Lon ¢, (M, K) by

(2.8.4)  Ly¢,1(M, K) = can(Ly— 1Y, (M, K))
+ (Var™ Y(Le- 1 ¥, (M, K))N Wy,1 (M, K))

where L,_ ¢, (M, K) =, , W,(M’, K') and W on ¢,,(M, K) is the weight
filtration on .#", cf. (2.8.1). Then there exists a unique filtration W on (M, K)
such that

J*W(M, K) =~ W(M', K'), ¢,; W,(M, K) ~ L;¢,;(M, K).

Put 4 =((M, F), K; W). By Lemma 2.9 below, F, V, W are compatible on M
and Gr/'(M, F) are quasi-unipotent and regular along E,. We have

Yol =Y M, M~ M"  in MHW (E)?

by definition, where W is the relative monodromy filtration with respect to L
(cf. 1.9 for ¢,,). In particular (2.2.1)(2.3.1) are satisfied, i.e. the specializations
are well-defined. By 1.9 and [19,(5.1.4)], we have the canonical
decomposition:

(2.8.5) Gry M = My, D My, in MF,(Zg, Q),

such that supp.#,, < Ejand .#,; has no sub nor quotient with support in
Eo,. By[19, (3.2.2)], #, ,is the direct sum of Z-components of the extension of
Gty M' to E (cf. (2.7.5)) such that Z ¢ E,, because j~' .M, ; ~ Grj M’ and can
is strictly surjective by [19, (5.1.14)]. On the other hand we have

(2.8.6) My, =i, KerGriv: Gry M — Gri_, Y, M'(— 1))

by the identification (2.8.1), where i: E, » E. Therefore #/ e MHW (E)?. We
see that this gives the inverse functor of (2.7.7), because it holds forgetting F, W,
and F, W (or L= ¢, W) on .#eMHW (E) must satisfy (2.8.2)(2.8.4). If X is
singular, the above construction glues together globally (in fact, the Q-part is
globally well-defind) and (2.8.5-6) are globally well-defined. Thus we get the
assertion. To complete the proof of 2.8, we have to show the following.

2.9. Lemma. Let X be a complex manifold. Put E=X x C. Let (M; F, W)
be a coherent filtered D g-Module with a finite increasing filtration W. If (M, F) is
quasi-unipotent and regular along Eq = X x {0} (cf. [19, (3.2.1)]) and F, V, W on
V.oM are compatible, they are compatible on M and Gr['(M, F) are quasi-
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unipotent and regular along E,.

Proof. We first show the compatibility of F,V,W on V,M. By
[19, (1.2.16.(b))], it is enough to show the surjectivity of

F,WVoM — F,W,GtgM  for any p,i.

Take [u]e F,W;Grg M with ue F,V,M. We have to show u — u'e€ F,W,V,M for
some u' eV oM. By assumption ut —u"eF,W,V_;M for some u"eF,V._ ;M.
Take u'e F,V_.oM such that u't = u”, cf. [19, (3.2.1.2)]. Putv=u—u'eF,V M.
If ve WM, the assertion is verified. If not, take j > i such that ve WM, Gr}"u
#0in GrY M. Then Grllve V. ,Gr}' M, because ve W;V,M and Gr} Grgv =0
in Gr? GrfM. Therefore Gr’vt #0 in Gr M by [19, (3.1.4-5)]. But this
contradicts to vte WM. Thus the compatibility on VoM is proved.
We define the filtration F’ on WM, Gt} M by

Fy(WM) = Y (F,_ Vo WeM)3i, F(Grlf M) = ¥ (F,— Vo Grl’ M)?:.
By the same argument as in [19, (3.2.2)], we have
F,V,WM) = F, VWM for a <0
0i: F,Gry WM = F,,,Grl . (W,M) for —1<a<0,

(same for Grjy M). Combined with the compatibility on VoM, we get the exact
sequences:

0— (W,_ M; F',V)—s (W,M; F', V) — (Gt M; F', V) — 0.

Therefore F = F' on WM, Gry M (because it holds on WM for k> 0) and
F, V, W are compatible on M (cf. [19, (1.2.14)]). Now it remains to show

(FV,Gty M)t =F,V,_,Grtf M for o <0.
But it is verified by decreasing induction on k, using
0 — F,V,Wi_ M — F, VWM — F,V,Gry M — 0.
This completes the proof of 2.9 and 2.8.

2.10. Let X be a separated reduced analytic space and E a line bundle on
X. Let E, be the zero section, E* its complement, and i: E, — E, j: E* — E the
natural inclusions. We define the full subcategory MHW (E*),, (resp.
MHW (E)®) of MHW (E*)(resp. MHW (E)®) by the condition:

(2.10.1) for any open set U of X and a local trivialization E|; ~ U x C, the
restriction to E*|, (resp. E|,) belongs to MHW (U x C¥),, (resp.
MHW (U x C),),

cf. 2.7 for the notations. Here the condition (2.10.1)(i.e. (2.7.1-5) for the local
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representatives) is independent of the trivialization E|;~U x C. Let
MHW (E*)E. be the full subcategory of MHW (E*),, such that Gr!” of the
objects of MHW (E*)2  are extended to polarizable Hodge Modules on E,
cf. (2.7.6). By 2.5, these full subcategories are abelian (i.e. stable by Ker,
Coker), cf. 2.11 below or the proof of 2.5 for MHW (E*),,.

2.11. Proposition. With the notation of 2.10, let M'e MHW (E*)®. Then
there exists functorially the extension j .M’ (resp.j M )e MHW (E)® of M',
unique up to a canonical isomorphism, such that its underlying perverse sheaf is
isomorphic to j K' (resp.jK'). For #MecMHW(E)®, we have j~'Me
MHW (E)® and there is a unique and functorial morphism

(2.11.1) M—> j j M (resp. jjT M — M)
inducing the identity on E¥*.

Proof. 1If E is trivial, the assertion follows from 2.8. For example, take the
inverse image of (A, Y, ;. #'(— 1), N, id) to get j,.#', and use the diagram

id

lpt,l'/” - l//t,l'ﬂ

(2.11.2) v“ idu N

Var

¢t,1'//l - l//t,lf/%(_ 1)

to get the morphism A — j, j*.#. In general, we have the assertion, except for
the polarizability of j,.#', j.#', by the uniqueness of j ., j.#' and of the
morphism (2.11.1). For the polarizability, it is enough to show the assertion for
Jju# by 2.6. We first reduce to the case .#'e MH(E*, n), ie. Grl’ #4' =0 for
i #n.

Put A4 =j,#'. We have the filtration j,Won .4 in MHW (E);,, because
Jy is an exact functor. We have to show j, W splits canonically on Gr/’ .#. By
the proof of 2.8, we have the global and canonical decomposition (2.8.5) in
MHW (E),,. Therefore it is enough to construct the splitting of j,Won .4, , in
(2.8.5). Here note that any filtration of Hodge Modules is compatible with the
decomposition by strict supports. Let SpLK, L(= Sp, W) and Wbe as in 2.2-3,
i.e. Wis the relative monodromy filtration of (SppK, L). Then the Q-part K, ,
of My, is a direct factor of GrySp;K, because Spy is exact and induces the
identity on Perv (Qg,). We define the filtrations L, W, L on SphK =~ j, j*SpyK
by

L=j,j*L, W=j,j*W
(2.11.3) - - -
LiSppK = N(L,SppK) + W, L, Spp K.
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Then 17[{ and I7V[1] is the relative monodromy filtration of (SppK, i) and
(Sp) K, L) respectively, cf. 1.10. If (locally) E is trivial, i.e. E ~ X x C, SppK
corresponds to

(2.11.4) W1 K522 ¢,1K),
so that

W, = I7Vi: Z‘lkch;—Z‘k on ¥, K
(2.11.5) - - ~

Wi_.=W, Ly=L,c L, on ¢, K.

Note that the functor j, j* corresponds to the change of ¢, ;so that Var becomes
bijective, cf. (2.11.2). Therefore we get in general:

~

(2.11.6) Wi_,cWic W, L,cL,cL,

By 1.10, we have a canonical splitting of Lon GrE'Gr?” ,SpLK. We shall see
that this induces the desired splitting by the canonical morphism:

(2.11.7) GrE Grf_  SpyK —> GriGrf SpyK — K, 5,

where these morphisms are induced by (2.11.6) and by the canonical
decomposition:

(2.11.8) GriSppK = Spp K1 @ Ky,

Here K, , is the underlying perverse sheaf of 4, ,(a = 1,2), cf. (2.8.5), and K, ,
= Gry K, ,(because N =0 on K, ,). Now the assertion is local, and we may
assume E = X x C and use (2.11.4-5). Then the y, ,-part of K, ,is zero and
the ¢, ;-part of the first morphism of (2.11.7) is the identity. Therefore we get
the assertion by applying 1.10 to the ¢, ;-part, because the compatibility with the
Hodge filtration follows from the uniqueness of the splitting, cf. the proof of
(2.4.2).

Now we assume #’'€ MH(E*, n) and it is extended to a polarizable Hodge
Module .# on E, with no subobject supported in E,. Locally we have E ~ X
x C and ¢, ,j,#  is identified with , ; #(— 1) =, , j ' (— 1) by Var so that

ifi<n

2.11.9)  Lip,,j ﬂ’={
¢t’lj* ImN + (W,_ ¥, #4)(—1) ifi>n

by 1.9, where Won ¥, ; # is shifted by n — 1, cf. [19, (5.1.6)]. Therefore we get
locally:
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0 if i <n
(2.11.10) GrVj M ~| M if i=n
i PGy,  M(—1) ifi>n

and it is enough to show the global polarizability of Gr}j, .#' for i >n. By
[19, (5.1.12)] we have the canonical decomposition:

(2.11.11) Gr/SppK ~ n*K;[1] ® K/

with K, K ePerv(Qg,), where n: E— E, is the projection and W is the
monodromy filtration shifted by n. Let S: K ® K — a;Q(— n) be a polariz-
ation of M. Then there is a pairing S;: K, ,; ® K, ,; — a, Q(1 — n) such that
the restriction of Gr”(SppS)e(id ® N¥) to the first factor of (2.11.11) coincides
with 7*S;, where we have a change of sign as in [19, (5.2.2)]. Iflocally E ~ X
x C, §{ coincides with Gr"¥ (", S)(id @ N’) by the canonical isomorphism:

Ko ~Grl %, K.
Therefore it is a polarization on the primitive part:
PK,.;~P Gt/ ;*Y, K~ (Grye 1+ K) (1),

where the last isomorphism comes from (2.11.10). Thus it is enough to show
the resulting isomorphism:

(2.11.12) PK; ~ (Grl, ,j K)(1)
is globally well-defined for i > n. Consider an exact sequence:
0 — 7*PK{[1] — j, j*7*PK;[1] <= PK{(— 1) — 0,
where p is characterized uniquely as the projection to the maximal quotient
supported in E,. On the other hand we have a morphism for i > n:
(2.11.13) jej*n*PK{[1] — Gt ,j.K
induced by the composition:
Ju*m*K{[1] = j, j* Grl Sphj, K’ ~ Gr¥ Sphj, K’
— Grmlsp%)j*K I Grhlspll)j*K = Gr?—; 1j*K:

where W is the relative monodromy filtration of (Sppj,.K, L) and w
=j,J*W. Here we used (2.11.6) and W, L; for i>n, cf. (2.11.9). Then
(2.11.13) is factored by p (because supp Grl%, ,j, K < E,) and we get a morphism :

(2.11.14) PK/(— 1) —> Gt% ,j.K  for i>n.
£

If E~ X x C (locally), p corresponds to
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PK;, -5 0

o

PK|(— 1) 2“5 PK)(— 1).

Therefore the morphism (2.11.14) coincides with (2.11.12) by definition,
cf. (2.11.9-10). This completes the proof of 2.11.

2.12. Lemma. With the notation of 2.10, let
(2.12.1) O— M — M — N —0

be an exact sequence in MHW (E*) such that # e MHW (E*),, and each Gr! of
(2.12.1) has a splitting (e.g. # e MHW (E*)2,.). Then M', /"€ MHW (E*),, and
we have a canonical (and functorial) exact sequence:

0— j M — jolMl — j M — 0
(2.12.2)
(resp. 0 — jiM' —> jiM —> jiM" — 0).

Proof. By the functoriality of j,, j, (2.12.2) is clear if #', M"€ MHW(E¥),,.
Therefore the assertion is local and we may assume X smooth and E = X x C.
By 2.5 it is enough to verify (2.7.1-5) only for .#”. By the splitting of Gr}”
(2.12.1) and the extension of Grl .#, we have an extension of Gr} (2.12.1) with
its splitting (cf. [19, (3.2.2), (5.1.7)]). Then we get (2.7.1) and (2.7.5). Let M,
M" be the underlying Z;-Modules of j, .4, j,.#" (i.e. M" is regular holonomic
and DR(M") ~j, K" ® C). Then the above splitting implies the surjectivity of

F,V,Gtf M —> F,V,Gt’ M"  for « <0

where F, Won M" are the quotient filtrations, and we use [19, (3.1.5)] for the
filtration V. In fact the image of this morphism in V,Gr? M” is

V,Grly M"nj,F,Grl M"

by the above splitting (because a < 0) and this contains clearly F,V,Gr’. We
verify by induction on i the surjectivity of (x)(#*) in the diagram:

0— F,V,W,_yM — F, VWM — F,V,Gtl’ M — 0

N

~ ~ () ~
0 — FV,W,_\M" — F,V,W,M" — F,V,Gr¥ i1" — 0

for « < 0. Therefore F, V, W are compatible on V.,M”, and for (2.7.2-3) it is
enough to show
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Fp V< OM” =V, OM// ﬂj*FpM",

or equivalently (F,V,M")t=F,V,_,M" for « <0 by [19,(3.2.2)], but this
follows from the surjectivity of (+x) for i > 0. Finally (2.7.4) follows from 1.2,
using the above splitting, cf. the proof of 2.5.

(2.c) Direct Images

2.13. Let X be a separated reduced complex analytic space, and U, V;, pr,; as
in 2.1. By definition [19, (2.1.20)], an object (M, F) of MF(2y) is a family of
filtered 2, -Modules {(M,, F)} with isomorphisms:

Uy (Pri)e(My, F) =~ (M, F) on VI\(U/\U))

for I = J, such that GrfM, are annihilated by the Ideal of U, (in particular,
suppM; c U,) and {u,,} satisfy the compatibility conditions:

(2.13.1) urg = Ury ° (Prry)s sk on V\(U\Uyg)

for | =« J = K. Here MF(Zy) is independent of the choice of U;, V; by the same
argument as in 2.1. In particular, for (M, F)e MF(2y) and for any open subset
U of X with a closed embedding U — Vsuch that ¥ smooth, there exists uniquely
a filtered 2,-Module, which represents (M, F) on V> U (called the local
representative of (M, F) associated to U— V). Then we can define
CF(9y), KF(9y) and DF(2y) as usual, because for i: X — Y a closed immersion
of complex manifolds, (M", F) is filtered acyclic iff so is i (M", F).

Let f: X —» Y be a proper morphism of separated reduced complex analytic
spaces. Let X = U;U;, Y= U;U; be locally finite open coverings with closed
immersions: U; - V;, U/ - V; such that V,, V/ smooth, f(U;,) = U] and f: U,
- U is extended to f;: V,>V/. Let (M, F)={(M;, F)}eMF(2y) where
(M,, F)eMF(2,,). Assume GriM, are flabby. We define

(2.13.2) (f).(M;, F):= DR™'o(f),> DR(M,, F)e CF(@y,)

(cf. [19, §2.2] for the definition of DR ™1, D~I{), where f; = I, f; and (f}), in the
right hand side is the topological direct image with proper supports. Then
(fD)(My, F) belongs to CF(%y,) and is independent of the choice of f;, because
(i;)x (M, F) is independent of f; by [19, (3.2.6)]. Taking its zero extension to
Y, we get

filM;, F)e CF(Zy).
Then u;; induces a morphism in CF(%y):
filuy): f(M, F) — f(M,, F)
because D~R(M 1, F) is isomorphic to a quotient complex of (pr, J),DNR(M 7, F) by
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u;;. We define
f+«(M, F)e CF(2y)

to be the single complex associated to the double complex of Cech whose @, 9)
component is @ y-1=-, ([L(M}, F))

If Grf M, are not flabby, we take Godement’s canonical flabby resolution
and truncate by 7,4+, where d(I) = min {dim V;: ieI}. Then we get a triple
complex and f,.(M, F) is defined to be the associated single complex. Because
this definition is functorial, we get the direct image:

fy: DF(25) —> DF(@y).

Let f: X - Y be as above. We define MF,(9y, Q)(resp. MF,W (2, Q))
by the same way as above, where they are defined in [19, (5.1.1)]
(resp. [19, (5.1.14)]) in the smooth case. By [3], an object of MF,(Zy, Q) is
a pair of (M, F) = {(M,, F)}eMF,(2y) and K €Perv(Qy) with isomorphisms:
DR(M)) ~ C ® K|y, compatible with u;;. We say that f, (M, F) is strict, if its
any local representative is strict. If f, (M, F) is strict and if #/f, (M, F)e
MF,(2y), we define:

Hf (M, F, K) = (H'f, (M, F), *#’ f K)e MF,(Zy, Q),

where DR(#/f M)~ C & ?#7f,K is induced by the direct image of the
isomorphism:

(‘B|l|—1= - () DRM)) ~C R K
where j;: U;— X, cf. [3].

2.14. Theorem. Let f: X — Y be a projective morphism of separated reduced
complex analytic spaces, and M = (M, F), K; W)e MHW (X)?. Then f, (M, F)
is strict and AT f, M= (K[ (M, F), *H#7f . K; W[j1) belongs to MHW (Y)?,
where W is the induced filtration by f,, i.e. W,#” [ (M, K) = Im(#’ f, Wi(M, K)
> H'f,(M, K)). For a holomorphic function g on Y, put h=gf. If the
vanishing cycle functors along h are well-defined for M (cf. 2.3), they are well-
defined along g for H'f.M and we have the canonical isomorphisms in
MHW (Y)?:

Yo [yl ~ A f A M, Gy [yl = A Gy M.

Proof. Let U, V,, U, V/ and f; be as in 2.13. We may assume U, = f~}(U))
and f;: V; - V/ is projective (because f is projective). Therefore, if .4 is pure of
weight n (i.e. Grf’ # =0 for i #n), f, (M, F) is strict, and #/f, .M e MH(Y, n
+j)P by [19, (5.3.1)]. Moreover the vanishing cycle functors along h are well-
defined for .4 by definition so that Y, .4, ¢, ;. # € MHW (X)?, and the weight
filtration of A#/f, Y, # (resp. #'f, ¢, #)e MHW (Y) is the monodromy



Mixep HODGE MODULES 253

filtration shifted by n — 1 + j (resp. n + j) and is given by the induced filtration
Hf,WLj] by [19, (5.3.4)]. Therefore the assertion follows from the next two
propositions and  [19, (3.4.13)](because  the filtration #/f,L on
HTf M, H f by M coincides with A [ W[—1], ¢, #' [, W on
lpg”jf*'/[9 ¢g,1=yfjf*‘/%)'

2.15. Proposition. Let f: X — Y be a proper morphism of separated reduced
complex analytic spaces, and M = (M, F), K; W) e MF, W (24, Q), cf. 2.13.
Assume f,Grl' (M, F) is strict, #7f,Gtl (M, F)e MF,(Zy) and #’ [, Gl M e
MH(Y, i + j)® for any i,j. Then f,(M, F) is strict, #’ f (M, F)e MF,(2,) and
we have the weight spectral sequence in MF,(Dy, Q):

(2.15.1) ErH = #f,Gr (M, F), K) = #’f,((M, F), K),
degenerating at E,, such that d,is a morphism of Hodge Modules (hence strict) and
(2.15.2) E; " ~ Gt #7 f, (M, F), K\e MH(Y, j + i),

e (#'f (M, F, K), #f  W[j1)e MHW (Y)P, where W is the induced filtration
Hif Won #'f,(M, K) as in 2.14.  Moreover (f,(M, F), Dec f, W) is strict and

H(f«(M, F), Decf, W) = (H#7 [, (M, F), #7 {, W[]).

Proof. The Q-part of (2.15.1-2) and #/f Grl((M, F), K), #7f.((M, F), K)
are globally well-defined, if f, (M, F) is strict and #7f, (M, F)e MF,(2,).
Therefore the assertion is local and we may assume Y smooth, because the
assertion on the polarizability is trivial (cf. [19, (5.2.13)]). Then we have the
weight spectral sequence (2.15.1) in MG,(%, Q) by [19,(5.2.17-21)]
(cf. [19, (5.1.1)] for the definition of MG,(%, Q)). By assumption E;"*J/e
MH(Y, i +j)® and d, are morphisms in MG,(%, Q). Therefore d, is a
morphism in MH(Y, i + j)® so that E, *"*/e MH(Y, i + j*® and d, = 0 for r > 2
by [19, (5.1.14), (5.1.11)]. Then the isomorphism (2.15.2) in MG,(%, Q) implies
H'f (M, F, K\e MF,(Zy, Q)(i.e. f,(M, F) is strict) and the filtration W of
H'f.(M, F, K) in MG4(4%, Q) associated to (2.15.1) is actually a filtration in
MF,(Zy, Q), which gives the weight filtration of #7f,(M, F, K) and coincides
with #7f, W on #/f,(M, K). The last assertion follows from [19, (1.3.7)],
because f, Grl¥ (M, F) ~ Gt f, (M, F) is strict and Dec f, W is well-defined on
fo(M, F).

2.16. Proposition. Let f: X - Y be a proper morphism of complex manifolds.
Put X=XxC Y=YxC f=fxid:X>Y and M =(M,F),K;We
MF,W (9%, Q). Assume:

(2.16.1) (M, F) is quasi-unipotent and regular along X x {0},

(2.16.2) the three filtrations F, V, W on M are compatible,



254 MORIHIKO SAITO

(2.16.3) the relative monodromy filtration W on Y,(M, F, K), L) and
(d’t,l(M) Fa K): L) eXiStS, C_f. 11,

(2164) fOl’ ((Mka F)a Kka W) = Gr%(lpt(M’ F: K)a W)a Grﬁ(qst,l(M, Fa K)5 W),
Gl (M,, F) is strict, #'f Gl (M,, F, K,)e MH(Y, i + j)? and the
induced filtration H'f W on Hf,(M,, K,) is the monodromy
filtration shifted by k for any i, j, k.

Then we have:

(2.16.5)  f,Gr¥ (M, F),f,(M, F) are strict on a neighborhood of Y x {0},

(2.16.6) Hif, Gt (M, F), #'f,(M, F) are quasi-unipotent and regular along
Y x {0},

(2.16.7) F,V, #'f W on #f M are compatible.

Moreover, for (M', F), K'; L, W)= (y,(M, F, K); L, W), (¢,,(M, F, K); L, W),
we have:

(2.16.8) Dec(f W) on f(M';F,L) is well-defined [19,(1.3.7)] and
(GrEf (M, F), Dec(f,, W), (fo(M', F), Dec(f,W)) are strict,

(2.16.9)  we have the limit weight spectral sequence in MHW (Y)®):
E{4 % = (A#7f, Grg(M', F, K'), #7f , WL[j])
= (H'f (M, F, K'), #'f, W[j])

degenerating at E, (it is canonically isomorphic to Y, (or ¢,,) of
(2.15.1) applied to M and f, forgetting W),

(2.16.10) HIf WL is the relative monodromy filtration of (#'f (M, F, K'),
AL LI,

(2.16.11)  F, #if W, #'f . Lon #'f M are compatible.

Proof. By definition (cf. 2.13), f, (M, F); L, W) is represented by a complex
such that F, L, W are compatible on each component, and f, commutes with
GrY, Grf. Then by (2.16.4), GrGr f,.(M', F) is strict, and the filtration f, L
on Gr/f,(M’, F) has the canonical splitting by 1.5 applied to ((M', F); W, L).
Here Gr/*" is abbreviated by Gr! (same for L). Then by [19,(1.3.8)],
Dec(f,W) on f,((M', F), L) is well-defined so that Dec commutes with Grj.
Moreover (f,Gri(M', F), Dec(f,W)) are strict, (#'f,Gri((M’, F), K'),
Hf,W[j1)e MHW (Y)® and its weight filtration #7f, W[j] is the monodromy
filtration shifted by j + k by (2.16.4) and 2.15. Consider a spectral sequence:

(2.16.12) E{* = #(f,Gri(M', F), Dec(f, W)
= H(f(M, F), Dec(f, W)
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in MGW(@) the category of inductive systems of MG(4%), cf. [19, (2.1.1)(5.1.1)].
It is compatible with the Q-part of (2.16.9) forgetting W, and E[ ***J underlies
(H'f.Gre(M', F), K'), #'f W[j1)eMHW(Y)®. Because d; of (2.16.12)
preserves the filtration Dec( f, W), it underlies a morphism in MHW (Y)® so that
E; ***Jof (2.16.12) underlies an object of MHW (Y)®, whose weight filtration is
the monodromy filtration shifted by j+ k (because it holds for E;***iby the
above argument) We show d,=0 for » >2 by induction on r. Assume
Ejkk*i ~ E7*k*J for r > 2. Because d, preserves Dec(f, W), it underlies a
morphism in MHW (Y)?), hence it is enough to show Gr"d, =0; but this
follows from the following argument (cf. [24]):

Let u: M* > M? be a morphism of graded modules with the action of N

such that N(M{) < Mi_,, then u=0, if N': M4 ;> M5 _; with p; > p,.
(For the proof, restrict u to the primitive part of M'.) Therefore we get an
isomorphism in MGW (%):

(2.16.13) E;**) ~ Grk 7 (f (M, F), Dec(f, W)),

which implies #7(f,(M’, F), Dec(f,, W))eMF, W (Zy) (i.e. (f.(M’, F), Dec(f,W))
is strict), and the filtration Lof s#/(f,(M’, F), Dec(f,W)) in MGW(%) associated
to the spectral sequence (2.16.12) is actually a filtration in MF,W(92y), which
coincides with #7f,Lon s#/f,M'. In particular, we get (2.16.8) and (2.16.11)
(cf. [19, (1.3.3)], because f, W[j] and Dec(f,W) induce the same filtration on
Hf ,M'. Moreover we get (2.16.10) by (2.16.13) (and by the above argument).
Because (2.16.12-13) are compatible with Q-structure (forgetting W), we get

Gr (A7 (f((M', F), K'), #7f,W[j1)e MHW (Y)®
and
(A (f (M, F), K), #'f  W[j])e MHW (Y)®

by the canonical splitting of L on Gr" in 1.5. Therefore we get (2.16.9).

By [19,(3.3.17)], (2.16.5-6) follows from (2.16.8). Moreover
f*GrW(M; F, V) and f*(M; F, V) are strict on a neighborhood of Y x {0} so
that the filtration V on #7f,Gr’M and #’f,M coincides with
H'f, V. Therefore we get (2.16.7), using the spectral sequence:

(2.16.14) E[H% = #if Gl (M; F, V) = #'f,(M; F, V)

In fact, (2.16.14) degenerates at E, (because Gr” of (2.16.14) is isomorphic to
(2.16.12) forgetting Dec(f,W)) and d; of (2.16.14) is strict on Y x {0} by
[19, (3.3.3-5)]. Hence F,V, W are compatible on ,}fjf"*M by the same
argument as above, because V is trivial on Y x C*,
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(2.d) Mixed Hodge Modules

2.17. Let f: X > X be an open immersion of separated reduced complex
analytic spaces, such that locally X\X =g '(0).s for a locally defind
holomorphic function g. We say the direct image j, (resp. j,) is well-defined for
M € MHW (X), if there exists an extension ./ MHW (X) of .#, denoted by Ju M
(resp. j,.#), such that the following conditions are satisfied:

(2.17.1) for any holomorphic function on an open set U of X such that
g 1(0),.g = U\ X, the vanishing cycle functors along g are well-
defined for M|y,

(2.17.2)  K=j,K (resp. j,K), where K, K are the underlying perverse sheaves.

By 2.11, j,# (resp. j..#) is unique (if it exists).

We define a full subcategory MHM (X) of MHW (X), called the category of
mixed Hodge Modules, as follows:

For # e MHW (X), .# belongs to MHM (X), iff, for any complex manifold
Y, and open subset U of X x ¥, and any (finite) number of holomorphic
functions ¢, g,,..., the following condition is satisfied inductively for r > 1:

(2.17.3) the vanishing cycle functors along g, are well-defined for .#,, and
the direct images (j,),. (j,); are well-defined for j, ' .4#,,

Where jr: U\gr_l(O) - U5 J%(I = (M Q;i[d}’]”U and '/flr = l//g,_fﬂr—l’
By 1M1, (r=Dsrty M-y and (j,_ ) jrty M,y for r> 1.

Here Q¥[dy] = (2%, F), Qy[dy]; W) with Grf,=Gr’ =0 for i+#dy
(=dimY), and for complex manifolds X,, X, and A4, = ((A4;, F), K;; W)e
MF,(Zy,, Q), we define M, X M, = ((M, F), K; W) by

(2.17.4) M =M, W M,(=(pr; "M, ® pr; ' M,) ® Ox,xx2)

pry10x, ®pry 10x,
K=K,®K,
FpM = Zi+j=p(FiM1 FjMZ)
Wi(M, K) = Zi-rj=k(VVi(M19 K,) VVj(MZ’ K3)
(The case X; singular is reduced to this case, because this definition is compatible

with closed immersions.) Then the condition for MHM (X) is local, and for a
closed immersion i: X — Y, we have an equivalence of categories:

(2.17.5) i,: MHM(X) = MHM,(Y),

where MHM,(Y) is the full subcategory of MHM(Y) consisting of the objects
supported in X. (In fact the condition (2.17.3) is invariant by closed
immersions.)
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By definition, MHM(X) is stable by Tate twist (n), smooth pull-backs,
vanishing cycle functors and j,j~ !, j,j~' for open immersions j: U~ X such
that X\ U is a locally principal divisor. (In fact, these functors are compatible
with X Q¥[d,].) Here, for f: X - Ya smooth morphism of complex manifolds
with dimX —dimY=1 and 4 = (M, F), K; W) eMF,(9y, Q), we define
A7l = (M, F), K5 W) by

(2.17.6) (M; F, W)= oy ®-10, (M F, W[~ 1]) @ oy ")
(K, w)y=f(K, W[-1)[-1]

and put #'f* M = (#"'f' M) (—1]). (The singular case is reduced to this case
by definition.) Then we have a natural isomorphism:

Hf* M~ MR QF [d,],

if X=Yx%xZ and f = pr, is smooth. For 4 = ((M, F), K; W)e MF,(Z4, Q),
we define .#(n) = ((M, F), K; W) by

(2.17.7) (M, K) = (M, K)(n), W(M, K) = (W;..24(M, K))(n)
F,M = (F,_,M)(n),

where (n) = ®,(27i)"Z, cf. [19, (2.0.2)]. By 2.6, MHM(X) is stable by the dual
functor D, because D commutes with X Q¥[dy](up to Tate twist) and vanishing
cycle functors, and j,j~ ', j,j~ 'are exchanged by D.

We define the category of polarizable mixed Hodge Modules by

(2.17.8) MHM (X )* = MHM (X)n MHW (X)?.

Then it is stable by Tate twist (1), dual functor D, vanishing cycle functors and
Jxj % jij~Hor j as above. By 2.14, it is also stable by #/f, for a projective
morphism f, because #7f, commutes with X Q¥ [d,].

2.18. Let j: X »> X be an open immersion of separated reduced complex
analytic spaces such that X\ X is an analytic subset. We say that j is admissible
to # e MHM(X), if # is extendable to X, i.e. there exists ./ MHW (X ) such
that j~ '\~ M.

Let f: X >Y be a morphism of separated reduced complex analytic
spaces. We say that fis projectively compactifiable, if there is a factorization f
= foj such that f is a composition of projective morphisms and j is an open
immersion whose complement X\X is a locally principal divisor. Two
projective compactifications f = f;oj; (i = 1, 2) are called (projectively) equivalent,
if there is a projective compactification f = foj with a commutative diagram:
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such that #;, m,are compositions of projective morphisms. We say a projective
compactification f=foj is admissible to M#eMHM(X), if so is j. If
M e MHM(X)?, this condition depends only on the equivalent class of projective
compactifications by 2.14 and 2.19 below. Here we use 2.11 and 3.21 to assure
Ju M, ji M eMHM(X)?. In this case, we define

fjf*‘/% = '%Jf*(]*'//l)
(2.18.1) , ~
Hfy M = Hf, (M)

which depend only on the equivalence class of projective compactification of
f- (Note that a composition of projective morphisms is projective locally on the
image of the morphism. For the polarizability we can use Deligne’s uniqueness
of the decomposition.)

2.19 Proposition. Let f: X - Y be a morphism of separated reduced complex
analytic spaces. Then we have cohomological functors (jeZ):

HIf* A MHM(Y) — MHM(X)
compatible with

PAIf* PAIf: Perv(Qy) — Perv(Qy).
Proof. Assume first f is a closed immersion such that X = ng; *(0),.for
holomorphic functions g;,...,g, on Y. Put U; = {g; # 0} and let

irUr=NigU;— Y

be natural inclusions. We define #/f*.# (resp. #f'.#4) by the j'* cohomology
of the complex in MHM(Y):

(__D_.(jl)!jl_lf/” (resp. m@_ (Dsir t M)
whose component of degree 0 is (j,)j, *.#:= M. (Here we use the equivalence
(2.17.5).) We can easily check that this definition is compatible with
PHIf*K, P 'K on the underlying perverse sheaves by [3, (3.1.14)] (here K is
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represented by a complex of flabby sheaves), and independent of the choice of
{g:} (i.e. we have a natural isomorphism between the underlying perverse sheaf of
Hf* M and PH7f*K, and the composition of these isomorphisms for different
{g;} induces an isomorphism in MHM(X).) Therefore we get the assertion in
the closed immersion case, because P/ f*K, P/ f'K are globally well-defined.

We now assume f has a factorization f = poi such that p is smooth and i is
a closed immersion. Then we define

HIf* M = AT A M (resp. Hif'll = #Hi*H D' M),

where [ is the relative dimension of p. By the same argument as above, it is
enough to show the independence of the factorization (in the above sense),
because any morphism has such a factorization locally on X. Let f'=p;°i; (j
= 1,2) be two factorization. We may assume the existence of a smooth
morphism p with a commutative diagram:

using the fiber product X; x yX,. Therefore the assertion is reduced to the case
f is a closed immersion (by replacing f with i,) and we have to show the
canonical isomorphism:

(2.19.1) HIf* M~ AT A M

for a factorization f = poi as above. (We show the assertion only for J#/f*,
because the argument for #7/f' is similar.) Because the assertion is local, we
may assume [ = 1 (by factorizing p) and X ={g; =--=¢g,=0}(in ¥), X, =Y
x 4 so that p=pr; and Imi=Imf x {0}, where 4 is an open disc and
J1is....gq are holomorphic functions on Y. By definition, the both sides of
(2.19.1) are given by the cohomology of the complexes:

@|I|=—~(f1)zj1_1=/”
@|1|=—-((j1)!j1_1/%) C(j IZ.[I] — QIZ[IJ)

where j;: U= Y, Uy = {Il,; g, = 0}, j: 4* - 4 and 4% = 4\{0}. Therefore the
isomorphism (2.19.1) follows from the canonical exact sequence:

0 — 1, Q% — Q% [1] — Q3[1] — O,

where i: {0} — 4.
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2.20. Corollary (of the proof of 2.19). Let i: X - Y be a closed immersion of
separated reduced complex analytic spaces. Putj: U = Y\X — Y. Then we have
natural functors for keZ.:

A5 i, ATt MHM(Y) — MHM(Y)
compatible with
PAHYG T P Perv(Qy) — Perv(Qy),
so that we have functorial long exact sequences:
— KM — HM — i AHFM— AT M —
(2.20.1)
—s i LM — KM — AT M — i A M—

compatible with the corresponding exact sequences in Perv(Qy), where H*M
= M (if k=0) and O (otherwise). If X is a locally principal divisor, #*j,j~*
=H",j ' =0 for k#0 and H°jj~*, #°),j 'coincide with jj ', j,j” tin
2.17.

Proof. The assertion is local, because the underlying exact sequences of (2.20.1)
in Perv(Qy) are globally well-defined. Therefore we may assume X = {g, = ---
=g,=0}, and let j;: U, > Y be as in the proof of 2.18. Then we define
H*jj~ M (resp. #*j,j~* M) by the k™ cohomology of the complexes:

(&) _.(jI)!jI_I'//[ (resp. ”IE‘DI:(J.I)*J.I—IJ”%

|— =
where the component of degree k is assumed to be zero for k > 0 (resp. k < 0),
ie. I = ¢. We verify the well-definedness (as in the proof of 2.18). Then the
exact sequence (2.20.1) and the last assertion are clear.

Remark. With the notation of 2.19, j has only one equivalence class of
projective compactification, and #%j,j~*, #*j,j 'in 2.19 are compatible with
the definition in (2.18.1) in the polarizable case (by the last assertion of 2.20 and
the independence of {g;} on the blow up of Y).

In the proof of the next proposition, we need essentially 3.21.

2.21. Proposition. Let f: X > Y be as in 2.19. Assume f has a factorization f
=peoi such that p is smooth and i is a closed immersion. Then the functors
HIf*, A" in 2.18 preserve the polarizability.

Proof. By 3.21, the polarizability is preserved by smooth pull-
backs. Therefore we may assume fis a closed immersion, and let j: U — Y be as
in 2.20. Then by the exact sequences (2.20.1), it is enough to show the
polarizability of #%j,j~' M, #*j,j ' M, because H*jj M =H ¥ j M
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=0 for k>0 and #*# =0 for k #0. Let n: Y— Ybe the blow-up of X, and
j: U > Y the natural inclusion. Then

%kj!j_l'/ﬂ = %kn*(ﬁj—lﬂ), %kj*j_l'/% = %kn*(f*j_lf/%)

by the above remark, if ', J,jT'#MecMHM(YY. But jj'.4,
Jei~* M e MHM(Y) follows from 2.19 (and by the stability of j,j %, j,j~') and
the polarizability from 2.11 and 3.21. Then the assertion follows from 2.14.

(2.¢) Beilinson’s Functor and its Applications

2.22. Proposition. Let i: X - Y be a closed immersion of separated reduced
analytic spaces such that X = g~ 1(0),., with a holomorphic function g defined on Y,
and iy: Y— Y x S the immersion by graph, where S = C. Let j: U:= Y\X— Yand
Jgi {g #t} > Yx S be the natural inclusions of their complements, where t is the
coordinate of S = C. We define the functor:

¢, MHM(Y)®” — MHM(Y)®

by

Sl = Y1 (jgh ()~ (M R Q[ 1]).
Then we have canonical and functorial exact sequences in MHM(Y)®:
(2.22.1) 0 — Y M —> Egll —> M —> O
(2.22.2) 0— jij 'l — el —> ¢, M — 0.
Proof. We have an exact sequence in MHM(Y)®):
(2.22.3) 0 —> (igytt — (jhjy ' M— M—> 0

where /= .# X Q¥[1]. Taking y,,, we get (2.22.1). Let io: Yx {0} > Y
X S,jo: YX S*>Yx Sandj:{g#tg+#0}>YxS be the natural inclusions,
where $* = S\ {0}. Then we have an exact sequence:

(2224) 0> (iohyif M —> J] M —> (g ' M— O
by applying (j,)j, ' to
0 —> (i) M — (jo)zj(;l/z_’ M— 0.
Taking ¢, ;of (2.22.3-4), we get an exact sequence
00— jij 'l — $ 1] M—> s M — 0,
because @, ;M =0 and @, ,(ip), ~id. We get
Yoo M=yl
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by applying ¥, to (2.22.4). Then the assertion follows from the canonical
isomorphism:

can: l//t,lflj_lj = ¢z,1f!f_1ﬂ-

Remark. The above proof of (2.22.2) was pointed out to me by
Kashiwara. He also remarked the exact sequences:

(2.22.5) 00— ¢l —> MDEjoj ' M — joj ' M—0
(2.22.6) 0—> &gl —> G M D Ejyj ' M —> Yy M(— 1) — 0.
By (2.22.5), Beilinson’s functor =, used in [1] should correspond to &,j,.

2.23. Corollary. For .4 e D5MHM(Y)®?, we have a canonical (and functorial)
isomorphism in DYMHM(Y)®:

(2.23.1) M= Py M
so that we have an equivalence of categories:
(2.23.2) D’MHM(Y)® = D MHM(Y)®

where ¢, 1gives a quasi-inverse. Here D® means the derived category of bounded
complexes of an abelian category and D% is its full subcategory of the objects
whose cohomological supports are contained in X (cf. (2.17.5) for MHM(Y)).

Proof. Because ¢, and ¢, ;are exact and induces the identity on MHMy(Y)®,
we have the quasi-isomorphisms:

M — ég'ji{. — ¢g,1'/ﬂ's
and we get (2.23.1), then (2.23.2) is clear.

Remark. The isomorphism: ¢, . #° ~ ¢, , . #° obtained by applying ¢, to
(2.23.1) is the identity by the above proof (because we may assume
M*e DPMHM,(Y)®.)

2.24. Corollary. For #eMHM(Y)P), we have canonical isomorphisms:
(2.24.1) Po i MYy My Gy 1T M Yy M=)
so that @, ,0f the canonical morphisms:

JTHM — M, M — j M

are identified with can, Var. Therefore we have canonical isomorphisms in
DYMHM(Y)):
C(jyj ' M — M)~ C(can: Y, M —> ¢, M)

(2.24.2)
C(M — jj M)~ C(Var: @y, M —> Y, 1 M(— 1))
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so that i, i* M and i,i' M[1] are represented by these complexes, i.e. we have the
canonical exact sequences:

0oy L AR M Yy M By M— I, HOF M — O
00— iy WL M — Gy M Ty M(— 1) —> i M — 0

Proof. This follows from the proof of 2.19 and the commutative diagrams:

Wg,lj!jnj'/f[ = wg,l'/% wg,l'ﬂ(— 1) = lPg,l‘/..'cj_l'/l(_ 1)
lz can lcan TVar P Var
¢g,1j!j_1v/” I ¢g,1'/% ¢g,1=/% - ¢g,1j*j_1'/%'
Remark. If i: X —>Y is a closed immersion such that X ={g, =--- =g,

=0}, #/f* M (resp. #f' M) is isomorphic to the cohomology of the single
complex associated to the n-ple complex obtained by iterating the functors

Clcan: Y, 1 — @,,,1) (resp. C(Var: ¢, ; — ¥, (= 1)) [ 1]).

2.25. Lemma. Let f: X — Y be a morphism of complex manifolds. Put d
=dim X —dim Y. Assume f is non-characteristic to the underlying filtered 9-
Module (M, F) of #/e MHM(Y). Then

Hif* M =H7f M=0 forj+d
W, A f* M~ AWy, WA M~ A W, g M

and the underlying filtered Dy-Modules of H°f* M, # ' M are isomorphic to
f*(M, F)[d], (M, F)[—d](cf- [19, (3.5.1)]).

Proof. By definition (and by [19, (3.5.4)]) we may assume f is a closed
immersion and X = {x; = -+ = x;, = 0} (because the definition of f* f' in
[19,(3.5.1)] is compatible with DR.) If d = — 1, the assertion follows from
[19, (3.5.6)] (because it implies ¢, ;.# =0and N =0on ¢, ,.#.) In general,
we can reduce to this case by factorizing i (cf. the remark of 2.24 and
[19, 3.5.9)]).

2.26. Proposition. Let f: X > Y be as in 2.19. If MeMHM(Y) satisfies
G # =0 for i>n (resp.i<n), we have Grf #f* #4 =0 for i—j>n
(resp. Gt #f' M =0 for i—j<n). Let f: X > Y be as in 2.18 such that
Hif M, Hf, M can be defined by (2.18.1) for M e MHM(X)?. If G M =0
for i > n (resp. i < n), we have Grl' #if, M =0 for i —j > n (resp. Gt #f, M
=0 for i —j < n).

Proof. For the first assertion, we may assume f'is a closed immersion such that
X ={g,=+-=g,=0}. Then by the remark of 2.24, we get the long exact
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sequence :
s Y M=y HFEM— KM —
where f:{g, == gy-1 =0} > Y. Thus we may assume X = {g=0} by

(2.24.3). Moreover we may assume Gr/.# =0 for i # n (and . has a strict
support) by the weight spectral sequence associated to the cohomological functor
Hif* (jeZ). If supp# < X, the assertion is trivial. If not, the assertion
follows from the surjectivity of

Gr¥can: Gy, M —> GtV ¢, , M

and its injectivity for i >n. The assertion for #/f' follows from the dual
argument.

For the direct images, we may assume f is an open immersion whose
complement is a divisor defined by g, because the assertion for f projective is
clear by the weight spectral sequence (2.15.1). Then the assertion for f,./#
follows from the proof of 2.11 (cf. (2.11.10)), and the assertion for f,.# from the
duality.

2.27. Lemma. Let f: X — Y be a smooth surjective morphism of separated
reduced complex analytic spaces such that the fibers of f are connected and of
dimension d. Assume f is compactified to a projective morphism f: X — Y such
that X\ X is a locally principal divisor. Then, for #{e MHM (XY extendable to
X, we have

2.27.1) M= HLEM for M e MHM(Y)
iff
(2.27.2) K~f*K'[d] for K ePerv(Qy),

where K is the underlying perverse sheaf of M.
Proof. Assume (2.27.2). We define
M =K, (jM)eMHM(Y)

where j: X — X. Then the underlying perverse sheaf of . is canonically
isomorphic to K' by the direct image of (2.27.2), because C(K’
- ff*K)eD:(Qy)”° Therefore it is enough to show (2.27.2) induces an
isomorphism in MHM(X), and the assertion is local on Y. Hence we may
assume X, Y are closed subvarieties of Z = P" x U, U with U smooth, so that
i'of = pryoi, where i: X » Z,i: Y- U. Let s: Y- X be a section of /. Using
an automorphism of P" parametrized by Y (and changing i), we may assume
Ims = {p} x Y for peP", so that s is extended to a section s of pr, satisfying
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Ims' = {p} x U. Taking hyperplanes of P" whose intersection is {p}, we can
define the natural functor

s,(sy*: DP'MHM(Z) —> D%, . MHM(Z)?

with the natural morphism: id — s (s')*, by the same argument as in the proof of
2.19. For M=i,j, M, we have

HISV M~ i, His*M =0  forj#—d
and we get a morphism in D°F,(2,)
(M, F) —> s, (M,, F)[— d]
compatible with the natural morphism in D%(Q,):
I K — 1), 545K,

where (M, F), (M, F) are the underlying filtered 2-Modules of ./Z, # ~%(s')* M
and K is represented by a flabby complex as in the proof of 2.19. Taking the
direct image # ~%(pr,),, we get the canonical morphism in MHM(U), i.e. in
MF,W(Zy, Q):

i M = Hpry), M— i, H s M
whose underlying morphism of perverse sheaves is identiﬁe_d with the identity on
i, K' by (2.27.2). In fact, it preserves W, because P ~‘f, is left exact and
WP TS K~ P O (Wriaf K) < P f Wi K
WP ~9s*K ~ P ~4s*W,, ,K,

cf. 2.15, where we use an argument similar to the proof of 2.25 for the last
assertion. Therefore we get the canonical isomorphism in MHM(Y):

M S AT M
inducing the identity on K’ by (2.27.2), for any (local) sections of f, and this
implies the assertion.

(2.f) Extensions over Closed Subspaces

2.28. Proposition. With the notation of 2.22, let MHM(U)Y be the full
subcategory of MHM (U)W of the objects extendable to Y (in MHM(Y)®), and
MHM(U, X)& the category whose objects are {M', M",u, v} where M'e
MHM(U){, 4" eMHM(X)?, ueHom(y, , 4, "), veHom(M", 1, , M'(— 1))
such that vu= N, and whose morphisms are the pairs of morphisms in MHM(U){,
MHM (X)P compatible with u, v. Then the functor
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(2.28.1) MHM(Y)? — MHM(U, X))@
assigning {j~' M, ¢, M, can, Var} to M is an equivalence of categories.
Proof. We define an inverse functor a by
(M, M, u,v) = C(CW)[— 1] —> j, M)
where C(u) — j,M'[1] is induced by the composition:
(id, v) . ’ . r
Clu) —— C(N) e—— {,C(ji M — j M)
—— C(jill —— j M) —"— jiM[1].

Here we use 2.22, 2.24 and the constructionin 2.29 below to avoid the ambiguity
of the mapping cone in the derived category, i.e. a(#', 4", u, v) is defined by
CCW[-1]— CN)[- 1] ¢, CGHM — jo M) [~ 1] — jiM")
in the notation of 2.29. We check that ¢, a(4', #", u, v) is canonically

isomorphic to
C(CWIL— 11— Yy M) ~ M"e MHM(Y)?,
using the construction in 2.29 below and the commutative diagram for .4

=C(jM' —j M- 1]e CY\MHM(Y)®:

¢g,1 ¢g,1ﬁ — ¢g,1€g‘//i - ¢g,1.//7

T I

¢g,1¢g,15g=//7‘“"— (bg,lfgégj_" ¢g.1§y‘/7

l l

¢9s1¢g,1¢9,1j<_’v~ ¢g,1 €g¢g,1'/f[:-) ¢g,1 d)g.lﬁ

cf. the remark of 2.23. Put M = a(M', M",u,v). Then j~ M = .M' (hence
YoM =Y, M) and M eMHM(Y)Pbecause #'M =0 for j#0. For
(MY, M, id, N) and (M, Y, M'(— 1), N,id), we have the canonical
isomorphisms

a(%,a Wg,l‘ﬂl, 1d: N) :j!‘/””

WM g1 M (— 1), N, id) > j M’

such that their ¢, ;are identified with the identity on YoM and Y, M'(— 1) by
the above isomorphism (and by 2.24), and « and ¢,.1a of the morphisms:
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(id,u)

(M, gy M, i, N) —— (M, M", u, V)

(id, v)

I ('//[Ia ‘pg,lﬂl(_ 1)’ N, 1d)

are identified with the (natural) morphisms:

G — M — M
Ugr ' —> M" — g, M (— 1)

by the above isomorphisms. Therefore « is a right inverse. For #e
MHM(Y)®, we verify an isomorphism

C(C(jpj ™' M — M) [~ 1] jij~ ) = C(CU) [~ 1] — jij~ ' M)

by a similar argument. This shows « is a left inverse.

Remark. Another (but essentially equivalent) construction of an inverse functor
is pointed out by Kashiwara. He uses (2.22.6) and defines it by the single
complex associated to the double complex

M == Yy M (1)

] T
Yoall' —>  Cojy M

Then it is clearly a left inverse. (Problem: prove directly that it is a right
inverse.)

2.29. Let o be an abelian category, and (X, Y;; f;, ;) a diagram of morphisms
in C*(«):

gi-1 i A
& L X ——

such that X; =Y;=0 for |i|» 0. We define the cone C(X;, Y;; f;, g;) by

C(Zfi—z g:DXi— DY)

If f; =g; (hence X; = X;.,) or g; (resp. f;) = id (hence Y; = X, ,(resp. X)) for
some jeZ, we have the contraction (X, Y; fi, g/) by
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such that fj=f;, or f;i,f; (resp.gj- =g;-10r g;_1g;), and a canonical
morphism in C’(«/):

(2.29.1) CXi, Y5 fis 9i) — C(X,, Y3 fis 99)

defined by (id,id) or (id, f;,) (resp.(g;,id)): X (resp. X;41) — X; D X4 1,
where its restriction to the other X, Y; is the identity. Then (2.29.1) is a quasi-
isomorphism, if so is f; or g;. Similarly, if g; = f;+; or fj.(resp. g;) = id, we
have the contraction (X{, Y/, f;, g{) by

£ Si+2
<—X —_— Y<——- XJ+2—> iep e

g; I3 g
(resp. -+ — Yy & X; 0 Yoy &5 Xjup — )

such that g; = g;,,0r g;9;., (resp. f; = f; or f;;1f;) and a morphism in Cv(A):
(2292) C( i’ an g)_’ C( Yilsfil’ g;)

defined by X;,; —0 and id +id or id +g; (resp. f;+; +id): ;D Y., » Y]
(resp. Y;. ), which is a quasi-isomorphism, if so is f;,, or g;. If g;= 1d or f ;
= id, the composition of (2.29.1) and (2.29.2) is the identity on the cone of the
contraction, and that of (2.29.2) and (2.29.1) is homotopic to the identity with
the homotopy defined by id: Y;—» X, or —id: ¥;— X;. Let f": Y;— Z and
g:Y,.;—Z be morphisms in C’() such that f'g;=gf;+,. By the
functoriality of the cone, we have the canonical morphisms in C’(#/):

i

g, f]+1

C(- X,

j Y, Xje1 Vi )

9, id id fi+1
— Ol — G Xy — Xjay o Xjay =25 Yy — )

—— C( — Y« Y, 7 < Yj+1i)y}+1<_'”)
- C( XJ IS ZQ’GJ*-I Xj+2 )

We have similar morphisms for f: Z - X;,,and ¢': Z — X; such that g;f’
=fig. IfX;=Y,=0fori<0ori>aand g; are quasi-isomorphisms for 0 < i
<a, the cone C(X,, Y f;,g9) vrepresents the mapping cone of
fa9iti 90 fo: Xo— Y, in D”( ) by definition.

2.30. Let i: X—> Y be a closed immersion of separated reduced complex
analytic spaces, Cy the normal cone of X in Y, and j: Y*:=Y\X > Y, j: C}
:= Cx\ X — Cy the natural inclusions. We shall denote also by i the inclusion
X — Cx. We have the deformation of Y to Cy by
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Y= Specan, (@ £ 5" t")rea

nez

with the projection p: Yo S = Specan C[t] as is well-known, where 4 is the
Ideal of X in Yand #5x" = Oy for n>0. Then p~!(0),.q = Cx and p"*(§*) = Y
x §* with $* = S\ {0}, and Yis an (affine) open subset (over Y) of the blow-up
of Y x S with center X x {0}, i.e. the complement of the proper transform of Y
x {0}. Therefore, an object of MHM(Y x S*)?is extendable to Y, if it is
extendable to Y x S, by 2.19 and 3.21, and following Verdier, we can define the
specialization functor:

Spy: MHM(Y)® — MHM/(C,)?
by
Spx(M) = ¥ ,(# K QL[1]).

Then Spy is exact, commutes with D and induces the identity on
MHM(X)®. In particular, it induces

Spx: MHM(Y*)® — MHM(C$)2,

where they are the full subcategories of the objects extendable to Yand Cy. We
shall also denote by Spy the induced functor:

Spx: DPMHM(Y)® — D*MHM(Cy)®.

If the Ideal of X in Yis globally generated by holomorphic functions g,,...,g,, SO
is the Ideal of X in Cy, and as in the proof of 2.19, we can define the functors
G N Jed 7Y i 0¥, i, it in DPMHM(Y)® and D°PMHM(Cx)®, with the triangles:

s M — M — i M

(2.30.1)

— i M M — M

for .4 e D*MHM(Y)®, D°PMHM (Cy)?using the Cech covering associated to
{g9:# 0} or {grg; #0}. Then Sp commutes with those functors and preserves
(2.30.1), because we have the commutative diagram

Spxjij ' M —  SpyM
fo T
- - ()
JJT'Spxjii T M — jijT Spx M
such that () (xx) are quasi-isomorphisms. (In fact, we can reduce to the case

A € MHM(Y), then the assertion is true for the underlying Q-complexes.) In
particular
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%DmeMHM(Y)(P)(j!j_ IJ%, /{I) =0
H ompsyeamicyyo (SPxjij M, SpxM') = 0

for # e DPMHM(Y)P), 4" e D4Y{MHM(Y)®), because we can reduce to the case
M'€ MHM (X )Pand any resolution of j,j~ .4, Spyj,j *.# may be replaced by
its Cech complex (representing the functor j,j~! as above). Therefore we get

H M”DbMHM(Y)(Pl(ﬂ , M ') = H 0meMHM(cx)(m(prj{ s prﬂ ()

for M, M’ as above, because we can replace # by i,i*.# (i.e. we have proved
essentially the adjunction for i,i*) Thus we get the following proposition by
the same argument as in [23], because the assertion is local. In fact, the
polarizability of Gr!” . follows from 3.21 (if the strict support is not contained
in X) and from Spy =id on MHM(X) (otherwise).

2.31. Proposition. With the notation of 2.30, let MHM(Y*, Cx)\R be the
category whose objects are (M', M"; ) where M e MHM((Y*P, M€
MHM(Cx)Pand o: SpyM' ~j *M", and whose morphisms are the pairs of
morphisms in MHM(Y*)P and MHM/(Cy)® compatible with «.  Then the
natural functor

2.31.1) MHM(Y)® — MHM(Y*, C,)®
assigning (j~'M, SpxM ; id) to M e MHM(Y)WPis an equivalence of categories.

2.32. Let X be a complex manifold and q: E — X an analytic vector bundle of
rank r. Let ¢: EY —» X be the dual bundle, and put E = E x y E¥ with the
natural projections p: E—EY and p:E—E. Then we have a natural
holomorphic function g on E induced by the natural pairing on the fibers. Let
E* E* be the complement of the zero section of g,p with the inclusion j: E*
—E, j: E*>E.  For #cMHM(E)? we define

D(M) = ¢, H"(p)* M e MHM, - o (E)®.

Then &(#) is extendable to E x EY, where EY — X is the natural
projectification (i.e. compactification) of ¢', because the closure of the graph of g
in E x4yEY x Cis analytic. For #' e MHM(E*)® (i.e. extendable to E) we set

O(M) = D(HOj M), D (M) =DHOj M)
Then we have a natural morphism
w: @(M) > Dy (M)
induced by #°j, M - H°j M. If M =] 'M, we have a factorization
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D\(M')

(2.32.1) ) \ /

induced by #°j, M — M — #°j M. Here Ker, Coker of u, v, w are the pull-
backs by p° of Ker, Coker of the corresponding morphisms between
HOj M, M, H°j, M ;in particular, they are supported in the zero section of p
or q

Conversely, for #'e MHM(E*)® and 4"eMHM, ., (E)” with a
commutative diagram

i
(2.32.2) \ /

we have uniquely .#e MHM (E)Pwith isomorphisms

D, (M)

Go M= M", [ M= H PV M

such that ¢, of #°jj ' M— M— H#°j,j ' M is identified with (2.32.2),

cf. 2.28 and 2.24. Therefore the problem is when .4 is the pull-back of .# €
MHM(E)®, and we can restrict £ to an open subset p~'(U) where U is an
open set of EV such that ¢'(U)= X and the complement of U in the natural
projectification of ¢’ is analytic, because we are interested in the extension of
M' to E, and not that of (p')"'.4’' to E. By 2.27, the problem is reduced to
that for the underlying perverse sheaves in the polarizable case, then the answer
is known by MacPherson, Gabber, Malgrange [17][23](cf. also Malgrange, B.:
Variations généralisée, Astérisque 130, p.237-239), if the underlying perverse
sheaves of @(M'), ® (M), M" (on p~}(U)) are the local systems shifted by
dimU on the zero section U and the underlying perverse sheaf of .’ is
topologically trivial along X. Therefore we get an analogue of a result of
MacPherson-Vilonen [17] as follows:

Let Y be a separated reduced analytic space, and X a Zariski locally closed
smooth analytic subset (i.e. X and 6X = X\ X are analytic) such that .#,/.#2 is
locally free, where £z is the Ideal of X and .#y is its restriction to X. Then we
define

Ez = Specan, (P S"(f,;/f)z?))red

where S’ is the i'® symmetric tensor, so that its restriction Ey to X is a vector
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bundle and Cgz, Cy are closed subspaces of Eg, Ey. Similarly Ey the dual
bundle of Ey is extended using the dual of .# g/.ﬁf;, so that g is meromorphically
extended to the closure of Ex = Ex xyEy in (Ex X gE)eq and EJ > X is
naturally compactified to a projective morphism Ej — X. We define
MHM(Y\0X){ x to be the full subcategory of MHM(Y\ 0X)# (i.e. extendable to
Y) such that the underlying perverse sheaf K of its object satisfies:

(2.32.3) there is a Whitney stratification of suppSpyK compatible with
SpxK such that each stratum is conical (invariant by C¥*), Zariski
locally closed in Ez, and smooth over X.

In particular, SpyK is locally trivial along X. Let MHM(Y\ X){ x be the full
subcategory of MHM(Y\ X)% such that, for the underlying perverse sheaf K’ of
its object, Spx K’ € Perv(Qcy) is locally trivial along X in the sense of
(2.32.3)(i.e. P#°j,K (or equivalently ?#7°j, K) satisfies (2.32.3)). We define

MHM,,(Ey %% = hTm MHMS(U)Q—}%
where U runs over the open sets of Ey such that E¢\U is analytic and ¢'(U)
= X, and MHMS(U)’L}\;/ is the full subcategory of MHM(U)E% such that the
underlying perverse sheaf of its object is a local system shifted by dim U (s is for
smooth). By definition, ®,Spy.# and @,Spx.# belong to MHM(Ex );—)%. In
fact we take for U the complement of the union of the closure of Y:S’ZEX for
S, ¢ X, where {S,} is the stratification in (2.32.3) and Ey is identified with
T#Ey. Let MHM(Y\X; Ex)Wxiy be the category whose objects are
(A', M", u, v) where M e MHM(Y\X)} x, #"c MHM(EY %;?" u: @,Spy M’
—M" and v: M" — ®,Spy.A' are morphisms in MHM(Ey )%}% factorizing the
natural morphism @,Spy#' — @, Spy. /', such that the monodromy of the
underlying local system of .#" restricted to each fiber of U — X is described by
u,v and the “variation” of Gabber, Malgrange, cf. [17]. (Note that the last
condition implies .#" can be defined over U as above (depending only on .#')
using the intermediate direct image.) Then the natural functor induces an
equivalence of categories:

(2.32.4) MHM(Y\6X )} x > MHM(Y\X; EY)} x.y.

In fact the assertion is already proved forgetting the extendability condition
(because we may assume E,\U is a divisor by the same argument as
above.) Then we can use the following facts:

i)y For .#'eMHM(Y\X), M"e MHM(Cyx)%, with an isomorphism
SpgM'\cx ~ M"|cx, M" has an extension to Cxz such that the isomorphism is
extended to c: (for example, use #°j,j~! for the inclusions of C%, Cy, C% into
Cp. Therefore there exists .# € MHM(Y)? such that #|y5x ~ .A', Spx M|y _.x
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~M".

ii) By the construction in the proof, 2.28 holds adding the extendability
condition to Y for a Zariski open immersion j: Y— Y such that g is extended to
Y. (For example, apply the functor #7°j, to each component in the definition of
the inverse functor, and take the zeroth cohomology.) We apply it to the
inclusion

p '(U) x C— (Ex XXE};V)red x C,

where p: Ey —» EyY, and to the pull-back of the Modules on (Ez X 3 E),.sby the
projection from the closure of the graph of g.
iii) In 2.27, the addertion holds adding the extendablllty condition; i.e. for f: X
>Ya projective morphlsm extending f so that f ~1(Y) = X, ' is extendable to
Yiff 4 is extendable to X. We apply this to the projection from the closure of
the graph of g in (Ex X gE{),.q X P'onto Ej.

(2.g) Kodaira Vanishing

2.33. Proposition. Let Z be a (reduced) irreducible projective variety with an
ample invertible sheaf L, and i: Z—> X =P the embedding by L™ for some positive
integer m.  Then for =((M, F), K; W)eMHMZ( Y (or MH,(X, n)P),
GrfDRy(M, F) (¢f. [19, §2. 2] where DRy is denoted by DR) belongs to D(0,)
and it is independent of the embedding of Z in a complex manifold. Moreover
we have the Kodaira vanishing:

H'(Z, GIEDRy(M, F)Q L)=0  for i >0
H(Z, GrEDRy(M, F)Q L™ =0  for i <0.

Proof. Because (M, F) is regular and quasi-unipotent along any (locally
defined) g, Gri M is an @,-Module by [19, (3.2.6)] and we get the first assertion,
because GrfDRy(M, F) is uniquely determined by GrfM. We verify the
independence of embedding using the cartesian product as in 2.1, because the
direct image is compatible with DR and GrF (cf. [19, §2.3]). Then we may
assume m >2 for the Kodaira vanishing. Here we may assume also
M e MH,(X, n)?, because GrfDR is exact. It is enough to show the second
assertion, because # is self dual up to a Tate twist and the dual in
D% F/(Oy, Diff) is compatible with the dual in D%, (0y) by the functor GrF,
cf. [19, §2.4].

Let Y be a generic hyperplane of X, strictly non-characteristic to (M, F),
and s a section of I'(Z, L™)(~ Hom(L™™, (,)) such that s"!(0) = YnZ. Then
we have a finite covering

n: Z = Specan; (@osi<mL™) —Z
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ramified along Yn Z, cf. the remark below. Letj: U = X\Y— X be the natural
inclusion. Set

JuJ TV M = ((M(xY), F), j,j*K; W)e MHW 5(X)?
M = (M, F, K) = Coker (M — n,n*M)e MH,(X, n)?
L= Coker (0, — 7,03 e M(0,)

so that L™! is a direct factor of I, where n*.# can be defined as in 2.19 and
2.25(because 7 is non-characteristic) or 7, n*.# can be regarded as the unique
extension to Z of its restriction to the smooth open set U’ of Z where = is
étale. Any way ./ is a direct factor of m,n*.# and we have a natural injection
M~ 7, * M (induced by its restriction to U’). As for j,j~'.#, we have an
exact sequence

(2.33.1) 00—l —j j il — #i' M —0

so that #i'/# e MH,,y(Y, n + 1)? by the non-charactericity, where i: Y — X,
¢f. 2.11 and [19, 3.59)]. By [19, (5.3.1)] (and 2.15), RI'(X, DRy (M, F)) s strict,
ie. H'(Z, Gr'DRyM) is a sub-quotient of H'(Z, DRy M) ~ H(Z, K ® C), and
we have

H(Z, R)=H(Z,j,j *K) = H'(Z, j,j 'R)

by the non-charactericity. Therefore they are zero for i # 0 by the weak
Lefschetz theorem, and the assertion is reduced to the isomorphism:

(2.33.2) GriM = GrfM(=Y)® L

by induction on dim Z using (2.33.1). For zeZ, we have an arbitrary small
neighborhood U, of z in X such that the restriction of = to U,nZ is uniquely
extended (up to a unique isomorphism) to a covering over U, ramified along
YNnU, In fact it is clear if z¢Y: otherwise we use a local topological
trivialization: (X, Z) = (Y, YnZ) x D? near z and take a contractible neighbor-
hood of z in Ysuch that the contraction is compatible with YnZ. Therefore we
may assume 7 is extended to n: X — X ramified cyclically over Y (locally, i.e. by
restricting X), and it i5 enough to show the canonical isomorphism

(M, F)ly = (M, F)® Dy

is extended (uniquely) to the isomorphism of filtered right 24-Modules

(2.33.3) (M, F) = (M(*Y), F)Q L,

where Ldenotes also Coker (0yx — 1, 0z). Here the Z,-Module structure of the
right hand side is given by
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M(xY) ®0xz§ M(*Y) @ e L(»Y),

where (+Y) denotes the localization along Y and L(xY) is a regular holonomic
left 2y-Module. Then both sides of (2.33.3) are regular holonomic Modules
such that the action of a local equation ¢ of Y is bijective. Therefore we get
(2.33.3) forgetting F by [14][18]. As for F, we consider the filtration V along
Y. We have

Grl M(*Y) =0 for m¢Z,
GriL(*Y)=0 for am¢Z or acZ
V>oL+Y) =L

where V is decreasing on left Modules so that td, —a is nilpotent on
Gr%L(*Y). More precisely we have (locally) a unique decomposition

L= @o<i<mLs
such that Gri L; =0 for o — i/m¢Z and L; = V/"L,(xY). Then
Gry(M(*Y) ® L) = (Gry,ym M(*Y)) ® L; =0
for a + i/m¢Z and
FpVicymM(xY) ® L) = (Fp Vi M(xY)) Q L;

for keZ. Therefore (M(xY), F) ® L; (and hence (M(xY), F) ® L) is regular
and quasi-unipotent along Y (because so is (M(xY), F) and [19, (3.2.3.2)] is
satisfied), and we get (2.33.3) by [19, (3.2.2)] because Gr§(M(xY)® L;) = 0).

2.34. Remarks. 1) If Z is smooth and .# = Q¥[d,], the above vanishing is
expressed by

HYZ, Q3 ®L)=0 for p+q>dimZ
HYZ, Q2@ L™ Y)=0 forp+q<dimZ,

ie. the Kodaira-Nakano vanishing. If # = #/f, (Q¥[dy]) with f: Y—>Z
projective such that Y smooth, it implies (for p = — dim Y):

HYZ, Rif,oy @ L)=0 for i>0,

i.e. the Ohsawa-Kollar vanishing. In fact, for a projective morphism of complex
manifolds f:X —-Y and for # =M, F, K)eMH,(X)* with p,= min
{peZ: Grf M # 0}, we have

F,.(f«(M, F))=Rf,F,,M in D*(Oy)
F,#'f.(M, Fy=R/f F, M
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by the strictness of f,(M, F)[19, (53.1)]. Moreover for the canonical
decomposition :

HIfll = M D M,

such that #ie MH, (Y, n + j) (where Z' = f(Z) is assumed irreducible) and
supp 44 ¢ Z', we have F, M} = 0, where (M, F) is the underlying filtered 2-
Module. (In fact, this follows from the commutativity of f,, and ¥, ¢ and the
surjectivity of

can: Y, M — ¢, M

for g7(0) # Z) This implies some conjecture by Kollar, combined with the
results in §3.

2) It was first remarked by Ramanujan that the Kodaira vanishing can be
reduced to the weak Lefschetz theorem using Hodge structures. His idea was
further developed by Guillén-Navarro-Puerta, Steenbrink, Esnault-Viehweg,
etc. For example, we can deduce the result of Guillén-Navarro-Puerta as
follows.

Let Z be as in 2.33 and a: X.— Z be a simplicial (or cubic) resolution of Z,
such that each X, is smooth, and projective over Z. Then the filtered de Rham
complex (2, F) over C, is defined by Ra, (2, F), which has a filtration W such
that Gr”,(Q3, F) = R(a)),(Q%, F)[ —i]. We can regard (23, F) as an object of
Db F(Oy, Diff). Then DR™(Q;, F) is strict and its j™ cohomology underlies an
object of MHW(X)? with the weight filtration induced by #/DR™!' W[j],
because DR™'Gr”,(Q; F) is strict and its j®* cohomology underlies a
polarizable Hodge Module of weight j — i by [19, (5.3.1)], so that the weight
spectral sequence degenerates at E, as in the proof of 2.15. (Note that this
implies Du Bois’ well-definedness of (25, F) combined with some result on
simplicial (or cubic) resolution.) In particular

(2.34.1) HIGrEQ, =0 for j<p or j>dim Z,

because ?#'C, =0 for j>dim Z and (2, F)= D~1{°DR'1(Q;, F), cf[19,
§2.2]. (Here the assertion for j < p is clear by definition.) By the same reason,
2.33 implies

(2.34.2) Hi(Z, Gr£Q; ® L) =0 for j > dim Z.

3) Let X be a separated reduced complex analytic space, and L an
invertible sheaf on X with seI"(X, L™™) = Hom(L", Oy) for m > 2 such that
X\s7}0) is dense in X. Then we have a finite morphism

n: X' = Specany (@ o<icml) — X

by the isomorphism:
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@Posicm L = (D 1o L't)/Im(t™ — s).

Then @ g<i<mLl’ = 7, Oy has a natural regular singular connection induced by
that on the smooth part of X’ (or on a desingularization of X"). Let X' be the
normalization of X', #: X' —» X the natural morphism, and U the intersection of
the smooth part of X and X\s™*(0). Then L'|;(0 < i < m) are the eigenspaces
of the transformation group (hence the decomposition is compatible with the
connection) and 7,0z is Deligne’s canonical extension of @ogi<mLly, cf.
[11]. In fact, the last fact is well-known to specialists (and easy to check), if X
is smooth and s~*(0) is a normal crossing divisor, and we can reduce to this case
by Hironaka’s desingularization of (X, U). (We can also use the functions of
strict Nilsson class.)
4) For X =P" and (M, F, K; W)e MHW (X)?, we have

Hi(X, GEEM ® (Q%)" 1) =0 for j> 0.

This holds also, if each £ has a filtration whose graduations are negative line
bundles for i > 0 (and if X is smooth projective).

§3. Mixed Hodge Modules of Normal Crossing Type
(3.a) Constant Case

31. Let X be a polydisc 4" with coordinates (x,,...,x,). Put D, = {x; = 0}, D,
=N D;. Let Perv(Cy),. be the category of perverse sheaves on X whose
characteristic varieties are contained in the union of the conormal bundles of
D;. Put:

a={1,---,n}, v={ien: v, £0} fir ve(C/Z)".

We define an abelian category P(n) as follows:

The objects of P(n) are finite dimensional C-vector spaces E} indexed by
ve(C/Z)" and I < \V such that Ey = 0 except for a finite number of (v, I), and
they are endowed with morphisms:

can;: E} — E},(;, for i§Iuv
Var;: E} —E} ;, for iel
N;: E} — E} for any i

satisfying can;° Var; = N, (ieI), Var;ecan; = N;(i§IUV) and A;°B; = BjoA; (i #))
for A, B = can, Var or N such that 4;°B; and B;°4; are well-defined (e.g. i€ if
A = Var, etc,); in particular the compositions of can,, Var;, N, are independent
of the order if they are well-defined. The morphisms of P(n) are the morphisms
of the vector spaces: Ey — F}, compatible with can;, Var; and N,.
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By inductive use of Deligne’s description of the monodromical perverse
sheaves (see, for example, [23]) we have an equivalence of categories;

(3.L1.1) @n: Perv(Cy),e = P(n)

such that {E}} = Y"(¥) is defined by
Ey=%}.-¥rF for FePerv(Cy)p
Pr =yl —1] if i¢I and ¢2 [ — 1] otherwise,
where can;, Var;, N; are associated to the functors ., ¢, ;. Here y3
= Ker(T;; — () (same for ¢) with T, = T;°T;, the Jordan decomposition of
the monodromy around D; and e(«) = exp(2mia). In this normal crossing case,
we can easily verify that ¥" is independent of the order of the coordinates.
We define the dual functor D on P(n) by:

E}=D(E"), N;= — D(N)
can; = D(Var)), Véri = — D(can,)

for {E}; can,, Var,, N i} = D({E}; can,, Var;, N;}), where D denotes also the dual
functor in the category of finite dimensional vector spaces. Then we have

(3.1.2) "D >DY"
by [19, (5.2.3)]. Let Perv(Cy),, be the full subcategory of Perv(Cy),. consisting
of the quasi-unipotent normal crossing perverse sheaves;ie. we have

(3.1.3) " Perv(Cylnegu — P(1) g

where {E}}eP(n),, iff Ey =0 for v§(Q/Z)".

3.2. With the notation as above, put Dy = D54, 0Ox = Oy, We define
M(D ), by the full subcategory of M(Zy), the category of 2x-modules, such that
MeM(Dy),,, iff M is generated over 0Oy by M* for aeC" and
dime @ _creq,s0 M* < + 0, where

M*=n,(U;Ker((x;0; — ;) : M — M)).
If MeM(Dy),,, We have
(3.2.1) PMcMc HM“.

Note that M € M(Dy),,. iff M is regular holonomic and its characteristic variety
has normal crossings as in 3.1. If we choose a subset 4 of C such that the
composition: 4 - C — C/Z is bijective, and — 1€ 4, we have an equivalence of
categories:

(3.2.2) ¥5: M(Dx)pmc = P(n)
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such that {E}} = Y5(M) is defined by
E}=M*""" for ae A such that v = «(mod Z")

where can;, Var, N; are given by 0, x; x,0; —; and (1;); =1 if jel and 0
otherwise. Here the inverse functor is given by using the inclusion (3.2.1), where
M* for a¢(AU{0})" is determined by

x;t M* =5 M* 1 if q,ed — N
(3.2.3)

8t M* = M** 1 if e (AU{ON\{— 1}) + N.

Because Perv(Cy),. is independent of the radius of 4, we have the natural functor
DR: M(Zy),n. — Perv(Cy),. such that %7 = ¥"-DR. Then we have ¥, °D
=D-¥}), DR°D =D-DR by an argument similar to the proof of [19,
3.42]. Let M(Dy)meu be the full subcategory of M(Zy),, such that
M e M(D y)nequ iff M* =0 for a¢ Q"(ie. ¥5(M)eP(n),,). In this case, the above
assertion follows from [loc. cit], because the filtration V® along D; is given by
VO = MN]]aep M~
From now on we restrict to the quasi-unipotent case.

33. Theorem. For & €Perv(Cy)ney meN"(m #0) and g = x™(:=[[x["), set
{E}; can; Var, N} =y"(F), m={ien:m; #0}, EJ[N]=E;® C[N], (N,
—myN); = [ics(N; = mN), N; = [];c; N; (same for can,, Var,) and define {E};
can,, var, N}eP(n + 1), as follows:

(331 EB= { C"kef(N(aE]; f'ﬁeN)z]nVr; NNy if 0¢1
Coker( * = M Ninm Inm ’ afmm) if Oel,
Canyn; N N

for v =(vg,--,v,) EN"1 I = iU {O}\V, where the above morphisms are (injective)
endomorphisms of

E}i""[N] and E}.\z[N]@® E} [N]

respectively, with v' = (vy,---,v,) and I' = I\{0}. The morphisms can, etc. are
defined by the morphisms of mapping cones:

[id, N, — m,N] if iem\(IU7), 0¢1

id, 0 N; —m;N, —m; Var,» if iem\(IUV), 0l
0, can; /,\0, can;
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[can;, can,] if ien\(muvul)
() (0)]
—cang,s /> \0
[N; — m;N, id] if ieInm, 0¢lI
[(Ni-miN’ 0) <ld’ 0>] if ieInm, Oel
m;cany,m (), var; /,\ 0, Var;
V~ari =
[Var, Var] if iel'\m
[(d, 0), (N, Var;,,)] if i=0,
N = [N;—mN, N; —m;N] ifi#0
"7 | [N, N] if i=0.

Then ¥, % € Perv(Cyys)peqw and we have a functorial isomorphism in P(n + 1),,:
(3.3.2) Py (P, F) = {E}; can,, Var, N,

where S = A the open disc and ¥, & is Deligne’s nearby cycle functor (i.e.
Verdier's specialization in the codimension one case, cf- [23]); in particular,
Pr(piF) = (E}: 130, v, = o}, P"($2F) = {E}: I30} in P(n).

By 3.1.2, the assertion is reduced to the following

34. Theorem. For Me M(Dx)meq and g = x™ as above, M= (i) M (= M[0,])
has the filtration V along X x {0} indexed by Q such that V,M is generated over
Dy by

M Q1 with mya > v, if a<0

M® ® 0! with m{a —j)>v; in general,

where ve Q" and jeN. For {E}; can,, Var, N;} = Y%M) and {E}; can,, Var,
N}ePn + 1), as defined in 3.3, we have functorial isomorphisms:

(3.4.1) DR(¥,M) = ¥,DR(M) in Perv(Cyys)equ
(3.4.2) puti(p,M) ~ {E}; can,, Var, N} in P(n + 1),

where ¥,M = Gr"M ® 6rv g Dxxs:

Proof. We denote by V the filtration on M defined as above. The action of
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Dyys on M = M[3,] is given by:
u® d)a=ua® 0l (u® 0))0; = ud; ® 3] — u(d;g) ® 0{ "

343 , . . .
43 @t =ug® o +ju®ol™", @), =u®o"*

for ae Oy, ue M, where t is the coordinate of S « C and we use the coordinates
(t — g, X1, x,) of X x S to get the isomorphism M =~ M[4,]. In particular, we
have

(3.4.4) (u® 0)x;0; = (u @ &) (N; + v; — m(s — j)) for ue M”,

where s = t0, and (u @ 0))N; = u(x;0; — v;) ® 0! if ue M”. This implies that s
— o is nilpotent on Gr} M and V, M are V,Py,s-sub-Modules. Thus we get the
first assertion, because (V, M)t = V,_, M(x < 0) and the coherence of V, M follow

from (3.2.3) and M”g = M"~™ for ve Q" such that v, < 0 for iem. We define the
morphisms

(3.4.5) Ay: Ey — (Grl 4 (1 o M)} < (P, M)}

for ve(Qn[ -1, 0)y"*!, I c au{0}\v (where ¥ = {ie/iU{0}: v; # —1}) by
Ajw) = uxkx L@ 1 if 0¢1

A, v) = ux*Vx; L ® 0, +v® 1 if 0el,

(3.4.6)

for ue E4,z, (u, v)€(E}\m EY), where EY is identified with M%:= M**7 c M, and
pe@n[ —1, 0)), k(vyeN" + 1, are defined by

(3.4.7) u=v vom+ k(v).

In particular, u =V and k(v) = m(ie. ux*® x;}=ugx;k) if 0el. Here the
action of N on Gr! M is induced by s —a, and x;:=[]cy x;; In fact, (3.4.7)
implies

ti + (pmi — kO); + (Lpam)i — mivo = v; + (1), <0

(where the equality holds iff iel), ie. ImAjcV,, +(11)01\71. Then Im 4]
c (¥,M); and the well-definedness of Aj(ie. (3.4.6) induces C[N]-linear
morphisms from the cokernels in (3.3.1)) follow from:

@x*® xpolx @ 1) (x:0; — v — (1)) = x* x50 @ 1) (V; — my(s — vo))
& D0 —vi — (1)) = 0 @ D(N; — mys)

@x* x7ole @ 1Ny — myls — vo)ram = Ux ™ @ 10,4

(U0rqm @ 1) + (ugX;0im @ 0) (N — myS)iam — Niams ™" = (4 @ 1dram
© ® Ds = (vx10m)9%10m & 0.
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(Here, we use [N, x*] =[N »5]=0and v;= —1for iel) In particular, we get
Y. MeM(Dxxs)mequ by Im A} = (¥, M); and the first assertion. We can verify
similarly that the morphisms 0, x; and x;0; — v; on Im A} are expressed by the
second term in the definition of can, Var; and N, in 3.3, where x, =t. Here
note that E} =0 (and (P,M); =0) if Inm = ¢. Because the morphisms in
(3.3.1) are injective, the first term of can, etc. are uniquely determined by the
commutativity (and the first term), and the functors {E}}~{E}} are
exact. Therefore the assertion is reduced to the case M simple using a filtration
on M, and follows from the next propositon, because the assertion is clear by
[19, 3.2.6] if supp M =g~ 1(0), and we may assume supp M = (X, 0) by [19,
3.24].

3.5. Proposition. With the notation as in 3.4, assume M is simple, ie. M4~ C
for one (u, J) and O otherwise (M will be denoted by M(u, J)), and supp M = (X,
0), ie. J=¢. Then we have a free resolution of M by a Koszul complex:

K = K(Zx; (xi0; — u) (e ), 9;- (i¢ 1)) [n]

where (x;0; — w;)- and 0;- are left multiplications. Let F be a filtration on K, M
such that

F,K™ =(F,_; %)™, F,=(M)F,2x

where m; = n!/jl(n —j)l. Then (K, F)— (M, F) is a filtered quasi-isomorphism so
that (M, F) is Cohen-Macaulay, D(M(u, ¢), F) = (M( — p, @), F[ — n]) (where p,
— pne(Q/Z)"), (M, F) is quasi-unipotent and regular along g [19, 3.2.1] and the
morphisms Aj in the proof of 3.4 are isomorphisms. Furthermore, put ()
= {iem: p; — K'(«); = ma} where k'(x)eN™ satisfies:

u— k(o) <moe < p; — k'(); + 1,
then:
(35.1)  F,V,M = (M4x*“ ® 1)F,(D[s]) for a<O0,
(.52 (F,GtyM)o,=F,,,Grl, M for a>—1,

(353) N': Gr Gt/ (M, F) = Gr",Gr¥ (i, F[ —i]) for i >0,

(354) PGrYGrl{(ll, F)= @  (M(u— (K@) + 1;) — ma), 1UJ), F)

IcI(a),|I|=i+1
for a <0, i>0,
(355 0,: PGt Gr¥ (M, F) = PGr Gry(M, F[ — 1]) for i >0,

where Fy(Dx[s]) = Y. F,_;Dxs', Wis the monodromy filtration on Grl M and P is
the primitive part.
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Proof. The first assertion is clear, because #'GrfK = 0 for i # 0 (hence (K, F)
is strict) and #°(K, F) = (M, F) by definition. Then we may assume rm = 7,
because the vanishing cycle functors are compatible with external products, i.e.
(P, M,, F)) X (M,, F) = ¥,((M,, F) X (M,, F)). (Note that (M, F) and (K, F)
are the external products of objects on 4.) Then it is enough to show (3.5.1-2)
and the filtered isomorphism for o« <0:

(3.5.6) . G—)m (M5X* @y @ V(s — ), F) = (Gry (M, F));

for v, I such that I < I(a), v = u — (k'(2) + 1;,) — ma, where F is by the order of
s — o on the left hand side. In fact, (3.5.5) and (3.5.3) for o > 0 follow from
(3.5.2) and (3.5.3) for a < 0, because (3.5.3) implies the strictness of

N:(GI',Z(M, F): W) —’(GI'Z(M, F[ - 1]5 W[2])
by Lefschetz decomposition and [7, (1.6.5)], and (3.5.2) and [19, (5.1.12)] imply
(Gry (M, F), W)=Im(N: (Gr”,(M, F[1]), W[ — 1]) — (Gr"., (M, F), W[1])).

By (3.5.1) and Im A4} = (¥, M)} in the proof of 3.4, we have the compatibility of
the filtration F with the decomposition: Gr} M < [[(Gr} MY, ie. me F,Grl M
iff its component in (Gr! M)" belongs to F ,Gry M for any ve Q" (because the
filtration F of Gr/M is generated by Gr!/(M“x*® ® 1) over (24[s],
F)); therefore the right hand side of (3.5.6) has a meaning. Moreover, by (3.5.1),
we have for a <0, veQ":

x;: (Gr¥ (M, F)) = (Gr¥(M, F)y' 1 if v, <0

0;: (GrY (M, F)y) = (GrY (M, F[ —1])) v+ 1, if v;> — 1.

Therefore (3.5.3) for « < 0 and (3.5.4) follow from (3.5.6), because (Grl M)} =0
for other v, I than in (3.5.6) (in fact, Im 4} < (¥, M);, cf. the proof of 3.4). Here
note that the morphism in (3.5.6) coincides with A} (where a, v, k'(«), I and I(x)
correspond to vy, V', k(v) — 1y, INm and m\v respectively), because N; =0 on
MY and J = ¢.

We show (3.5.6) is also reduced to (3.5.1). In fact the strict surjectivity of
(3.5.6) follows from (3.5.1) by the above argument, because we have N, = — m;N
on ImA} by N;=0 on M4, cf. 3.3-4. Therefore it is enough to show the
injectivity for I = I(x), i.e.

Gr/(MEXFO @ 1)(s —a)? #0 in Gr/ M

for p < |1(2)|, because N; = —m;N, M* =~ C and N = s — « is nilpotent. Taking

Gr}, it is sufficient to show
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Grf(MAXF® & 1)(s — @) & Grh V., M.
Let G be the filtration of GriM = @ Grf_,M ® &} by the order of d,, then
Gry Gry(M4x*® @ 1)(s — 0)f) = Mjx*@g? Q o7
GryGrp Ve, M =Y, e, M4 @ 11071 g2 0, @ 07,

because GriV M = (M4x¥@+ 1@ @ 1)Grh(@4[s]) by (3.5.1). Thus we get
(3.5.6).

We now show (3.52). Let u=Yu,® d'eF,. V,+1 M, then weF,,, ;M
by definition. We have wu,=uwP for uweMj PeF,.,Py, and
W ®)PeF,, V.M by the first assertion of 34. Then u
— (W' ® 1)Pe(F,V,M)j, by (3.4.3), because & > — 1 and 6,: Grj M — Gr,¥, M is
injective for f > — 1. Thus we get (3.5.2).

For the proof of (3.5.1) we have to show the strict injectivity of (V, M, F’)
— (M, F), where the filtration F' on V,M is defined by (3.5.1). Let G be the
filtration of M = M[d,] by the order of 4, Then F, < G, and it is enough to
show the injectivity of Grf'V,M — Gr°M. Consider a filtered Koszul
complex :

(R, F) = K(@x[s]; (x;0; — p + K(@); + mys)"), F)[n]

where F is the filtration by the order of &, s shifted by the degree of
complex. Then #'GrFK =0 for i # 0, hence (K, F) is strict, and we have a
filtered 9 4[s]-linear morphism: # %K, F)— (V,M, F’), if we choose a basis of
M*. By definition this morphism is strictly surjective, hence it is enough to
show the injectivity of

HOGrF K — 04[1] (< M[1] = Gr¢ M),
where 1 = gr 8, and GrfK° = O0,[¢, s] - 04[] is defined by
&i— —(0i9)7, s+ gr.

Let 0x(xD) and Grf K(+D) be the localization of ¢y and GrfK by g. Then the
localization of the above morphism by g is injective. Therefore it is sufficient to
show the injectivity of H#°GrfK — #°(GrfK(xD)); or equivalently,
HHGrFR(*D)/Gr'K) =0 (i #0), ie. {x;&+ms} is a regular sequence of
(Ox(*D)/Ox)[&, s]. But {x;&; + m;s, g} is a regular sequence of Ox[¢, s], because
codim{x;¢; + ms =0, g =0} =n+ 1 in Spec Ox[&, s]. Therefore {x;&; + m;s}
is a regular sequence of (Oy/0xg)[&, s] and (Ox(+D)/0x)[¢, s]. This completes
the proof of 3.5 and 3.3-4.

As a corollary of 3.3, we get;

3.6. Proposition. Let &, g, E} and E} be as in 3.3, and W a finite increasing
filtration of F such that
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can(WEy) = W, Ey, vy for ig1U¥
(3.6.1) Var,(W,E}) =« W,_ E}\ ;) for i€l
N{W,E}) = W;_, E} for any i,

where W denotes also the corresponding filtration on {E}} = ¥Y"(¥). Then the
relative monodromy filtration W of (¥,(#, W), N) exists and W, E} are expressed
as the mapping cone of

Wiiret (ERa""[NT) — Wi,y (Epg ™" [N])
Wer (Ep\m[N1) @ Wis 2 (EYINT) — Wie, s, (EY\ [N]) © Wi(ET [N]),

where r = |Inm|, W(EY[N]) = Y. W, ;E} @ N’ and the morphisms are defined as
in (3.3.1).

Proof. 1t is enough to show that the filtration W defined in the assertion is the
relative monodromy filtration of E} for each v, I, because the relative
monodromy filtration is functorial. Let Lbe the filtration of EJ[N] defined by

Li(E7[N]) = (LLED[N]

where {L,E}} = ¥"(W,%). Then it induces the filtration Lon the mapping cone
of (3.3.1), which gives the filtration L= ¥,Won {E}} = P""' ¥, #. We see that
Gr”Grk of (3.3.1) are injective and Gr” Gr® of the mapping cone of (3.3.1)
calculates Gr Gr“E}. Then the assertion is clear, because Gr’ of (3.3.1) is N”
and (N"~!, N), and W,GrE(E}[N]) = (GrEE)[N] N/ withk —i<2j<k—i+ 1.

3.7. With the notation of 3.1-2, let MFW (2y),, be the category whose objects
are (M;F, W) where (M, F) is a filtered 2y-module such that
M e M(Dx)imequ(cf. 3.3) and Wis a finite increasion filtration satisfying

(3.7.1) Grl(M, F) are isomorphic to direct sums of filtered Zy-modules of
type (M(u, J), F[q]) in 3.5 such that k=|J| —n —2q.

(3.7.2) n+ 2 filtrations F, W, VW(1 <i < n) on M are compatible [19, 1.1.13],

where V' is the filtration Valong D, Note that (3.7.1-2) are independent of the
coordinates such that x;(0) = D;. In fact (3.7.1) is equivalent to

(3.7.3) Grf(M, F) admit the decomposition by strict supports [19, 5.1.3] and
their D;-components (M, ;, F) have semisimple monodromies and
satisfy :

F,M, = (VoVROM, DF,_, Py for 2q =|I| —n —k,
where V) =n,; VY and M, ;=0 if |I| —n — k¢2Z.
In particular, (3.7.1) implies (3.6.1) for # = DR(M), because Gr}Y E} = 0 for |I|
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—n —k¢2Z. Moreover (3.7.1) implies the compatibility of the n + 1 filtrations
F, V® on Gr) M, because the decomposition (3.2.1) for M(u, J) gives their
splittings compatible to each other. Then, by [19, 1.2.12], (3.7.2) is equivalent to
the surjectivity of

(3.7.9) F,V,WM — F,V,Gt’ M for any p, i€Z, veQ",

(assuming (3.7.1)), where ¥, = n VY. Moreover, for a decomposition Gr}’ (M, F)
= @ (M;,, F) as in (3.7.1), the condition (3.7.2) is equivalent to:

(3.7.5) for each i, k, there exists u;, € F,V,W;M such that Gr{'u;, belongs to
(M;,)* = Grl' M and generates it over C, where v = pu + 1,, p = q if (M,
F) = (M(y, J), F[q]).

In fact, we replace p by p + |b| and apply x“°d", if we replace v by v — a + b for a,

beN" such that g;b; =0 for any i (because F,(M,,)’ ***=0 if p<gq+|b],
where v, g are as in (3.7.5)). Thereore we get for g = x™ as in 3.3:

(3.7.6) the vanishing cycle functors along g are well-defined for (M; F,
W)e MFW (D) n (i.€. (2.2.1) and (2.3.3) are satisfied), and MFW(Z,),,.
is stable by ¥, ¢, ;.

In fact, (2.3.3) follows from 3.6, and (2.2.1) is equivalent to the surjectivity of
(3.7.7) F,V,W,M — F,V,Gr’ M for any i, peZ, aeQ.

which follows from 3.4, (3.5.1-2) and (3.7.5). Then (3.7.1-2) for Y, 4, ¢, M
follow from an argument similar to the proof of 2.4, because we have (3.5.3-5) for
(3.7.1) and we can verify directly (3.7.2).

Remark. With the notation as above, put D =U;.,D;, g =x™ for 1 £r<n,
m’ € Z" such that m; = m; for i > r and m; # 0 for some i > r. We define (2%, F)
=(Zx, F)(xD), (M', F) = (M, F)(xD), etc., i.e. F,M’ is the localization of F,M
along D. We define (M’, F) = (M'[d,], F) by the same way as above. Then i’
has the filtration V' such that V.M’ is generated by Vma-yM' & 0: over Di[s],
and we have a canonical isomorphism

(3.7.8) Gr;' (M', F) = (Gr;(M, F))(xD) ® , L(a(m" — m))

where L(v) is a left 2,-module free of rank one over Oy (*D) with a basis v such
that (x;0;, — v)v = 0. In fact we have the equality in the case m' = m, then the
general case follows from (3.4.3).

As a corollary of (3.7.6) and (3.7.8), we get:

3.8. Theorem. QIeMHM/pt).

Proof. By definition it is enough to show the following assertion (this argument
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applies to the algebraic case using GAGA):

(3.8.1) Let X be a complex manifold, and {U;} an increasing sequence of finite
open sets of X with holomorphic functions g; on U, such that X\U; are locally
principal divisors and g; are meromorphic on X. Then the vanishing cycle
functors along g; are well-defined for .#; and (jy);, (j), exist for both y, 4,
@1 My where ji: U; > Uy, My = Qf [dy] and 4, , is obtained by operating
(Jh or (ji), after Y, or @, ; to M,

By Hironaka’s desingularization and the stability by projective direct images
(cf.2.14), we may assume D:= U;(X\(U;\g; *(0))) is a normal crossing divisor,
because Q¥ [dy] is a direct factor of #°n,Q¥ [dy] for a resolution n: X -» X
with V; = n7*(U,) and (j;),, (Ji), are exact (ie. commute with ?#°). By (2.4.3)
and 2.11, the assertion is local on X and it is enough to verify the conditions
(2.2.1) and (2.3.3) inductively. Therefore we may forget the Q-structure and
assume X is a polydisc 4" such that D < 4"\(4*)" and g; = x™? for m(i)e Z",
because we can multiply g; by a unit on X (cf. 2.2). If we multiply g; by xi for
acZ such that x,*(0)nU, = ¢, Yy K. is twisted by a local system as in
378). If X=X,xX, M=M KM, and j(resp.g) comes from
X, (resp. X,), we have the commutativity of (ji)Jji ', (s & With ¥, @, , on
A by (3.8.2-5) below. Therefore by changing m(i) and twisting Q¥ [d4] so that
m(i) eN" and dimg; }(0)\U,,, < n — 1, we can first take the iteration of (j,)j; !
or (j)yJji ' and then the iteration of Y or @, ;, where we verify only the Z-
Module part at the stalk of 0 by the above argument and Y% means Gr; after
(i)s. Then we first get the external product of the 2-Module part of jQ%,
Jx Q% or M(a, ¢) in 3.5 in the one dimensional case, where j: 4* — 4. Because
these objects belong to MFW(Z ), (cf.3.7) and their external products to
MFW(Zx)ysne (cf.(3.8.2-4) below), the assertion follows from (3.7.6) and (3.7.8).

In the above argument we used the following facts:

(382) Let X, Y be complex manifolds, and . #eMHW (X)),
A e MHW (Y)®. Then we have canonical isomorphisms in MF,(Zyy, Q):

Gl (MR N)= D Gt} M RGN

Assume # X /e MHW (X x Y), and let g be a holomorphic function on X. If
the vanishing cycle functors along g are well-defined for .#, so are they for
M X N and we have canonical isomorphisms in MHW(X x Y)®:

W, M)R N = (MR N) (same for ¢, ,).

This follows from the following remarks on the compatible filtrations[19,

§1]:

(3.8.3) In the category of O-Modules, X is exact. Therefore, for compatible I-
(resp. J-) filtrations on X (resp. Y), we have compatible (I U J)-filtrations on the
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external product (because the external product of short exact I-ple and J-ple
complexes is a short exact (IUJ)-ple complex, cf.[19, (1.1.1)]).

(3.84) For a compatible [-filtrations F; (iel) and {j, k} < I, such that F? = F}
=0 for p>»> 0, G, (iel) are compatible I-filtrations, where G? = F? for i #j and
G? =3 (FInFf™9. (In fact, G!=F?? on Gr{, and the condition [19,
(1.2.12.vi)] is satisfied for G; (ieI), because N F/* = nG¥ if p; = q; for i # j and p;
+qr=q j-)

As a corollary of (3.8.2) (and 2.11), we get:

(3.8.5) With the notation as in (3.8.2), let j: U — X be an open immersion such
that X\U is a locally principal divisor. If the vanishing cycle functors along
any locally defined g such that g~!(0),., = X\U, and j,j~ *(or j,j~ ') are well-
defined for .#, they are well-defined for .# X A and we have the canonical
isomorphism in MHW (X x Y)®:

(o t )R N xjj (MK N) (same for j,j~P).
Here (G1Y’j,j~ ' M) R (Gry /)eMH(X x Y, i + k) follows from 2.11 and ¥, ; M
X A4 e MHW (X x Y) (locally).
Applying (3.8.2)(3.8.5) to Q¥[dy] X 4 for .# e MHM (pt)?, we have:

39. Theorem. MHM (pt)? is equivalent to the category of (polarizable) Q-
mixed Hodge structures.

Remark. Let MHM(X)® be the full subcategory of MHM (X)®whose objects
M satisfies the condition:

(39.1) MR N eMHM(X x Y)Pfor any Y and A4 € MHM(Y)®.
Then we have
(3.9.2) MHM (pt)®) = MHM(pt)®.
In fact, it is enough to show
MK NeMH(X, i+ )P for #4e MH(X, )P, & eMH(pt, j)®.

But this follows from the definition of Hodge Modules (because the Hodge
structures are stable by ). We can show in general (cf. 3.28 below):

(39.3) MHM (X)?, = MHM(X)".

(3b) Pure Case

3.10. Let X and D;beasin3.l. PutD =y, D;for0<r<n=dimX, and U
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= X\D with the inclusion j: U - X. Let (M, F) be a filtered (right) 2,-Module
such that F is finite and GrfM are locally free coherent Oy-Modules (in
particular, M is finite free over Oy). We assume M is quasi-unipotent, i.e. the
local monodromies of DR M are quasi-unipotent. We define ji® M (resp.ji*¢ M)
to be the regular holonomic (right) 24-Modules such that

DRj®M =~ j DRM (resp. DR ji**M = j DR M).
Let (L, F) be the corresponding filtered left &,-Module such that
FpM:'erlJ®Fp+nLa

and L Deligne’s regular singular meromorphic extension of Lwith the lattices L>*
(resp. L) such that the eigenvalues of res V along D; (1 < i < r) are contained in
[o, oo + 1)(resp.(e, « + 1]). Then we have the natural isomorphisms:

JeM =0y QL
(3.10.1)

NV, M = Ny ® VL= 25 @ I

i<r i<r

for any aeQ, where V® (resp. V) is the filtration V of ji8M (resp.L) along
D;(1 <i < n) such that x,0; — « is nilpotent on Gr! @ (resp. Gry,,,). Then V; on
Land I2° are the x-adic filtrations for i > r (ie. VL= x¥L, etc.) and

(3.10.2) NVO _ M = Q% ® L for o > —1.

We define the filtration F on L**, L>* by:

(3.10.3) F,I**=1**nj,F,L (same for L%

and assume:

(3.104) F,I>* are coherent over Oy,

(3.10.5) n+ 1 filtrations F, Vj;, (1 <i<n) on I>* are compatible.

Then these two conditions are independent of « (because (F pTF“)xl---x,
= F,L*>**"), and for « =0 they imply:

(3.10.6) We have a free Oy-basis {u,,,} of L*° on a neighborhood of 0 indexed
by peZ, ae(Qn[0, 1)) and 1< k < m(p, «) such that

%20 _
Fq L> - @psq @Xup,a,k
Vfi) th — @ @Xxi—min([al—ﬁ],O) Up a

where we put o; =0 for i > r in the second formula.

In fact, (3.10.4-5) for « = 0 imply the existence of a free basis {u,,,} indexed as
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above, such that wu,,,eF,V*I[*° and {u,,;}1<k<mpe 1S @ C-basis of
GriGry Gy, [*° (where V'* =, Vs, Gri. = [[ic,G1%,,, G19, =15, GrP,),
because (F,V*L=)x, = F,V**"L*° if o, > 0, and a finite Oy ,-module M is free
iff the x;-adic filtrations Vj; are compatible filtrations and x;: (M, V(i #j))
5 (ViM, V(i #j)).  Conversely (3.10.6) implies clearly (3.10.4-5) on neighbor-
hood of 0. If the monodromies are unipotent, (3.10.6) is equivalent to:

(3.10.7) GrfI2° are finite free over Oy on a neighborhood of 0.

Note that the condition (3.10.6) is stable by the direct image for a finite
morphism ramified along D (because we have a basis {x"u,,,} on the
image). Therefore (3.10.4-6) are satisfied, if (L, F) underlies a polarizable
variation of Hodge structure, by the well-known result of Schmid.

We now define the filtrations F, G on ji®M by

F,j M =Y (@ ® F,L*")F,_
(3.10.8) P 2% s ’
G,jsiM = @5 X Lz'l)Fp@X

and on j’*®M by replacing L>~! with L>~!. We define the filtered differential
complexes [19, §2] by:

K,(L, F)=(Qx(logD), F) ® (L*°, F)[n]
K\(L, F) = (Q(logD), F) ® (L>°, F)[n],

where the filtration F on Qy(logD) is defined by F, =0, _, (cf.[9]) and their
underlying complexes are the Koszul complexes for the action of x;0; (i < r), 0;(i
>7r) on L*°, L>° using the coordinates (x;,...,x,). We define filtration G on
DR 'K, (L) the underlying complex of DR™'K (L, F) (cf.[19, §2]) by:

(310.10)  G,(DR™ 'K, (L)~ = Q% i(logD) ® [**"O Q F,_,

(3.10.9)

and the filtration V' as follows: for D' = U, ;.,D;, put
K, (L) = Qx(log ') ® L*°[n]
V@ (DR™IK(L) ™ =Y Q% (log D) ® Viy *L*° @ Vi 2y,

then the filtration V® on DR™'K (L) is induced by the natural inclusion into
DR 'K, (L). We define

(3.10.11) (JEM, F) = Coim((j{**M, F) — ((5*M, F))
so that
(3.10.12) F M = Z(Q" QF,L>~ 1)Fp Dy in JigtM.

3.11. Proposition. With the notations and the assumptions as above, on a
neighborhood of 0, we have the followings:
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(i) the n+ 2 filtrations on each component of (DR™'K, (L, F); G, V?) are
compatible and this n + 2 filtered complex is strict [19, 1.2.2],

(ii) the above complex gives a resolution of (j.,M; F, G, V(1 <i < n)) so that
the n + 2 filtrations on j, M are compatible,

(ili) we have the filtered isomorphisms:

Xt (Vs M F, VO, VO, V™)

(3.11.1)
= (V;i)_lj;e(%)M; F, v,  VO1],..., V™) (@ < 0)
0;: (Gr;’“’jfﬁ)M; F, VO (j #1)

(3.11.2)

G M FI-11, VO (G #10) (@> - 1),

and (3.11.1)(resp. (3.11.2)) holds also for o =0 (resp. — 1) and i <r (where j{HM
means ji¢ M (resp. ji*® M) and same for K.

Proof. By definition, (DR 'K, (L, F); G, V?) is the Koszul complex for the
(left) actions of x;0; (j <r), 6;(j >r) on I[°® 2y (resp. L”°® D) where
the filtrations are shifted appropriately. Therefore, for the first assertion of (i), it
is enough to show the compatibility on

‘EzO(>0) ® gx — @vi20(>0) ® ov.

But the filtrations are compatible with this decomposition, and the assertion
follows from (3.10.5). For the second assertion of (i) it is enough to show the
strictness of

(3.11.3) (Grf GrSDR 1 K, (L); V®)
*(1)

and H’ of (3.11.3) is zero for j # 0, by [19, 1.3.6]. But, by the basis {u,,,} in
(3.10.6), (3.11.3) is a direct sum of Koszul complex for the action of x;&; (i <),
& (i>71) on O4[&], where & = gro; and V® are shifted according to «; of a (if
this factor corresponds to u,,,) and depending on the image or the source of J;
if i > r, so that x;0,, 0; are strict. We can verify that (3.11.3) is strict and H/ =0
for j # 0 by taking inductively the cohomology for the action of x;d;, 0;, cf. [19,
§1.3]. For (ii), we verify that the isomorphism:

Q%(logD) ® L2° =~ N, Ve M (cf. (3.10.1))
and (3.10.2) induce the natural morphisms:
(3.114) (DR 'K, (L, F); G, VO) — (54 M; F, G, V)

using the expression as Koszul complex as above (because (dx/x)x;0; = 0). Then
it is enough to show that (3.11.4) is a quasi-isomorphism forgetting the filtrations
by (i) (and by definition of the filtrations). Using a filtration of L, we can reduce



292 MORIHIKO SAITO

to the case rank L= 1. Then the assertion is clear. Now (iii) follows from
(i) (ii), because (3.11.1-2), etc. are verified for each component of DR™' K, (L).

3.12. Proposition. With the notations and the assumptions as in 3.10, assume the
morphisms

(3.12.1) N;: Gr%. Grd, (L2°, F) — Gr%. Gr9,(I*°, F)

are strict for any o€([0, 1)nQ) and J < {1,...,r}, where N; = HieJNi and N;
=x;0; —o; (1 <i<r). Then, on the stalk at 0, we have the followings:
(i) the natural morphism:

(3122)  (jEM; F, VO <i<n)— (M, F, VO (1 <i<n))

is strict so that the n + 1 filtrations are compatible on ji;fM the image of (3.12.2),
(i) (jisgM, F) is Cohen-Macaulay, and (3.11.1-2) hold for jifM,

@) for ve([—1, 0)nQ)" and J = a\v (cf. 3.1), the morphism:

(3.12.3) 0;: Gt (juM, F) — G}y, (i M, F[—1J])

is a strict epimorphism whose kernel coincides with Ker N, (ie. the target of
(3.12.3) is identified with Im N;).

Proof. This follows from the next two propositions. In fact the assumption of
3.13 is satisfied by the strictness of (3.12.1)(combined with Gr" of (3.11.1-2)),
because we have a diagram:

Gr}jM = Grfj*M
x.r“z or x5 HaJ

Grl, 1,hM — GTL 1,Je M,

and the first assertion of (ii) follows from 3.14 using the same argument as in the
proof of [19, 5.1.13] inductively. The other assertions are trivial.

3.13. Proposition. Let (M", F) be a bounded complex of filtered 9 y-modules
such that M’ € M(Dx),qunc (cf.3.2). Then the n + 1 filtered complex (M"; F, V) is
strict, if the following conditions are satisfied:

(3.13.1) the n+ 1 filtrations F, VP are compatible on each M-,

(3.13.2) the conditions (3.11.1-2) hold for each MY,

(3.13.3) Gr¥(M", F) is strict for any ve([ — 1, 0]nQ)".

Proof. By induction on n. The case n=1 follows from [19, 3.3.3-5]. In

general, the assumptions are satisfied on each Gr/ “ M- at the origin, and in the

proof of [loc. cit], we replace M by (n — 1)-ple diagram of short exact sequences
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associated to any n — 1 subobjects VM (i # n) (cf.[19, 1.1.13]), and complete
the diagram by adding the term for F,/F, whenever the inclusion F,— F,
appears. Then we get the assertion, where we use the fact that the x,-adic
completion (on finite modules) is exact and fully faithful.

3.14. Proposition. Put (X, 0)=(C" 0), (Y, 0)=(X, 0) x (C, 0), @' = D, and
D =Dy, Let (M, F) be a filtered (2, F)-module of finite type (ie. Gr"M is a
finite graded Grl-module). Assume (M, F) is quasi-unipotent and regular along X,
ie. M has the filtration V along X such that M, = 0 for ma¢ Z, Gr¥ M, are finite
over Gr¥ %', and

t:(M,, F) >(M,_,, F) for a <0

0,0 (Mg F) =My, F[—1]) for a> —1

where M, = Gr/M. Then GrfGr¥M is Cohen-Macaulay (ie. Extiirgrvg
(Grf Gr" M, GrF Gt @) = 0 except for one j), if Gr¥ M, are Cohen-Macaulay over
Grf 9, and dimg,r, GrF M, is independent of w.

Proof. Put (M, F)* = @ ,.;(M,, F) for AeQ/Z so that Gr¥(M, F)= @ (M,
F)* Then we have a filtered quasi-isomorphism: C(M, F)* —» (M, F)*, where
C(M, F)* is defined by the mapping cone:

C((Moy, FY @ (M_,F[11j — (M_,, F) @ (Mo, F)) for A=1Z
C((M,, Fy — (M, F)) otherwise where Ai=a+Z, — 1 <a<0.

Here (M,, F):= (M,, F) ®c(4, F), (4, F):= Gr"(Z2¢,, F) = (C[t, 8], F) and the
morphisms in the mapping cones are defined by:

MRP,vQ®Q —(-u®P+v®05Q u®tP—v5, Q) (xeZ)
W@ P)—(—u(td,— ) ® P+ u (td, — o) P) (otherwise).

(In fact, for the proof of filtered quasi-isomorphism, we can reduce to the case
where the action of 0, — « is zero (— 1 < o < 0) and M _, or M, is zero, using a
filtration on M,, because ® (4, F) is exact) Now let (L, F)— (M, F) be a
resolution by a bounded complex of finite free filtered 2’-modules (— 1 < o < 0).
We may assume the morphisms ¢, 0, and td, — a are extended to (L,, F). Then
we get a free resolution of (M, F)*, by replacing (M,, F) with (L,, F) in the above
construction, because &) (4, F) is exact. We verify the above construction is
compatible with dual, ie. the dual of the above free resolutions are the mapping
cones associated to D(L,, F). Then we get the assertion using the same
argument as above, because D(L,, F) is strict and #/D(L,, F) =0 except for
one j (independent of o) by assumption.
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3.15. Remark. 1) In the case of polarizable variation of Hodge structures, the
assumtion (3.12.1) is satisfied by [6]. More generally, let X be a complex
manifold, D a normal crossing divisor on X and putj: U = X\D — X. Assume
(L, F) underlies a polarizable variation of Hodge structure H of weight w on
U. Then we can define (ji® M, F), etc. (globally) on X so that (jisf M, F) is
Cohen-Macaulay and the polarization induces isomorphisms:

(3.15.1) D (j*¢ M, F) = (j**M, F[w + dim X])
(3.15.2) D (8 M, F) = (ji*M, F[w + dim X])

by 3.11-12, because (3.15.1) holds by replacing (j5& M, F) with K, (L, F) by
definition and we can apply 3.12 at every point of X.

2) Assume furthermore X is compact Kihler, and let (£ ,,(H), F) be the filtered
L?-complex on X associated to H (cf. [8][13][15]). Then Kashiwara and
Kawai constructed a morphism in D*F/(0y, Diff):

(3.15.3) DR (ji$M,F) — (£, (H), F)[dim X7,

inducing an isomorphism on U (forgetting F), cf.[15]. To show that (3.15.2) is
an isomorphism after taking RI"(X, #) (cf. [loc. cit]), it is enough to verify the
well-definedess of the morphisms (induced by the polarization):

(3-15.4) (ZH), F) ® (LxMH), F) —(L)(C), F[—w])
— (24, F[ —w])

where (24, F) = (Iy, F[ — dim X])[ — 2dim X] in [19, 2.5.1] and %y, is with
respect to the Poincaré metric. In fact, combined with the morphism (I, F)
— (Ry, F)[loc. cit], (3.15.3) induces a morphism in D?F/(0y, Diff):

(3.154) (&L H), F)[dim X] — D((Z,,H), F)[dim X])(— w — dim X),

cf. [19, (2.4.11.2)], and this gives a left inverse of (3.15.3) using (3.15.2) (and the
dual functor D), ie. (DR(j{$#M, F) is a direct factor of (& ,,(H), F)[dim X7, by
the octahedral axiom. Then the strictness of RI'(X, (& ,,(H), F)) implies that
of RI'(X, DR(ji;¥M, F)) and we get the desired isomorphism. (The advantage
of this argument is that we don’t have to show the self-duality of (& ,,(H),
F)[dim X] in D°F’(0, Diff).) Note that, if 1 does not belong to the
eigenvalues of the local monodromies, (3.15.3) is trivial, because (ji*M, F)
= (ji¥M, F)=(j® M, F) in this case.

3.16. With the notation of 3.2 (e.g. 94 = Dx,0). let (M, F) be a filtered 24-
module. We say (M, F) is quasi-unipotent and regular of normal crossing type,
if :

(3.16.1) M € M(Dx)rnequs
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(3.16.2) the n + 1 filtrations F, V® are compatible,
(3.16.3) (F,VOM)x; = F,V? M for a <0
(3.16.4) (F,Grl"M)o, = F,., Gryty M for o> — 1.

Here F is assumed to satisfy UF,M =M and F,M =0 for p« 0 as always
(cf.[19,2.1.1]). In particular we have

(3.16.5) F is finite on VoM (=nV¥M).

We shall denote by MF (Dy)ume, the category of the above filtered Zy-
modules. Then it is an exact category with respect to the n+1
filtrations. Note that (3.16.3-4) are equivalent to (3.11.1-2) under the assumption
(3.16.1). By the same argument as the proof of 3.12, ii), we have

(3.16.6) (M, F)eMF (2y)unequ is Cohen-Macaulay,

because (M, F) is finitely generated by the argument below:

Let (M, F)e MF(2y)equ and u,,,, €F,V,M such that {u,,}1<ksmpy 1S @
basis of GrfGryM for any peZ, ve(Qn[—1, 0])". Then {u,,,} generate
F; more precisely

(3.16.7) F,V,M =Yu,,,x'0"0x for peZ, ue(Qu{+ }),

where the summation is taken over geZ, ve(Qn[— 1,0]), 1 <k <mlq, v), a,
beN" satisfying: g+ |b| <p;v;—a;+ b, <y; for any i;4;,=0 if v,=0 or
w=>vi;b;=01if vi=—1 or y;<v;p—1<v,—a; if y;<v. In fact, the
assertion is clear by the same argument as in (3.10.6), if y; <0 for any i. Then
we can proceed by induction on x4 and dim X, because MF (Zy),,,, is stable by

Gr}" for any i, . (Note that we can replace Oy by C{x,,} in (3.16.7), where
I(v, b)={i; v; #0, b; = 0}.) In particular we get:

(3.16.8) F,V,M =Y (F,_, V,M)& for any p, u,

where the summation is taken over ve Q", be N" satisfying: v, =0 if b; < y;;
v,>—1land v,+b;=p; if b;>p;>0;b,=0 and v;=p,; if w4, <0.

Conversely, let F be a finite filtration by Oy-submodule of M,:= Vu;M for
M € M(Dy)inequ» Where VoM =nVPM. Assume:

(3.16.9) the n + 1 filtrations F, ¥ are compatible on M,,
(3.1610)  (F,VOMo)x, = F,V® M, for a <0

(3.1611)  (F,VO, M3, < F,,, VOM,

and define F,M =) (F,_;M)F;24. Then:

(3.16.12) (M, F)e MF(@ )yep and F,M Mg = F,M,.



296 MORIHIKO SAITO

In fact, we define F on M,:= V,M for ue(QUu{ + o0})" by
(3.16.13) F,M, = S(F,_ i V,Mo)®

where the summation is taken over v, b as in (3.16.8). Then (3.16.12) follows
from (3.16.13) and the next two assertions:

(3.16.14) the n + 1 filtrations F, V¥ are compatible on M,
(3.16.15)  (M,; F, V®) —»(M,; F, V¥) are strict monomorphisms as n + 1
filtered morphisms, if v; < y; for 1 <i<n.

Here note that (3.16.14-15) are clear by definition if u; <0 for any i (because
F,M,=F,V,M, in this case), and under the assumption (3.16.14), (3.16.15) is
equivalent to F,M,=M,nF,M, (by [19, 1.2.12], if v; = u; (i #j)). We shall
prove (3.16.14-15) by induction on ) max(u;, 0) and n=dimX. We take
1<j<n beN and u'eQ" such that y; >0, —1<u; —b <0, ;= p; (i #j),
;> iy and Gry "M = V@ M/V@M. Then, for (3.16.14), it is enough to show
the exact sequences for v = {v; (i #j)}e Q" ':

(3.16.16) 0—F,V,M, —F,V,M,— F,V,Gr,” M, —0
by [loc.cit], because (3.16.14) is verified for

ok

(Grl,_yM, 1, F) (Grl, M,, F[—k])

by inductive hypothesis on dim X. But the surjectivity of the second morphism
in (3.16.16) is clear by (3.16.13) for Gr“;_ »M,_y.1,. Therefore it remains to show
F,M, =M,nF,M,, but this is reduced to

Fop oMy 1, =My py NFp yMy_py,

by definition of F, because d;: Gr,”” - Gr}Y; is injective for « > — 1. Then the

assertion follows from the inductive hypothesis. Here we have proved also
(3.16.15) in the case v; < u; for some j such that u; > 0. Therefore it remains to
show (3.16.15) in the case y; = v, for i # k, where y, < 0 (in particular j # k). By
the above remark after (3.16.15), it is enough to show the strict injectivity of (M,
F)—(M,, F), but this follows from that of (VM, F)-(VYM, F) and
(Grl”M,, F)—(Gr}”M,, F), because we can apply the same argument as
above to (M,, F) by replacing p, with v,.

3.17. Proposition. With the notation as above, let (M, F)e MF(Dy),nequ and g
=x". We set (M, F):=(i)),(M, F)=(M[0,], F), and let V be the filtration V
along X x {0}. Then:

(3.17.1)  t: F,V,M = F,V,_ M for a <0,
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(3.172)  8,: F,GrtYM =F,., G}, M for a> —1,
(3.17.3)  F,V,M =Y (F,-;VpueM ® )F,(Dx[s]) for « <0,
(3.174)  (Grl M, F)e MF(2%)mequ for a <0,

(3.17.5)  FV(GryM) =Y Gr}(F,_;V;runM @ 1)(s — o)
for ve(Q.o)", a <O.

Moreover if one of the conditions:
(317.6)  x;: F,Gry,y M = F,GriM
3.17.7) 0;: F,GriM = F,,,Grl,, M

(3.178)  6;: F,GrYM —»F,,, G/, M

for any iem (ie. m # 0), ve(@Qn[—1, 0])" such that v; = — 1, is satisfied, we
have respectively:

(3.17.9) (3.17.1) and (3.17.3) hold also for o =0
(3.17.10) (3.17.2) holds also for oo = — 1
(3.17.11)  (F,Gr”,M)o,=F,,, Gry M.

Proof. Putj:{g #0}—X. Then (3.17.6) (resp. (3.17.7)) implies M = j=&j~* M
(resp. ji°8j "' M), and (3.17.1) for a = O(resp.(3.17.10)) is reduced to (3.17.3) for «
=0 (resp. (3.17.11)), because the above isomorphism implies the assertion
forgetting F. In general, (3.17.1) follows from (3.17.3), and we get (3.17.2) (and
(3.17.11) if (3.17.8) is satisfied) by the same argument as the proof of (3.5.2), using
(3.16.8) (or (3.16.7)) and 3.4 (because (3.16.7) and (3.17.8) imply F is generated by
its restriction to (N en Vo M)N(N i VEM)). We show (3.17.3) as follows.
Put V,,uM =00z VO, M, 9' = Ox[0,;], where 0; = {0:}iem
We define the action of ; on M ® «Z'[s] by
uUQP)—ux;0, QP —u x;0,P —u @ m;sP.
We define (K,; F, G) by the Koszul complex
K(VeM ® ,2'[51; 8;(iem) []],
where F, G on K2 =V,,M ® 2'[s] are defined by
F, K=Y F, VM @ Fi(2'[5])
G;K? = VM @ F(2'[5])
and they are shifted by j on K;7. By (3.4.5) we have the natural @4[s]-linear
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morphism: H°(K,) - M whose image is V,M by 3.4. Therefore it is enough to
show this morphism is strictly compatible with F by (3.16.8). Let G be the
filtration on M = M[4,] by the degree of 4, Then we have

(3.17.12) H°(K,; F, G) — (II; F, G),

and it is enough to show its strict injectivity. Because Grf Gr¢K, is the Koszul
complex of Grf V,,, M[&, s] with the action — (x;&; + m;s) for iem, and Grf Gr¢
of (3.17.12) is given by &, — (0,9)t, s+ gt (where Gt Gr® M = Grf M[1]), it is
enough to show {x;&; + m;s (iem), g} is a regular sequence of Gr*V,,, Vi M[&,,
s] for ve Q™" by the same argument as the proof of (3.5.1) (using the localization
by g, and taking the limit v » + o0). But it can be reduced to the flatness of
Grf Vv, ViM over C{x;}, and we can verify this by induction on v and on
dim X. 1If (3.17.6) is satisfied, the above argument applies also to a = 0, because
Vo, M is generated by Vo M & 1 in this case (i.e. g (or t) acts bijectively on M (or
M)). Therefore it remains to show (3.17.4-5).

Put S, = V,M ® C[s] for ve(Q. )" x (Q,o)"™ and define the action of x;0;
by (u® s9)x;0; = (ux;0; ® /) — (u ® m;s’*!). Then, for « <0, we have the
natural Oy[s]-linear morphism:

Ay: Spy — Gt/ M
compatible with the action of x;0, By the proof of 3.4, we have ImA4,
= V,(GtY M). Put S,=S,, R,=Kerd, We define F, V® on S, by
F,8,=YF,_ ;VM®s), VS, =V, MnV,M)[s]

so that the n + 1 filtrations F, V@ on S, are compatible, and 4, preserves F, V¥
and is strictly compatible with V@ for any i. We define W on S, by

I(v)\I
VVk ZICI(V) II|<k S

where I(v) = {iem: Gr,” M # 0} and V., =n,; V%9, By induction on n and
[1(v)], we show that the n + 2 filtrations F, W, V® on §, are compatible and

F,W V.S, = Zlcl(v),lllsk F, VI<(V3\I V.S,

using [19, 1.2.12] and taking Gry"’S, for ieI(v). Then Gr'S, is the direct sum
of Gr§"VI®M S, for I < I(v) such that |I| =k and this decomposition is
compatible with F, V. By 3.4, Gr}Y R, is the direct sum of the images of the
endomorphisms [ [, x;0; on these direct factors, where v = ma and the action of
x;0; is defined as above. Using the filtration by the degree of s, we verify:

[Tier i0:2 (S Fy V) — (845 FL— 1111, V)

are strictly injective as n + 1 filtered morphisms. In particular, their restriction
to Gr§" VX@\'S  are also strictly injective so that the n + 1 filtrations on Gr} R,
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are compatible. Moreover the n + 2 filtrations F, W, V¥ on R, are also
compatible by [19, 1.2.12], because (] [,.;x:8) (VE3\'S,) = R, and [19, 1.2.12.vi] is
satisfied. Then R, — S, is strictly injective as an n + 2 filtered morphism (taking
GrY), and we define F', Won Im 4, = V,(Gr/ M) to be the induced filtration by
F, Won S, so that the n + 2 filtrations F', W, V% are compatible. Then the
conditions (3.16.9-11) are satisfied for F’, V® on V,(GrY M), because (3.16.10) is
satisfied taking Gr) (and using the filtration by the degree of s), and (3.16.11) is
verified using the strict surjectivity of A,. Then by (3.16.12) and (3.17.3), we get
F =F' and (3.17.4-5). This completes the proof of 3.17.

3.18. Let X be a complex manifold of dimension n, and D a reduced normal
crossing divisor on X. Put j: U= X\D— X. Let (M, F) be the underlying
filtered 2x-Module of a Hodge Module of weight w with strict support X, and
assume M|, is coherent over O, i.e.

(3.18.1) (L, F)=(M, F)® (2%, F) |y underlies a variation of Hodge
structure of weight w — n.

Then we have the canonical isomorphism:
(3.18.2) M, F) = (j14(Qy ® L), F)

where the right hand side is defined as in (3.10.11). In fact, the assertion is well-
known forgetting F, and is local. Therefore we may assume the notations are as
in 3.2. Then, by 3.12, (M’, F) the right hand side of (3.18.2) satisfies:

(3.183)  (M', F)e MF(2 %) mequ

(3.184)  9;: Grl(M', F)—> Gr¥,  (M’, F[ — 1]) are strictly surjective for any
i and ve(@Qn[ — 1, 0])" such taht v;= — 1.

Therefore by 3.17, (M, F) is quasi-unipotent and regular along any g such that
g9 1(0),eq = D, and (3.18.2) follows from [19,3.2.2]. We shall show later the
converse in the polarizable case, cf. 3.20.

Now, with the notation of 3.2, 3.4, assume (M, F)e MF(Dy),,,, satisfies
(3.18.1-2) and the variation of Hodge structure in (3.18.1) is polarized, where (M,
F) is identified with a coherent filtered 2-Module on X by restricting X. We
define {(E}, F)} = Y%L(M, F) by

(3.18.5) (E}, F)=Grl,y,(M, F[n—|I]]),
for ve(@n[ —1, 0))", I cn\v. Put
(3.18.6) (E], F) = @,-,(E}, F).

Then, by [8, (1.16)][15, 2.1.5] and (3.18.4), we have:
(3.18.7) ((E{, F), N,,...,N,) underlies a nilpotent orbit of weight w + |I| — n,
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where its Q-(or R-) structure is induced by ¥, = ¥"°DR, and the polarization
by ¥l °D =Do¥},, cf 32. In particular, (E{; F, W) is a mixed Hodge
structure, where W is the monodromy filtration for ) N, shifted by w + |I| — n.

Put g = x™ as in 3.3. We define E} by (3.3.1), and put E] = @, E] so
that EJ has the R-structure induced by the natural one on EJ[N], where we

choose i =,/ — 1 so that the Tate twist ) Z(n) is trivialized and N is defined
over Q,ie. N =logT,, We also define the filtration F, Won E{ so that they are
compatible with the decomposition EJ = @ E} and F,E}, W,E} are the
quotients of

Fpo1 v EfalN]Y, Wiz 25 ERalN] if 130
Fpo11pEpa[N1 @ FLEL[N], Witz 25 Efa[N1@® W, EL[N] otherwise
where u =V + vome(Q/ZY, I' = I\{0}, b = |Inm| and
F,E{[N] =) F, ;Ef @ N/, WE{[N] =) Wi.,;Ef ® N’.
Then (E}; F, W) is isomorphic to
Dosj<s (Efvas F, W)(1 —b +)) if 130,
Dosj<o-1 (Efva; F, W)(1 — b +j) @D (Ef; F, W) otherwise,

forgetting the action of can, etc. Therefore (EJ; F, W) are mixed Hodge
structures. We also verify that can, Var, and N, induce morphisms of mixed
Hodge structures. In particular,

can: (E}; F, W) — (E}; F, W)
is strictly surjective and (E}; F, W) is identified with
Coim (N: (E}; F, W) — (E}.; F, W)(— 1))

if 150, because can: Y, ; — ¢, is surjective. By 3.17 the isomorphism (3.4.2) is
compatible with F, i.e.

(3.18.8) (B F)=Grloy,. (Gl 1,0, (M, Fln+1—1112)),

because the case 130 is reduced to the other case by (3.17.11) and the above
argument, where we use the strictness of N: Gr¥, (M, F) - Gr” (M, F)(— 1) in
MF(2x)meqw cf. 3.13. Similarly (EJ, F) underlies a nilpotent orbit by the
following result of Kashiwara, because the case 130 follows from the other case
using the above strict surjectivity and [8, 1.16] [15, 2.1.5].

3.19. Proposition. Let ((H; F, W); N;(1<i<n);S) be a nilpotent orbit of
weight w, where W is the monodromy filtration for Y N, shifted by w. Take
meN", I = m such that I # ¢, and put
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(H,; F, W) = Coker(N,: (H[N]; F[I], W[ — 21]) — (H[N]; F, W))
(= @osj<i(H; F, W) (j))
where | =|1|, Ny =[],,N» N;=N,—m;N and
FP(H[N]) = };F"""H ® N’, W(H[N]) =} ;W1 ,,H @ N’.

Then ((H;; F, W); N, N; + m;N (1 <i < n); S)) is a nilpotent orbit of weight w
+ 1—1; in particular W is the monodromy filtration for N + Z(Ni + m;N)
shifted by w + 1 — 1. Here §, is defined by

(3.19.1) S,@, #) = Res S(N; 'a, ¥) for i, beHj,,

where S is extended to S: H[N, N 'J® H[N, N ']->C[N, N~ '] by
Su@ N, v Q@ NY)=(—1)Su, v) @ N'**/ and Res(}. a; @ N)=a_;.

(See Appendix for the proof.)

Remark. We use Deligne’s convention of positivity (i.e. S(u, Cz) > 0) so that we
have

(3.19.2) S, (can;ii, %)= S,.(i, Var,?)

for ie A, fe H,, where I = I' U {i} = m and can, (resp. Var)) is induced by N;
— m;N (resp. id) on H[N], cf.3.3. In the case (H, F) = (E4, F), where {(E{, F)}
corresponds to (M, F) as in 3.18, we can verify that S, corresponds to the duality
on Y, (M, F), cf. [25]. Here the assertion for the R-part is essentially due to
Kashiwara.

From the above results, we can deduce:

3.20. Theorem. Let X be a complex manifold of dimension n, D a reduced
normal crossing divisor, and j: U = X\D — X the natural inclusion. Let (M, F,
K) be a filtered regular holonomic 9 y-Module with Q- (or R-) structure such that
(3.18.1-2) are satisfied and the variation of Hodge structure in (3.18.1) is polarized
by S'. Then (M, F, K) is a Hodge Module of weight w polarized by the duality S
induced by S'.

Proof. By (3.15.2), S’ induces the duality S of (M, F, K). We show by
induction n that (M, F, K, S) is a polarized Hodge Module. The assertion is
clear if n =0. For n> 0, we have to verify the condition in [19, 5.1.8] for ¥,
and [19, (5.2.10.2)], because [19,5.1.8] for ¢, , follows from [19,5.1.17] and (M,
F) is quasi-unipotent and regular along g by 3.17. Therefore the assertions are
local. We may assume g~ *(0),.4UD is a normal crossing divisor by Hironaka’s
desingularization and using [19, 5.3.4]. Then we may assume g~ !(0),,q = D by
replacing D with g~ (0),.qU D, because (j,,.j ~' M, F) is uniquely characterized by
the condition (3.18.1) and



302 MORIHIKO SAITO

(3.20.1) at any xe€ X, there exists a coordinate neighborhood 4" of x such
that (M, F),e MF(2 g)pequ (cf.3.16) and (3.18.4) is satisfied for
(M, F),.

Taking a finite covering (and by [19,5.3.4]), we may assume further that M has
unipotent monodromies and g = (x, ---x,)* with local coordinates (x,,---,x,). By
inductive hypothesis, it is enough to show:

(3.20.2) W on y,(M, F) is defined in MF(Z 4),cqu at each point of X and
the primitive decomposition of Gr (M, F) is compatible with F,

(3.20.3)  PGr{y,(M, F, K) admits the strict support decomposition compat-
ible with F such that each Z-component corresponds generically to a
polarized variation of Hodge structure of weight k — dimZ and its
pull-back to Z satisfies (3.20.1) at any point of Z,

where W is the monodromy filtration shifted by w — 1, and Z in (3.20.3) are
smooth (because the assertion is local). Here note that (M, F)e MF(Z 4n)ncqu 18
of the form i (M, F) with i: 4™ > 4" and (M', F)e MF(D gm)ncqus if supp M
c 4™ for m < n.

We first get (3.20.2) by 3.13 and Deligne’s inductive construction of W[10],
because N on E{ underlies a morphism of mixed Hodge structures. For the
strict support decomposition in (3.20.3), it is enough to show:

(3.20.4) PGrY E] = Ita(can,;: PGty E]. — PGt EJ)
@® Ker (Var;: PG} E{ — PGr['E})

for any I, I' = 7, ien such that I =I' Ul {i}, where E{ =0 for J # ¢, {0} and
E[°" = (E$)*~'. In fact, we can use [19, 5.1.4] inductively, combined with the
equivalence of categories (3.1.2)(3.2.2), because the condition (3.20.4) is stable by
direct factor and induces a direct sum decomposition in the category of mixed
Hodge structures so that can, Var, induce strict morphisms in MF (2 an- Drncqu DY
3.13. Here we have also proved the condition (3.20.1) for any Z-
component. To show (3.20.4) we have to use 3.19. Here we may assume J = ¢
in (3.20.4). Then we have

E? = COker(NInyﬁ3 E?\M[N] — E?\m[N])

by definition. If we define §; on E¢ as in 3.19 (where we replace N, by N, in
(3.19.1)), we get (3.19.2) for any I, I' = i, ien such that I = I' LI {i}. Therefore
the assertion follows from [19, 5.2.15] and the remark below, because N, = N,
on Gr”. Here we restrict to the nilpotent orbit of two variables for N, N, (by
changing F). Then we first take the limit for N and PGt} to get a nilpotent
orbit for N, and then take the limit for N; and Gr”", where W® is the
monodromy filtration for N;. Now it remains to show that each Z-componemt
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of PGry'y,(M, F, K) corresponds generically to a polarized variation of Hodge
structure of weight k — dimZ. But this follows from 3.19 and its remark,
because at the generic point of Z, the Z-component of PGr}y,(M, F, K)
corresponds to a direct factor of PGrY ., E¢ on which the action of N; is
trivial, where Z = D, and W’ on E¢ is the monodromy filtration (not shifted) so
that PGr}_ . E¢ underlies a nilpotent orbit of weight k + |I| — n = k — dim Z,
cf.3.18. This completes the proof of 3.20.

Remark (Kashiwara). Let (H, F, N, S) and (H', F, N, §’) be nilpotent orbits of
one variable of weight w and w + 1, and u: (H, F)—»(H', F),v: (H', F)—> (H, F[
— 17) morphisms defined over R such that vu = N, uv = N and

S'(ux, y)= £ S(x, vy) for xeH, yeH’

Then Gr"u =0, Grt"v =0, ie. u(W, H) < W,_, H', v(W,H') = W, _,H, where W
is the monodromy filtration. In fact, we can reduce to the case N = 0 using the
primitive decomposition, then to the case dimH =1 or 2 (same for H’).

As a corollary we get (by [19, 3.2.2 and 5.3.1]):

3.21. Theorem. For a reduced irreducible separated complex analytic space X of
dimension n, we have an equivalence of categories:

(3.21.1) MH, (X, Wy =5 VHSo(X, w — n)?

where MH (X, w)? is the category of polarizable Hodge Modules of weight w with
strict support X (cf. 2.1 and [19, 5.1.6]) and VHS (X, w)? is the inductive limit of
VHS(U, w)? the categories of polarizable variations of Hodge structures of weight
w with quasi-unipotent local monodromies on smooth dense Zariski open subsets
U. Moreover the polarizations correspond bijectively.

Remark. 1) This implies the condition (2.7.6) in 2.7, if .#’ is polarizable and
(2.7.1) is satisfied.

2) Let f: X > Y be a proper morphism of separated reduced complex
analytic spaces such that X is Kéhler (or of class & in the sense of Fujiki). In
this remark, we assume that the Hodge Modules are defined over R, i.e. so are
their underlying perverse sheaves. Then we have cohomological functors (cf.
2.13):

Hif.: MH(X, w) — MH(Y, w + j).

In particular, Kollar’s torsion-freeness holds also in the proper Kihler case, and
the conjecture in the intorduction of [19] is verified.

To show #7f, M eMH(Y, w+ j), we may assume that .#e€MHy(X, n)
and X is irreducible. Let D be a closed subspace of X such that ./ is a
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variation of Hodge structure on X\D. For any yeY, we take g,,...,9,€0y,
such that ng; *(0) = {y}, and take a resolution n: X — X such that n~*(D') is a
normal crossing divisor, where D' =Ug; }(O)uD. Let . be the polarizable
Hodge Module with strict support X whose restriction to X\z (D) is
isomorphic to that of .# to X\D'. Then we can prove the assertions of [19,
5.3.1] for .Zand f= fn: X - Y on a neighborhood of y, using [15, 0.11.1][16]
and 3.20. In fact we get the hard Lefschetz for f by the same argument as the
proof of [19, 5.3.1] using the inductive assumption, and we take further a
resolution of X associated to any point near y to show the other assertions. We
use [19, 5.3.1] and Deligne’s uniqueness of the decomposition for ., .#to deduce
the assertion #/f, # e MH(Y, w + j). For the global polarizability, we use the
spectral sequence:

EY = HP* AU M = AP T i* M in MHW (Y)

for a closed immersion i: Y, — Y such that x,:=f"'(Y,) is a locally principal
divisor of x, where the natural inclusion X, — X is also denoted by i, cf. [26].

(3.c) Mixed Case

3.22. Let MH be the abelian category of graded polarizable Q-(or R-) mixed
Hodge structures M =(H, F, W), where H is the underlying Q-(resp. R-)
module. Let MHL be the category of the objects of MH with a finite increasing
filtration L. Let MHL" be the category of the objects (M, L) = (H, F, W, L) of
MHL endowed with commuting n morphisms

Ni:(M, L)—(M(-1), L) (1<i<n)

such that (GrEH, F; N;(1 <i < n)) underlies a nilpotent orbit of weight k and W
is the relative monodromy filtration of (H, L) for ) ,_,_ N, Here MHL?
=MH, iie. L=Won H, if n=0. Then we have:

(3.22.1) MHL" is an abelian category such that any morphism induces a
3-filtered strict morphism for F, W, L.

In fact, the assertion is clear, if M is pure (i.e. Lis trivial). In general it follows
from [19, 5.1.15]. We have also

(3.22.2) Assume the relative monodromy filtration W™ of (H, L) for N,
exists, where (M, L; N)=((H, F, W), L, N)e MHL". Then W®"
induces the relative monodromy filtration of (M, L) for N, in the
exact category MHL (in particular, F, W, W®, L on H. are
compatible) and (M, W™; N;(1<i<n-—1)eMHL" ! so that
N,: (M, W™) - (M(— 1), W™ [2]) induces a morphism in MHL "1,
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In fact the assertion follows from [6, §3] in the pure case, because N, is a
morphism in MH and W®™ is a filtration of M in MH. In general we can
proceed by induction on the length of L as in the proof of 2.4 using 1.2, 1.4-5
and (3.22.1). By the same argument as the proof of 2.5, we have:

(3.22.3) The assumption of (3.22.2) is stable by subquotients in MHL".
Moreover, for an exact sequence in MHL":

0— WM, L) —(M, L) —(M", L) —0

such that W™ exists on (M, L), we have the exact sequence in
MHL""1:

0 — (M, W®) — (M, W®) — (M", W) — 0.

Here we can use the splitting by the polarization on Grf of the exact
sequence. We define the full subcategory MHL?%, of MHL” by induction on
n: MHL?, = MHL( ~ MH) if n = 0, and for (M, L)e MHL" (n > 0), it belongs
to MHL}, iff the assumption of (3.22.2) is satisfied and (M, W™)e MHL”;'. By
definition, MHL }; = MHL! and we have for n > 2:

(3.22.4) for ((H, F, W), L; N) e MHL™" it belongs to MHL, iff the relative
monodromy filtration W® of (H, WC¢*Y) for N, exists inductively
for 1 <i<n, where W =L,

By (3.22.3) we have:

(3.22.5) MHL?, is stable by subquotients in MHL" and for ((H, F, W),
L; N)eMHL}, the induced filtration W® on L,H/L;H coincides
with the filtration W® defined inductively on L,H/L;H by (3.22.3-4)
for k> j.

Then [6, §3] implies for 1 <i<j<n+ 1:

(3.22.6) W® is the relative monodromy filtration of (H, WY) for any
Yi<k<; LNy such that £, > 0.

In fact it is enough to show N; W = WL, for i <j. But it is clear if i = j, and

follows from the functoriality of W% if i <j. By induction on n and the length

of L, we can also prove:

(322.7)  n+2 filtrations F, W® (1 <i<n+1) on H_ are compatible,

(3.22.8) W™ induces the relative monodromy filtration of the (n + 1)-filtered
module (H; F, W¥ (1<i<mn), L) for N,: (H,, F, W9, L)>(H
F[—1], w9[2], L),

loid
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(3.22.9) any morphism in MHL?; induces an n + 2 filtered strict morphism
of (H, F, W9 (1 <i<n+ 1)), where W™D = L, cf. (3.22.4).

In fact, in the pure case, (3.22.7) and (3.22.9) follow from the inductive hypothesis
(because (M, W™ eMHL"; %), and (3.22.8) from [6, §3]. In general (3.22.8)
implies (3.22.7) inductively, and (3.22.9) is reduced to the pure case by (3.22.7)
and [19, 5.1.15]. We prove (3.22.8) by induction on the length of L using 1.2,
(3.22.5) and (3.22.7), (3.22.9) for MHL"; .

3.23. Let P(n), be the full subcategory of P(n) (cf.3.1) such that E} =0 for
v # 0"e(C/Z)", ie. the objects of P(n) are {E;} with morphisms

can;: E;, — E;, Var;: E;. — E;

for I' =T {i} such that N; = Var;ccan; or can,° Var; are nilpotent and can,,
Var; commute mutually.

We define M(n) to be the category whose objects are .4 = {M;} with
morphisms can;, Var; as above such that M, = {H,, F, W}e MH(cf. 3.22) and
can;: M; —» M,, Var;: M. — M,(— 1) are morphisms of MH. Then we have a
natural functor M(n) — P(n),. Note that M(n) is an abelian category by [9], and
it has an inductive structure, i.e. M(n) is equivalent to the category whose objects
are (M'=2.M") where M', M" €M — 1) and A" - M", M" > MH'(— 1) are
morphisms in M(n — 1). In fact, we associate (#' 2 #") to A so that

My =M;, Mj=M,,,, forIcna\{n}.
In this case we also put:
(3.23.1) Yyl = My Py M = M".

We say .# € M(n) has strict support J(or Dy), if M; =0 for I # J and can;: M,
— M. (resp. Var;: M, . —» M,(— 1)) are surjective (resp. injective) for I, I' > J
such that I' = I U {i}. We say . € M(n) admits strict support decomposition, if
we have a (unique) decomposition:

(3.23.2) M=D M)

such that .#(J) has strict support J. In this case, #(J) is called the J-(or D;-)
component of 4. Note that (3.23.2) is equivalent to

(3.23.3) M; = Im(can;: M - M;) @ Ker(Var;: M; » M (— 1))
for I =11 {i}.

In fact we can verify this by induction on n using the inductive structure of M(n)
as above, because (3.23.3) is stable by direct factors in M(n) and the first factor of
the right hand side of (2.23.3) is identified with Coim N, for i =n. We say
M eM(n) is pure of weight w, if



Mixep HODGE MODULES 307

(3.234) A admits the strict support decomposition,

(3.23.5) ((H, F), Nj{1<i<n)) underlies a nilpotent orbit of weight
w —n+ |I| such that W is the monodromy filtration for ), _,_ N,
shifted by w — n + |I|,

where 4 = {M,;} and M, =(H,, F, W). (f n=0, 4 is a polarizable Hodge
structure of weight k; in particular Gr!¥ = 0 for i # k.) Let .#; be pure of weight
k; with strict support J,(i = 1,2). Then

(3.23.6) Hom(A4,, #,)=0if J, #J, or k; > k,.

Let ML(n) be the category of the objects of M(n) with a finite increasing
filtration L such that Grf are pure of weight k. Then for (4, L)= {(M,,
L)} eML(n), we have (M,, L[|I| — n]; N)e MHL"(cf.3.22) by definition. We
define the full subcategory ML(n),; of ML(n) by the condition:

(3.23.7) (M,, L[|I| — n]; N)e MHL", for any I.
By [19, 5.1.15], (3.23.6), (3.22.5) and (3.22.9) we have

(3.23.8) ML(n) is an abelian category such that any morphism induces 3
filtered strict morphisms on (H; @ C; F, W, L),

(3.23.9) ML(n),, is an abelian full subcategory of ML(n) such that ML(n),,
is stable by subquotients in ML(n) and any morphism induces
(n + 2)-filtered strict morphisms on (H,® C; F, WO[|I| — n]
1<i<n+1)),

where W@+ = [Land W® is the relative monodromy filtration of (H,, W¢*b)
for N;(1 <i<n) so that W[|I| —n] = W by (3.22.6). By 1.5 and the same
argument as in the proof of (3.20.4), we get the functors Y, @ : ML(#n),,
— ML(n — 1),, such that

(3.23.10) Vol L) = (o l, WL~ 1])
GunM, L) = (b, W),
cf.(3.23.1). Then we have the natural morphisms:
(3.23.11) can,: Y, (M, L) — ¢(M, L)
Var,: ¢, L) — Y, L)(~ 1)
by (3.23.3) for i =n and 1.7. Here we define the Tate twist (k) by

(3.23.12) (A, L)(k) = (A(k), L[ — 2k]), cf.(2.17.7).

Let ML(n);; ' be the category whose objects are .# = {M,} e M(n) with a finite
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increasing filtration L and an endomorphism N, (#, L) — (# (— 1), L) such
that (M,, L[|I|—n—1]; N)eMHL"! for any I and (3.23.3) holds for
Gri#. Then ML(n)}; ! is also an abelian category and we have a functor

lp(n+ 1)~ ML(”)Z: P ML(n),,

by Vs )M, L) = (M, WO D[ —1]), where W1 is the relative monodromy
filtration of (#, L) for N,. Let ML(n),, be the category whose objects are {(.#’,
L), (A", L); u, v} where (#', L)eML(n — 1)%;, (A", L)eML(n — 1), and
u: YoM, L)~ (M", L), v: (M", L) = (A, L)(— 1) are morphisms in ML(n
— 1),4 such that vu = N,. Then by 1.9 we have an equivalence of categories

(3.23.13) ML(n),; = ML(n);,

by assigning {(#', L), ¢y (#, L); can,, Var,} to (#, L), where (#’, L) is the
restriction of (., L) such that (M}, L) = (M,, L) for n¢I (in particular ¥, (4’
L) =Y (M, L)). Now let ML(n),, be the category whose objects are (.#, L)
where .#€M(n) and L is the filtration of M, for I # 7 such that (3.23.7) is
satisfied for any I # 71 and (3.23.3) is satisfied for any Gri.# for I # 7. Then the
natural restriction functor induces an equivalence of categories:

(32314) ML(n)ad = ML(")Zd!

i.e. the filtrations W on M are constructed functorially by induction on i using
W® on the other M; and Won M, In fact this is just (3.23.13) if n = 1, and we
can prove it by induction on n using (3.23.13).

3.24. With the notation as in 3.2 and 3.4, take (M, F)e M(D),ncqu (cf. 3.16) with
a filtration W such that

(3.24.1) (M, F, W) is the stalk at 0 of the Z-Module part of some
M e MHW (X),

(3.24.2) the (n + 2)-filtrations F, ¥V, W on M are compatible.

We define (E}, F), (EJ, F) by (3.18.5-6) so that EJ has the natural R-
structure. Let L be the filtration on E}, E{ induced by W on M. If the
condition:

(3.24.3) for any order of the coordinates of X (= 4"), the vanishing cycle
functors ., ¢, are inductively well-defined for .# at the stalk of 0,

is satisfied, we have by (3.18.7)(3.22.4) and (3.24.2):

(3.244)  E] has the weight filtration W such that (E{; F, W, L[|I|— n];
Ni,--,N,)e MHL,(cf. 3.22) for any order of the coordinates.
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Here W is independent of the order of the coordinates by (3.22.6). From now
on, we assume (3.24.1-2) and (3.24.4).

For g = x™, we define (E}; F, W) and (E]; F, W) by the same way as in 3.18
so that EY has the natural R-structure. Let Lbe the filtration on E}, E7 induced
by Won M. Then, by the same argument as in 3.18, we verify:

(3.24.5)  (E{; F, W) is an R-mixed Hodge structure so that Lis a filtration
of mixed Hodge structures and can, Var, N, are morphisms of
mixed Hodge structures for 0 <i<n.

Assuming (3.24.1-2)(3.24.4), we can prove by induction on |m|:

(3.24.6)  the relative monodromy filtration L of (E{, L) for N exists so that
(EJ; F, W, L[|I|—n];N,,---,N,)eMHL", for any order of the
coordinates.

We fix an order of the coordinates. By 3.18-19 and [6, §3], the assertion is
proved in the pure case, and it is enough to show the existence of Land W% in
(3.22.4), because we can proceed by induction on the length of Las in the proof
of (3.22.2), (3.22.8) and 2.4, where we use the canonical splitting of L on Grf to
show that (GrL E{; F, W; N,,---,N,) are nilpotent orbits (in particular W is the
relative monodromy filtration of (EJ, L[|I| —n]) for Y N). If |m|=1 and ¢
= x¢, the assertion follows from (3.22.6), (3.24.4) and 3.3-4, because E}
= E}itm(iel, 0¢I), E}\ 0, (iel, 0el), and O (otherwise) so that N; = N,(j # i),
N;=0and N,=aN on E}. Assume |m|> 1. If I$i, we take m’ such that m;
=m;(j#1i) and m;=0, and define EY similarly by replacing g with ¢
= x™. Then we have an isomorphism as filtered C[N]-modules:

(E}, L) = (E'y+0omt, I)

such that the action of N, is compatible for j # i and N, on E} corresponds to
N, —mN on the right hand side. Therefore the assertion is verified if
I#7n. We can apply (3.23.14) to {E¢}1s0, {E}° }1s0» {Ef}1s0» because they
belong to ML(n)., by the above argument, where (3.23.3) for Gr* and for I # 7
follows from 1.5 and the assertion in the pure case. Thus we get L, W® on E}
also for I = 7 such that Lis the relative monodromy filtration of (E}, L) for N,
because the above construction is compatible with Grf and L on GrfE}
coincides with the monodromy filtration shifted by k by the assertion in the pure
case, where NL; c L;_, follows from the functoriality of (3.23.14).

As a corollary of (3.24.6) we get:
3.25. Proposition. Let X be a complex manifold of dimension n, D a normal

crossing divisor on X, g a holomorphic function on X such that g~ *(0) = D and M
=(M, F, K; W)e MHW (X)* such that Ch(M) < UT§ X, where DY are the
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intersections of local irreducible components of D. Assume:

(3.25.1) for any point of D there exist local coordinates (xi,---,x,) such that
D < Ux;7Y(0) and (3.24.1-2), (3.24.4) are satisfied for the stalk of (M,

F, W).

Then the vanishing cycle functors along g are well-defined for M (cf.2.2) and \y, M,
¢,1 M satisfy (3.25.1).

Proof. By (3.24.6) the condition (2.3.3) is satisfied. To show (2.2.1) we have to
verify the surjectivity of (3.7.7) for « <0 by (3.17.2). But this follows from
(3.17.3) if « < 0, and for & = 0 we apply [19, (3.2.6.4)], (3.16.7) (resp. (3.17.11)) to
the Z-component of Gr .# such that Z = g~ *(0) (resp. Z &g~ '(0)). Then by
24, Y, M, ¢, M belong to MHW (X)? and (3.24.1) is verified. By (3.22.4) and
(3.24.6), (3.24.4) follows from (3.24.1-2). Therefore it remains to show (3.24.2),
and we may assume the notations are as in 3.16. We first show the
compatibility of the n + 2 filtrations F, ¥® Lon Gr! M for — 1 < a <0, where L
is induced by Won M. By 3.20, Grk Grl (M, F)e MF(Zy),nq and it is enough
to show the surjectivity of

F,V,L,Gr, M — F,V,GriGr, M

by [19, 1.2.12]. But this follows from the same argument as the above proof of
the surjectivity of (3.7.7), using (3.17.5) for « < 0 and applying 3.13 to N: ¢, ,
=Y, 1(—1), because CoimN =¢,,; in the pure case if supp M
¢g~'(0). Therefore L is a filtration of Gr!(M, F) in the exact category
MF(Zx)ineq» Where a strict morphism in this category is strict for the n + 1
filtrations F, V® by definition. Then (3.18.8) is a filtered isomorphism also in
the mixed case, because the inclusion < is clear for each F, and the equality
holds on Grf by the above argument. Now we can show the compatibility of
the n + 3 filtrations F, ¥, W, L on Gr/ M, which completes the proof of
3.25. The pure case was proved in 3.20, because the assertion for Grf follows
from the strictness of

N:(Gt" ,M; F, V® W) — (Gr*,M; F[ — 1], V®, W[2]),
where the case suppM < g~ 1(0) is clear by [19, 3.2.6]. Then by the same
argument as the proof of (2.4.1), it is enough to show the strictness of
(N1 id): (L MY, FLi+ 10, VO)Y @ (W_; 5Ly M, F, V9)
_—)(Lk—lM” Fa V(j))

as (n + 1)-filtered morphism, where M’ = Gr! M. But this can be reduced to the
strictness of Gr? of the morphism, and follows from (3.24.5) and (3.18.8) in the
mixed case proved just above.



Mixep HODGE MODULES 311

3.26. Proposition. Let X, D and M be as in 3.25, and D' a union of irreducible
components of D. Put j:U':= X\D'— X. Assume (3.25.1). Then j,j "' M,
Jud' Tt M e MHW (X are well-defined (cf. 2.17) and they satisfy also (3.25.1).

Proof. By 2.11 and 3.25, the assertion is local and we may assume D’ is locally
irreducible by factorizing j’ locally because jj, j, are unique once an ideal of D’ is
fixed (cf.2.11) and they satisfy the conditions for j, j, for any ideal if the
condition (3.25.1) is verified (cf.3.25). Therefore we may assume X = 4", D’
= {x, =0} and Dn(4*)" = ¢. We define M= j;j’~*.# in MHW (X)? by 2.11
using the product X = D' x 4. Then (3.24.4) follows from [13,5.5.4] and it
remains to show (3.24.2). We have by definition:

(3.26.1) the n + 2 filtrations F, V', W are compatible on V%@ M = V% M.

We first show

(3.26.2)  the n + 1 filtrations F, V®(i # n), W are compatible on Gr, " M for
any o > 0.

Clearly it is enough to show the assertion for a =0. Put (M, L) = G’ (M,
W[ —1]) and (M", L) = Gr™ (M, W), and let L' be the filtration on M’ such
that

0 (M'; F, VO(i#n), L) — (M"; F, VO(i #n), L)
becomes an (n + 1)-filtered isomorphism. Then we have

(3.26.3) LM’ =Ker(N,: Ly_ M’ + W,M' — M'/L,_, M)

by (2.8.4), where W is the relative monodromy filtration of (M’, L) for N,. By
the proof of 3.25, W, L are 2 filtrations of (M’, F) in MF(Z gu- 1)ypeqr In
particular the n + 2 filtrations F, V¥, L, W are compatible. To show (3.26.2) it
is enough to show the strictness of the morphism in (3.26.3) as a morphism in
MF(2 gn-1)mequ By 3.13, it is reduced to that of Gr}, and follows from the fact
that W, L underlie filtrations in MHW (4"~ !). Therefore, to show (3.24.2), it is
enough to check the surjectivity of

F,V,WV"M — F,V,W,Gt,"M for a >0

by (3.26.1) and [19, 1.2.9], where veQ""! and V), =nV%. But this follows
from the same argument as the proof of 2.9 if « = 0, and the other case is clear
by the action of J,, where t=x, We have a similar argument for
jwi' "t M. This completes the proof of 3.26.

Remark. With the notation as above, let g be a meromorphic function on X
such that g is holomorphic on U’ and g~ *(0) = D. Then ji, j, are well-defined
for Y, j’ M, ¢, ] M if M satisfies (3.25.1), and (3.25.1) is stable by the
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compositions of ji, j,, and ¥, j' !, @, ,j'~'. In fact, we can reduce to the case g
holomorphic on X, because we can multiply g by x{ locally by (3.7.8) if T¢
becomes unipotent where T is the monodromy of y,.

3.27. Theorem. Let X be a complex manifold of dimension n, and U a
Zariski open dense subset. Then we have an equivalence of categories

VMHS(U)% = MHM(U)2

where the right hand side is the category of the polarizable smooth mixed Hodge
Modules on U extendable to MHM(X)?, and the left hand side is the category of
admissible variations of mixed Hodge structures on U relative to X (cf.
[13]). Here smooth means that the underlying perverse sheaf is a local system up
to a shift, and the functor is given by ((L, F), K; W)—((L, F)® (2}, F),
K([n]; W[n]).

Proof. We may assume D = X\U is a normal crossing divisor. Letj: U —» X
be the natural inclusion, and take ((L, F), K'[ — n]; W[ — n])e VMHS(U)¥. Put
(M', F)=(Q2}, F)® (L, F) so that #'=((M’, F), K'; Wye MHW (U)? (cf.[19,
54.3]). We first show the existence of # =((M, F), K,; W)e MHW (X)?,
denoted by j,.#', such that K =j K’ and (M ; F, W) satisfies (3.25.1). By 2.11,
the assertion is local, because j,.#’ is unique by 3.26. Therefore we may
assume X = A" as in the proof of 3.26. We define (M, F) =j8(M’, F) as in
3.10. Assume D =U;..D; and we factorize j by j =j,---j,, where j;: U; = U;_,
and X\U; = U,.;D,. We define j, by the composition (j,),,---(j,), using 2.11, if
(2.7.2-4) are verified inductively. Here W is determined inductively by (2.8.4),
(2.11.2) and (3.1.3), (3.2.2). Therefore we may forget the Q-structure. Because
(2.7.4) is verified inductively by [13, 5.5.4], we get W on M€ M(Dy)meqr TO
show (2.7.2-3), it is enough to verify the compatibility of the n + 2 filtrations F,
VO W at every point of D. Therefore we may assume the notations are as in
3.16. By [13] they are compatible on V_.,M by taking a finite covering. We
define the filtrations W(i) on M by

DR(W(i) M) = (j1)4ji" ' DR(W,M)

where j;: U;—» X. Then W= W(0), and for {(E}, W(i))} = ¥Y5(M, W(i)), we
have W(i),E} = W, E} for In{l,---,i} = ¢ and Var; are bijective for j <i. By
the isomorphism

Xy, (VoM F, VO, W(r)
= (Vo MG F, VO[IE <), VOE>n, W)

we get the compatibility of F, V%, W(r) on V,M and then on M using the same
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argument as in the proof of 2.9 and (3.16.14), because Gry (M, F)
= j*tGry(M', F). We can verify inductively the compatibility of F, V%, W(j)
by the same argument as the proof of (3.26.2). In fact W(j)= W(j— 1) on
V9, M and the n + 2 filtrations F, V® (i #j), W, W(j) are compatible on
Gr¥ M by induction on the length of W(j) where W is the relative monodromy
filtration of Gr” (M, W(j)[ — 1]) for N;. Then we get the compatibility of F,
V(i # j), W(j — 1) on Gr§” M and that of F, V® W(j —1) on V¥ M and then
on M.

Now we show j,.#eMHM(X) Because the construction of j, is
compatible with the smooth pull-backs, it is enough to verify the iterations of
J' T Jkd T W @, But we can reduce to the normal crossing case as in the
proof of 3.8 by Hironaka’s desingularization and 2.5, 2.12, 2.14. Then the
assertion follows from 3.25-26, and this completes the proof of 3.27.

Remark. In the algebraic case, we can show the equivalence of categories:

VMHW (X)* =~ MHM(X)*

for a smooth separated algebraic variety X, where MHM (X) will be defined in
4.2, s is for smooth as in 3.27, and the left hand side is the category of algebraic
variations of mixed Hodge structure (in particular the underlying connection has
regular singularities at infinity) satisfying the admissibility condition defined by
the curve test (cf. [13][22]). In fact this follows from the same argument as the
proof of 3.27, combined with the remark after 3.26. Then this equivalence and
2.8, 2.28 imply by induction on dim X:

MHM (X) = MHM(X“")%an

for any separated algebraic variety X and any completion X of X, where an
means the associated analytic space.
By a similar argument and [13], we have

3.28. Theorem. The polarizable mixed Hodge Modules are stable by the
external products X.

Proof. By 3.21, MHW (X) are stable by X. We can verify that ./

X A eMHM(X x Y) for #/ e MHM(X)* and &/ e MHM(Y) by induction on
dim supp A using the equivalences of categories 2.8 and 2.28, because the
assertion follows from [13] in the case of admissible variation of mixed Hodge
structure. Then the general case follows from the same argument as abeve.

3.29. Remark. Let X and D be as in 2.5, MHW (X ; D)? the full subcategory of
MHW (X)? whose objects satisfy the assumptions in 3.25, and MHM(X ; D)? the
full subcategory of MHM(X)? such that the characteristic varieties of its objects
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satisfy the assumption in 3.25. Then we have
(3.29.1) MHW (X ; D)? = MHM(X; D)’ (in MHW (X)?).

In fact, the assertion is local, and we can prove it by induction on the dimension
of the support using 2.8, 2.28 and the functors (jy),j; ' as in the proof of 3.27.

§4. Algebraic Case

In this section, algebraic varieties are defined over C and separated reduced.

4.1. Let X be an algebraic variety. For a subfield 4 of C, let Perv(4y) be
the full subcategory of Perv(Ay..) whose objects have algebraic stratifications
such that the restrictions of their cohomology sheaves to the strata are local
systems. If X is smooth, MF,(2y) denotes the category of filtered (algebraic)
Px-Modules (M, F) such that M is regular holonomic [4][5] and Grf M is
coherent over Grf2,. Then we have the functor DR : MF,(2y) — Perv(Cy) as
usual, and we repeat the definition of MF (2, Q), MF,W(Zx, Q), MH 4, (X, n)?
and MHW (X)®), etc. in [19, §5.1-2], where Z is an irreducible closed subvariety
and U, g in the definition of Hodge Module and polarization are algebraic. By
the same argument, the main results in [19, §5] remain valid, e.g.

4.1.1) MH (X, n)®, MHW (X)®are abelian categories,
(4.1.2) Q¥ [dy]1e MH(X, dy)?(cf.2.17 for the definition of Q% [dy])

(4.1.3) for f: X - Y a projective morphism and for #eMH(X, n)? (or
MHW (X)?), f.(M, F) is strict and #7f,.#eMH(X, n+j)P (or
MHW (X)), cf.2.14 for the mixed case,

where (M, F) is the underlying filtered 2y-Module and we use an affine open
covering and the associated Cech complex for the definition of f,,(M, F). (If one
prefers, the can use filtered 2 ya.-Modules (M, F) such that DR(M, F)e Perv(Qy)
in the definition of MH(X, n)"?, etc., because the final result is the same by
GAGA and the extendability.) Moreover the results in §2 (except for the
definition of MHM(X)®) are valid in the algebraic case. (Note that the mixed
Hodge Modules are assumed polarizable and extendable in the algebraic case,
cf.4.2.) For example, if X is singular, we define MH(X, n)®, MHW (X)® as in
2.1 using local embeddings. Then (4.1.1) and (4.1.3) remain true for singular X,
Y. For a function g on X, (i), #eMHW (X x C)? is well-defined for
M e MHW (X) and we can define the condition:

(4.1.4) the vanishing cycle functors along g are well-defined for ./Z,

as in 2.3 (i.e. assume (2.2.8)(2.3.3) which are independent of the local embedding
of X and the local extension of g.) Then 2.4 is also valid and we can define
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Y, M and @, M, if (4.1.4) is satisfied. By 2.5-6 and 2.14, we have

4.1.5) the condition (4.1.4) is stable by the dual functor D, subquotients in
MHW (X)®Wand projective direct images as in (4.1.3) (in the polarizable
case), and (2.6.2) is valid if (4.1.4) is satisfied.)

Let D be a closed subset of X. We say D is a weakly locally principal divisor
(abbreviated by w.lLp.d) if

4.1.6) locally there is a function g (called a local equation of D) such that
D= g_l(o)reds

Here D might contain an irreducible component of X, i.e. g might be zero on this
component. Letj: U — X be an open immersion such that X\U is a w.l.p.d. (in
particular, j is affine). We say j,.#'(resp. j,.#') exists for .#'e MHW (U)®, if

4.1.7) there exists an extension j,.#' (resp. j,.#')e MHW (X)Pof .#' such
that the vanishing cycle functors along any local equation of D are
well-defined and its underlying perverse sheaf is of the form j, K’ (resp.
J K.

(Here K’ is necessarily the underlying perverse sheaf of .#') By the same

argument as in 2.8 and 2.11, we have

(4.1.8) J M (resp.j, M) is unique and functorial (for M' satisfying (4.1.7)) and
we have the natural (unique) morphism inducing the identity on U:

Tt M — M (resp. M —> i M)

for # e MHW (X)Psuch that the vanishing cycle functors along any
local equation of D are well-defined for .# and (4.1.7) is satisfied for
-1

j M.

Here we apply 2.8 and 2.11 to (i,),M". Then j,.#' and j,.#' are uniquely
determined, once a local defining Ideal of D (generated by g) is fixed, but they
might depend on the Ideal. We eliminate this ambiguity by assuming the
condition for any g. By 2.12 we have

4.1.9) the condition (4.1.7) is stable by subquotients in MHW (X)?,
where the polarizability is used to show the splitting of Gr” of (2.12.1).

4.2. Let X be an algebraic variety. For the definition of the category of Mixed
Hodge Modules MHM(X), we consider all the smooth varieties Y, open sets U; of
U;_,, open immersions j;: U; — U; such that U;\U, are w.lLp.d. (cf. (4.1.6)), and
functions g; on U; for i >0, where Uy = X x Y. Then MHM(X) is the full
subcategory of MHW (X)? defined by the following condition on .# e MHW (X)?
for any Y, U, Uj, g;(i > 0) as above (inductively on i):
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4.2.1) the vanishing cycle functors along g; are well-defined for #;_,|y,
(cf.(4.1.4)) and (j)),, (j)), exist (cf. (4.1.7)) for both y, M; |y and
g1 Mi_yly, where My= MK QY[dy] and 4, is obtained by
operating (j), or (j;), after ¥, or ¢, , to M;_ |y, (i>0). (Here
M,eMHW (X x Y)? is also assumed.)

By definition we have

4.2.2) MHM(X) is stable by the operations in (4.2.1): X Q¥ [dy], j juw ¥y
¢,.1, where Y is smooth and j is as in (4.1.7).

because X Q¥[dy] commutes with these functors and ¢,, = id if g =0. By
(4.1.1), (4.1.5) and (4.1.8-9) we have

(4.2.3) MHM(X) is an abelian full subcategory of MHW (X)?, stable by the
dual D and subquotients in MHW (X), and Dj, =j,D for j as in
(4.1.7).

Let i: X > Y be a closed immersion of algebraic varieties. By the remark after
(4.1.4), we have a functor:

4.2.4) i,: MHM (X) — MHM,(Y),

where MHM(Y) is the full subcategory of MHM(Y) whose objects have support
in X. To show that (4.2.4) is an equivalence of categories, we give the second
definition of mixed Hodge Module as follows:

Let X be a projective variety. Then MHM(X) is the full subcategory of
MHW (X)? such that the condition (4.2.1) is satisfied for any smooth projective Y
and U;, U}, g; such that Uy = X x Y. For an open set U of X, MHM(U)y is
the full subcategory of MHW (U)? whose objects are the restrictions of those of
MHM(X). We shall see that MHM(U )y depends only on U and define
MHM(U) = MHM(U)y. Then for any algebraic variety X, MHM(X) is
defined using an affine open covering and we shall verify the independence of
the covering and MHM(X) = MHM(X). We first note

4.2.5) for a projective variety X, MHM(X) satisfies (4.2.2-3) by replacing
Ju Ji with jij= jj~" and ¢, ¢, , with the compositions of j,, j,
with y,j !, ¢,,j” !, where the complement of Im j is a w.lLp.d. on
X and Y is smooth projective.

Then this implies

4.2.6) for a projective variety X with an open covering X =UU,,
M e MHW (X) belongs to MHM(X) iff its restriction to U, belongs
to MHM(U,)y for any i.

In fact we may assume X\U; is a w.l.p.d. and U; are finite (taking a refinement of
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the covering), where we assume M|, e MHM(U)y because the converse is
trivial. Then the Cech complex associated to this covering (using j, or j,) gives
a resolution of .# (in MHW (X)) by objects of MHM(X), whose differential is
induced by (4.1.8). Therefore # e MHM(X) by its stability by Ker, Coker in
MHW (X).

To show the equivalence of categories (4.2.4) for the second definition, i.e.
for MHM(XY), etc. (where X, Y are projective), it is enough to show the stability
of MHM,(Y) by the operations in the definition of MHM(X). Because
MHW (X) = MHW,(Y) and the condition (4.1.4) and the definition of ¥, ¢, ,
are independent of the closed immersion (cf. the remark after (4.1.4)), it is enough
to check the stability by the composition of j, j, with Y ™!, ¢,,j~', where
j: U—> X is an open immersion such that X\U is a w.l.p.d. and g is a function
on U. Let Y=UV; be an open covering with functions h; on ¥; and g, on
V\h; *(0) such that UnV;= Xn(V;\h; *(0)), g;/UnV;=g|UnNnV, and Y\V; is a
w.lp.d. Then Y\(V;\h; *(0)) is also a w.l.p.d. and the assertion is verified locally
by (4.2.5) applied to V;\h;}0)— Y and g, Therefore (4.2.6) implies the
assertion, i.e. we get the equivalence of categories:

4.2.7) i,: MHM(X) <> MHM (YY

for i: X —» Y a closed immersion of projective varieties. Then this implies the
stability by pull-backs by the same argument as in 2.19:

(4.2.8)  for a morphism of projective varieties f: X — Y, #7f, = #If,, #If,
AHif* are well-defined as functors between MHM(X)Y and MHM(Y),
and they are compatible with the functors on the underlying perverse
sheaves.

In fact, the assertion for direct images follows from (4.1.5). For pull-backs, we
use a factorization f = pei such that p = pr,;: Y x Z — Y with Z smooth and i is
a closed immersion. Then for a closed immersion we take an open covering
Y\X = UU; such that Y\ U, is a w.l.p.d. (by the same argument as in the proof
of (4.2.7)). For the independence of factorization, we have to show (2.19.1) in
the case fis a closed immersion (and p as above). We extend local equations of
Imiin Imf x Z to Y x Z and get locally an étale morphism Y x Z —» Y x C%
over Y. Therefore the assertion is reduced to the case Z = C" and Imi =Im f
x {0}, and it follows from the same argument as in 2.19.

By (4.2.8), MHM(U)y is independent of X and MHM(U) is well-
defined. Moreover it is an abelian full subcategory of MHW (U), because we
can take X such that X\U is a locally principal divisor and use j, or j, for the
extension. Similarly it is stable by ¥, ¢, , for a function g on U, Q4[d,] for
a smooth quasi-projective Z, and subquotients in MHW (U), and (4.2.8) holds for
a morphism of quasi-projective varieties, where #/f, # #/f, (if f is not proper)
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and they are defined as in 2.18 (the independence of factorization follows from
the uniqueness of j, and j,).

For the well-definedness of MHM(X) for a general X and for the
compatibility with its definition for a quasi-projective variety, it is enough to
check (4.2.6) for X quasi-projective. We take a projective completion X such
that X\ X is a locally principal divisor, and take a refinement of the covering X
= U U, such that X\ U, is a w.lp.d. Then the Cech complex gives a resolution
of j,.# or j, M where j: X » X, and we get the assertion as in the proof of
(4.2.6). We now show

(4.2.9) MHM(X) = MHM(X).

The inclusion < is clear by definition. For the converse we have to show the
stability of MHM(X) by the operations used in (4.2.1). By definition the
stability by X Q¥[d,] and vanishing cycle functors follows from the above
argument in the quasi-projective case. For the stability by j, j, for an open
immersion j: U —» X as in (4.2.1) we may assume X is affine and X\U = g~ }(0),.4
by the uniqueness of j, j, (taking a covering of X). Then the assertion is clear.

As a corollary of (4.2.9) we get the equivalence of categories (4.2.4), because
it can be reduced to the case Y affine (and then projective). We can also define
HIf,, Hif,, HIf', #AIf* for any morphism of algebraic varieties. (For the
direct images it is enough to define #/f,.# in the case f proper and .4 pure,
cf.2.16. But this can be reduced to the projective case by Chow’s lemma,
combined with the stability by pull-backs and subquotients and Deligne’s
uniqueness of the decomposition.) But we give a better definition later, cf.4.3.

By (4.2.2) and (4.2.4) we can define £, as in 2.22 and get the results in (2.¢)
similarly. Moreover, for a closed immersion of algebraic varieties i: X — Y we
have an equivalence of categories

(4.2.10) i,: DP'MHM(X) = DY MHM(Y).

In fact it is enough to check the effaceability as in [3, (3.1.16)]. By the next
assertion, we can reduce to the case Y affine using an affine covering as in
[1]. Then we may assume X =g~ %(0),.4 by induction. We have also

(4.2.11) Letj: U » X be an affine open immersion. Then we have the exact
functors

Jis Jx: MHM(U) — MHM(X)

compatible with the functors on the underlying perverse sheaves and
representing the adjoint functors of j~!, ie.we have the natural

functorial morphisms j,j ! —id and id —j,j "'

By uniqueness we may assume X affine. Then the assertion is proved if U
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= X\g 1(0),.q We prove the assertion using the associated Cech complex to a
covering of U by such open subsets (as in the proof of (4.2.6) for X quasi-
projective). Here the condition j affine is used only for the acyclicity of j,,
Jj« (e.they preserve the perversity).

By the same argument as in 3.8-9, we have

4.2.12) MHM(pt) = {polarizable Q-mixed Hodge structures}.

Let MHM(X),, be the full subcategory of MHM(X) whose objects .# satisfy the
condition:

(4.2.13) the mixed Hodge Modules are stable by X ..

Then MHM(X),, is an abelian full subcategory and stable by the natural
functors as above by their commutativity with X .#. In particular, we have

(4.2.14) MHM(pt) = MHM(pt).,,

because the Hodge Modules (or structures) are stable by the external product
with the Hodge structures. By the same argument as in (3.c), we can show in
general :

4.2.15) MHM(X) = MHM(X),,.

4.3. Theorem. Let f: X — Y be a morphism of algebraic varieties. Then we
have the functors

fi» f: DPMHM(X) — D*MHM(Y)
compatible with the functors on the underlying Q-complexes.

Proof. We repeat the argument in [1, §3] using (4.2-8), (4.2.11), i.e. if X, Y are
affine, they are the right or left derived functors of #°f,, #°f,, and in general
we reduce to this case using affine open coverings of X, Y compatible with f,
because we can take a functorial resolution of a finite number of given objects in
MHM(X) simultaneously such that each component is acyclic for the direct
images (f}), (or (f}),), where f; are the restrictions of f to the intersections of the
affine open sets of the coverings, cf.[1,(3.3)]. We can check the independence of
covering by taking the covering whose open sets are the open sets of two
coverings.

As a corollary of the proof, we have a canonical isomorphism in D)MHM(Y):
(4.3.1) JiGGrdl) =i HOf 1 M (xesp. fo (oo M) = jo KOS M)

for affine open subsets j: U— X and j': U'— Y with f": U > U’ such that fj
=jf" and for #eMHM(U) whose wunderlying perverse sheaf is
PHOf, (resp. PH° f)-acyclic.



320 MORIHIKO SAITO

In fact, if X =U;>,U; and Y= U,., U; are affine open coverings such that
fU)< U, so are X =U;5oU;, Y=1U;50U}, where U = U". Then ji#°f\.M
is a subcomplex of the Cech complex, associated to the second coverings, whose
components are the direct images (j}),#°(f;).j; Lj,#, where f;: U, — U} and
ji: Uy — Y. Therefore, taking a resolution of j.# as above, we get the
morphism ji#°f,.M — f,(j,.#), which is an isomorphism, because it is true for
the underlying Q-complexes.

By (4.3.1) we have the natural isomorphisms:

43.2) @M =9/, @ = 9uSs

for f: X—>Y, g: Y> Z, because we can take a resolution such that each
component is H#°(f;)-acyclic and #°(g,f;)-acyclic at the same time by the
construction in [1, (3.3)].

We can also show the canonical isomorphism

(4.33) Jr=T1s
if f proper. In fact it is enough to show the isomorphism
J1Gi M) =1 (j:#) in MHM(Y)

compatible with the canonical isomorphism on the underlying perverse sheaves
for j: U—»X and 4 as in (4.3.1), because every objects of D°PMHM(X) is
isomorphic to a complex (in D* MHM(X)) whose components are of the above
type (by the proof of 4.3). Letj: U — X be an open immersion and n: X - X a
proper morphism such that X is quasi-projective and nj = j. If the assertion is
verified for = and fr, we get

S M =f:”117!=/% = (f”)zfr/”

=(f7'E)*]~..//[ =f*7t*]7!¢/% =f*7l'!]'~!./% =f*j!'/”

by (4.3.2). Therefore the assertion is reduced to the case X, Y projective and
follows from the next assertion:

For f: X —» Ya morphism of projective varieties and .# e MHM(X), we have
the canonical isomorphism in MHM(Y):

(4.3.4) HI(f, M) = (A f,) M = H(f, M)

compatible with the canonical isomorphisms on the underlying perverse
sheaves. (Here #7/f, is defined in (4.2.8).)

By the definition of f,, f,, and by (4.3.1), it is enough to show that {#7f,} is
extended to a cohomological functor from D) MHM(X) to MHM(Y). But this is
verified by the same argument as in 2.14-16, because the Q-part of an object of
D"MHM(X) defines a quasi-filtered object of D%(Qy)(cf.[19, (5.2.17)]) by the
functor real defined in [3,3.1.10] so that the weight spectral sequence is well-
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defined as in the proof of 2.15 (here the weight filtration on X is shifted by the
degree of complex so that HIGrY is of weight i + j).
Similarly we can show

(4.3.5) Df, = f,D.

In fact, it is enough to show for j,.# as above. Because we have

Df j, M =Dj(H°f) M = j ,DHf) M
fiDjid =f,j DM = j (H°f DM

(where j', f* are as in (4.3.1)), it is enough to show
D(#f) M = (#7f,)DM

in the case X, Y affine, or in the case X, Y smooth projective by
definition. Then this follows from the compatibility of the algebraic and
topological dualities, because the weight spectral sequence is compatible with the
duality. Here the algebraic duality is easily verified in the case f = pr,: X = P"
x Y- Y, because the trace morphism is easily defined (and compatible with the
topological one).

44. Letf: X - Y be a morphism of algebraic varieties. We define f* (resp. f*)
by the left (resp. right) adjoint functor of f,(resp. f;). Then Df'=/*D by
(4.3.5). Let g: Y- Z be a morphism of algebraic varieties. Then (gf)* exists
and (gf)* ~ f*g* if f* and g* exist by (4.3.2) (same for (gf)). We show the
existence of f*, f* and their compatibility with the functors on the underlying Q-
complexes using the factorization f: X > X x Y- Y.

4.4.1) Let i: X > Y be a closed immersion, and j: U — Y the immersion of
the complement. Then j'=j* =j~!, and i* (resp. i') exists and is
compatible with Q-structure. We have the functorial triangles for
M € DPMHM(Y):

o j TN M — i S

+1

(resp. — i i' M — M — j j ' M —)

compatible with those for the underlying Q-complexes.

This follows from the same argument as in 2.20. We take an affine open
covering of U and use the associated Cech complex (with (4.2. 10-11)) to define
the triangles and i*, i'. Then the first assertion follows from the existence of
morphisms jj ! —>id —»j,j~! (in the triangles), and it implies
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Hom(j,j ' M, i, V)= Hom(i, N, j,j ' M)=0.
Thus we get the adjunctions by the triangles.

4.4.2) For a projection p: X x Y— Y, p* (resp. p') exists and is represented
by # X for any .4 € D> MHM(X),, (cf. (4.2.13)) with a morphism in
D*MHM(pt) : QY — (ay), M (resp. (ay), # — QF) such that a}Q
(resp. ayQ) underlies .# and the natural morphism Q — (ay),a;Q
(resp. (ay), axQ — Q) underlies the above morphism. In particular, .4
~ a3 Q¥ (resp. ay QY), and if X smooth, .# ~ Q¥ (resp. Q¥ (dy) [2dx]).

Here ay: X — pt = SpecC, and Q¥%[d,] = (%, F), Qx[dy]; W) with Gr/
=Grf,; =0 for i #dy (if X smooth).
We prove the assertion for p*, because the argument is dual for p'. We
have to construct the functorial morphisms
a:id —p,p*, p:p*p, —id
such that the compositions
Bep*a: p* N —> p*p p* N — p* N
Pifoc: pu N — D PN — PN
are the identities. We define o by the external product of Q% — (ay),-#. For p
we use the diagram:

X x Ve X xXxYe—e—XxY
() ml 0 J’qz

Y4P—XXY
2

where i is the diagonal embedding such that g;oi =id. We define f by the
composition :

PIP) N = ME(p1)y N = ()M K N)
(= (@2)x gt N") = (Q)s iy i* (M B N7) = N7,

where the last isomorphism is induced by (4.3.2) and the following assertion
(applied to i and q,):

Leti: Y— X x Ybe a section of the projection p: X x Y- Y, and # as in
(4.4.2). Then the composition:

N =5 p (M & N) —> i i*(M R N) = i*(M R N)

is an isomorphism. (In fact, it is true for the underlying Q-complexes.)
Then p,Boa =id is clear, and f° p*a = id follows from the symmetry of the
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diagram, ie. the isomorphism: i*(#/ X 4 X N)~ # R A used in the
definition of B is independent of the choice of the projection onto X x Y.

Here note that the above argument and the arguments in 4.3 and (4.4.1)
hold with MHM(X) replaced by MHM(X),, (cf.(4.2.13), here we can also use
(4.2.15)). We show the existence of .# satisfying the conditions in (4.4.2). If X
is smooth, /4 = Q¥[dy] = #**a%QL belongs to MHM(X),, by (4.2.14). By
(4.4.1) for MHM(X),,, the assertion is verified locally, and it is enough to show
the following:

If X is covered by two open sets U; such that .#; exists on U; (i =1, 2), A/
exists on X.

Put U;=U;nU, and let j;: U;— X be the natural inclusions. By the
adjunction for U;—U; and U;->pt, My~a}, Q% exists on U, (in
D*MHM(U,),,) and we have the isomorphism #;~ .#,|,, such that QF
— (ay,)x M5 is given by the composition:

f;lt — (ay ) M — (Ay,)s M 5

for i = 1, 2, because the adjunction isomorphism for ay is give by . We define
A by the mapping cone:

C( ®i=1,2(ji)*°/%i - (13)*//13)[ - 1]

so that we have the exact sequence

0 “"Ho(ax)*ﬂ — @ Ho(aul)* M — HO(aU3)*'%3‘
Then the assertion is clear, because H'(ay),# =0 for i <O0.

Remark. The above construction of f is due to Kashiwara, i.e. the use of the
diagram (*) is suggested by him.
As a corollary of the above argument, we have

(4.4.3) For a cartesian diagram

XL-W

fl lf‘

Y 7

we have the canonical isomorphisms:
9'f« = filg), g*fi=filg)*

compatible with the natural isomorphism on the underlying Q-
complexes.

In fact, we may assume g is a closed immersion or a projection. The projection
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case is clear by definition. In the closed immersion case, we take affine open
coverings X = U, U, Y= U, U; compatible with f and satisfying U’ = U,; U},
U=U;yU;for JeI, where j: U =X\W-X,j:U=Y\Z—->Y. We take a
resolution of MeC’MHM(X) compatible with these coverings to define
f«#. Then its quotient complex whose components are the direct images from
Nix Ui with K < J represents f,j,.(j)"'.#, and the mapping cone of the
quotient morphism represents g,f(g) # =f,g.(g')#. We verify that this
quotient morphism also represents the morphism, f,.# —j,j” ' f,#, applying
id - j,j ™! to this morphism, where j, j ™! is also defined in the level of complex
using a covering. Then we get the assertion.

4.5. We say that .# e DPMHM(X) is of weight < n (resp. > n), if the following
condition is satisfied:

4.5.1) GrHiu#l =0 for i >n +j (resp. i < n + j).
By 2.26 and (4.3.4), we can verify:
4.5.2) the condition (4.5.1) is stable by the functors f, f* (resp. f,, /).

We say that .4 eD?MHM(X) is pure of weight n, if Gt H'.ll =0 for i #j
+ n. By (4.5.2) this condition is stable by f, if fis proper. (Actually the last
assertion is first proved in the proof of (4.5.2) for direct images, where we use
Chow’s lemma and the decomposition (4.5.4) below.) We can also verify

(4.5.3) Exti(#, /)= 0 for M, & pure of weight m, n such that m <n + j,

using Yoneda’s extension, because MH(X, n)? are semi-simple and MHM(X) is
stable by sub-quotients in MHW (X) (or we can use MH(X, n)? « MHM(X),
which follows from the algebraic version of 3.27). As a corollary, we get a non
canonical isomorphism in D*MHM(X):

(4.5.4) M= @HM -]

if A is pure of weight n. (These facts are analogue of [3].)
For an algebraic variety X, we define

(4.5.5) Q%= a3 Q.

where ay: X — pt (= Scec C) and QF:=(C, F, Q; W)e MHM(pt) with Grf
=Grf =0 for i #0, cf. 3.8. Then

(4.5.6) H'Q¥ =0 for i > dy(:= dim X),

because the functor rat is faithful and 7#'(Qy[dx])=0 for i>0 by
definition. By (4.5.2), Q¥ is of weight <0; in particular we get

4.5.7) Grl H* QY =0 for i > dy.
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By (4.5.6) we have also
(4.5.8) Hom(Q{[dy], #) = Hom(H°(Q¥[dx]), #)=0

for #eMHM(X) such that dim supp.# < dy, because these groups are
isomorphic to Hom(Q¥[dy], #) for Z = supp .# by adjunction. Let U be the
maximal smooth open subset of X of pure dimension dy, and X' the closure of U
in X. Then (4.5.8) implies

(4.5.9) Gr¥ Hx QY = 1C,. Q¥

because MH(X, dy)’( =« MHM(X)) is semi-simple. Here ICy. Q¥ is a unique
object of MHM(X) such that its restriction to U is Q¥[dy] and it has no
subobject and no quotient object in MHM(X), whose support is contained in
X\U. Then ICy. Qf is simple and pure of weight dy, because so is QB [dy] by
definition. For the uniqueness of ICy QY, we have the natural isomorphism

(cf. [3]):

(4.5.10) ICx. Q" = Im(H}j, (Q7[dx]) — H°j,(Qi [dx]))

where j: U > X. In fact we have the adjunction morphism
HYjj~* M — M (resp. M — H®j,j ' M)

for M =1Cx Q" by (4.4.1), because H'j,j~ .M =0 (i>0) (resp. H'j, j * M
=0(@<0) for #eMHM(X) by definition. Then the surjectivity
(resp. injectivity) of the adjunction morphism is clear, and we get (4.5.10).

As a corollary of (4.5.6-7) and (4.5.9), we get the natural (quotient) morphism
in DPMHM(X):

(4.5.11) QY — ICx Q[ —dy].

Taking the composition with its dual, we get the natural morphism in
D*MHM(X):

(4.5.12) QX — DQX)(—dx) [ — 2dx],
because we have the self-duality:
(4.5.13) D(ICy. Qf) = ICy. Q¥ (dy).

(In fact (4.5.13) is trivial on U by definition.) By (4.5.8) and its dual, we get

(4.5.14) Hom(QY, (DQ)(— dx)[ — 2dx]) = End(ICx. Q") = @

where r is the number of the irreducible components of U. In particular the
morphism (4.5.12) is uniquely determined by its restriction to an open dense
subset of U.

Let Z be a closed subvariety of dimension d of X. We apply (4.5.12) to
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Z. Taking its composition with the adjunction morphism Q% — Q¥ and its
dual, we get a morphism in D°PMHM(X):

(4.5.15) Q4 - DQH(—d)[— 2d].
By definition its restriction to X\Z is zero, and we get a factorization:
4516 Qf —Qf —DQH(—d)[—2d] - DY) (—d)[— 2],

which is unique if Z is irreducible.
Assume now Z is irreducible, and let n: Z — Z be a resolution of singularity .
Then the morphism (4.5.15) is the composition of the natural morphism:

(induced by the adjunction) and its dual, because the middle morphism of (4,5.16)
is uniquely determined by its restriction to Z., By adjunction for ay, the
morphism (4.5.15) corresponds to an element clf of

(4.5.17) Hom(Qyi, (ax),(D Q%) (—d)[— 24]),

which is equal to the composition:
> H(az), QF > H((a2), 1C; Q%[ — d]) = H((az)(DQE)(— d)[ — 2d])

— (a2 D Q) (— A)[ — 2d]) — (ax),(DQK) (— d) [ — 2d])

and called the (Hodge) cycle class of Z. If X is smooth, we have the self duality
DQY = Q¥(dy)[2d4] by (4.5.13), and (4.5.17) is isomorphic to the Q-Deligne
cohomology:

Hom(Q;I,, (ax)* Q;(I(p) [21’]):

if X is smooth and proper (cf. [2]), where p=codim Z. Note that
H'(ay),.D Q¥ gives the mixed Hodge structure on the Borel-Moore homology of
X in general. We can show that the above construction induces the cycle map:

(4.5.18) CHy(X) ® Q — Hom(Qy, (ax)y ax Qpi (— d) [ — 2d]),

where D QY = a5 Q% by 44. Let Z be a cycle of dimensiond + 1 on Y=X
x P!, and Z, its intersection with X x {t} for teP!. Then Z determines an
element of

Hom(QY, ='Qf(—d)[ — 2d])

by the above construction (taking the sum of the cycle class of each irreducible
component, multiplied by the coefficient), where S =P* and n: Y- S is the
second projection. For each teP!, we can take the vanishing cycle functor
along X x {t}, and get an element cl; of
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Hom(Q¥, ax Qi (—d)[— 2d]),

because  is an exact functor, and 7' is defined by X ay QL which commutes
with the vanishing cycle functor (same for Q¥ = n* Q¥). By definition of Z, and
cl; we can check that cl; coincides with the cycle class of Z, using the
factorization by Qf — Qi%, the natural morphism of functors i* — y [1](cf. 2.24)
and their duals, and observing at the generic point of | Z,|, where | Z| and | Z,| are
the support of Z and Z, Then we see that the adjunction isomorphisms are
compatible with the vanishing cycle functor, because it is induced by the external
product with Q% — (ay), Q¥, cf. the proof of (4.4.2). Therefore it is enough to
check the following:

(4.5.19)  for # e DPMHM(pt) and ¢ e Hom(Q¥, Q¥ X ), y,¢é e Hom(QE, )

>
the vanishing cycle of ¢ along teS = P! is independent of t.

By [2] we have Ext!(#, #") =0 (i > 2) for .4, /e MHM(pt), and it is enough
to show the assertion for # and .#[1] with .# e MHM(pt). Then the assertion
for A is clear, and that for .#[1] follows from 2.27 (applying it to the variation
of mixed Hodge structure corresponding to the extension class), because S is
simply connected. This completes the proof of (4.5.19) and the well-definedness
of (4.5.18). Next we show:

(4.5.20) the morphism (4.5.18) induces the Abel-Jacobi morphism of Griffiths,
tensored by Q, if X is smooth and proper.

By Deligne, Griffiths’ Abel-Jacobi map is expressed as follows: Let Z be a cycle
on X, homologous to zero. Then we have an exact sequence in MHM(pt):

0 — H> (X, Q) — H>* (U, Q) — HH(X, Q) —0

where |Z| is the support of Z, U= X\|Z|, p=codim Z and HE(X),
= Ker(H(X) » H**(X)). Here H}(X) and H{}(X), are pure of type (p, p),
and the image of Griffiths’ Abel-Jacobi map of Z in the intermediate Jacobian
tensored by Q corresponds to the extension class defined by the pull-back of the
above exact sequence by the morphism

Q(—p) — HE(X, Q) (= HE(X, Q) = @ Q(—p))

which is defined by (the coefficients of) Z, ie. we replace H2*~1(U, Q) in the
exact sequence by the kernelof the natural morphism onto the cokernel of
Q(— p) — H{}(X, Q),, using the diagram of the nine lemma. Then we have to
show that the above construction gives the same extension class. But it is clear
by a morphism of triangles:
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- Q-p — HPX QU — [y 5

l l l

> (@) iyl QY (2] — T, — 1 (ax), (QEL29]) — 7o 1(ap), (QH[29])

Here the composition Q(— p) - H{% (X, Q) — (ax), Q¥[2p] coincides with clf by
definition, where

H (X, Q) = H (a2, aiz Q" (— dz) [ — 2d,]
= HO(ay), i1 (QX (0) [2p])

using RT ; =i,i' with i:|Z|->X, and a5Q" = Q¥(dy)[2dx]. Then the

composition is factorized by 7. o(ay),(Q¥[2p]) by assumption, and we apply the
functor 7, _;.

Remark. 1In the above argument we used the compatibility between Deligne’s
mixed Hodge structure [9] and that of 4.3-4. We can easily verify it for the
cohomology H'(Z) and the local cohomology H3(X) (ie. the Borel-Moore
homology of Z) in the case Z is a closed subvariety of a smooth variety X. In
fact, using an embedded resolution of Z and the functoriality of the mixed
Hodge structures (with the base change (4.4.3)), we can reduce to the case where
Z is a normal crossing divisor. Then the assertion is clear.

4.6. Remarks. 1. For .4 €D MHM(X) we have:

4.6.1) M is of weight < n (resp. > n), iff H*i* ./ (resp. H*i'. /) is of weight
<n+k (resp. = n + k) for any k and x.

Here i,: {x} — X, and the condition for &, is equivalent to: H*i*D.# is of weight
< —n+k, by duality. In fact, the assertion follows by induction on the
dimension of the support, using the distinguished triangles in (4.4.1) and (4.5.2),
because it is clear generically, i.e. for a variation of mixed Hodge structure.
2. We have a t-structure (‘D=° °D=% on D*MHM(X) such that
*D=Oresp. °D=9) is defined by the condition:

(4.6.2) for any closed immersion ig: S — X, there is a non-emptity open
subset U of S such that H*i¥ #|,=0 for k > dim S (resp. H*is.#|,=0
for k < dimS).

Here S may be assumed irreducible by definition. For the proof we use [3,
1.4.10] and a stratification associated to each .# e DPMHM(X). We can also
check that (4.6.2) is equivalent to:

(4.6.3) H*i* # =0 for k>0 (resp. k <0) for any xe X, ie. #*rat(#)=0
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for k> 0 (resp. k < Q).

Here we use again the distinguished triangles in (4.4.1) and the stratification as
above. Then this t-structure corresponds to the classical (i.e. not perverse) t-
structure on D2(Qy).

4. Remark. The condition of Steenbrink-Zucker [22, (3.13)] for good
variation of mixed Hodge structure is reasonable only in the case where the local
monodromies around the points at infinity are unipotent. In fact, the definition
of W is not clear in the quasi-unipotent case, and if we interpret the condition
(3.13) ii) so that the filtrations F and W extended to those on Deligne's canonical
extension (i.e. the eigenvalues of the residue of the connection are contained in
[0, 1)) and Grf Gr) are free on 4, this condition is not stable by the base
changes of 4, and we have an example that the conditions in (3.13) are satisfied,
but the decomposition (4.11) is not compatible with the Hodge filtration F:

Example. Let S be a Riemann surface, and ¢t a local coordinate around
0eS. Put S*=S\{0}. Let L, and L, be local systems on S* underlying
variations of Hodge structures of weight 0 and 1, and rank 1 and 2
respectively. Let #; be Delinge’s canonical extension of L; as above, so that the
Hodge filtration F, is extended to a holomorphic subbundle of &;(i =0,
1). Let T; be the local monodromy of L; around 0. We assume that T, = id,
T, is semi-simple, 1 is not an eigenvalue of Ty, and Gr} %, =0 for p #0,
1. (For example, L, is associated to a family of elliptic curves constructed by
Kodaira)) If there is an Og-linear morphism ¢: F1.¥, - %, inducing an
isomorphism near 0 (e.g. S is an open disc), we define a Hodge filtration F and a
weight filtration Won ¥:=%,P ¥, by

F2=0, F! =Im((¢ +id): F1 ¢, — &), FO = &,
W, =0, Wy=Z%, W, =2.

Then the conditions (3.13) in [22] are satisfied (if we interpret (3.13)ii) as
above). But they are not satisfied for the pull-back of #|s. to a finite covering
of §* so that the local monodromy becomes unipotent. Moreover we can check
that the decomposition (4.11) in [loc. cit] is not compatible with the Hodge
filtration F in this case. Note that in [loc. cit] they have not proved the
compatibility of the decomposition (4.11) with the Hodgle filtration F, which
seems to be essential for the proof of the theorem (4.1). In fact we have to
prove the compatibility of the three filtration F, W, V on Deligne’s extension
(where Vis the m-adic filtration in the unipotent monodromy case), because they
use implicitly the isomorphism F?Gry Gr9 =F?GrY Gr} which is not true if
they are not compatible, cf. [9]. Here Wis the modified filtration which gives
the weight filtration on % ® Q%i(log D), cf.[loc.cit](see also 2.8-9), and Gr)
corresponds to taking the residue at 0 in the unipotent monodromy case.
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Appendix
By

Masaki KASHIWARA

In this appendix we give a proof of Proposition 3.19 which is used
essentially in the proof of Theorem 3.20.

A.l. In this appendix, H,, §; will be denoted by H, § for simplicity, and N is
replaced by s. We may assume m; = 1(iel) by replacing N; with m7 !N, We
choose i =./— 1 so that the Tate twists (n) = ) (2ni)"Z are trivialized. In
particular, N,, s, etc. are defined over R. By definition we have

(A.1.1) H = H[s]/Coker ([],.,(s = N)) =~ @o<j<; HR s/
(A12)  S(s/u, s*v) = S(u, (— 1)Res,=o([],,(s — N)™Y)s'"*v) for u, veH,

where H is identified with H @ 1(< H[s]) and Res,., is defined by
Res,_ (). iez s'u) =u_, for u;e H. Here H has a mixed Hodge structure such
that the last isomorphism of (A.1.1) is compatible with it and s: H —» H(— 1) is a
morphism of mixed Hodge structures. Then we have

(A13)  Su, s'v)=Sw, v) (j=1—1)and 0(0<j<Il—1) for u, veH.

Let Noe)?_, RN, and put N;= N; + N,. We define a mixed Hodge structure
/' = H[5')/Coker([] (5 — N9) ~ @osj<i H ® 5"

and §' as above with s, N; replaced by s, N;, Then

A.2. Lemma. We have a natural isomorphism of mixed Hodge structures ¢: H'
— H such that

(A2.1) (Y jen 57 4) = Y (5 + No)u;
(A.2.2) 5@, 8) = S(¢(@), () for @, deH'".

Proof. We define ¢ by (A.2.1). Then the well-definedness is clear, and (A.2.2)
follows from

Res;_o #(W) = Resy,_,w for weH[s, s '],

where ¢ is naturally extended to H[s, s’ ']— H[s, s~ !] using (s + No)~!
=5 I(ijo( - NO)JS—J)-
A3.  Proof of Proposition 3.19. We apply Lemma A.2 to any Ny = Y a;N; with
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a; > 0. Then by [6], the assertion is reduced to the following assertions
(A31) s G, _,,  HSG",,_,_,H for any k>0

(A32)  S(id ®s" is a polarization on the primitive part PGr”,,_,,, H:=
Ker s*1 for any k >0,

under the assumption

(A33) N:Gr%  H >Gr?_ H(k>0) and S(id ® N*) is a polarization on
PGry, H(k > 0) for any N =),

iel

a;N; with g; > 0.

Ad. Proof of (A3.1). We proceed by induction on [ and dim H. The
assertion is clear if dim H =0, and we may assume dim H > 0. If [ =1, the
natural isomorphism H =5 H is compatible with S, S, and the assertion is
clear. Assume [>1. Take iel and put I'=I\{i}. We define H”
= H[s]/Coker (] ],.,(s — N;) and S” as above with I replaced by I’ Then we
have a natural morphism of mixed Hodge structures ¢ : H — H” induced by the
identity on H[s]. On the other hand, by [8, 1.16][15,2.1.5], we have uniquely
(H; Ny,...,N,; S) a nilpotent orbit of weight w + 1 with surjective (resp.
injective) morphism of mixed Hodge structures can: H — H'(resp. Var: H' - H
(—1)) compatible with N; such that Varecan = N, caneVar=N; and
S'(can ® id) = S(id ® Var). We define A’, §' as above with H replaced by
H'. Then the assertion holds for H’, §’ by inductive hypothesis, and can, Var
are naturally extended to can: A —» H', Var: A - H (—1) by can ® id, etc. so
that Varocan = N, canVar= N, and §'(can ® id) = S(id ® Var).

Now take @i =) ,_._,s'u;eKer s Grlo i 1o H with u;€Grll | 14 isy;
H, and put & =s""'% Then sf =0 implies

7= s‘l(I—LGI — [Liex(—= N for veGr),,.,—,H such that

([TjerNjo =

By inductive hypothesis we get
0 < §'(can(@), Ccan(?)) = 8@, CN,%) = S(ug, CN;D) = S(ug, CN,v)
0 < §"(W(@), CY (@)= S"(uo, CY(#) = — S(up, CN;v)

because 7= njsl,(s — N — s_l(HjEI,(S —N) — de,( — N))Nv. Therefore
we get czn(ﬁ 0, Y(@) =0, which imply u;eKer Gr” N, Gr"H and i
= ﬂle] (s — Nju for ueGr?,,_, . H Thus we get u=u,_,=0byl—1+k
>0, and hence i=0. Then (A3.1) follows from dimGr?,, _, . H
=dimGr¥,_,_,_ A
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A5, Proof of (A.3.2). By (A.3.1) and the continuity of eigenvalues, it is enough
to prove (A.3.2) under the assumption N; = N; for i, jel. Put N=N;, N' =5
— N. Let (R[N'J/(N"); N'; S’) denote a nilpotent orbit of weight 1 — [ such
that S'(N', Ny=(—1)'(if i +j=1—1) and O (otherwise). Then we have

(A, 5 =H, S)@RINT/(N", S

and the assertion follows from the commutativity of tensor with limiting mixed
Hodge structures.
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