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Introduction

In [19] we defined the polarizable Hodge Modules which correspond
(philosophically) to the perverse pure complexes in the /-adic theory
[3, 10]. For the definition, we used the stability by iterations of the vanishing
cycle functors along locally defined holomorphic (or algebraic) functions. Then
a polarizable Hodge Module with strict support (i.e. its underlying perverse sheaf
is an intersection complex) is generically a polarizable variation of Hodge
structure [19,5.1.10 and 5.2.12]. In this note we show the converse: any
polarizable variation of Hodge structure defined on a Zariski open subset can be
uniquely (and functorially) extended to a polarizable Hodge Module with strict
support. Combined with a result of Kashiwara-Kawai [16] and [19, 5.3.1], we
get a natural Hodge structure on IH*(X, L) the intersection cohomology with
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coefficient L, if X is compact and bimeromorphic to a compact Kahler manifold
X, i.e. of class # in the sense of Fujiki (here X can be taken so that we have a
projective morphism of X onto X) and if Lis a local system on a Zariski open
smooth subset of X and underlies a polarizable variation of Hodge
structure. We get also the decomposition theorem of Beilinson-Bernstein-
Deligne-Gabber for the direct image f^.lCxL9 if L is as above and / is projective
(or proper, in the algebraic case). Here X is assumed irreducible, and IC^Lis
the intersection complex, i.e. j]dt.L[dim X] in the terminology of [3].

In this note we define also the Mixed Hodge Modules which correspond to
the perverse mixed complexes [3, 10]. Roughly speaking, a mixed Hodge
Module Ji is obtained by extension of polarizable Hodge Modules, i.e. Jt is
endowed with an increasing filtration W, called the weight filtration of Jt, such
that GiY^ are polarizable Hodge Modules of weight i. Here the extension can
not be arbitrary; we control this using again the vanishing cycle functors. The
imposed condition is a natural generalization of that of Steenbrink-Zucker
[22, (3.13)], i.e. the existence of the relative monodromy filtration, cf. (2.3.1),
and the compatibility condition of the Hodge filtration F, the weight filtration W
and the filtration V of Malgrange-Kashiwara (indexed by Q), cf. (2.2.1) and
(2.2.8). We also add the condition for the existence and the uniqueness of the
open direct images j^. and j, for open immersions j whose complements are
locally principal divisors, and assume that the above conditions are satisfied
inductively for iterations of the vanishing cycle functors and the open direct
images as above, after taking the smooth pull-backs, cf. (4.2.1). Here we
consider the algebraic case for simplicity (in the analytic case we replace j^ and j,
by j*j~l and jj'1, cf. (2.17.3).) Let X be a separated and reduced complex
algebraic variety, and MHM(X) the category of mixed Hodge Modules. By
definition we have a natural functor rat: MHM(^) -> Perv(Qx), where rat means
the underlying rational structure and Perv(Qx) is the category of Q-perverse
sheaves on Xan with algebraic stratifications [3]. By [19,5.1.14] and by
definition, MHM(AT) is an abelian category, and rat is faithful and exact. The
main result of this note is

0.1. Theorem, We have the natural functors f ^ 9 f l 9 f * , f l
9 \//g, 0g>1, D, S, (x) and

J4f#<m between DbMHM(X) the derived categories of mixed Hodge Modules, such
that these functors are compatible with the corresponding functors on the
underlying Q-complexes via:

rat: DbMHM(X) > D6Perv(Q*) -^Db
c(Qx)

(cf. [3, 3.1.10] for the definition of the functor real), where f is a morphism of
algebraic varieties, g^F(X, 0X) and (j)g^ = Ker(Ts - 1) with Ts the semi-simple
part of the monodromy T of (j)g.
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If X is smooth, MHM(X) is a full subcategory of M¥rhW(@x, Q)
= {(M, F, K\ W)} the category of filtered regular holonomic ^-Modules with
Q-structure given by an isomorphism a: DR(M) ^ C (x) K compatible with finite
increasing filtrations Won M and KePerv(Qx). Here the morphisms are the
pairs of morphisms of filtered ^-Modules and Q-perverse sheaves compatible
with a and W. By definition rat MO = K if J( = (M, F9 K; W). We say that a
mixed Hodge Module is smooth (on X) if rat(^)[— dim X~\ is a local system
on X and A' is smooth. In this case M is a variation of mixed Hodge structure
satisfying some good condition at infinity, i.e. admissible in the sense of
Steenbrink-Zucker (one dimensional case) [22] and Kashiwara [13]. For the
converse we have (cf. 3.27):

0,2. Theorem. An admissible variation of mixed Hodge structure is a smooth
mixed Hodge Module.

As a corollary, a polarizable variation of Hodge structure (and a polarizable
Hodge Module) is a mixed Hodge Module. By definition the condition for
mixed Hodge Modules is Zariski local. We can construct locally the mixed
Hodge Modules by induction on dimsupp^ by the following:

0.3. Proposition. Let X be an algebraic variety, and Y a principal divisor defined
by g, i.e. Y= g~l(Q)TcA. Put U = X\Yand let j: U -> X be the natural inclusion.
Then MHM(^T) is equivalent to MHM([/, Y)ex the category whose objects are
( J ( ' 9 J ( " ' 9 u 9 v ) where JffeMRM(U), .^"eMHM(Y), ueHom(\l/gtlj^JC9 Jt"}
and veHom(J("9 il/g,J **#'(— 1)) such that vu = N(:= log Tu (x) (2ni)~l).

Note that the stability of mixed Hodge Modules by IE follows from 0.2 and 0.3,
because the admissibility condition is a generic one by [13] and stable by
(E. To define the functors /^ and /, in 0.1, it is enough to define the
cohomological ones 3tfjf^ and JfJ/, for quasi-projective morphisms, because we
can derive these functors in the affine case and the general case is reduced to
this case by [1], cf. 4.3. If Jt is pure and / is projective, the cohomological
direct images are defined in [19,5.3.1] and it is not difficult to check the
stability of the condition for mixed Hodge Modules, cf. 2.14. Then for/quasi-
projective, we define JfVf* = pf'/Jj*, etc. for a factorization f = f°j such that
f is projective and j is an open immersion whose complement is a locally
principal divisor. Then the independence of the factorization follows from the
uniqueness of7^ and),. We define/* and/1 by the adjoint functors of/^ and
/;. Then their existence is reduced to the case where / is a closed immersion
i or a projection pr: X x 7-> Y. For the first case we use an affine covering
of the complement U of X and calculate i* and r using the Cech complex, cf.
(4.4.1). Here we use the equivalence of categories

L : D b M H M ( X ) -^ Db
xMHM(Y)
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where the right hand side is the full subcategory of DbMHM(Y) whose objects
have cohomological supports in X, d. (4.2.10). In the projection case we show
that pr* (resp. prl) is represented by the external product Ji IE for
J?eDbMHM(X) such that rat(^) ̂  Qx (resp. DQX). For the existence of J(
we use a kind of Mayer- Vietoris argument, cf. (4.4.2). The stability of
MHM(X) by the vanishing cycle functors is almost clear by definition, and that
by the dual functor D follows from the compatibility of the algebraic and
topological dualities with respect to the vanishing cycle functors. For (x) and

we use the well-known formula:

where A : X -> X x X is the diagonal immersion.
For the proof of 0.2, we have to prove that an admissible variation of mixed

Hodge structure can be extended to a Mixed Hodge Module on X a completion
of X, where we may assume that X is smooth and X\X is a normal crossing
divisor. We first treat the pure case, where a polarizable variation of Hodge
structure is naturally extended to a filtered ^^-Module with Q-structure by the
intermediate direct image j^ = Im(j, -> j^), cf. 3.10. We can calculate the
vanishing cycle functors along g if the union of X\X and g'1^) is a normal
crossing divisor. Here the key point is the compatibility of the dim X + 1
filiations F, V(1\...,V(dimX\ where F(0are the filtration V along the coordinate
hyperplanes xf 1(0). Then, for the decompositon of Grf^, we use a lemma of
Kashiwara on nilpotent orbit (cf. 3.19). For a general g we can reduce to the
above case using Hironaka's desingularization and the stability by projective
direct images. In the mixed case, we use j^ for the extension. In this case we
prove the compatibility of the dimX + 2 filiations F, F(1),..., V(dimX) and W,
where Won the extension is defined by Kashiwara [13]. Then we can show the
stability by the vanishing cycle functors and the open direct images as in the
definition of mixed Hodge Modules.

For the proof of 0.3, we use Beilinson's functor ^0 whose corresponding
functor on the Q-complexes is the mapping cone of id -> i/^?1 shifted by one to
the right. This functor is also used in the proof of the equivalence of categories
which appeared in the construction of the functors f*, r.

As a corollary of 0.1 and 0.2, we get a natural mixed Hodge structure on
H*(X, L) if L underlies an admissible variation of mixed Hodge
structures. (This result can be generalized to the analytic case, where we assume
X has a compactification X which is smooth and Kahler, or of class C.) Note
that this mixed Hodge structure is compatible with the perverse Leray spectral
sequences, because, for the composition of /: X -> Y and g: 7-»Z and for
J?EDbMHM(X), the natural truncation i onf^Jt induces the perverse Leray
spectral sequence:
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Jt ==> Hp+q(gf)*J? in MHM(Z).

We say that J?EDbMHM(X) is of weight < n (resp. > n) if Grf HjJf = 0
for i > j + n (resp. i < j + n). This condition is stable by /J, /* (resp. J^,/1), cf.
2.26. We say that J£eDbMHM(X) is pure of weight n if Gr^HjJ( = 0 for
i 7^ j + n. Then this condition is stable by the direct images for proper
morphisms. Moreover a pure complex Jt is isomorphic to the direct sum of
HjJt\_ — f], because ExtJ'(^, Jf) = 0 for Jt^ Jf pure of weight m, n with m < n
+ ;, cf. 4.25. These facts are analogue of the results in [3].

For an algebraic variety X, we define Qf = a*Qff, where ax\X-*pt
(= Spec C) and Q* - (C, F, Q, WO with Grf - Gif = 0 for i * 0. Then for an
irreducible closed subvariety Z of dimension d in X, we can define the Hodge
cycle class c/f of Z in

(*) Hom(Qf , (DQf)(- d)[- 2d]) - Hom(Q", (a^(DQf)(- d)[- 2d])

using a natural morphism Qf [d] -> ICzQ
H(:=j!jlsQfreg[d]) and its dual

morphism, where j:Zreg-»Z. If X is smooth, D Qf = Qf (dx)[2dj with dx

= dim X, and the right hand side of (*) is isomorphic to the Q-Deligne
cohomology if X is smooth proper.

The plan of this note is as follows.

In § 1, we develop the theory of relative monodromy filtration in the exact
categories, which gives easily the compatibility of some results with the Hodge
filtration. The main results are Kashiwara's canonical splitting [13, 3.2.9]
where we use the primitive decomposition for the proof (cf. 1.5), and the
generalization of Steenbrink-Zucker's formula for the weight filtration on the
open direct images [22, (4.8)] to the case where neither can nor Var are bijective
(cf. 1.9).

In § 2, we study the mixed Hodge Modules in the analytic case. Almost all
the arguments in this section can be applied also to the algebraic case, and the
results which are particular only to the algebraic case will be written in §4. (Note
that the definition of mixed Hodge Module is different in the algebraic and
analytic case due to the difference of the topologies: in the algebraic case the
mixed Hodge Modules are always assumed to be extendable and polarizable.) In
(2. a) we introduce the notion: the vanishing cycle functors are well-defined along
a holomorphic function, which is a natural generalization of [22, (3.13)], and we
prove the stability by dual and subquotient in MHW(Z) the category whose
objects are obtained by extensions of Hodge Modules, i.e. ̂ eMHWpQ has the
weight filtration W such that Grf^eMH(X, 0- In (2.b), we study the
extensions over the locally principal divisors in the case of MHW(JQ, and prove
an analogue of Deligne-MacPherson-Verdier's formula [23] where the vanishing
cycle functors are used for the gluing, cf. 2.8. Here we use 1.9 to define W on
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the extension. We also show the polarizability of the open direct images
(cf. 2.11) where we use Verdier's specialization. In (2.c) we show the stability of
the well-definedness of vanishing cycle functors by the proper direct images,
assuming some stability of Hodge Modules which appear as the graduation by
W, cf. 2.14. In (2.d) we define the mixed Hodge Modules in the analytic case,
and construct the cohomological direct images and pull-backs for some
morphisms. In (2.e) we define Beilinson's functor £g in the category of mixed
Hodge Modules. Using this, we prove some equivalence of categories
associated to a closed immersion (cf. (2.23.2)) and the estimation of the weight
for the cohomological direct images and pull-backs, cf. 2.26. In (2.f) we show
the analogue of Deligne-MacPherson-Verdier's formula in the case of mixed
Hodge Modules, cf. 2.28. We also prove MacPherson's version, cf. 2.32. In
(2.g) we prove the generalization of the Kodaira vanishing (cf. 2.33) which
implies the Ohsawa-Kollar vanishing, cf. 2.34, and the Guillen-Navarro-Puerta
vanishing, cf. (2.33.2).

The aim of § 3 is to relate the variations of (mixed) Hodge structures to the
(mixed) Hodge Modules. In (3. a) we calculate the vanishing cycle functors for
the perverse sheaves in the normal crossing case, cf. 3.3-5. As a corollary, we
prove that the (polarizable) mixed Hodge Modules on a point are identified with
the (polarizable) Q-mixed Hodge structures, cf. 3.9. In (3.b) we study the
intermediate direct image of a polarizable variation of Hodge structure. We
show the compatibility of F, F(0(l < i < dim X), cf. 3.12, and calculate the
vanishing cycle functors, cf, 3.17. Then, combining with Kashiwara's result on
nilpotent orbit, we prove the stability by vanishing cycle functors and this
intermediate direct image is a polarizable Hodge Module. In (3.c) we study the
usual direct image of an admissible variation of mixed Hodge structures. Here
we also show the compatibility of F, W, V ( i ] ( l < i < dimX), and calculate the
vanishing cycle functors. In this case the difficulty is to show the existence of
the relative monodromy filtration and (3.23.14) is proved for this purpose.

In §4 we study the mixed Hodge Modules on algebraic varieties. We give
the second definition of mixed Hodge Modules to show the equivalence of
categories (4.2.4), and prove the equivalence of these two definitions,
cf. 4.2. We define the direct images in 4.3 using a result of Beilinson [1, §3],
and the pull-backs in 4.3 as the adjoint functors of the direct images. The
Hodge cycle class of an irreducible closed subvariety is defined in 4.5.

I would like to thank Professors P. Deligne and M. Kashiwara for useful
discussions and their stimulations. A part of this work was done during my
stay at the Institute for Advanced Study in 1985/86. I would like to thank the
staff of the institute for the hospitality.
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§1. Monodromy Filtration (cf. [10, 13, 22, etc.])

1.1. Let m> be an exact category, i.e. there is an abelian category s4 such that #
is an additive full subcategory of s& stable by extensions, and a short sequence in
# is called e*0cf if it is exact in s4. We assume # has an additive
automorphism S which is extended to j/. (For example, # is the category of
filtered objects of an abelian category and S is a shift of filtration; or 5
= id). Let L be a finite increasing filtration of Me^ (cf. [19, 1.3.1]), and
N: (M, L) -» S-1(M, L) a filtered morphism such that Nl = 0 for i » 0, where
the filtration L= SjLon SjM is defined by Lt(S

jM) = Sj(L{M) for i,jeZ. Then
there exists at most one finite increasing filtration W of (M, L) [loc. cit] , called
the relative monodromy filtration, such that :

(1.1.1) AT induces a morphism N: (M; L, W) - > S-1(M; L, W[2]),

(1.1.2) AP:Gr^ f cGr£M ^ S~'Gr^+feGr£M for i > 0,

where W[w]j = W^_ m . In fact, in the case # = «s/, we have Deligne's inductive
formula [10, 1.6. 13] (if FF exists):

(1.1.3) W_i+kLkM = Wl^L^M + N^S'WS+kLkM) (i > 0),

(1.1.4) H^+feL fcM

where Wi+kLkM = LkM(i » 0) follows from (1.1.4). In general, the relative
monodromy filtration W of (M, L) in # is the relative monodromy filtration of
(M, L) in ^ such that Grj^Gif Me*' (cf. [19, 1.3.2]). In the case Gr^M = 0
for k ^ 0 (or k ^ n, more generally), Wis called the monodromy filtration (shifted
by n, if n ^ 0) of M, and we define the primitive part by

(1.1.5)

for i > 0 and 0 otherwise,

if GrwNi+1has the kernel in <g. In this case PGr^M is the kernel in jtf (and
belongs to <g), because Gr^iV^2: Gr^2M -^ S~ £ ~ 2 Gr^_ 2 M (hence Gr^AP + Ms
a strict epimorphism by definition). In particular, we have the Lefschetz
decomposition :

(1.1.6) ^ GiwNm\ ©SmPGr^2mM -^> Gr^M

where the summation is taken over m > 0 such that i + m > 0.
In general the relative monodromy filtration does not always exist. In the

case of abelian category, an inductive criterion is given in [22, (2.20)]:

1.2. Lemma. With the notation as above, assume *% = stf and the relative
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monodromy filtration of (Lk^lM, L) exists, then it exists on (Lfc, M) iff:

(1.2.1) Ni+1:Ker(Ni+1: Si + 1GtfM - > Gr^M) - > Lk_1/(]V^1(5f l '+1Lfc_1M)

+ FF_ l ._2+feLk_1M) is zero for i > 0.

(See [loc. cit] for a proof.)

1.3. Remark. It is easy to see that (1.2.1) is a necessary condition, because

Ker(AP + 1: Gr^M - > S-

(In fact, Ar i + 1 :Gr^ 1 + l + kGifM^S- ' - 1Gr? i_ 1 + ,+ kGifAf(/>0) and Ni+1:
GT^M/Wi+kGT^S-i-1(G^M/W_i_2+kG^M) are injective.) For the converse,
we have a direct proof, if %> = «$/ is the abelian category of J^-modules for jR
an algebra over a field K and S = id. In fact, the assertion is reduced to the
case R = K by (1.1.3-4), then we may assume ^ is a semi-simple abelian category
(i.e. every exact sequence splits). We shall construct a splitting s: M : = Gr^M
-> LkM such that (sJV — A/s)(f^M) c= Wi_2Lk-1M, where PFis the monodromy
filtration of M shifted by fc. First we take sf: PGr£fcM -» ^+fcM, such that
its composition with the projection Wi+kM -»Gr^fcM is the natural inclusion.
We can modify s) inductively so that Im(]Vi + 1Sj) c p y _ 2 _ i _ 2 + k M for any / > 0,
i.e. Im(Sj) c Ker JVl + 1. By (1.2.1) we can lift st to a morphism st: P Grf+kM ->
WJ + k Lfc M such that Im (AP + x sf) c W^_ f _ 2 + fc Lfc _ l M . By the Lefschetz
decomposition, we have an isomorphism:

X Nmst: © PGrJ^fcJJ? - > M.
Osm<i 0<m<t

We get the section s by replacing s£ with sf in the above morphism. Then (Ns
— sN)(WiM) c P^_ 2 L f c _ 1 M is clear and we get the relative monodromy
filtration of (LfcM, L) by

WtLkM = P^Lfc_!M + s(WiM).

(This argument can be generalized to the filtered case.)

1.4. Remark. With the notation of 1.1, the relative monodromy filtration of
(M, L) exists, iff (1.2.1) is satisfied in j/ and each Gr^M has the monodromy
filtration in V (i.e. GrJ^GifAf e«).

The following proposition and two corollaries are variants of Kashiwara's
result [13].

1.5. Propositon (cf. [13, Th. 3.2.9]). With the notation of 1. 1, assume the relative
monodromy filtration W of (M, L) exists and
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belongs to %> (i.e. the kernel exists in #, cf. (1.1.5)). Then there exists a unique
splitting of (Gr^M, L) for any i, satisfying the following conditions:

Let sitk: GrJ^GifM -> Gr^LfcM be the section corresponding to the splitting,
and s'i+ktk: PG^+kGikM -^Gr^+kLkM the restriction of si + kjk to the primitive
part. Then :

(1.5.1) Im(si+ktk) = £lm(Armsj+fcjk) (the summation is taken over j, m > 0 such
that m < j, j — 2m = i),

(1.5.2)
where Vi+k^k = ]rim(iVmsj+M) (f/ze summation is taken over j, m > 0,
l<k-2 such that m <j, j + I < i + kj + I - 2m = k - i - 2).

Moreover, Nms'j+kjk: PGr^fcGrkM -> S~mGr]%_2mL fcM 0re s/r/cf monomorph-
isms for m <j, the summations in (1.5.1-2) are direct sums and the morphism in
the right hand side o/(1.5.2) w a sfn'cf epimorphism.

Proof. If there is a splitting of (GrfM, L) satisfying (1.5.1) in j/, the Lefschetz
decomposition (cf. (1.1.6)) implies the isomorphism:

where the summation is taken over j, m > 0, / e Z such that m <j, j + I — 2m
= i. In particular Nms'j+ljl are strict monomorphisms for m<; and the
summations in (1.5.1-2) are direct sums. Therefore it is enough to show that
the morphism in (1.5.2) is surjective in jtf and the right hand side of (1.5.2)
projects isomorphically onto PGrY+kGrkM by induction on fe, because the
sections are uniquely determined by their image and Vi+ktk is defined by sj+M

with I < k.
Assume the assertion is verified for (j, 1) such that / < k or j > i, I = k. We

define a morphism by

where the summation is taken over j9 m > 0, / < k such that m < j, j + / — 2m
= i + /c, j > i (if I = k). Then the Lefschetz decomposition implies the short
exact sequence:

where pr is the composition: Gr{^kLkAf-> Gr{^kGrjtM -*PGr{^k Gr^M.
Moreover Ni + 1si+ktk: Ui+k^k -> S~ £ ~ 1 Gr^_ 2 + k L f c M is injective (in j^) and
FJ+ f c f f e is a complement to its image. Then the assertion follows from the
diagram in stf\
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0 - » KerNi+1

1- I
0 - > l/£+kik -^ S-'-1(Gr^.2+kLkM/^+ki4) - > 0

1.6. Corollary. L^r (M;L,W,N) and (M'',L,W,N) be as in 1.1,
u: (M; L, iV)-»(M'; L, AT) a morphism compatible with L, JV. //" Gr^w induces

(1.6.1) Gift*: (Gr^M, PF) - > (Gr^M'? PF[1]) /or any k,

u induces u\ (M; L, FF) -»(M'; L, FF[1]). (Note that u induces always
u:(M;L, W)-+(M'\L, W) by (1.1.3-4).)

Proof. We may assume # = j/5 cf. 1.1. We prove by induction on k:

Grwu: Grf LfcM — ^ Gr?LkM' are zero for any i.

Let s-+fe,fc an<i ^-+jk,jk be the sections for M and M' corresponding to the splitting
in 1.5. Then it is enough to show the composition:

is zero. Because Im(Ar^ + 1s-+fe j f c) c GrT I-_2+fcL J k_2M, the composition:

is zero by inductive hypothesis. This implies

Im(GTwu

Therefore it is enough to show

is zero, because lm(t'i+ktk) projects isomorphically onto PGr^feGr^ M'. But this
follows from the assumption (1.6.1).

1.7. Corollary (cf. [13, Lemma 3.3.2]). Let (M;L,W, N) and (M'; L, W, N) be
as above, and u : (M, L) -> (M', L) and v : (M', L) -> S~ 1(M, L) filtered rnorphisms
such that uv = N and vu = N. Assume :

(1.7. 1) Gr£M' = Im(Gr^w) © Ker(Gr£i>) in ^ (cf. 1. 1)
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for any k. Then u and v induce the morphisms:

u: (M'9 L,W) - > (M'l L, W\l~\), v: (M'; L, W) - > S~*(M\ L, W[l~]).

Proof. We may assume # = j/. Then the assertion follows from the next
proposition :

1.8. Proposition. Let u: M -> M' and v: M' -> S~ 1M be morphisms in $4 (cf. 1. 1)
such that N = vu and N = uv are nilpotent. Let Wbe the monodromy filtration of
M and M'. Then the condition:

(1.8.1) M' =ImM0Ker i ;

implies :

(1.8.2) u and v induce strict morphisms

u:(M,W) - > (M', WI1]), v: (Mr, W) - > S'^M, WT1]),

(1.8.3) Gr?+lu: GrJ^M - > Gif M' is surjective for i > 0,

Gr?v: GifM' - > S^GrJ^M is injective for i < 0.

(1.8.4) M: M/W^M - > M'/W0M' is surjective

v : W- 1 M' - * S'1 W, 2 M is injective.

Conversely, let u: (M, W)^(M'9 PF[1]) and v: (Mr, W)^S~l(M, P^[l]) be
filtered morphisms in <$/, where W is a finite increasing filtration on M and M' (in
particular, N := vu and N:= uv are nilpotent). Assume (1.8.4) holds and W on M
is the monodromy filtration, then so is W on M' and (1.8.1-3) hold.

Proof. If (1.8.1) holds, (M <± M') is the direct sum of (Mi±Imu) and
(O^Keru), and the action of N and the filtration Ware compatible with this
decomposition. Then (1.8.2) follows from [19, Lemma 5.1.12], and (1.8.3)
(hence (1.8.4)) from

Coker(Gr^1w) - GifCokerw ^ Gr^Keri;

- Ker(Grp^) = 0 for i / 0.

Conversely, the isomorphisms GrwNl: GrjfM -3 S^Gr^M imply:

M: (M/W0M, W) - > (M'/WliAf, W[Y\) is strictly injective,

v: (W0M
f, W) - > S'l(W.1M9 W[\]) is strictly surjective,

because GT^+IU is injective for j > 0 and Gr^v is surjective for i < 0. Therefore

u: (M/WiM, W) ^+ (M'/W0M
f,

v. (W.^M', W) ^» S~1(W_2
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by the condition (1.8.4), and we get:

(1.8.5) Grf+iU is bijective for i > 0, injective for i = 0
and surjective for i < 0.

(1.8.6) Grft? is injective for i > 0, surjective for i = 0
and bijective for i < 0.

In particular, u and v are strict, because (1.8.5) implies:

u: M/Wi + 1M > Mf/WtM
f is injective for i > 0,

u: Wi+1M > W{M' is surjective for i < 0

(same for v). Moreover we have

Coker(Gr^iw) - Ker(Gif i;) = 0 for i / 0

by (1.8.5-6), and the isomorphism

GrfN = Gi%v°Gr?u: Grf M —> S^Gr^M

implies the decomposition:

(1.8.7) Gr^M' = Im(Giwu) © Ker(Gr^).

Then (1.8.1) follows from (1.8.2) and (1.8.7), and Won M' is the monodromy
filtration, because the action of GrwN is compatible with the decomposition
(1.8.7) and

Coim(Gr^w) - Coim(GrwN: GrwM > S~lGrW[2]M).

The following is a generalization of [22, (4.11)].

1.9. Corollary. Let u: (M, L) -»(M', L) and v: (M', L) -> S~ l(M, L) be filtered
morphisms such that N = vu and N = vu are nilpotent on M and M', where Lis a
finite increasing filtration and M, M' are objects of s$ (cf. 1.1). Let Wbe a finite
increasing filtration of M, M' such that u(WtM) c Wi_1M\ v(WiM')
a S'^Wi-iM. If Won (M, L) is the relative monodromy filtration, the following
conditions are equivalent:

(1.9.1) W on (M', L) is the relative monodromy filtration
and Gr£M' = Im(Giftt) 0 Ker(Gr^) for any fc,

(1.9.2) LkM' = u(LkM) + (v-l(S-lLkM){\WkM
r) for any fc,

(1.9.3) LkM' = v-l(S~lLkM)^(u(LkM) + WkM') for any k.

(Note that (1.9.1) is self-dual and (1.9.2-3) are dual to each other]

Proof. The equivalence of (1.9.2-3) is clear. We show the equivalence of
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(1.9.1-2). We first verify that (1.9.2) is equivalent to:

(1.9.4) WkM'nv-1(S-lLkM) = WkLkM'

(1.9.5) u: LkM - > LkM'/WkLkM' is surjective.

(In fact, (1.9.2) implies (1.9.4), because u(LkM) c v~l(S~lLkM).)
Then (1.9.4) is equivalent to

WiM'nv-*(S-1LkM)=WiLkM' for i < k,

i.e. to the injectivity of

v: WiM'/W^M' - > S~'L(Wi.^MIWi.^LkM) for i < k.

By the commutative diagram:

0 - > W^Grf+ 1M' - > W^M'/L.M') - » Wt(M' /Lk+lM') - >0I- j- i-
0 - > S'lWi.lGTl

k + lM - » S- 'B^^M/LfcM) - > S - ' W

this condition is equivalent to the injectivity of

v: WiGtfM' - > S'^W^^G^M for z < fc.

Similarly, (1.9.5) is equivalent to the surjectivity of

u: G$(M/Wi+1M) — > Gif (M'/WJM') for i > k.

Therefore the assertion follows from 1.8.

1.10. Lemma. With the notation and the assumption of 1.5, assume # is an
abelian category. We define a filtration L on M by:

(1.10.1) L'kM = N(SLkM) + H^LfcM, cf. (1.9.2).

Then W[Y] is the relative monodromy filtration of (M, L'), the three filiations
L, L', W are compatible, and the decomposition in 1.5:

(1.10.2) GrfM= X lmNms'j+kik
j + k-2m = i,Q<m<j

gives a bi-splitting of L, L such that

X ImATSj+kik ifl = k
j + k-2m = i,0<m<j

(1.10.3) GrfGifGrrM * ^^ ./ / > fc, f = / - 1

0 otherwise.

Moreover the induced decomposition on GrfGrJ^M w compatible with Grf of the
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canonical decomposition in (1.9.1):

GifGifM - GrflmGrfu © GrfKerGif' v9 cf. (1.8.7),

where Gifw: SGif M-*Gif'M and Gr^'v: GrfM ->GifM are induced by N
and id respectively (and strictly compatible with W) and we have:

Gif ImGifu - GifGii' Gif M (= N(S Gr£Gr^2M))

(1.10.4)

f I/elms^ ifi = l-\
<
[ 0 otherwise.

i; ~

Proof. The first assertion is clear by 1.9. We verify as in the proof of 1.9:

for i<l
(1.10.5) _ , . . , _ . _ , m r / _ w

In fact the assertion for i > I is equivalent to the strictness of

N: (LjM/^+1L,M, W) — > S-^

and follows from the injectivity of N: Gr£2GifM -»S~l Grf Gr£M for
i > fc. Similarly we verify

(1.10.6) N: (LfcGr£2M, L) » S'H^Grf M, L) is strictly injective

for k < i.

Then (1.10.5-6) imply:

for i < I

tf(SLmln(W)Gr£2Afl for i > I

Therefore L, L', W are compatible by [19, (1.2.14)], and we have:

for i<l, k<l

(1.10.8) L'jGifGifM = jV(SGr^2Gr^M) for i > I, k < I

0 otherwise,

(1.10.7) J k ,

(1.10.9)
N(SGrJ^.2Gif M) for k = I

P GrfGr^M for k < I = i + 1

0 otherwise,

by the Lefschetz decomposition (and the surjectivity 01 iV:Gr^2Gr[M
->S~1GrJFG]fM for i < k). Thus we get (1.10.3), and the inclusions => in
(1.10.4) are clear by the strictness of Gr£w, Gr£t; (cf. (1.8.2), (1.8.7)), then the
equality follows from (1.10.3).

loll. Remark. Let M, M' be objects of an abelian category with finite
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filtrations L, W(l) and a nilpotent endomorphism N1 preserving L, such that
W(1) on M is the relative monodromy filtration for L, N±. Let M: M-»M',
u: M' -> M be morphisms compatible with L, P01} and Nl9 such that JV2

: = ^
on M and N2:= uv on M' are nilpotent. Put Mc = GrfM, M- = ImN2 c= M£

with the morphisms ut: Mj-^M- ? u4: M- -> M£ induced by AT2 and the natural
inclusion. Let W*1*, W(2\ W(12} be the monodromy filtration on Mh M- for
JV l 5 JV2, ̂ i +^2 respectively. Assume:

(1.11.1) Grf(1)M; = ImGrf 1}u, © KerGrf 1}^ for any i, k,

(1.11.2) f^(12) is the relative monodromy filtration on Mh M- for W(l\ N2

and for W(2\ JV l5

(1.11.3) the relative monodromy filtration P02) for L, AT2
exist;s on M, M',

(1.11.4) MP^2) c W£\, vWf} c ^(2\ and the equivalent conditions (1.9.1-3)
are satisfied for

(M;L, ^ (2))<=>(M';L5 PF(2))

(1.11.5) the relative monodromy filtration W(i2) for W(2\ N1 exists on
M,M',

(1.11.6) L, FF(1), W(12) and L, FF(2), FF(12) are compatible three filtrations on
M, M'.

Then W(12) on M, GrfM is the relative monodromy filtration for W(l), N2, and
the following two conditions are equivalent:

(1.11.7) W(l) on M' is the relative monodromy filtration for L, iY l5

(1.11.8) W(12) on M', GrfM' is the relative monodromy filtration for W(1\
N2 and the equivalent conditions (1.9.1-3) are satisfied for

(M;

(GrfM; W(1\ FI^12))<=± (GrfM'; W(l\ W(12)) for any L

Here note that u W?12) c W£l\ v W{12} c P^(12) follow from (1.11.4) and the
functoriality of the relative monodromy filtration. By (1.11.4) we have the
decomposition

(1.11.9) GrfM' - ImGrfw © KerGrfi;

compatible with the action of JV l 5 AT2, and ImGrf u is identified with
M-. Therefore the conditions (1.11.1-2) are satisfied by replacing Mh M/, uh vt
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with Grf M, Grf M', Grf u, Grf v respectively. Then W(12} on M, M' is the
relative monodromy filtration for L, N1 + N2 by (1.11.2) and (1.11.6), because
JVaW?12) c W^2

2
}(a = 1,2) is clear and the canonical splitting 1.5 with the

compatibility (1.11.6) implies

M: Grf+
(t2)Grf(2)GrfM —> Grf42)Grf 2 )GrfM (same for M').

Similarly FF(12)on M, Grf M is the relative monodromy filtration for W(1\ N2,
and this holds for M' if (1.11.7) is satisfied. Therefore (1.11.7) implies (1.11.8),
because it is enough to show the assertion for Grf using the canonical splitting
of L on Grj^1' compatible with u, v and W(12). Conversely (1.11.8) implies
(1.11.7), because N^Wt^M' <= W*D2M' follows from (1.9.2-3) and the assertion
is reduced to that for Grf by the compatibility (1.11.6).

The above argument can be used to prove a result of Kashiwara [13, 5.5.1]
on the existence of the weight filtration of the open direct image of an
admissible variation of mixed Hodge structure in the normal crossing case. In
this case (M, FF(12)), (M', W(12)) underlie mixed Hodge structures, and
(Grf M; Nl9 N2) (Grf M'; Nl9 N2) nilpotent orbits of weight i - 1, i. Then the
condition (1.11.1) is satisfied by [8, 1.16] [15, 2.1.5] and [19, 5.2.15] (cf.
also [13, 5.6.5]), and (1.11.2) by [6, §3]. Here the compatibility condition
(1.11.6) is trivial, because W(l\ W(2\ Lare filiations in the abelian category of
mixed Hodge structures and W(12) is the weight filtration. In this case we
define the filtration W(1) on M' by (1.9.2-3). Then the condition (1.11.8) for
Grf is satisfied by the functoriality of (1.9.2-3) and the strictness of FF(1), cf.
also 3.22.

§20 Mixed Hodge Modules on Complex Spaces

(2. a) Vanishing Cycle Functors and Specializations (Divisor Case)

2oL Let X be a complex manifold, MH(X, n)(p) the category of (polarizable)
Hodge Modules (with Q-structures) of weight n (cf. [19, (5.1.6), (5.2.10)]), and
MHWpO(p)the category of (polarizable) ^-filtered Hodge Modules, i.e.
MHW(jq(p)is the full subcategory of MF,W(^, Q) such that
(M,F9K,W)eMHW(X)™ iff GrftM, F,K)eMH(X, i)(p} for any i, where
MFfcW(®jf, Q) is the category of holonomic filtered ^-Modules with Q-
structure, endowed with a compatible (locally) finite increasing filtration:
(M,F,K,W), cf. [19, (5.1.14)]. (Here MHW(X)(P) means MHW(Z) (resp.
MHW(X)P).)

Let X be a reduced separated complex analytic space, and X = U Ut a
locally finite open covering with closed immersions Ut -» Vt where Vt are
smooth. Set Uj = niel Ui9 Vl = HieIVh then U1 is a closed subspace of Vf. Let

K / ^ K r be natural projections for I c J. By definition [19, (5.3.12)],



MIXED HODGE MODULES 237

an object M of MH(Jf, n) is {^jeMH(FJ? n)} with isomorphisms:

U ' . ) ^ ^ M o n

for / c J, such that supp M/ c [// and w/x = M7J ° (pr/j)^ WJK on
Here this definition is independent of the choice of Ut, Vt, because we have
locally a section of pr7J on a neighborhood of Uj and the independence of the
section follows from [19, (3.2.6)]. In particular, for any open set U with a
closed immersion U -> V such that V smooth there exists uniquely a Hodge
Module on V, which represents M on V^> U (called the local representative of
M associated to 17 ->F). We define MHW(-Y) similarly, where Gr£M7 are
assumed to be 0^-Modules (cf. [19, (2.1.20)]). Then for Ji=^{Ml =
(Mj, F, K7)}eMH(Z, n), there exists uniquely KePerv(Qx) such that K\Vl^Kj
for any / by [1]. Similarly (K9 W) exists globally for ^GMHW(JT). (Here
W is locally finite on X.) We say <J?eMH(X, n) is polarizable, if there is a
pairing S: K (x) K -+ d'xQ( — n), called a polarization of Jt^ whose restriction to
any local representative is a polarization in the sense of [19, (5.2. 10)]. We
denote by MH(X, n)p (or MHW(X)P) the full subcategory of polarizable objects.
We say M has strict support Z, if the underlying perverse sheaf of M is an
intersection complex with support Z (and if Z is irreducible).

2o28 Let X be a complex manifold, and D a (positive) divisor on Z. Let E be
the line bundle associated to D, and s0 (resp. sj the zero section (resp. the
canonical section corresponding to the global section 1 of 0X(D)). Put Et

= Imst- (z = 0, 1). Then, by definition, each (local) defining equation g of D
determines a (local) trivialization : E ~ X x C such that £0(resp. £x) corresponds
to X x {0} (resp. Imiff), where zg is the immersion by graph. Conversely each
(local) trivialization of E (as a line bundle) determines a (local) defining equation
of D. Let ^ = (M, F, X, WOeMHW(Jf) and put Ji= (M, F, £, W)
= (s1)*J?eMHW(E). Then M has the filtration V along £0> and if the
condition :

(2.2.1) the three nitrations F, W, Fare compatible on M, cf. [19, (1.1.13)],

is satisfied, (M, F) is quasi-unipotent and regular along F0, i.e. (M, F) is so
along any (local) defining equation D (cf. [19, §3.2]), because the assertion is
verified for each Gr^(M, F) by definition. If the condition (2.2.1) is satisfied,
we define the specialization by

(2.2.2) SpD(M, F, K) = (GrF(M, F) (x)Gr^(®£, F), SpDK),

where GrF(M, F) = 0 Gr^(M, F) is a filtered graded GrK(^£, F)-Module,
SpDK is Verdier's specialization (cf. [23]) and we have the canonical
isomorphism (cf. [12]):

(2. 2. 3) Dr (GrFM (x) Gr^ ®E) - SpDK (x) C.
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Here we identify E with the normal bundle of E0 ~ X, and E\D with the normal
cone of D in X(~ EJ. We have the filtration L= SpDWon Spfl(M, F, K) by:

(2.2.4) L,SPl)(M, F, K) = SpD(Wt(M9 F), W{K).

Let T be the monodromy of K, T= TSTU the Jordan decomposition and N
= (2ni)~1logTu. Then the action of N corresponds to the action on GrvM
defined by s — a on GrFM, where s is the Euler vector field corresponding to
the natural C*-action on the line bundle F, i.e. s = Gr tdt in the notation of
[19, §3.1]. Put

Spl
DK = Ker(Ts - 1 : SpDK

then DR((0aezGrFM) ®Gtva(2^ ^ Sp^K (x) C and we define

(2.2.5) Spi(M, F, K) = ((0aezGra
F(M, F) ®Gtva(9E9 F), Sp^).

Because L^pDK are stable by the action of Tand Lt-GrK(M, F) are compatible
with the decomposition GrF(M, F) = 0aGrF(M, F), we have also the filtration
L= Sp£ Won Spi(M, F, K). If F is trivial, i.e. D is a principal divisor defined
by some function g on X, $pDK is isomorphic to Deligne's total nearby cycle
functor WgK and GrF(M, F) have the structure of filtered ^-Modules
(depending on g) so that DR GrFM ~ ^,e(a)^ ® C[- 1] or 4>g,iK (g) C[- 1],
cf. [19, (3. 4. 12)] (because the choice of g determines the trivialization : E~X
x C and the isomorphism: Gi^^E ~ 2x[s\.) In this case, we define

(2.2.6)
0flil(M, F, K) = (GrF(M, F), ^flX)

where p^ = ^[- 1], etc. We also define the filtration L on ^g(M, F, K) and
0, f l(M,F,K)by

Lt.^(M, F, K) = il*g(Wi + l(M, F, X))
(2.2.7)

L£0,§1(M, F, K) - 0ffil(^(M, F, K)).

Here the condition (2.2.1) is always assumed. Note that (SpD(M, F, X),L) is
equivalent to (i/^(M, F, K), 0M(M, F, K); L), and the shift of the filtrations F
and Lon \//g(M9 K) comes from the external products with (Qc, F, Qc[l], WO (in
the non characteristic case), where Grf Ql = 0 (i / - 1) and GrJ^i, Qc[l])
= 0 (i / 1).

If AT is not smooth, we assume X is reduced separated and D is a positive
locally principal divisor. Then the normal cone of D in X is a closed subspace
of the line bundle F associated to D on X (by identifying X with
FjJ. Therefore Spk1}KePerv(Q£), Land the action of N are globally well-
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defined. Put Jt=($^^M as above. We say that the condition (2.2.1) is
satisfied for Jt> if the following condition is satisfied:

(2.2.8) there is an open covering X = \}iUi with \Ji -> Vi as in 2.1, such that
E\Vi are trivial (hence E\Vic^VixC) and the condition (2.2.1) is
satisfied for the represent Jt{ of ^on V{ x C (and for the filtration
V along V{ x {0}) for any i.

This condition is independent of the trivialization E\Vi ~ Ui x C and the choice
of Ut, V{. From now on, we shall always assume this condition. If E is trivial
and D = g'1®), we can define Sptf(M, F, K), \l/g(M, F, K), 0ffil(M, F, K) and
L, using C7i9 V{ as above, where we use the covering: E = (jiUi x C and the
embeddings VI x C -* Vl x C. We can also define SpD(M, F, K) and L, even if
E is not trivial.

2.3. Let X be a separated reduced complex analytic space, and D a (positive)
locally principal divisor on X. We say that the specialization along D is well-
defined for ^eMHWpO, if the condition (2.2.8) and the following condition
are satisfied for Ji = ((M, F ) , K ' , W ) :
(2.3.1) the relative monodromy filtration P^(with respect to the action of N)

exists on (SpDK, L), cf. 1.1.

Note that this condition is local (by the uniqueness of W) and (2.3.1) is
equivalent to the existance of W on (SpDK (x) C, L) or on (GrFM£, L) for any i
(cf. (2.2.8)) by 1.2. In this case we define

(2.3.2) Sptf'M = (Sp<}>((M, F), K), W).

If D = 0~1(0)J the condition (2.3.1) is equivalent to:

(2.3.3) the relative monodromy filtration Sexists on (pi^gK, L), (p(j>g^K, L),
cf. (2.2.6-7),

and we say that the vanishing cycle functors along g are well-defined for
JfeMHW(X), if the conditions (2.2.8) and (2.3.3) are satisfied. In this case we
define:

(2.3.4) il/f* = (i/,g(M, F, K), W), ^Ji = (0,tl(M, F, K), W).

The following proposition gives a generalization of [22, (4.11), (A.9)] and
was pointed out by Kashiwara (cf. [9]). Note that the conditions (2.4.1),
(2.4.3-4) were a part of definition in [21] and we have a non canonical splitting
(2.4.2) in the polarizable case.

2.4. Proposition. Let X be as above, g a holomorphic function on X and Jt
= ((M, F), K, W)eMHW(X)(resp. MUW(X)P). Assume the vanishing cycle

functors along g are well-defined for M. Then:
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(2.4.1) the filtration W in (2.3.3) induces the relative monodromy filtration on
(\l/g(M9 F, K), L), (4>gtl(M, F, K), I) (i.e. F, W, L are compatible on
il/gM, (/)g^M and the monodromy filtration exists on Grf ij/g(M9 F),

.FJ .c f . 1.4),

(2.4.2) there is a canonical splitting of L on Gr^g(M, F, K),

(2.4.3) \l/gM, <j)g 1JfeMHVf(X) (resp. MHW(X)P) and L induces a filtration
of

4>gtlJ( in MHW(X) (resp. MHW(X)P),

(2.4.4) can and Var induce morphisms in MHW(Jf):

can: \l/8tlJ( - > (t>g,i^> Var: </>gtlJt — > ^g,i^(~ 1),

Proof. By the condition (2.2.1) we have the canonical isomorphisms:

Gr^(M, F5 K) - ^GrJT+1(M, F5 K)5

Gif 0f i l(Af, F5 K) - 0filGrr(Af, F, K).

Therefore the monodromy filtration W (shifted by k) exists on Gr£^(M, F, K),
etc. so that

(Gr^,(M, F, X), WO, (Gif 0gil(M, F, K), WOeMHW^y,

and (2.4.3) follows from (2.4.1-2). By 1.5 we have the canonical splitting of L
on the Q-part Grfp\l/gK, etc., therefore for the proof of (2.4.2), it is enough to
show its compatibility with the Hodge filtration, and the assertion is local by the
uniqueness of the splitting. Thus we may assume X is smooth, and the
assertion follows from 1.5 applied to (®pFpi//gM, L). The remaining assertions
(2.4. 1) (2. 4. 4) are also local, and we may assume X smooth. Then (2.4.4) follows
from 1.7. We prove the restriction of (2.4.1) to (Lk(M'9 F), L) by induction on
fc, where (M'3 F) = *l/g(M9 F) or 0g>1(M, F). By 1.2 and 1.4, it is enough to
show:

because GiwGrLNj are strict by [19, (5.1.14)]. But the left hand side is
contained in

by 1.2 and (2.3.1). Therefore the assertion follows from the strictness of the
morphism :
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(AP+1, id): (L^M', F[i + 1]) 0 (W^.2+kLk^Mr
9 F) > (L^M', F),

cf. [loc. cit], because (I^^M', F), etc. and AP+1 , etc. underlie objects and
morphisms in MHW(X) by inductive hypothesis.

2.5. Proposition. Let X be as in 2.4, J?eMHW(X), and Ji' its subquotient in
MHW(X). Then Ji' is polarizable, if so is Ji. Lei D be a (positive) locally
principal divisor. Then the specialization along D is well-defined for Ji', if it
holds for Jt. Moreover ^ for an exact sequence in MHW(X):

(2.5.1) 0 > Jt' » Ji » Ji" > 0,

we have the canonical (and functorial) exact sequence in MHW(X):

(2.5.2) 0 > ̂ gJi' > ̂ gJl > ̂ igJi" > 0 (same for 0,§1),

if D = ^-1(0) and the vanishing cycle functors along g are well-defined for Ji.

Proof. The first assertion follows from [19, 5.2.13] and the exactness of the
functors Gr?(cf. [19, 5.1.14]). (In fact, Grf of (2.5.1) splits by the polarization
on Gr?J( so that Gi^ Ji' and GrFJC' are polarizable.)

For the other assertions we may assume X is smooth and D
= g"1^)- Taking the direct image (s^ (cf. 2.2), we may assume (2.5.1) is an
exact sequence in MHW(£). Then by [19, (3.1.5)] the underlying ^-Modules
M', M, M" has the filtration F along E0(~ X) and

(2.5.3) 0 > (M'; F, W, V) > (M; F, W, V) > (M"; F, W, V) > 0

is separately exact for F,W,V. By the proof of [19, (5.1.14)],

0 > Gif (M'; F, F) > Gr^(M; F, F) > Gr^(M"; F, F) > 0

is exact (i.e. FpFaGrf (2.5.3) are exact). Using the commutative diagram:

0 —

0 > F^F.Gr^M' > F^Gr^M > FpVJ3iYM" > 0

we verify by induction on f that FpFaF^M" -»FpFaGrfM" are surjective, i.e.
F, K ^Fare compatible on M" (cf. [19, (1.2.14)]), and F^F^M-^F^M" are
surjective, i.e. (M; F, V, W)->(M"; F, K WO is a strict epimorphism. Therefore
(M' -, F , W , V ) must be the kernel of this strict epimorphism by the separate
exactness, and F, W, V are compatible on M'. We now show the condition
(2.3.1) for M" in (2.5.4), because the assertion for M' follows from the strict
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surjectivity of

(2.5.4) (£;L, W) - > (R» ; L, W)

where K = p\ljgK, P^K (same for £"). (Here the surjectivity
follows from [19, (5.1.14)], and the strict surjectivity of (2.5.4) implies that the
kernel of (2.5.4) gives the relative monodromy filtration on (Kf, L).) Let W be
the monodromy filtration on Gr^K" shifted by k, then by [loc. cit],

("\ W) - > (G$K("\ W\_2i + 2])

is strict and Gr^Ker(Gr^]Vl'+1) - Ke^Gr^Gr^AP*1). Therefore

Ker(N'+1 : GrfK - > GrfK) - > Ker(AT'+1 : GrfK"

is surjective by Lefschetz decomposition. Thus we get the assertion by 1.2.

2.60 Proposition. Let X be as in 2.4 and Jf = (Af, F, K, W)eMHW(X), where
(M; F, W):= {(Mf; F, W)}, cf. 2.1. We define

= (D(M; F,

Z?j D(M; F, W) = {D(M/; F, FF)} 50 that

(2.6.1)

D^eMHW(JT) (it is independent of the choice of Ut, V{), and it is
polarizable if so is Jt . Let g be a holomorphic function on X, then the vanishing
cycle functors along g are well-defined for Ji iff it holds for D^; in this case we
have the canonical isomorphisms:

(2.6.2) ^,D^ -^ (D^^)(l), 0,tlDUT ^ V4>g.iJ(.

Proof. By the compatibility of topological and analytic dualities for closed
immersions of complex manifolds, we see that D^ is well-defined (i.e.
independent of Ut, V^. Then the second isomorphism in (2.6.1) implies that
MHW(X)P is stable by D. For the stability of MHW(X), we may assume X is
smooth, then the assertion follows from the compatibility of topological and
analytic dualities for the vanishing cycle functors (see [25]):

(2.6.3)

(2.6.4) ^D(M,F) ^ D^(M,F)(1), 0MD(M, F) ̂ > D0^fl(M, F),

where the morphism in (2.6.3) are defined in [19, (5.2.3)]. In fact, we can verify
inductively the condition of Hodge Modules of Grf'D^ (for example, the
stability of the regularity and the quasi-unipotency along g by D follows from
the proof of [19, (5.1.13)].) Here note that the (relative) monodromy filtration
is self-dual. Therefore it remains to show the stability of the condition (2.2.1)



MIXED HODGE MODULES 243

by D (because (2.3.1) follows from the above remark). Put (M, F, W)
= (ig)j.(M, F, W), where we may assume X is smooth. We take locally a free
resolution as in [19, (5.1.13)]:

(L; F, K W) > (M; F, W, V)

such that each L7 has a splitting of W compatible with F, V (hence F, V, W are
compatible) and Gr^(M F, V) are finite direct sums of (2, F[p], F[a])
(- 1 < a < 0). Here note that a filtered morphism: (M; F, V, W)
-»(M"; F, K W) is strictly surjective iff FpFaP^M -> PpV^M" are surjective for
any p, a, i (this is not true for a strict monomorphism), cf. [19, §1.2]. We
define D(L; F, V, W) by (2.6.1)(for ^0 and

D(®, F[p], F[a]) = (G) ® S, F[- p], F[- 1 - a])[dj.

Then GrfD(L; F, F) is strict by [loc. cit], and ̂ GrfD(L; F, F) - 0 for; ^ 0
by the holonomicity of M. Therefore D(L; F, K W7) is strict and F, K W are
compatible on tf°DL by [19, (1.2.9)]. By definition and by the proof of
[19, (5.1.13)] we have the isomorphism: D(M; F, V, W) = Jf °D(L; F, V, W).
Thus we get the assertion.

(2.b) Extensions over Locally Principal Divisors

2.1, Let X be a complex manifold, put F = Jf x C, F* = X x C*, F0 =
 x x {0}

and let 7: F*-»F be the natural inclusion. If Jt' = ((M', F), K'; PF)sMHW(F*)
is extended to Jt = ((M, F), K\ PF)eMHW(F) (i.e. j~lJl = Ji'} such that the
specialization along F0 is well-defined for Ji, the following conditions are
satisfied :

(2.7.1) j^K' (or equivalently 7',X') is cohomologically constructible

(2.7.2) FPV<0M = V<0Mnj^FpM' are coherent over QE,

(2.7.3) F, V, WatG compatible on F<0M,

(2.7.4) the relative monodromy filtration exists on (i//tK, L),

(2.7.5) Gr^' are extended to Hodge Modules on F.

If moreover Jt is polarizable, we have

(2.7.6) GrfJ?' are extended to polarizable Hodge Modules on F.

Note that (F<0M; F, W, V) depends only on j~lJt = Ji' (independent of
the extension J(), cf. [12] [19, (13.1.7)] for F<0M, and the conditions (2.7.1-6)
are concerning only Ji' . (We shall see later that Ji' is extended if these
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conditions are satisfied.) If (2.7.1-5)(resp. (2.7.1-6)) are satisfied,

X; W]

(cf. (2.2.6)(2.3.4)) belongs to MHW (F0) (resp. MHW(F0f) by the same argu-
ment as in the proof of 2.4, and i//tJ? will be sometimes denoted by \l/tj£'9
because it depends only on Jt' = j~lJt.

If X is singular and Ji' is extended to Ji so that the specialization along E0

is well-defined, the conditions (2. 7. 1-5) (resp. (2.7.1-6)) are satisfied for the
representative of JT on Vx C* associated to any closed immersion 17 -> Fas in
2.1. Then we can define iMf'eMHW(F0)(p) similarly. Let MHW (£*)£> be
the full subcategory of MHW(F*)(J7) whose objects are satisfying the conditions
(2.7.1-5) (or (2.7.1-6)), i.e. their local representatives as above satisfy the
conditions. Let MHW(F*, E0)

(£ be the category whose objects are
(JC, Ji", u, v) where M' e MHW(F*)(/X

}, M" e MHW (£0)
(p) and u : \l/tilJC

-*Jt", v: Ji" -n//t ^M\— 1) are morphisms in MHW(F0) such that vu
= N. Here the morphisms are the pairs of morphisms in
MHW(F*), MHW(£0) compatible with u, v. Finally, let MHW(£)g> be the
full subcategory of MHW(£)(P) defined by the condition: the specializations
along E0 is well defined. Then we have a natural functor

(2.7.7) MHW(F)$ - > MHW(£*, £<,)£>

which assigns (j~lJi, (/)tilJf, can, Var) to M.

2o8. Proposition0 The functor (2.7.7) is an equivalence of categories.

Proof. We first assume X smooth. Let (Ji' , Ji\ u, i;)eMHW(£*, £0)S- By
Deligne-MacPherson-Verdier's theory on extensions of perverse sheaves
(cf. for example [23]) and by [12] [14] [18] [19, (3.4.12)], there exists uniquely
(M, K) with isomorphisms :

(2.8.1) rMM, K) - (M', X'), 0U(M, K) - (M", K")

such that can, Var are identified with the underlying morphisms of u, v. We
define the filtration F on F0M by

(2.8.2)

where we use (2.8.1). Then (F0M, F) -> (M", F) is surjective (i.e. Gr£(M, F)
^(M", F)), because for meF0M such that Gr^meF^M", we have Grl^m^e
F^Gr^iM and mt = m' + m"t with m'sF^F.^, m"eF<0M, i.e. m-m"6FpF0M.
We define

(2.8.3) FpM

Then the induced filtration F on F0M coincides with the original one and (M, F)
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is quasi-unipotent and regular along F0(cf. [19, §3.2]), because

V0MK(FpV0M)dt = FoMfllF^M)^ c Fp+1V0M

(cf. the proof of [19, (3.2.2)]). Then, by (2.7.2), FpV,M and FPM are coherent
over @E, and (M, F) is a coherent filtered ^-Module, because (F0M, F) is
coherent over (F0^E, F). We now define the filtration Lon 0U(M, K) by

(2.8.4) Lk0til(M, K) = eanCL^^M, K))

where L^i^M, K) = ^ f j l H^(M', K') and Won 0U(M, X) is the weight
filtration on =JF, cf. (2.8.1). Then there exists a unique filtration Won (M, K)
such that

, K) ~ P^(M', X'), 0UW«M, K) - L,0U(M, K).

Put ^T = ((M, F), K; W). By Lemma 2.9 below, F, K Ware compatible on M
and Grf(M, F) are quasi-unipotent and regular along E0. We have

\l/tj( ~ i/ '̂, 0til^T - <JT in MHW(F)(/7)

by definition, where W is the relative monodromy filtration with respect to L
(cf. 1.9 for 0U). In particular (2. 2.1) (2. 3.1) are satisfied, i.e. the specializations
are well-defined. By 1.9 and [19, (5.1.4)], we have the canonical
decomposition :

(2.8.5) Grf M = Jtkil © ^fc,2 in M¥h(@E, Q),

such that supp^fc2 c F0and Jtk^ has no sub nor quotient with support in
E0. By [19, (3.2.2)], ^k>iis the direct sum of Z-components of the extension of
GT^JK' to E (cf. (2.7.5)) such that Z <£ F0, because j~1J^kil ^ Gi^J?' and can
is strictly surjective by [19, (5.1.14)]. On the other hand we have

(2.8.6) J?k,2 = ^(KerGifi;: G$J(" - > G^^^M\- 1))

by the identification (2.8.1), where i\ E0 -> E. Therefore ^eMHW(F)(p). We
see that this gives the inverse functor of (2.7.7), because it holds forgetting F, W,
and F, W (or L= fatlW) on ^eMHW(F) must satisfy (2. 8. 2) (2. 8. 4). If X is
singular, the above construction glues together globally (in fact, the Q-part is
globally well-defind) and (2.8.5-6) are globally well-defined. Thus we get the
assertion. To complete the proof of 2.8, we have to show the following.

2.9. Lemma. Let X be a complex manifold. Put E = X x C. Let (M; F, W)
be a coherent filtered @E-Module with a finite increasing filtration W. If(M, F) is
quasi-unipotent and regular along E0 = X x {0} (cf . [19, (3.2.1)]) and F, K W on
V<0M are compatible, they are compatible on M and Grf(M, F) are quasi-
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unipotent and regular along E0.

Proof. We first show the compatibility of F, V, W on VQM. By
[19, (1.2. 16.(fr))], it is enough to show the surjectivity of

FpWtVQM - > FpWjQr^M for any p,i.

Take [z/jeF^Gr^M with ueFpV0M. We have to show u - u'eFpWiV0M for
some i/eF<0M. By assumption ut — u" e F pWiV- ^ for some u"eFpV<-1M.
Take u'eFpV<QM such that u't = u", cf. [19, (3.2.1.2)]. Put v = u - ueFpV0M.
If v e WtM, the assertion is verified. If not, take j > i such that v e WjM, GrJ v
=£ 0 in Grf M. Then Grfue F<0GrfM, because veWjV0M and GrfGr^t; = 0
in GrfGr^M. Therefore Grf ttf ^ 0 in GrfM by [19, (3.1.4-5)]. But this
contradicts to vt E W{M. Thus the compatibility on F0M is proved.

We define the filtration F' on WkM, Grf M by

F'p(WkM) = I(F,-,K0WIM)3!, F'p(Gi?M) =

By the same argument as in [19, (3.2.2)], we have

F; Vx(WkM) = FpV«WkM for a < 0

d\: FpGilWkM ^ F'p + iGrl+i(WkM) for - 1 < a < 0,

(same for Gr^M). Combined with the compatibility on F0M, we get the exact
sequences :

0 - > (Wk^M- F', F) - > (WkM; F', F) - , (GrfM; F', F) — > 0.

Therefore F = F' on PyfeM, Grf M (because it holds on PffcM for fc » 0) and
F, F; FFare compatible on M (cf. [19, (1.2.14)]). Now it remains to show

(FpFaGrf M)t = FpV^iGr^M for a < 0.

But it is verified by decreasing induction on k, using

0 - > FpKaWi-iM - > FpV«WkM - > FpFaGrf M - . 0.

This completes the proof of 2.9 and 2.8.

2,1 Oo Let X be a separated reduced analytic space and F a line bundle on
X. Let F0 be the zero section, F* its complement, and i: F0 -> F, j: F* -» F the
natural inclusions. We define the full subcategory MHW(F*)ex (resp.
MHW(F)^) of MHW(F*)(resp. MHW(F)(P)) by the condition:

(2.10.1) for any open set U of X and a local trivialization E\v ^ U xC, the
restriction to F*!^ (resp. Fy belongs to MHW(C7 x C*)ejc (resp.
MHW(I7 x C)sp),

cf. 2.7 for the notations. Here the condition (2. 10.1) (i.e. (2.7.1-5) for the local



MIXED HODGE MODULES 247

representatives) is independent of the trivialization E\v ~ U x C. Let
MHW(£*)L be the full subcategory of MHW(£*)ex such that Gif of the
objects of MHW(£*)£X are extended to polarizable Hodge Modules on E,
cf. (2.7.6). By 2.5, these full subcategories are abelian (i.e. stable by Ker,
Coker), cf. 2.11 below or the proof of 2.5 for MHW(£*)ex.

2.11. Proposition, With the notation of 2.10, let .^'eMHW (£*)<£. Then
there exists functorially the extension j^Jt' (resp. jl^')GMHW(E)(

s
p^ of Ji',

unique up to a canonical isomorphism^ such that its underlying perverse sheaf is
isomorphic to j^K' (resp.j^K'). For ^eMHW(£)^j we have j
MHW (£)*£? and there is a unique and functorial morphism

~1
(2.H.1) Jt—+ 7V

inducing the identity on £*.

Proof. If E is trivial, the assertion follows from 2.8. For example, take the
inverse image of (Ji', \^t^Ji'(— 1), N, id) to get j^Jt', and use the diagram

(2.11.2) Varjjcan idjj N

to get the morphism Ji -+j*j*Jt. In general, we have the assertion, except for
the polarizability of j*Ji' , j\Ji', by the uniqueness of j^Ji\ j\Jt' and of the
morphism (2.11.1). For the polarizability, it is enough to show the assertion for
j^Jt by 2.6. We first reduce to the case eJTeMH(£*, n), i.e. GifJC = 0 for
i^n.

Put Ji =j*M'. We have the filtration j^ W on M in MHW(£)sp, because
7^ is an exact functor. We have to show 7^ W splits canonically on Grf Ji. By
the proof of 2.8, we have the global and canonical decomposition (2.8.5) in
MHW(E)sp. Therefore it is enough to construct the splitting ofj^Won Ji^2

 m

(2.8.5). Here note that any filtration of Hodge Modules is compatible with the
decomposition by strict supports. Let Sp^K, L(= Sp^W) and Wbe as in 2.2-3,
i.e. Wis the relative monodromy filtration of (Sp^X, L). Then the Q-part Kkt2

of Jtk^2 is a direct factor of Gr^Sp^K, because Sp^ is exact and induces the
identity on Perv (Q£o). We define the filtrations L, W, L on Sp^K ^
by

L=jJ*L, W=jJ*W
(2.11.3)
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Then W and W[Y] is the relative monodromy filtration of (Sp^K, L) and
(Sp^K, L) respectively, cf. 1.10. If (locally) E is trivial, i.e. E ~ X x C, Sp^K
corresponds to

can
(2.H.4) (ijjt^K<=>(t)tilK),

so that

Wt = Wh L'k c= Lk = Lk on \//t ^K
(2.H.5) _ „

Wi-i = W^ L'k = Lk c: Lk on (f)t iK.

Note that the functor 7^7* corresponds to the change of 0f>:Lso that Var becomes
bijective, cf. (2.11.2). Therefore we get in general:

n 11 fi\ w <- W <- W 7 ' c r f r - Fjz. 11.0; Wi-i <- Wi c- wi9 L,k cz L,k c L,k.

By 1.10, we have a canonical splitting of Lon Gr^'Gr^Sp^K. We shall see
that this induces the desired splitting by the canonical morphism:

(2.11.7) GrfGrf^SpiK —> GifGrrSpiK —. Kk > 2 ,

where these morphisms are induced by (2.11.6) and by the canonical
decomposition:

Here Kk^a is the underlying perverse sheaf of Jtk,a(a = 1,2), cf. (2.8.5), and Kk>2

= Grf Kfc)2(because N = 0 on Kk>2). Now the assertion is local, and we may
assume E = X x C and use (2.11.4—5). Then the \j/tsl-part of Kkt2is zero and
the 0u-part of the first morphism of (2.11.7) is the identity. Therefore we get
the assertion by applying 1.10 to the 0u-part, because the compatibility with the
Hodge filtration follows from the uniqueness of the splitting, cf. the proof of
(2.4.2).

Now we assume J?'eM.H(E*y n) and it is extended to a polarizable Hodge
Module Jt on E, with no subobject supported in £0. Locally we have E ~ X
x C and <&,i7*^' is identified with \l/tti^(— 1) = i/st,iJ*^'(— 1) by Var so that

f 0 if i < n
(2.11.9) Li&J^J?' = \

' * ImJV + (W_^,

by 1.9, where Won \j/ttlJt is shifted by n - 1, cf. [19, (5.1.6)]. Therefore we get
locally:
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if i < n

(2. 11. 10)

and it is enough to show the global polarizability of Grf j^Jt' for i > n. By
[19, (5.1.12)] we have the canonical decomposition:

(2.11.11) GifSpiK -7c*X/[l] 0X/'

with JC-, K"ePerv(Q£o), where n:E-+E0 is the projection and W is the
monodromy filtration shifted by n. Let S: K (x) K -> <4Q( — n) be a polariz-
ation of M. Then there is a pairing S- : K^ + £ (x) K^ + f -» a£0Q(l — n) such that
the restriction of GrPF(SpiS)°(id (x) AT1) to the first factor of (2.11.11) coincides
with n*S'i, where we have a change of sign as in [19, (5.2.2)]. If locally E ~ X
x C, Si coincides with Grw(p\l/t f l5)°(id (x) N1) by the canonical isomorphism:

Therefore it is a polarization on the primitive part:

PK'n^ - P Gr^^^K

where the last isomorphism comes from (2.11.10). Thus it is enough to show
the resulting isomorphism:

(2.11.12) PK;^(Grr+1J*K')(l)

is globally well-defined for i > n. Consider an exact sequence :

o _> 7T*pK;[i] _ > j,j*7r*pK;[i] ^ PX/(- i) — , o,

where p is characterized uniquely as the projection to the maximal quotient
supported in E0. On the other hand we have a morphism for i > n:

(2.11.13) 7;

induced by the composition:

where W is the relative monodromy filtration of (Sp^j^K, L) and W
= J*J*W. Here we used (2.11.6) and W{ c= Lf for i > n, cf. (2.11.9). Then
(2.11.13) is factored by p (because suppGrf^j^JC c £0) and we get a morphism:

(2.11.14) PKK- 1) — > Gr^iJ*^ for l ^ n-

If E ^ X x C (locally), p corresponds to
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PK't -^ 0

idtl N

Therefore the morphism (2.11.14) coincides with (2.11.12) by definition,
cf. (2.11.9-10). This completes the proof of 2.11.

2.12. Lemma0 With the notation 0/2.10, let

(2.12.1) 0 - > Jt' - » Ji - > Jf" - > 0

be an exact sequence in MHW(E*) such that ^eMHW(£*)ex and each Grf of
(2.12.1) has a splitting (e.g. ulfeMHW (£*)£). Then Jt1, .*"eMHW(£*)ejB and
we have a canonical (and functorial) exact sequence:

0 - > j*Jf' —* j*M - > j+Jt» — > 0

(2.12.2)

(resp. 0 - > jtJt' — > j}Jt — > ̂ Jt" - > 0).

Proof. By the functoriality of j^jl9 (2.12.2) is clear if Jt', Jt" eMHW(E*)ex.
Therefore the assertion is local and we may assume X smooth and E = X x C.
By 2.5 it is enough to verify (2.7.1-5) only for Jt" . By the splitting of Grf
(2.12.1) and the extension of Grf Jl, we have an extension of Grf (2.12.1) with
its splitting (cf. [19, (3.2.2), (5.1.7)]). Then we get (2.7.1) and (2.7.5). Let M,
M" be the underlying ^-Modules of j^Jt^ j^Ji" (i.e. M" is regular holonomic
and DR(M") ^j*K" (x) C). Then the above splitting implies the surjectivity of

FpVaGr?tt - > FpFaGrfM" for a < 0

where F, W on M" are the quotient filiations, and we use [19, (3.1.5)] for the
filtration V. In fact the image of this morphism in f^Gr^M" is

by the above splitting (because a < 0) and this contains clearly FpVaGr^. We
verify by induction on i the surjectivity of (*)(**) in the diagram:

0 - > F^M - > FV«WtM - > FpVGiM - > 0

|(**)i
0 > F^Wt^M" > FpVaWtM" FpV.GrYM" > 0

for a < 0. Therefore F, V, W are compatible on F<0M", and for (2.7.2-3) it is
enough to show
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or equivalently (FpVxM
ff)t = F^F^M" for a< 0 by [19, (3.2.2)], but this

follows from the surjectivity of (**) for i » 0. Finally (2.7.4) follows from 1.2,
using the above splitting, cf. the proof of 2.5.

(2.c) Direct Images

2ol3o Let X be a separated reduced complex analytic space, and Ul9 Vl9 pr7J as
in 2.1. By definition [19, (2.1.20)], an object (M, F) of M¥(@x) is a family of
filtered ^Fr-Modules {(MJ9 F)} with isomorphisms:

uu- p r / J ) , M J , F ^ M / , F on

for 1 c= J, such that GrFM7 are annihilated by the Ideal of Uj (in particular,
suppMjd Uj) and {uu} satisfy the compatibility conditions:

(2. 13. 1) UIK = uu o (pr/J)t HJJC on 7A(l/A I/ *)

for / c J d K. Here MF(^) is independent of the choice of Ui9 Vt by the same
argument as in 2.1. In particular, for (M, F)GMF(^X) and for any open subset
17 of X with a closed embedding U -> Fsuch that F smooth, there exists uniquely
a filtered ^F-Module, which represents (M, F) on FID U (called the local
representative of (M, F) associated to U-+V). Then we can define
CF(@X)9 KF(@X) and DF(@X) as usual, because for i : X -» Ya closed immersion
of complex manifolds, (M", F) is filtered acyclic iff so is i*(M\ F).

Let/: X -* 7 be a proper morphism of separated reduced complex analytic
spaces. Let X = Uj l / f , Y= Ujl/- be locally finite open coverings with closed
immersions: U{ -> Vi9 U- -> FJ' such that VJ, ̂  smooth, f(Ut) c [/• and /: 17 f

->[// is extended to f^V^V^ Let (M, F) = {(MI9 F)}eMF(^x) where
(M/9 F)eMF(^Fr). Assume GrFM7 are flabby. We define

(2.13.2) (/ /)!(M /,F):=DR-1o(/ /)!oD^R(M /,F)6CF(^)

(cf. [19, §2.2] for the definition of DR"1, DR), where ff = nie//£ and (/7), in the
right hand side is the topological direct image with proper supports. Then
(/j);(Ml5 F) belongs to CF(@V.) and is independent of the choice of fi9 because
(ifj)*(Ml9 F) is independent of/7 by [19, (3.2.6)]. Taking its zero extension to
Y9 we get

Then uu induces a morphism in

fl(uIJ):fl(

because DR(M/5 F) is isomorphic to a quotient complex of (pr/J)!DR(MJ, F) by
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u . W e define

to be the single complex associated to the double complex of Cech whose (p, q)
component is ©|/|-i = -p (f\(Ml9 F))q.

If Gr^Mj are not flabby, we take Godement's canonical flabby resolution
and truncate by T<2d( / ) + l5 where d(I) = min {dim Vt: iel}. Then we get a triple
complex and/^M, F) is defined to be the associated single complex. Because
this definition is functorial, we get the direct image:

Let /: X -> Y be as above. We define MFh(9x, Q)(resp. MFhVf(9X9 Q))
by the same way as above, where they are defined in [19, (5. 1.1)]
(resp. [19, (5.1.14)]) in the smooth case. By [3], an object of MFh(&x, Q) is
a pair of (M, F) = {(M/? F)}eMFh(@x) and KePerv(Q*) with isomorphisms:
DR(Mj) ~ C (x) K\Vl compatible with uu. We say that/JM, F) is strict, if its
any local representative is strict. If /^(M, F) is strict and if j^jf^.(M9 F)e

), we define:

JPJf+(M9 F, K) = (JtrJf+(M9 F), WftK)eMFh(SY, Q),

where DR(Jf jf*M) ~ C (x) p3?jf*K is induced by the direct image of the
isomorphism :

where jj: E7, -» Jf, cf . [3].

2.14. Theorem0 Let f: X -» Y be a projective morphism of separated reduced
complex analytic spaces, and Ji = ((M, F), K; W)eMHW(X)p. Then f+(M, F)
is strict and ^jf^:=(^jf^(M,F),p^jf^K; W[j]) belongs to MHW(Y)P,
where W is the induced filtration by f*, i.e. W^f^M, K) = Im^f^W^M, K)
-^<^jf*(M, K)). For a holomorphic function g on Y, put h = gf. If the
vanishing cycle functors along h are well-defined for Ji (cf. 2.3), they are well-
defined along g for ffl* f^Jt and we have the canonical isomorphisms in
MHW(Y)P:

Proof. Let Uh Vi9 I/;, V; and/,- be as in 2.13. We may assume Ut =f~l(Ui)
and/,: FJ-» V[ is projective (because /is projective). Therefore, if Ji is pure of
weight n (i.e. Gr^Jf = 0 for i + n)9f^(M9 F) is strict, and Jffsf^JfeMH(Y9 n
+ j)p by [19, (5.3.1)]. Moreover the vanishing cycle functors along h are well-
defined for Jt by definition so that \//hJf9 (f>htl^(eMtlW(X)p

9 and the weight
filtration of ^f^hJi (resp. ^ f^h^)^MWN (Y} is the monodromy
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filtration shifted by n — 1 + j (resp. n + j) and is given by the induced filtration
Jfjf*W[f\ by C19> (5.3.4)]. Therefore the assertion follows from the next two
propositions and [19, (3. 4. 13)] (because the filtration 3?jf^L on

h,i^ coincides with il/g^
jf*Wt- 1], ̂ ^f^W on

2,15. Proposition. Let f: X -*Y be a proper morphism of separated reduced
complex analytic spaces, and M = ((M, F), K\ W)EM¥hW(^x, Q), cf. 2.13.
Assume ftGr?(M,F) is strict, jejf^Grf(M,F)EM¥h(^Y) and Jfj f^Gr? J( e
MH(i; i +j)(p)for any i, j. Thenf*(M, F) is strict, 3fjf*(M, F)EMF^(^y) and
we have the weight spectral sequence in M¥h(@Y, Q):

(2.15.1) Ef'"'+ ' = ^/,Gif((M, F), K) =* ^"/*((M, F), X),

degenerating at E2, such that d^is a morphism of Hodge Modules (hence strict) and

(2.15.2) E2iti+s ^ GiY3?jf*((M, F), K)eMH(YJ + i)(p\

i.e. (Jfjf*(M, F, K), ^fJ'/*W[j])eMHW(F)(p), where W is the induced filtration
, K) as in 2. 14. Moreover (/JM, F), Dec/* W) is strict and

(M, F), Dec/,^ - pr/*(M, F),

Proof. The Q-part of (2.15.1-2) and ^'/^^((M, F), X), Jf*f+((M9 F), X)
are globally well-defined, if f+(M, F) is strict and 3fjf*(M, F)eMFh(^y).
Therefore the assertion is local and we may assume Y smooth, because the
assertion on the polarizability is trivial (cf. [19, (5.2.13)]). Then we have the
weight spectral sequence (2.15.1) in MGfc(#, Q) by [19, (5.2.17-21)]
(cf. [19, (5.1.1)] for the definition of MGh(#, Q)). By assumption Ef^^'e
M H ( Y , i + j ) ( p ) and dr are morphisms in MGfc(#, Q). Therefore dx is a
morphism in MH(^ i +;)(p) so that F2~U + J 'GMH(^ z + j)(p) and dr = 0 for r > 2
by [19, (5.1.14), (5.1.11)]. Then the isomorphism (2.15.2) in MGh(@, Q) implies
<^J7*(M, F, K)eMFh(^, Q)(i.e./:(:(M, F) is strict) and the filtration W of
3Fjf*(M, F, K) in MGfc(#, Q) associated to (2.15.1) is actually a filtration in
M¥h(@Y, Q), which gives the weight filtration of jejf*(M, F, K) and coincides
with j f s f t W o T L J>ifjf*(M,K). The last assertion follows from [19, (1.3.7)],
because /jGifXM, F) - Grf/:ic(M, F) is strict and Dec f^W is well-defined on
/*(M, F).

2.16. Proposition. Let f'.X-^Ybe a proper morphism of complex manifolds.
Put X = X xC,Y=YxC,f = fxid:X-»Y and M = ((M, F), X; W)e

jf, Q). Assume:

(2.16.1) (M, F) w quasi-unipotent and regular along X x {0},

(2.16.2) r/ze three filiations F, V, W on M are compatible,
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(2.16.3) the relative monodromy filtration W on (\//t(M9 F9 K), L) and
(0til(M, F, K), L) exists, cf. 1.1,

(2. 16.4) for ((Mk, F), Kk; W) = Gift^M, F, K), W), Gif(0u(M9 F, K), W),
f*GiY(Mk, F) is strict, jejf*Gi?(Mk, F, Kk)EMH(Y, i + j)(p) and the
induced filtration ^jf^W on ^jf^(Mk, Kk) is the monodromy
filtration shifted by k for any i, j, k.

Then we have:

(2.16.5) /^Gif (M, F ) , f t ( M , F) are strict on a neighborhood of Yx {0},

(2.16.6) Jf-'/jGrJ^M, F), jejf*(M, F) are quasi-unipotent and regular along
Yx {0},

(2.16.7) F, V, 3ejf*W on Jejf*M are compatible.

Moreover, for ((M', F), K' ; L, W) = (*l/t(M, F, K); L, W), (&fl(M, F, K); L, Pf)?

(2.16.8) Dec^WO on /JM';F,L) w well-defined [19, (1.3.7)] and
(Gif/^M', F), Dec^WO), (/JM'? F), Dec^WO) ^ ^wr,

(2.16.9) we have the limit weight spectral sequence in MHW(7)(p):

, F, K'), #*

degenerating at E2(it is canonically isomorphic to \j/t (or 0 f j l) of
(2.15.1) applied to M and f, forgetting W),

(2.16.10) tfjf*W\_j] is the relative monodromy filtration of(3fjf*(M\ F, K'),

(2.16.11) F, Jtfsf^W9 J^jf^L on ^f^M are compatible.

Proof. By definition (cf. 2.13), /^((M', F); L, W) is represented by a complex
such that F, L, W are compatible on each component, and /^ commutes with
Gr?, Gr£. Then by (2.16.4), Gr£Grf7*(M', F) is strict, and the filtration f+L
on Grf%(M', F) has the canonical splitting by 1.5 applied to ((M', F); W, L).
Here Gi{*w is abbreviated by Gif (same for L). Then by [19, (1.3.8)],
Dec(fy.W) on /^((M', F), L) is well-defined so that Dec commutes with Gr£.
Moreover (/^GrjftM', F), Dec(f^W)) are strict, (3t?jf*Grf((Mf, F), K'),
<?fjf* ^[</])6MHW(7)(p) and its weight filtration 3Fjf*W\_j~] is the monodromy
filtration shifted by j + k by (2.16.4) and 2.15. Consider a spectral sequence:

(2.16.12) FrM+j = -W^GrftM', F)5

=> ^"(/*(M'? F), Dec(/,»0)
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in MGW(J') the category of inductive systems of MG(#), cf. [19, (2. 1.1) (5. 1.1)].
It is compatible with the Q-part of (2.16.9) forgetting W, and E±k'k+j underlies
pf^Gr^M', F), Kr), jejf*Wtfi)€MHW(Y)(p). Because dl of (2.16.12)
preserves the filtration DGc(f^W), it underlies a morphism in MHW(7)(P) so that
E2k'k+sof (2.16.12) underlies an object of MHW(7)(p), whose weight filtration is
the monodromy filtration shifted by j+ k (because it holds for £f fc 'k+Jby the
above argument.) We show dr = 0 for r > 2 by induction on r. Assume
E~k>k+j ~ E~k'k+j for r > 2. Because dr preserves Dec(f^W), it underlies a
morphism in MHW(7)(P), hence it is enough to show Grwdr = Q; but this
follows from the following argument (cf. [24]):

Let u\ M1 -> M2 be a morphism of graded modules with the action of N
such that JV(M?) c M?_2, fAe/i u = 0, z/ AP: M^ -^ M£a_; wifA Pi>p2-

(For the proof, restrict w to the primitive part of M1.) Therefore we get an
isomorphism in MGW(^):

(2.16.13) E;k>k+J - Gr^^(/*(M', F),

which implies ^(/^(M', F), Dec(/5iIFPO)6MF^W(^y) (i.e. (/JM', F),
is strict), and the filtration Lof j e j ( f ^ ( M ' , F), Dec(f+W)) in MGW(^) associated
to the spectral sequence (2.16.12) is actually a filtration in MFftW(^y), which
coincides with jf^Lon J4fjf*M'. In particular, we get (2.16.8) and (2.16.11)
(cf. [19, (1.3.3)], because /„. W\_j] and DQc(f^W) induce the same filtration on
Jfff^M'. Moreover we get (2.16.10) by (2.16.13) (and by the above argument).
Because (2.16.12-13) are compatible with Q-structure (forgetting W), we get

', F),

and

(^j(U((M\ F), K'\

by the canonical splitting of L on Gr^ in 1.5. Therefore we get (2.16.9).
By [19, (3.3.17)], (2.16.5-6) follows from (2.16.8). Moreover

J*Giw(M\ F, V) and /JM; F, V) are strict on a neighborhood of Y x {0} so
that the filtration V on ^j/*Gr^M and 3?rf*M coincides with
2?jf*V. Therefore we get (2.16.7), using the spectral sequence:

(2.16.14) FrM+J ' = 3erf*GrY(M\ F, V) => JfJ'/*(M; F, V)

In fact, (2.16.14) degenerates at F2 (because GrF of (2.16.14) is isomorphic to
(2.16.12) forgetting Dec(f*W)) and ^ of (2.16.14) is strict on Yx {0} by
[19, (3.3.3-5)]. Hence F,V,W are compatible on 3?jf*M by the same
argument as above, because Fis trivial on 7x C*.
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(2.d) Mixed Hodge Modules

2017. Let f:X^X be an open immersion of separated reduced complex
analytic spaces, such that locally X\X = g~1(G)Ted for a locally defind
holomorphic function g. We say the direct image j% (resp. j,) is well-defined for
JfeMHW(X), if there exists an extension ^EMHW(X) of Jt, denoted by j^Ji
(resp. j;^), such that the following conditions are satisfied:

(2.17.1) for any holomorphic function on an open set U of X such that
g~1(Q)red= U\X, the vanishing cycle functors along g are well-
defined for M\v,

(2.17.2) K=j^K (resp. j,J<0, where K, X are the underlying perverse sheaves.

By 2.11, j^Ji (resp. ̂ Jf] is unique (if it exists).
We define a full subcategory MHM(X) of MHW(JT), called the category of

mixed Hodge Modules, as follows:
For J^eMHW(X), Jtf belongs to MHM(Z), iff, for any complex manifold

Y, and open subset U of X x Y, and any (finite) number of holomorphic
functions gl9 g2,...9 the following condition is satisfied inductively for r > 1:

(2.17.3) the vanishing cycle functors along gr are well-defined for Mr> and
the direct images (jr)*, (jr)i are well-defined for j~lJir,

where jr: U^'^O) -> U, M^ = (M ® Q?ldy])\v and Jtr = ̂ r_ i e^_1?

<t>gr-lti-*r-i>(Jr-i)J^-i-J(r-i and (jr_ ^j'^J/^ ^ for r > l .
Here Qf [dy] - ((Of, F), Qy[rfy] ; WO with Gr^ = Grf - 0 for i + dY

(=dim7), and for complex manifolds XlyX2 and Jii

MFh(@Xi, Q), we define MlmM2 = ((M, F ) , K ' , W ) by

(2.17.4) M = M1 SM2( = (pr1-1M1(x)pr2"1M2) (g)

Wk(M, K) = I,.,=fc(^(Ml5 XJ m Wj(M2, K2))

(The case Xt singular is reduced to this case, because this definition is compatible
with closed immersions.) Then the condition for MHM(X) is local, and for a
closed immersion i : X -> Y9 we have an equivalence of categories :

(2.17.5) i*:MHM(X)-^» MHMX(Y),

where MHMX(Y) is the full subcategory of MHM(F) consisting of the objects
supported in X. (In fact the condition (2.17.3) is invariant by closed
immersions.)
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By definition, MHMpO is stable by Tate twist (n), smooth pull-backs,
vanishing cycle functors and j+j~ *, 7,7" * for open immersions 7: 17 ->X such
that X\E7 is a locally principal divisor. (In fact, these functors are compatible
with [x] Qy [dy].) Here, for/: X -» Fa smooth morphism of complex manifolds
with dimX - dim Y= I and Jt = ((M, F), X; W/)£MFft(^F, Q), we define

) ,K ; WO by

(2.17.6) (M;F, WO =

(K, W)=f(K, Wl- /])[-/]

and put $elf*Jt = ( 3 t f ~ l f J { ) ( - I). (The singular case is reduced to this case
by definition.) Then we have a natural isomorphism:

if X = Fx Z and /= prx is smooth. For M = ((M, F), K; WOeMFfc(0jr, Q),
we define U8T(w) = ((M, F), K; W) by

(2.17.7) (M, K) = (M, X)(n), W{(J», X) = (Wi + 2n(M, K))(n)

FpM = (Fp_nM)(n),

where (n) = (x)z(27n)nZ, cf. [19, (2.0.2)]. By 2.6, MHM(X) is stable by the dual
functor D, because D commutes with IE] Q^ [dy] (up to Tate twist) and vanishing
cycle functors, and j*j~1,jj~1&ie exchanged by D.

We define the category of polarizable mixed Hodge Modules by

(2.17.8) MHM(X)P = MHM(JOnMHWtxy.

Then it is stable by Tate twist (n), dual functor D, vanishing cycle functors and
J'*./"1* J\J~^OT J as above. By 2.14, it is also stable by Jf-% for a projective
morphism /, because Jf jf^ commutes with IE Qf

2.18. Let j\X-^X be an open immersion of separated reduced complex
analytic spaces such that X\X is an analytic subset. We say that 7 is admissible
to J?EMHM(X), if Jt is extendable to X, i.e. there exists ^eMHW(J^) such
that j~lJ(~ M.

Let /: X -> Y be a morphism of separated reduced complex analytic
spaces. We say that / is projectively compactifiable, if there is a factorization /
= /°7 such that / is a composition of projective morphisms and 7 is an open
immersion whose complement X\X is a locally principal divisor. Two
projective compactifications/^/;0^ (i = 1, 2) are called (projectively) equivalent,
if there is a projective compactification f=f°j with a commutative diagram:
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such that nl9 n2are compositions of projective morphisms. We say a projective
compactification f=f°j is admissible to ^eMHM(JT), if so is j. If
MeMHM(X)p, this condition depends only on the equivalent class of projective
compactifications by 2.14 and 2.19 below. Here we use 2.11 and 3.21 to assure
j^M, jlJ^EMHM(X)p. In this case, we define

(2.18.1)
J

which depend only on the equivalence class of projective compactification of
/. (Note that a composition of projective morphisms is projective locally on the
image of the morphism. For the polarizability we can use Deligne's uniqueness
of the decomposition.)

2.19 Proposition. Let f: X -+Y be a morphism of separated reduced complex
analytic spaces. Then we have cohomological functors (jeZ):

'\ MHM(F) - > MHM(X)

compatible with

: Perv(Qy) — > Perv(Qx).

Proof. Assume first / is a closed immersion such that X = n gr l (0)redf°r

holomorphic functions g l 5 . . . ,g r on Y. Put Ut = {g{ + 0} and let

be natural inclusions. We define J f j f * J f (resp. 3FjfJ{) by the /h cohomology
of the complex in MHM(F):

© (h)\h1^ (resp. 0 ( j J + j ^ J f )
1/1 = -- |/| = .

whose component of degree 0 is (j^\ulJl:= J(. (Here we use the equivalence
(2.17.5).) We can easily check that this definition is compatible with
pJj?jf*K, p^jf'K on the underlying perverse sheaves by [3, (3.1.14)] (here K is
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represented by a complex of flabby sheaves), and independent of the choice of
(i.e. we have a natural isomorphism between the underlying perverse sheaf of

and p3?jf*K, and the composition of these isomorphisms for different
{0f} induces an isomorphism in MHM(X).) Therefore we get the assertion in
the closed immersion case, because p3tf?jf*K, p^fjflK are globally well-defined.

We now assume / has a factorization / = p ° i such that p is smooth and i is
a closed immersion. Then we define

where I is the relative dimension of p. By the same argument as above, it is
enough to show the independence of the factorization (in the above sense),
because any morphism has such a factorization locally on X. Let f = Pj° ij (j
= 1,2) be two factorization. We may assume the existence of a smooth
morphism p with a commutative diagram:

using the fiber product X1 x YX2. Therefore the assertion is reduced to the case
/ is a closed immersion (by replacing / with i2) and we have to show the
canonical isomorphism:

(2.19.1) &f*M - jfJ-li*jelp*J(

for a factorization / = p ° i as above. (We show the assertion only for *?Fjf*,
because the argument for 3?jf is similar.) Because the assertion is local, we
may assume / = 1 (by factorizing p) and X = {g1 = ••• = gd = 0}(in 7), X1 = Y
x A so that p = pr1 and Imz = Im/x {0}, where A is an open disc and

9\>.>">9d are holomorphic functions on Y. By definition, the both sides of
(2.19.1) are given by the cohomology of the complexes:

0m = -.((7/)iJf ^H CQiQM — - QM)
where jI :UI-^Y,UI = {Uiel gi = 0} , j : A * -» A and A* = A \ {0} . Therefore the
isomorphism (2.19.1) follows from the canonical exact sequence:

0 — **Qf0} — 7iQM — Q5[l] — * 0,

where i: {0} -» A.
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2.20, Corollary (of the proof of 2.19). Let i: X -*Y be a closed immersion of
separated reduced complex analytic spaces. Put j: U = Y\X -> Y. Then we have
natural functors for k e Z :

> MHM(7)

compatible with

W^r1, WjJ'1: Perv(Qy) - > Perv(Qr),

so that we have functorial long exact sequences :

— > jtf'jj-ijt — > jekj? — > i*<feki*Ji — > jek+1

compatible with the corresponding exact sequences in Perv(Qy), where fflkM
= Jt(if k = 0) and 0 (otherwise). If X is a locally principal divisor, Jf^'jj"1

= 3fkjJ~l=Q for fc^O and Jf0;,;"1, ^jj'1 coincide with JiJ~\j*j~lin
2.17.

Proof. The assertion is local, because the underlying exact sequences of (2.20.1)
in Perv(Qy) are globally well-defined. Therefore we may assume X = {g1 = •••
= 0d = 0}, and let jf: Uf -» Y be as in the proof of 2.18. Then we define
JjfkjJ~lJ? (resp. 3?kj*j~lJt) by the kth cohomology of the complexes:

1/1-1 = -- m - i = -

where the component of degree k is assumed to be zero for k > 0 (resp. k < 0),
i.e. / = $. We verify the well-definedness (as in the proof of 2.18). Then the
exact sequence (2.20.1) and the last assertion are clear.

Remark. With the notation of 2.19, j has only one equivalence class of
projective compactification, and 3^kj\j~l, 3?kj^j~l'm 2.19 are compatible with
the definition in (2.18.1) in the polarizable case (by the last assertion of 2.20 and
the independence of {gt} on the blow up of 7).

In the proof of the next proposition, we need essentially 3.21.

2.21. Proposition. Let f: X -» 7 be as in 2. 19. Assume f has a factorization f
= p°i such that p is smooth and i is a closed immersion. Then the functors
JfJ'/*? Jf-7'/1 in 2.18 preserve the polarizability.

Proof. By 3.21, the polarizability is preserved by smooth pull-
backs. Therefore we may assume /is a closed immersion, and let j: U -> Y be as
in 2.20. Then by the exact sequences (2.20.1), it is enough to show the
polarizability of jVkjlr

1J(, ^kjJ~lJl, because ^ekj^j~lJi = $e ~kjJ~lJt
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= 0 for fc > 0 and #e kJt = 0 for k =£ 0. Let n : 7-> Y be the blow-up of X, and
J: U -> Y the natural inclusion. Then

by the above remark, if /J"1^, /J'^eMRMfY)1'. But Jj
J^r1^GMHM(7) follows from 2.19 (and by the stability of JJ'1, J^"1) and
the polarizability from 2.11 and 3.21. Then the assertion follows from 2.14.

(2.e) Beilinson's Functor and its Applications

2.22. Proposition. Let i: X -+ Y be a closed immersion of separated reduced
analytic spaces such that X = g~l(tyred with a holomorphic function g defined on Y,
and ig\ Y-+ Yx S the immersion by graph, where S = C. Let j: U := Y\X-> Y and
jg'- {d "£ t} ~~* Y x 5 be the natural inclusions of their complements, where t is the
coordinate of S = C. We define the functor :

by

Then we have canonical and functorial exact sequences in MHM(7)(P):

(2.22.1) 0 - > ,̂1"* - * ̂  - > M - ' °

(2.22.2) 0 - > j.r1^ - ^ ̂  - » 0fl.i^ - ^ 0.

Proof. We have an exact sequence in MHM(r)(p):

(2.22.3) 0 — > (ig^J( -^ (jg\j^J—+ Jt—* 0

where ^f= ^TIE Qf [1]. Taking ^ f f l , we get (2.22.1). Let i0: Fx {0} -> 7
x S, JQ : Y x S* -> 7 x 5" and /: {g / t, g ^ 0} -* 7 x S be the natural inclusions,
where S* = 5\{0}. Then we have an exact sequence:

(2.22.4) 0 — > (i0)JJ- 1 Jf —+ JJ~ 1 Jt-^ (jg\j~
 1 ̂ — > 0

by applying (jg\j~* to

0 - > (i0)^ - > (Jo)Jo1^ - > ̂  - > 0.

Taking 0r>1of (2.22.3-4), we get an exact sequence

0 — MiJ"1^^ ^JJ"1^ — > 0,,i^ — ^0,

because ^1JI= 0 and 0f>10'0)* - id. We get
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by applying ^uto (2.22.4). Then the assertion follows from the canonical
isomorphism :

can: ^i/J"1^ ̂  ^iJJ'1^

Remark. The above proof of (2.22.2) was pointed out to me by
Kashiwara. He also remarked the exact sequences:

(2.22.5) 0 - > I,* - > Jt 0 ̂ jJ^Jt - > jJ^Jf - > 0

(2.22.6) 0 — > ^ — > 0,fl^r 0 UJ'1-^ — > ^,i^(- 1) — > 0.

By (2.22.5), Beilinson's functor 5^ used in [1] should correspond to t;gj^.

2.23. Corollary. For J?'EDb
xMHM(Y)(p\ we have a canonical (and functorial)

isomorphism in Db
xUHM(Y)(p) :

(2.23.1) <JT- <t>9^Jl\

so that we have an equivalence of categories :

(2.23.2) DbMHMx(Y)(p) -^ Db
xMHM(Y)(p}

where <f)9tlgives a quasi-inverse. Here Db means the derived category of bounded
complexes of an abelian category and Db

x is its full subcategory of the objects
whose cohomological supports are contained in X (cf. (2.11.5) for MHMX(Y)).

Proof. Because £g and (^are exact and induces the identity on MHMX(Y)(P\
we have the quasi-isomorphisms :

and we get (2.23.1), then (2.23.2) is clear.

Remark. The isomorphism: 09jl^
e ^ </>g,i^° obtained by applying 09jl to

(2.23.1) is the identity by the above proof (because we may assume
M'eDbMHMx(Y)(p\)

2.24 Corollary. For ^eMHM(F)(p), we have canonical isomorphisms:

(2.24.1) h.Jir1* * *9^> </>g,

so that fig^of the canonical morphisms:

are identified with can, Var. Therefore we have canonical isomorphisms in
Db

xMHM(Y)(p):

C(JiJ~lJ? - > J() ̂  C(can: if/gtlj( - > <t>g,i^)

C(M — > j * j ~ l J f ) * C(Var: 09jl^ — > ^,i^(- 1))
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so that i^i* M and i*v Jt \_\~\ are represented by these complexes, i.e. we have the
canonical exact sequences'.

0 — > i^Jtf-li*J( — > ^i^-^> faiJf — > i+Jr°i*Jt — > 0
(2.24.3) *

0 — > i^i-Ji — » <^lcjf -^»^lcjf(_ i) — > i^jtf*ilJ( — > 0

Proof. This follows from the proof of 2.19 and the commutative diagrams:

,
can var ar

Remark. If i : X - > 7 i s a closed immersion such that X = {g1 = ~-=gd

= 0}, Jjfjf*Jt(TQsp. fflf'Jt) is isomorphic to the cohomology of the single
complex associated to the n-ple complex obtained by iterating the functors

C(can: i//giil > 0gl5i) (resp. C(Var: <f>9itl > ̂ 9l,i(— !))[ — !])•

2.25. Lemma. Let f: X -» Y be a morphism of complex manifolds. Put d
= dim X — dim Y. Assume f is non-characteristic to the underlying filtered @Y~
Module (M, F) of ^eMHM(F). Then

tf*f*J( = 3e-*fJl = 0 for j ^d

ze underlying filtered @x-Modules of 2tfdf*Jt, ffl'^f'Jl are Isomorphic to
/*(M, F)[d], /!(M, F)[- d](c/. [19, (3.5.1)]).

Proof. By definition (and by [19, (3.5.4)]) we may assume / is a closed
immersion and X = {xt = ••• = xd = 0} (because the definition of /*,/! in
[19, (3.5. 1)] is compatible with DR.) If d = — 1, the assertion follows from
[19, (3.5.6)] (because it implies $X^M = 0 and N = 0 on 1/^,1^.) In general,
we can reduce to this case by factorizing i (cf. the remark of 2.24 and
[19, (3.5.4)]).

2.26. Proposition. Let f:X-*Y be as in 2.19. // JTeMHM(y) satisfies
Gr?Jf = Q for i>n (resp.i<n), we have Gr?j4?jf*J? = 0 for i-j>n
(resp. GiFjpJfJf = 0 for i -j < n). Let /: X -> Y be as in 2.18 such that
3?jf*Jt, Jtf'hJl can be defined by (2. 18. 1) for Jt e MHM(X)P. If Gr^J? = 0
for i > n (resp. i < n), we have Gr^^^Jf = 0fori-~j>n (resp. GT^^f^JK
= 0 for i-j <ri).

Proof. For the first assertion, we may assume / is a closed immersion such that
X = {gl = ••• = gd = 0}. Then by the remark of 2.24, we get the long exact
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sequence :

where /: {^x = ••• = gg_1 = 0} -» Y. Thus we may assume X = {g = 0} by
(2.24.3). Moreover we may assume G^ M = 0 for i / n (and ^ has a strict
support) by the weight spectral sequence associated to the cohomological functor
Jl?Jf* O'e^)- If supp^cijf, the assertion is trivial. If not, the assertion
follows from the surjectivity of

Gr^can: GT^i//gtlJf - > Gr^^Jf

and its injectivity for i > n. The assertion for ffl jfl follows from the dual
argument.

For the direct images, we may assume / is an open immersion whose
complement is a divisor defined by g, because the assertion for / projective is
clear by the weight spectral sequence (2.15.1). Then the assertion for f^M
follows from the proof of 2. 11 (cf. (2.11.10)), and the assertion for/,^ from the
duality.

2.2?0 Lemma. Let f: X -> Y be a smooth surjective morphism of separated
reduced complex analytic spaces such that the fibers off are connected and of
dimension d. Assume f is compactified to a projective morphism f: X -> Y such
that X\X is a locally principal divisor. Then, for J^eMHM(X)p extendable to
X, we have

(2.27.1) Jt~3edf*Jt' for J?'EMHM(Y)P

iff

(2.27.2) K ^f*K'[d] for K'ePerv(Qy),

where K is the underlying perverse sheaf of Ji.

Proof. Assume (2.27.2). We define

where j: X -*• X. Then the underlying perverse sheaf of Ji' is canonically
isomorphic to K' by the direct image of (2.27.2), because C(K'
^f*f*K')EDb

c(QY)>0. Therefore it is enough to show (2.27.2) induces an
isomorphism in MHM(X), and the assertion is local on Y. Hence we may
assume X, Y are closed subvarieties of Z = P" x U,U with U smooth, so that
i'°f= Pr2°*'5 where i: Jf -»Z, f: F-» 17. Let s: 7-» X be a section of/. Using
an automorphism of P" parametrized by Y (and changing i), we may assume
Ims = {p} x Y for peP", so that s is extended to a section s' of pr2 satisfying
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Ims' = {p} x [/. Taking hyperplanes of Pn whose intersection is {p}5 we can
define the natural functor

s;(s')*: DbMRM(Zy - > Db
lmsMHM(Z)p

with the natural morphism: id -> s^(s')*, by the same argument as in the proof of
2.19. For J?= i*./*^, we have

= 0 for j =£ - d

and we get a morphism in DbFh(@z)

(M5F) - >s;(A? s ,F)[-d]

compatible with the natural morphism in Db(Qz):

where (M, F), (Ms,, F) are the underlying filtered ^-Modules of Jl, 2tf-d(s'}*^
and K is represented by a flabby complex as in the proof of 2.19. Taking the
direct image J-f ~d(pr2)*, we get the canonical morphism in MHM(U), i.e. in
MFhW(3U9Q):

whose underlying morphism of perverse sheaves is identified with the identity on
i'+K' by (2.27.2). In fact, it preserves W, because P3?~df* is left exact and

~ds*Wi+dK,

cf. 2.15, where we use an argument similar to the proof of 2.25 for the last
assertion. Therefore we get the canonical isomorphism in MHM(Y):

inducing the identity on K' by (2.27.2), for any (local) sections of/, and this
implies the assertion.

(2.f) Extensions over Closed Subspaces

2.28. Proposition. With the notation of 2.22, let MHM(l/)(/} be the full
subcategory of MHM(U)(p) of the objects extendable to Y (in MHM(7){1?)), and
MHM(17, X)(£ the category whose objects are {JC, Ji", u, v} where J?'E
MHM(l/)(/), Jt''eMHM(X)(p>, u€Hom(\l/9tlJ{', Jt"), v£Hom(J£", \l/gtlJl'(- 1))
such that vu = N, and whose morphisms are the pairs ofmorphisms in MHM([/)(/),
MHM(X)(p) compatible with u, v. Then the functor
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(2.28. 1) MHM(y)(p) — » MHM(C7, X)<g

assigning {j~lJ£, $g^Jt, can, Var} to J? is an equivalence of categories.

Proof. We define an inverse functor a by

a.(M', Jt", u, v) = C(C(u)[- 1] — > JtJC)

where C(u)->y,M'[l] is induced by the composition:

Here we use 2.22, 2.24 and the constructionin 2.29 below to avoid the ambiguity
of the mapping cone in the derived category, i.e. a.(JC, Jt" , u, v) is defined by

C(C(u)[- 1] — » C(JV)[- 1]*—

in the notation of 2.29. We check that </>g>1 tn(Jf', Ji" , u, v) is canonically
isomorphic to

using the construction in 2.29 below and the commutative diagram for

9

I !
fX — » ^.if

I I

cf. the remark of 2.23. Put ^ = a(uT, ^", u, v). Then j"1^ = Jf' (hence
\l/g,iJ( = \l/g, i ̂ ') and ^ e MHM ( 7)(p)because jf?JJ( = 0 for ; ^ 0. For
(J(',\l/gtlJ(',id9N) and (^'? ^a^'(- 1)? JV, id), we have the canonical
isomorphisms

such that their 0g§1are identified with the identity on \l/gtlJff and ^Q^M\— 1) by
the above isomorphism (and by 2.24), and a and <^sla of the morphisms:



MIXED HODGE MODULES 267

, \l/9tlJ('9 id, N) -U (M\ Ji\ u, v)

are identified with the (natural) morphisms:

by the above isomorphisms. Therefore a is a right inverse. For Jt 'e
MHM(F)(P), we verify an isomorphism

by a similar argument. This shows a is a left inverse.

Remark. Another (but essentially equivalent) construction of an inverse functor
is pointed out by Kashiwara. He uses (2.22.6) and defines it by the single
complex associated to the double complex

-i
Then it is clearly a left inverse. (Problem: prove directly that it is a right
inverse.)

2.29. Let si be an abelian category, and (Xh Y t ; f h gt) a diagram of morphisms
in Cb(s/):

such that Xt = Yt = 0 for z| » 0. We define the cone C(Xh Yt'9fi9 g^ by

Z^:0^— ©19-

If fj = 9j (hence Xj = Xj+1) or ^ (resp./;) = id (hence YJ = Xj+1(resp. Xj)) for
some jeZ, we have the contraction (X-, Y-;f-, g-) by

(resp.
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such that fj=fj+1or fj+Jj (resp. g ' j - 1 = gfj-ior ^--i^-), and a canonical
morphism in Cb

(2.29.1) C(X't, 17;/;, 00 - > C(Xi9 Y { \ f i 9 gt)

defined by (id, id) or (id,/}) (resp. (gj9 id)): .AT,, (resp. Xj+l) - > ^ 0 ^J+1,
where its restriction to the other Xi9 Yt is the identity. Then (2.29.1) is a quasi-
isomorphism, if so is fj or gjf Similarly, if g-3 = //+i or fj+l(resp. g-) = id, we
have the contraction (X'i9 Y ^ f - , g-) by

/ „* V J~1 1^ V j+1 V \(resp. ---- > Y J _ ! < — ^. - > Y;.+ I< - JT^+2 — > • • • )

such that gfj = ^-+1or ^^-+1 (resp./j =/,. or/J+1/J.) and a morphism in

(2.29.2)

defined by ^,-+1 ->0 and id + id or id + #,- (rQSp.fj+1 + id): Yj ® Yj+1-> Yj
(resp. Y/+I) , which is a quasi-isomorphism, if so is fj+1 or ^-. If gj = id or fj
= id, the composition of (2.29.1) and (2.29.2) is the identity on the cone of the
contraction, and that of (2.29.2) and (2.29.1) is homotopic to the identity with
the homotopy defined by id: Yj^Xj+ior —id: Yj->Xj. Let/': YJ->Z and
g':Yj+1->Z be morphisms in Cb(j/) such that /'#/ = 0'//+i. By the
functoriality of the cone, we have the canonical morphisms in

We have similar morphisms for /': Z ̂ ^-+1and g':Z-»Xj such that g,/'
= fjg'- If -X"f = yf = 0 for i < 0 or i > a and gt are quasi-isomorphisms for 0 < i
< a, the cone C(Xi9 Yi'9fi9 gt) represents the mapping cone of

faffa-i •••9o1f0'.%o^Ya in Db(^) by definition.

2.30. Let i : Z - » 7 b e a closed immersion of separated reduced complex
analytic spaces, Cx the normal cone of X in Y, and j: 7*:= 7\Jf-> 1^;: Cf
:= C'xX^^ Cx ^e natural inclusions. We shall denote also by i the inclusion
X -> Cx . We have the deformation of 7 to Cx by



MIXED HODGE MODULES 269

with the projection p : 7-> S = Specan C [t] as is well-known, where J>x is the
Ideal of X in Y and j?~n = (9Y for n > 0. Then p'^OLd ^ Cx and p'1^*) ^ 7
x S* with S* = S\{0}, and 7 is an (affine) open subset (over 7) of the blow-up
of Y x S with center X x {0}, i.e. the complement of the proper transform of Y
x {0}. Therefore, an object of MHM(7x S*)(p)is extendable to Y, if it is
extendable to Yx S, by 2.19 and 3.21, and following Verdier, we can define the
specialization functor :

Spx: MHM(Y)(P)

by

Then Spx is exact, commutes with D and induces the identity on
MHM(X)(P). In particular, it induces

Spx: MHM(7*)(/} - > MHM(CJ)Jg,

where they are the full subcategories of the objects extendable to Y and Cx. We
shall also denote by Spx the induced functor:

Spx: DbMHM(Y)(p) - > DbMHM(Cx)
(p).

If the Ideal of X in Y is globally generated by holomorphic functions gl9...,gr9so
is the Ideal of X in Cx, and as in the proof of 2.19, we can define the functors
JJ~1JJ~\ i*i*> i*il in DbMHM(Y)(p) and DbMHM(Cx)

(p\ with the triangles:

(2.30.1) ., ^ _i +1

for J?€DbMHM(Y)(p\DbMHM(Causing the Cech covering associated to
{gt ^ 0} or {gr gt / 0}. Then Sp commutes with those functors and preserves
(2.30.1), because we have the commutative diagram

such that (*) (**) are quasi-isomorphisms. (In fact, we can reduce to the case
^eMHM(F), then the assertion is true for the underlying Q-complexes.) In
particular
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') = 0

for J?eDbMHM(Y)(p\ J?' e Db
xMHM(Y)(p\ because we can reduce to the case

c^'eMHM pf)(;7)and any resolution of JiJ~lJt, ^pxjj~
1^ mav be replaced by

its Cech complex (representing the functor jj'1 as above). Therefore we get

for Jt, Jl' as above, because we can replace Ji by i^i* J( (i.e. we have proved
essentially the adjunction for i^i*.) Thus we get the following proposition by
the same argument as in [23], because the assertion is local. In fact, the
polarizability of Grf ' Ji follows from 3.21 (if the strict support is not contained
in X) and from Spx = id on MHM(Jf) (otherwise).

2.31. Proposition. With the notation of 2.30, let MHM(F*, Cx)$ be the
category whose objects are ( J f ' , J ? " ; a ) where ^/6MHM(7*)(/), Jt" e
MHM(Cx)

(p}and a: SpxJ?' ~ j ~ l j t f " , and whose morphisms are the pairs of
morphisms in MHM(Y*)(f} and MHM(CX)(P) compatible with a. Then the
natural functor

(2.31.1) MHM(7)(P) - » MHM(7*, Cx)$

assigning (j~1M, SpxM; id) to J?eMHM(Y)(p)is an equivalence of categories.

232. Let X be a complex manifold and q : E -> X an analytic vector bundle of
rank r. Let q'\ Ev -> X be the dual bundle, and put E = E xxE

 v with the
natural projections p : E -> E v and p' : E -> E. Then we have a natural
holomorphic function g on E induced by the natural pairing on the fibers. Let
£*, £* be the complement of the zero section of q,p with the inclusion j: E*
-> E, j : E* -> E. For ^ e MHM(£)(p) we define

Then <^(^) is extendable to £ x E v, where £ v -»Jf is the natural
projectification (i.e. compactification) of q'9 because the closure of the graph of g
i n £ x x £ v x C i s analytic. For J(' eMHM(E*)(/} (i.e. extendable to E) we set

Then we have a natural morphism

w: 0l(^')-^0^')

induced by 3?QjiJg^3?Qj^Jl. If M' =j~^Ji, we have a factorization
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(2.32.1)

induced by Jf Qj\Jl' -> M -> jf°j^Jff
m Here Ker, Coker of w, t?, w are the pull-

backs by p' of Ker, Coker of the corresponding morphisms between
Jff^JiJt', Ji, ffl® j^Jt' \ in particular, they are supported in the zero section of p
or q

Conversely, for ^'eMHM(£*)<f} and ^"eMHM^-1(0)(£)(p) with a
commutative diagram

(2.32.2)

we have uniquely ^eMHM(£)(p)with isomorphisms

such that 00§1of tf* hJ~lJt-* Jt^> tf* j*j~l Jl is identified with (2.32.2),
cf. 2.28 and 2.24. Therefore the problem is when <^f is the pull-back of Me
MHM(£)(P), and we can restrict E to an open subset p ~ l ( U ) where U is an
open set of £v such that q'(U) = X and the complement of U in the natural
projectification of qf is analytic, because we are interested in the extension of
M1 to £, and not that of (p')~l^r to E. By 2.27, the problem is reduced to
that for the underlying perverse sheaves in the polarizable case, then the answer
is known by MacPherson, Gabber, Malgrange [17][23](cf. also Malgrange, B. :
Variations generalisee, Asterisque 130, p.237-239), if the underlying perverse
sheaves of ^,(^;), 0^(J^'), Jt" (on p ~ l ( U } ) are the local systems shifted by
dim U on the zero section U and the underlying perverse sheaf of Jt' is
topologically trivial along X. Therefore we get an analogue of a result of
MacPherson- Vilonen [17] as follows:

Let Y be a separated reduced analytic space, and X a Zariski locally closed
smooth analytic subset (i.e. X and dX = X\X are analytic) such that J^x/^x is
locally free, where J% *s the Ideal of X and Jx is its restriction to X. Then we
define

EX = Specany(0 S'G/*/</f))reded

,-thwhere Sl is the ith symmetric tensor, so that its restriction Ex to X is a vector
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bundle and Cx, Cx are closed subspaces of EX, Ex. Similarly Ex the dual
bundle of Ex is extended using the dual of J^/^/f 5 so that g is meromorphically
extended to the closure of Ex = Ex *XEX in (Ex x^£^) red and E£ -* X is
naturally compactified to a projective morphism E^ -» X. We define
MHM(Y\dX)ftX to be the full subcategory of MHM(7\5JSf)f (i.e. extendable to
Y) such that the underlying perverse sheaf K of its object satisfies:

(2.32.3) there is a Whitney stratification of suppSp^K compatible with
$pxK such that each stratum is conical (invariant by C*), Zariski
locally closed in Ex, and smooth over X.

In particular, SpxK is locally trivial along X. Let MHM(Y\X)ftX be the full
subcategory of MHM(Y\X)$ such that, for the underlying perverse sheaf K' of
its object, Sp;rK'ePerv(Qc*) is locally trivial along X in the sense of
(2.32.3)(i.e. p^jlK (or equivalently pJf%K) satisfies (2.32.3)). We define

MHMgs(EZ )f v = Hm MHMs(l/)f vx u x

where U runs over the open sets of Ex such that E^\U is analytic and q'(U)
= X, and MHMs(l/)|| is the full subcategory of MHM(C/)|| such that the
underlying perverse sheaf of its object is a local system shifted by dim U (s is for
smooth). By definition, 0{SpxJ( and &+SpxJ( belong to MHMffs(£^)|v. In
fact we take for U the complement of the union of the closure of T^EX for
S H ^ X , where {Sa} is the stratification in (2.32.3) and Ex is identified with
T$EX. Let MHM(Y\X; EX)^X;E^- be the category whose objects are
(J('9je"9u,v) where J('eMHM(Y\X)$tX, <JTeMHMgs(£x

v)|v5 u: 0,Spx^'
-> Ji" and v: J£" -> 0.j,Spx^' are morphisms in MHMgs(£^)|v factorizing the
natural morphism 0,SpxJ(' -»cP^Sp^^', such that the monodromy of the
underlying local system of Jt" restricted to each fiber of U -> X is described by
u,v and the "variation" of Gabber, Malgrange, cf. [17]. (Note that the last
condition implies Jt" can be defined over 17 as above (depending only on Jt'}
using the intermediate direct image.) Then the natural functor induces an
equivalence of categories:

(2.32.4) MHM(Y\dXyY,x-»MHM(Y\Xi Ex)^.

In fact the assertion is already proved forgetting the extendability condition
(because we may assume EX\U is a divisor by the same argument as
above.) Then we can use the following facts:

i) For J?'EMHM(Y\X)p
Y,J{"eMHM(Cx)

p
Cx with an isomorphism

Spf J?'\c* — <^"\c* 5 ^" has an extension to Cx such that the isomorphism is
extended to C| (for example, use Jf Oj !j~

1 for the inclusions of C$, Cx, C| into
Cx). Therefore there exists ^eMHM(F)17 such that Jf\Y\x — *^', ^Px^\v-rx
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ii) By the construction in the proof, 2.28 holds adding the extendability
condition to Yfor a Zariski open immersion;: Y-> Ysuch that g is extended to
Y. (For example, apply the functor $F°jl to each component in the definition of
the inverse functor, and take the zeroth cohomology.) We apply it to the
inclusion

where p: Ex -» Ex , and to the pull-back of the Modules on (Ex x XE£ )redby the
projection from the closure of the graph of g.
iii) In 2.27, the addertion holds adding the extendability condition; i.e. for/: X
-> Fa projective morphism extending/so that/"1 (7) = X, Ji' is extendable to
7ifT Ji is extendable to X. We apply this to the projection from the closure of
the graph of g in (Ex ><x£|)red x P1onto Ex.

(2.g) Kodaira Vanishing

2.33. Proposition. Let Z be a (reduced) irreducible projective variety with an
ample invertible sheaf L, and i: Z -> X = Pr the embedding by Lm for some positive
integer m. Then for Ji = ((M, F), X; W)eMHMz(X)p (or MHZ(X, n)p),
Gr£DRx(M, F) (cf. [19, §2.2] where DRX is denoted by DR) belongs to Db((9z)
and it is independent of the embedding of Z in a complex manifold. Moreover
we have the Kodaira vanishing'.

Hl(Z, Gr£DRx(M, F) (g) L) = 0 for i > 0

Hl(Z, Gr£DR*(M, F) (x) L~l) = 0 for i < 0.

Proof. Because (M, F) is regular and quasi-unipotent along any (locally
defined) g, Gr^M is an 0z-Module by [19, (3.2.6)] and we get the first assertion,
because GrFDR^(M, F) is uniquely determined by GrFM. We verify the
independence of embedding using the cartesian product as in 2.1, because the
direct image is compatible with DR and GrF (cf. [19, §2.3]). Then we may
assume m>2 for the Kodaira vanishing. Here we may assume also
J?EMHZ(X, n)p, because GrFDR is exact. It is enough to show the second
assertion, because Ji is self dual up to a Tate twist and the dual in
Db

cohF
f((9x, Diff) is compatible with the dual in Db

coh((9x) by the functor GrF,
cf. [19, §2.4].

Let Y be a generic hyperplane of X, strictly non-characteristic to (M, F),
and s a section of T(Z, Lm)(- Hom(L~m, 0Z)) such that s~1(Q)= YflZ. Then
we have a finite covering

n:Z= Specanz (© 0 <t<m^~0 —>Z
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ramified along 7nZ, cf. the remark below. Let;: U = X\Y^> X be the natural
inclusion. Set

M = (M, F, K) = Coker Mf — * n^n*J()eMRz(X9 n)p

L = Coker (0Z — » TT* 0$ e M (0Z)

so that L"1 is a direct factor of L, where ii*M can be defined as in 2.19 and
2.25 (because n is non-characteristic) or n^n*^ can be regarded as the unique
extension to Z of its restriction to the smooth open set V of Z where n is
etale. Any way Jt is a direct factor of u^n*Jt and we have a natural injection
^ -» TU^ 7c* ^ (induced by its restriction to U'). As for j*j~lJ£, we have an
exact sequence

(2.33.1) 0— >Jt-+jJ-lJt~ + J f ' l i l J ( — * Q

so that Jf 1r^eMHZny(F, n+ l)p by the non-charactericity, where i: Y-*X,
cf. 2.11 and [19, (3.5.9)]. By [19, (5.3.1)] (and 2.15), RT(X9 DRX(M, F)) is strict,
i.e. Hl(Z, Gr^DR^M) is a sub-quotient of Hl(Z, DR^M) ^ Hl(Z, K (g> C), and
we have

H'(Z, K) = H^ZJJ^K) = Hl(Z, JJ^K)

by the non-charactericity. Therefore they are zero for i ^ 0 by the weak
Lefschetz theorem, and the assertion is reduced to the isomorphism:

(2.33.2) Gr£M ^ Gr£M(* Y) <g) L

by induction on dimZ using (2.33.1). For zeZ, we have an arbitrary small
neighborhood Uz of z in X such that the restriction of n to Uz n Z is uniquely
extended (up to a unique isomorphism) to a covering over t/z ramified along
YnUz. In fact it is clear if z^ Y: otherwise we use a local topological
trivialization : (X, Z) ^ (7, FflZ) x D2 near z and take a contractible neighbor-
hood of z in Fsuch that the contraction is compatible with FnZ. Therefore we
may assume n is extended to n: X -> X ramified cyclically over Y (locally, i.e. by
restricting X)9 and it is enough to show the canonical isomorphism

(M, F)\V*((M, F)®l)\v

is extended (uniquely) to the isomorphism of filtered right ^

(2.33.3) (M, F) * (Af(* 7), F) (x) L,

where L denotes also Coker (Gx -> n^.(9^). Here the ^-Module structure of the
right hand side is given by
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M(* Y) <g)ff lxLs M(* 7) (x)&x(*r)L(* 7),

where (* 7) denotes the localization along Y and L(* Y) is a regular holonomic
left ^x-Module. Then both sides of (2.33.3) are regular holonomic Modules
such that the action of a local equation t of Y is bijective. Therefore we get
(2.33.3) forgetting F by [14] [18]. As for F, we consider the filtration V along
Y. We have

Gr^M(*7) = 0 for m<£Z,

Gr£L(*7) - 0 for am£Z or aeZ

F>0L(*7) = L

where V is decreasing on left Modules so that tdt — a is nilpotent on
Gr^L(*7). More precisely we have (locally) a unique decomposition

/TN r
~" \DO<i<m-L'i

such that Gr^L; = 0 for a - i/m£Z and Lf = F'/mL;(* 7). Then

Gtf(M (* 7) (x) L£) = (Gr^ M(* 7)) ® L£ = 0

for a + i/m $ Z and

FPFfe_,/m(M(* 7) (x) LJ - (FPFfcM(* 7)) (x) L£

for fceZ. Therefore (M(*7), F) (x) L^ (and hence (M(*7), F) ® L) is regular
and quasi-unipotent along 7 (because so is (M(*7)? F) and [19, (3.2.3.2)] is
satisfied), and we get (2.33.3) by [19, (3.2.2)] because Gr£(M(* 7) (x) Lt) = 0).

2.34. Remarks. 1) If Z is smooth and Jf = Qj[dz~], the above vanishing is
expressed by

Hq(Z, QP
Z®L) = Q for p + q > dimZ

Hq(Z, Qp
z (x) L'1) = 0 for p + q < dimZ,

i.e. the Kodaira-Nakano vanishing. If M = tf ^(QfM) with f:Y-+Z
projective such that 7 smooth, it implies (for p = — dim 7):

H'(Z, £J'/*<% <g) L) = 0 for z > 0,

i.e. the Ohsawa-Kollar vanishing. In fact, for a projective morphism of complex
manifolds f:X^Y and for Jf = (M, F, K)eMHz(X)p with p0 = min
{peZ: Gr^M ^ 0}, we have

^0(/*(M, F)) = Rf*FpoM in
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by the strictness of f#(M, F)[19, (5.3.1)]. Moreover for the canonical
decomposition :

such that Jt{eMHz,(Y9 n+j)p (where Z' = f(Z) is assumed irreducible) and
suppJ?{ £ Z', we have FPOM{ = 0, where (M{9 F) is the underlying filtered <&-
Module. (In fact, this follows from the commutativity of /„. and i/r, 0 and the
surjectivity of

can: \l/g^Jf — > </>g,i<^

for g~l(Q)^>Z.) This implies some conjecture by Kollar, combined with the
results in §3.

2) It was first remarked by Ramanujan that the Kodaira vanishing can be
reduced to the weak Lefschetz theorem using Hodge structures. His idea was
further developed by Guillen-Navarro-Puerta, Steenbrink, Esnault-Viehweg,
etc. For example, we can deduce the result of Guillen-Navarro-Puerta as
follows.

Let Z be as in 2.33 and a: X. -» Z be a simplicial (or cubic) resolution of Z,
such that each Xi9 is smooth, and projective over Z. Then the filtered de Rham
complex (Q& F) over Cz is defined by Ra^.(QX9 F), which has a filtration PFsuch
that Gr^AQz, F) ̂  R(a^(QXi, F)[ - i\. We can regard (Qz, F) as an object of
Db

holF(Ox, Difi). Then DR"1^, F) is strict and its jth cohomology underlies an
object of MHW(JT)P with the weight filtration induced by tf ^'DR"1 W[j],
because DR~1Gr^r

I-(fi^, F) is strict and its jih cohomology underlies a
polarizable Hodge Module of weight j — i by [19, (5.3.1)], so that the weight
spectral sequence degenerates at E2 as in the proof of 2.15. (Note that this
implies Du Bois' well-definedness of (Q'Z9 F) combined with some result on
simplicial (or cubic) resolution.) In particular

(2.34.1) tf JGrp
FQ0

z = 0 for ; < p or j > dim Z,

because p3fjCz = Q for j > dim Z and (Q'z, F) ^ DRoDR"1^, F), cf.[19,
§2.2]. (Here the assertion for; < p is clear by definition.) By the same reason,
2.33 implies

(2.34.2) Hj(Z, Grp
FQz (g) L) = 0 for j > dim Z.

3) Let X be a separated reduced complex analytic space, and L an
invertible sheaf on X with seF(X, L~m) = Hom(Lm, Gx) for m > 2 such that

1^) is dense in X. Then we have a finite morphism

n: X' = Speca%

by the isomorphism:
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®^i<mLl ^ ( e^0L't<)/Ini(r - 5).

Then 00<i<m^ = n*®x' nas a natural regular singular connection induced by
that on the smooth part of X' (or on a desingularization of X'). Let X' be the
normalization of X', ft: X' -»X the natural morphism, and U the intersection of
the smooth part of X and X\s~*$\ Then Ll\v(0 <i<m) arc the eigenspaces
of the transformation group (hence the decomposition is compatible with the
connection) and n*@x> is Deligne's canonical extension of ©o<;<m^ l lc /> cf-
[11]. In fact, the last fact is well-known to specialists (and easy to check), if X
is smooth and s"1^) is a normal crossing divisor, and we can reduce to this case
by Hironaka's desingularization of (X, U). (We can also use the functions of
strict Nilsson class.)

4) For X = P" and (M, F, K\ W)zMHW(XY, we have

Hj(X, Grp
FM (x) (Qn

xr
l) = 0 for j > 0.

This holds also, if each Ql
x has a filtration whose graduations are negative line

bundles for i > 0 (and if X is smooth projective).

§3. Mixed Hodge Modules of Normal Crossing Type

(3.a) Constant Case

3.1. Let X be a polydisc An with coordinates (xl9...,xj. Put Dt = {x{ = 0}, DI

= r\ieIDt. Let Perv(Cx)wc be the category of perverse sheaves on X whose
characteristic varieties are contained in the union of the conormal bundles of
Dj. Put :

n = {!,•••,«}, v = {ten: vt ^ 0} fir ve(C/Z)".

We define an abelian category P(n) as follows:
The objects of P(ri) are finite dimensional C-vector spaces El indexed by

ve(C/Z)n and / c n\v such that E} = 0 except for a finite number of (v, /), and
they are endowed with morphisms:

can,-: EJ— >EJ U { 1 . } for z '^ /Uv

Var , :EJ— >EJU i } for iel

Nt :£}—>£} for any i

satisfying can^Var, = Nt(iel)9 Varf°canf = N t ( i ^ I \ j v ) and Ai°Bj = BfAt (i / j)
for A, B = can, Var or N such that At°Bj and BfA{ are well-defined (e.g. IE I if
A = Var, etc.) ; in particular the compositions of cani5 Var,-, Nfc are independent
of the order if they are well-defined. The morphisms of P(n) are the morphisms
of the vector spaces : E} -> F}, compatible with canf, Var^ and AT..
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By inductive use of Deligne's description of the monodromical perverse
sheaves (see, for example, [23]) we have an equivalence of categories;

(3.1.1) ?P:Perv(CAc^PW

such that {E}} = ¥»(&) is denned by
Ev = yn . . . PH., ̂  for f e Perv(C Ac,
Wl\ = ̂ ;[ - 1] i f i £ / and <££[- 1] otherwise,

where can£, Vari5 Nf are associated to the functors \l/Xi, 0Xiil. Here ^
= Ker(TJjS — e(a))(same for 0) with 7}= TjtS°TjtU the Jordan decomposition of
the monodromy around D£ and e(a) = exp(27«'a). In this normal crossing case,
we can easily verify that W" is independent of the order of the coordinates.

We define the dual functor D on P(n) by:

ean£ = B(Var J, Varf = - D(can^)

for {£}; canf, Var^, Nt} := D({£j; can^, Vari5 Nj), where D denotes also the dual
functor in the category of finite dimensional vector spaces. Then we have

(3.1.2) !PB^D!r

by [19, (5.2.3)]. Let Perv(C^)ncgu be the full subcategory of Perv(Cj)nc consisting
of the quasi-unipotent normal crossing perverse sheaves ; i.e. we have

(3.1.3) ¥n

where {£J}eP(n)flll iff E} = 0 for

3=2. With the notation as above, put @x = @Xi0, (9X = 0Xt0. We define
M(@x\nc by the full subcategory of M(@x), the category of ^^-modules, such that
MEM(@x)rnc iff M is generated over (9X by Ma for aeC" and
dimc 0 -igReaig0^a < + °o, where

Ma = n;(U;Ker((x^ - utf: M

If MeM(@x)rnc, we have

(3.2.1) © Ma c M c= []Ma.

Note that M e M(@x)rnc iff M is regular holonomic and its characteristic variety
has normal crossings as in 3.1. If we choose a subset A of C such that the
composition : A — » C -> C/Z is bijective, and — leA, we have an equivalence of
categories :

(3.2.2) n
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such that {£}} - ¥%(M) is defined by

E} = M«+l1 for ote A such that v = a(mod Zn)

where eant-, Var£, Nt are given by db xb x^f - af, and (!/)_,-= 1 if jel and 0
otherwise. Here the inverse functor is given by using the inclusion (3.2.1), where
Ma for %£(A\j{Q})n is determined by

x £ :M a -^>M a~ l 1 if a^-N
(3.2.3)

(5 t .:M
a^>Ma+l1 if a£e(y4u{0}\{- 1}) + N.

Because Perv(C_Y)nc is independent of the radius of A, we have the natural functor
DR: M(^)rnc -> Perv(Cx)nc such that ^ = ^"°DR. Then we have JPfo'D
= D°^)5 DR°D = D°DR by an argument similar to the proof of [19,
3.4.2]. Let M(@x)rncqu be the full subcategory of M(@x)rnc such that
MEM(@x)rncqu iff Ma - 0 for a£Q"(i.e. <F"®(M)EP(n)qu). In this case, the above
assertion follows from [loc. cit], because the filtration V(i} along Dt is given by

From now on we restrict to the quasi-unipotent case.

3.3. Theorem. For ^"ePerv(C^M, m e N n ( m / 0 ) and g = xm(:= Yl*Tl), set
{^;cani5 Var,, Nt} = ^n(&\ m = {ienim^O}, £J[N] = E} (g) C[N], (AT,,
- ^*^V)j = Ilfej(^i ~ ro.-N), Nj = Oiej^i (same for canj5 Varj) a«J rf^we {£};

can., Var£, ^}eP(n + 1)^ oj follows:

(3.3.1) ^-} _ _
Cokerl (UV* m*"h«* "'"*>* , Var,™ j .f

V can/nm , AT /

for v = (v0 , - - - ,vn)eN" + 1, / c= nu{0}\v, where the above morphisms are (injective)
endomorphisms of

respectively, with v' = ( v l 9 ~ - , v n ) and I' = /\{0}. 77ze morphisms cani5 e/c.
defined by the morphisms of mapping cones:

f [id, N{ - mt AT] if i e m\(J U v), 0 <£ /

r/id, 0 \(Ni-miN,-miVaiInm

can,- =

.. f , if i em\ ( /uv ) ,0€ /
0, can f / , \0,



280 MORIHIKO SAITO

[can,, can,] if i en \ (ml lvU/)

\ i AV* 11 •<•• . f\if i = 0,

id] if f e / D m ,

,

[Var£, VarJ if fe/ ' \m

J] if i = 0,

/, - m,AT, AT, - m,AT] if i^= 0
/, JV] if i = 0.

Then Wg^ ePerv(CXxS)nC€M, 0«d we /zaue a functorial isomorphism in P(n + 1)€M:

(3.3.2) ^"+1(^JF) ^ {£j; can,,

^ is Deligne's nearby cycle functor (i.e.
Verdier's specialization in the codimension one case, cf. [23]); in particular,

= {£}: J^0? v0 = a}5 !P"(^^) s {£j: 1 30} w P(4

By 3.1.2, the assertion is reduced to the following

3.4 Theorem. For MeM(@x}rncqu and g = xm as above, M:= (ig)+M( ^ M[3J)
has the filtration V along X x {0} indexed by Q such that Va M is generated over
@x by

Mv (x) 1 with mtoc > vt- if a < 0

Mv (x) 3/ w/r/z mt-(a — j) > vt in general,

where veQ" and ;eN. For {£}; can,, Var£, Nj = !P£(Af) fl/irf {£J; canf, Var£,
JVjeP(w + l)^u a^ defined in 3.3, we /zm;e functorial isomorphisms:

(3.4.1) DR(^M) s ^DR(M) in Perv(CXxS)^u

(3.4.2) W^l(¥gM] s {£}; can,, Var^ Nj i/i P(n + 1)^

gM:= GrvM (x) Gr^^xS.

. We denote by Fthe filtration on M defined as above. The action of
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^XxS on M = M[<3J is given by:

(u (g) dj
t)a = ua (g) 3£ (M (g) d/)^ = w<^ (x) d{ - u^

(3.4.3)
(u (x) 3/)t = w# (x) d; + jw (x) dj

t % (w (x) 5/)flf = u

for a e $x, u e M, where t is the coordinate of S c C and we use the coordinates
(t — g, x l 9 - - ' , x n ) of X x S to get the isomorphism M ^ M[<3J. In particular, we
have

(3.4.4) (u (x) aflx^ = (u (g) 3/)(Nf + v£ - m^s - j)) for weM v ,

where s - tdt and (u (x) 5/)Arf - w(x^^ - vf) (x) 5/ if weMv . This implies that s
- a is nilpotent on Gr^M and FaM are F0^xS-sub-Modules. Thus we get the
first assertion, because (VaM)t = F^M^ < 0) and the coherence of FaM follow
from (3.2.3) and Mvg = Mv~m for veQn such that vt < 0 for iem. We define the
morphisms

for ve (Qn[ - 1, 0))" + 1, / cnu{0}\v (where v = {iGnu{0}: v£ ̂  - 1}) by

^(W) = Uxk(V) X^ ®l if(3.4.6)

v4Kw, i?) = Mxfc(v)x7"nir (g) 5f + t; (g) 1 if Oe/ ,

for we£y^, (M, u)6(EJ^ £j:), where £J is identified with MJ:= M^ + lj c M, and

jue(Qn[ - 1, 0))n, k(v)eN" + 1^ are defined by

(3.4.7) n = v' v0m + fc(v).

In particular, \JL = v' and k(v) = m (i.e. uxk(v} x^m = ugx^m) if 0 e /. Here the
action of N on Gr^M is induced by s — a, and */:= Y\jeJ xjf In fact, (3.4.7)
implies

tt + (l/\ J* - kMi + (1/nJi - ^v0 = v£ + (U- < 0

(where the equality holds iff IE I), i.e. ImA] c FVo+(ll)oM. Then Im^J
c=(^M)} and the well-definedness of ^1} (i.e. (3.4.6) induces C[A/>linear
morphisms from the cokernels in (3.3.1)) follow from:

l)(Xidt -vt- (I,),) = (uxk^x^m (g) 1)(JV£ - mt(s - v0))

v£ - (17)£) = (t; (g) 1)(JV£ - m,s)

- ™*(* ~ Vo))/nm = (^^ <8> l)3/nHi

(i;
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(Here, we use [JVy, xk] = [NJ9 s] = 0 and vt = — 1 for it I.) In particular, we get
¥gMeM(@XxS)rncqu by Im A} <=L (V gM)} and the first assertion. We can verify
similarly that the morphisms di9 xt and xtdt — vt on Im A} are expressed by the
second term in the definition of cani3 Var^ and Nt in 3.3, where x0 = t. Here
note that E} = 0 (and (¥gM}} = 0) if /nm = 0. Because the morphisms in
(3.3.1) are injective, the first term of can,-, etc. are uniquely determined by the
commutativity (and the first term), and the functors {£/}[-»{£}} are
exact. Therefore the assertion is reduced to the case M simple using a filtration
on M, and follows from the next propositon, because the assertion is clear by
[19, 3.2.6] if supp M c 0 ~ *(()), and we may assume suppM = (^T, 0) by [19,
3.2.4].

3.5. Proposition. With the notation as in 3.4, assume M is simple, i.e. M^ = C
for one (//, J) and 0 otherwise (M will be denoted by M (//, J)), and supp M = (X,
0), i.e. J = (/). Then we have a free resolution of M by a Koszul complex :

K = K(@x • (x A - nj • (i e ft), dt • (i t ft)) W

where (xidi — fa) • and dt • are left multiplications. Let F be a filtration on K, M
such that

where mj = nl/jl(n —j)l Then (K, F) -» (M, F) is a filtered quasi-isomorphism so
that (M, F) is Cohen- Macaulay, D(M(/j, (/)), F) ^ (M( — ̂ u, 0), F [ — ri]) (where //,
— fjiE(Q/Z)n)9 (M, F) is quasi-unipotent and regular along g [19, 3.2.1] and the
morphisms A} in the proof of 3.4 are isomorphisms. Furthermore, put /(a)
= {z'em: /^ — fc'(a)f = mt-a} w/zer^ fc'(a)eNm satisfies:

fr - fc'(a)i < m^a < ̂  - fc'(«)i + 1,

(3.5.1) FpFaM = (MJxfc'(a) g) l)Fp(^x[s]) /or a < 0,

(3.5.2) (Fp GrlM}dt = Fp+1 Gra
F+ x M /or a > - 1 ,

(3.5.3) AT': GrrGr^(M, F) -^> Gr^Gr^(M, F[ - f]) /or i > 0,

(3.5.4) PGrf Gra
F (M, F) = 0 (Mfo - (fc'(a) + l/(a)) - ma), / U J), F)

/c/(a), |/ |=i+l

for a < 0, i > 0,

(3.5.5) 5t: PGr^! Gr^^M, F) -^> FGr^Gr^M, F[ - 1]) for i > 0,

where Fp(@x[s]) = ^Fp_i<2ixs\ Wis the monodromy filtration on Gr^M and P is
the primitive part.
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Proof . The first assertion is clear, because J>f lGrFK = 0 for i ^ 0 (hence (K, F)
is strict) and Jt?°(K, F) ^ (M, F) by definition. Then we may assume m = n,
because the vanishing cycle functors are compatible with external products, i.e.
(^(M15 F)) H (M2, F) = Vg((Ml9 F) El (M2, F)). (Note that (M, F) and (K, F)
are the external products of objects on A.) Then it is enough to show (3.5.1-2)
and the filtered isomorphism for a < 0 :

(3.5.6) 0 ((MS*fc'(a)xI(a)U (x) 1)(5 - a)', F) ̂  (Gr^M, F))J
0<i<|/|

for v, / such that / c /(a), v = /^ — (fc'(a) + l/(a)) — ma, where F is by the order of
s — a on the left hand side. In fact, (3.5.5) and (3.5.3) for a > 0 follow from
(3.5.2) and (3.5.3) for a < 0, because (3.5.3) implies the strictness of

M, F), W)^(Giv
a(M, F[ - 1], W[2])

by Lefschetz decomposition and [7, (1.6.5)], and (3.5.2) and [19, (5.1.12)] imply

(Gr£(M, F), WO^ImfAMGr^M, F[l]), W\_- 1]) -^(Gr^M, F),

By (3.5.1) and ImA} c (WgM}} in the proof of 3.4, we have the compatibility of
the filtration F with the decomposition: Gr^M c |~]v(Gr^M)v, i.e. meFpGr^M
iff its component in (Gr^M)v belongs to FpGr^M for any veQ" (because the
filtration F of Gr^M is generated by Gr^(MJxfe'(a) (x) 1) over (^[s],
F)); therefore the right hand side of (3.5.6) has a meaning. Moreover, by (3.5.1),
we have for a < 0, v e Qn :

x, : (Gra
F(M, F))v ^> (Gra

F(M, F)r lj if v, < 0

Therefore (3.5.3) for a < 0 and (3.5.4) follow from (3.5.6), because (Gr^M)J = 0
for other v, / than in (3.5.6) (in fact, ImA} c (YgM)}9 cf. the proof of 3.4). Here
note that the morphism in (3.5.6) coincides with A} (where a, v, fc'(a), / and I (a)
correspond to v0, v', fe(v) — l/(a), /Dm and m\v respectively), because Nt = 0 on
MS and J = cj).

We show (3.5.6) is also reduced to (3.5.1). In fact the strict surjectivity of
(3.5.6) follows from (3.5.1) by the above argument, because we have Nt = — mtN
on ImA} by Nt = Q on MS, cf. 3.3-4. Therefore it is enough to show the
injectivity for / = /(a), i.e.

Gr%(M$xk (a) (x) l)(s — a)p / 0 in GrJfM

for p < |/(a)|, because Nt = —mtN, MS = C and N = s — a is nilpotent. Taking
Gr£, it is sufficient to show
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Let G be the filtration of Grf, M = 0 Gr£_t-M (x) 5j by the order of 5t, then

because Gr£F<aM = (MSx*'(a) + ll(«> (g) l)Gr^(^[s]) by (3.5.1). Thus we get
(3.5.6).

We now show (3.5.2). Let w = ^wt- (x) <3*eFp+1 Fa+1M, then uie¥p+l.iM
by definition. We have u0 = urP for t/eMJ, PeFp+l@x, and
(w' (x) l)PeFp+1F<0M by the first assertion of 3.4. Then w
- (uf ® !)Pe(FpFaM)af by (3.4.3), because a > - 1 and dt : Gr^M -> Gr^M is
injective for /? > — 1. Thus we get (3.5.2).

For the proof of (3.5.1) we have to show the strict injectivity of (FaM, F')
^(M, F), where the filtration F' on FaM is defined by (3.5.1). Let G be the
filtration of M = M[dJ by the order of dt. Then Fp cz Gp and it is enough to
show the injectivity of GrF' VaM -> GrGM. Consider a filtered Koszul
complex :

(K, F) = K(9x\s\ ; (x,5, - ^ + fe'(4 + ^s)-), F) [n]

where F is the filtration by the order of dh s shifted by the degree of
complex. Then jelGtFK = 0 for i / 0, hence (K, F) is strict, and we have a
filtered ^[s]-linear morphism: je°(K, F)-»(FaM, F'), if we choose a basis of
M§. By definition this morphism is strictly surjective, hence it is enough to
show the injectivity of

3ff °GrFK —» fl?x[T] ( c M [T] = GrGM),

where T = gr 3r and GrF^° = Qx\£, s] -> d?^[i] is defined by

Let d?x(*D) and GrFK(*D) be the localization of (9X and GrFK by gf. Then the
localization of the above morphism by g is injective. Therefore it is sufficient to
show the injectivity of jf? °GrFK -> ^f°(GrFK(*D)); or equivalently,

(*D)/GrFK) = 0 (i / 0), i.e. {x^£- + mts} is a regular sequence of
.£> 5]- But {x^f + m£s, gf} is a regular sequence of ^x[c^, s], because

- + m^s = 0, g = 0} = n + 1 in Spec @xi£> s]. Therefore {x^ 4- mt-s}
is a regular sequence of (&x/®x9)[.^ sl and (@X(*D)/G)X)[£9 s]. This completes
the proof of 3.5 and 3.3-4.

As a corollary of 3.3, we get;

3.6o Proposition, Let 3F , g, E] and E^ be as in 3.3, and W a finite increasing
filtration of 3F such that



MIXED HODGE MODULES 285

(3.6.1) Var^EJ) c W j ^ E } X [ i } for iel

N^WjE}} c Wj.2E} for any z,

FF denotes also the corresponding filtration on {E}} = *Fn(^). Then the
relative monodromy filtration Wof(¥g(^, W), N) exists and W{E} are expressed
as the mapping cone of

where r = | / f im|, ^(£/[AT|) = ^Wi + 2jE
vj (x) Nj and the morphisms are defined as

in (3.3.1).
Proof. It is enough to show that the filtration W defined in the assertion is the
relative monodromy filtration of E] for each v, I, because the relative
monodromy filtration is functorial. Let Lbe the filtration of E}[N] defined by

where {LfE}} = *ffn(Wi#
r). Then it induces the filtration Lon the mapping cone

of (3.3.1), which gives the filtration L= <FgWon {£]} = ¥n + 1<Fg^. We see that
GrwGrL of (3.3.1) are injective and Gr^GrL of the mapping cone of (3.3.1)
calculates GrwGrLEv

I. Then the assertion is clear, because GrL of (3.3.1) is Nr

and (AT" \ AT), and J^Gr£(£}[W]) = (Gr£EJ) [N] Nj with fe - i < 2j < k - i + 1.

3.7. With the notation of 3.1-2, let MYW(@x)gsnc be the category whose objects
are (M; F9 W) where (M, F) is a filtered ^-module such that
MeM(@x)rncqu(cf.3.3) and W is a finite increasion filtration satisfying

(3.7.1) Grj^ (M, F) are isomorphic to direct sums of filtered ^-modules of
type (M(& J), F[q]) in 3.5 such that k = \J\-n-2q.

(3.7.2) n + 2 filiations F, W, K{0(1 < i < n) on M are compatible [19, 1.1.13],

where V(l) is the filtration F along D{. Note that (3.7.1-2) are independent of the
coordinates such that x^1(Q) = Di. In fact (3.7.1) is equivalent to

(3.7.3) Grjf (M, F) admit the decomposition by strict supports [19, 5.1.3] and
their Drcomponents (MfcJ, F) have semisimple monodromies and
satisfy :

FpMktI = (n^oMM)JV^ for 2q = \I\-n- k,

where V{ = n f e j V^ and MkJ = 0 if |/| - n - k$2Z.

In particular, (3.7.1) implies (3.6.1) for & = DR(M), because Grf E} = 0 for |/|
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-n — k^TL. Moreover (3.7.1) implies the compatibility of the n + 1 filiations
F, F(0 on Grf M, because the decomposition (3.2.1) for M(n, J) gives their
splittings compatible to each other. Then, by [19, 1.2.12], (3.7.2) is equivalent to
the surjectivity of

(3.7.4) FpVvWtM — > FpVvGr?M for any p, ieZ, veQ",

(assuming (3.7.1)), where Vv = n F^}. Moreover, for a decomposition Grf (M, F)
= 0(M/>fc, F) as in (3.7.1), the condition (3.7.2) is equivalent to:

(3.7.5) for each i, fe, there exists uitkeFpVvWiM such that Gr^uitk belongs to
(Ma)

v c GrfM and generates it over C, where v = \JL 4- 1J5 p = q if
F)i(MQx, J

In fact, we replace p by p + |fc | and apply xfldb, if we replace v by v — a + b for a,
foeN" such that 0^ = 0 for any i (because Fp(Mitk)

v~a + b = 0 if p < q + |b|,
where v, g are as in (3.7.5)). Thereore we get for g = xm as in 3.3 :

(3.7.6) the vanishing cycle functors along g are well-defined for (M; F,
W)£M¥W(@x)gsnc (i.e. (2.2.1) and (2.3.3) are satisfied), and M¥W(@x)gsnc

is stable by i/^, 0g>1.

In fact, (2.3.3) follows from 3.6, and (2.2.1) is equivalent to the surjectivity of

(3.7.7) F^W.M — »FPV,G*YM for any i, peZ, aeQ.

which follows from 3.4, (3.5.1-2) and (3.7.5). Then (3.7.1-2) for \l/gjf, </>gtlJ(
follow from an argument similar to the proof of 2.4, because we have (3.5.3-5) for
(3.7.1) and we can verify directly (3.7.2).

Remark. With the notation as above, put D = U i^rDi9 g' = xm' for 1 ̂  r ^ n,
m' e Zn such that m- = m£ for i > r and mt ^ 0 for some i > r. We define (3t'x, F)
= (&x, F) (*/)), (M', F) = (M, F) (*/>), etc., i.e. FpM' is the localization of FpM
along D. We define (M', F) = (M'[5J, F) by the same way as above. Then M'
has the filtration V such that V'aM' is generated by Fm(a_0M' (g) 3} over ^Cs]5

and we have a canonical isomorphism

(3.7.8) Gra
F'(M', F) ̂  (Gra

F(M, F))(*D) (x)^L(a(m' - m))

where L(v) is a left ^-module free of rank one over (9X(*D) with a basis z; such
that (xidi - vt)v = 0. In fact we have the equality in the case m = m, then the
general case follows from (3.4.3).

As a corollary of (3.7.6) and (3.7.8), we get:

3 A Theorem0 Q*eMHM(pr)p.

Proof. By definition it is enough to show the following assertion (this argument
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applies to the algebraic case using GAGA):

(3.8.1) Let X be a complex manifold, and {Ut} an increasing sequence of finite
open sets of X with holomorphic functions gt on Ui9 such that X\Ut are locally
principal divisors and gt are meromorphic on X. Then the vanishing cycle
functors along gt are well-defined for Ji{ and (j^, (j^ exist for both \!/9iMi9

$gitl Jib where jj! Ut -> Ut^l9 M± = Qu0[dx~] and J?i+1 is obtained by operating

O'i)i °r (7i)* after ^ or 0*,i to -^i-
By Hironaka's desingularization and the stability by projective direct images

(cf. 2.14), we may assume D:= (ji(X\(Ui\g^1(Q))) is a normal crossing divisor,
because Qu^x] *s a direct factor of 3F°n*Qvl[.dx] for a resolution n: X ->X
with F! = Ti^H^i) and 0'£),, (7^ are exact (i.e. commute with pjf °). By (2.4.3)
and 2.11, the assertion is local on X and it is enough to verify the conditions
(2.2.1) and (2.3.3) inductively. Therefore we may forget the Q-structure and
assume X is a polydisc A" such that D c An\(A*)n and gt = xm(i) for m(z)eZ",
because we can multiply gt by a unit on X (cf. 2.2). If we multiply gt by x£ for
0GZ such that xfe~ * (0) n Ut = (/), ^t^c is twisted by a local system as in
(3.7.8). If X = X± x X2, M = M± IE ̂ 2 and 7k(resp.gf£) comes from

Xl (resp. ̂ 2)?
 we have the commutativity of (j^\hl, (Jk)*]^1 with ^^ 0fll,i

 on

^ by (3.8.2-5) below. Therefore by changing m(i) and twisting Qf [_dx~\ so that
m(i) eN" and dimg^1(Qi)\Ui+1 < n — 1, we can first take the iteration of (j^j^1

or O'i)*^"1 and then the iteration of t/^; or 0ff i j l, where we verify only the ®-
Module part at the stalk of 0 by the above argument and ijs* means Grjf after
(ig)#. Then we first get the external product of the ^-Module part of j,Q^*,
7*Q5- or ^(a' 0) in 3-5 in the one dimensional case, where;: A* -+A. Because
these objects belong to MFW(^Jgsnc (cf. 3.7) and their external products to

(cf. (3.8.2-4) below), the assertion follows from (3.7.6) and (3.7.8).

In the above argument we used the following facts:

(3.8.2) Let X, Y be complex manifolds, and J£eMHW(X)(p\
Then we have canonical isomorphisms in M¥h(@XxY, Q):

Assume Ji ^ JV e MHW (X x 7), and let g be a holomorphic function on X. If
the vanishing cycle functors along g are well-defined for M, so are they for
M IE ^ and we have canonical isomorphisms in MHW(X x

(\l/gJt) ^ N = tyg(M m J\f) (same for </>gtl).

This follows from the following remarks on the compatible nitrations [19,

§1]:

(3.8.3) In the category of ^-Modules, IS is exact. Therefore, for compatible /-
(resp. J-) nitrations on X (resp. Y), we have compatible (/U J)-filtrations on the
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external product (because the external product of short exact J-ple and J-ple
complexes is a short exact (JuJ)-ple complex, cf. [19, (1.1.1)]).

(3.8.4) For a compatible Infiltrations Fi (iel) and {/, k} c /, such that FJ = Fp
k

= 0 for p» 0, G; (iel) are compatible J-filtrations, where Gf = Ff for i / j and
G; =Z(F;nFr*)- (In fact, GJ - F*-q on Gr£k and the condition [19,
(1.2.12. vi)] is satisfied for Gt (iel), because n Ffl c n Gf if pt = qt for i ^j and p7-

+ 3/t = flj-)

As a corollary of (3.8.2) (and 2.11), we get:

(3.8.5) With the notation as in (3.8.2), let j: U -+X be an open immersion such
that X\U is a locally principal divisor. If the vanishing cycle functors along
any locally defined g such that g~l(Q)red = X\U, and j:j~

1(or jj'1) are well-
defined for Ji^ they are well-defined for M IE Jf and we have the canonical
isomorphism in MHW(Z x Y)(p}:

( j j - i j f ) IS Jf ^jJ-^J? m Jf) (same for jj'1).

Here (Gr^jJ-lJf) m (G^J^)eMH(X x 7, i + k) follows from 2.11 and ^§1 ^

Sj^eMHW^ x 7) (locally).

Applying (3.8.2) (3.8.5) to Qf [dj IS ^ for ^eMHM(pO(p)
5 we have:

3898 Theoreme MHM (pt)(p) is equivalent to the category of (polarizable) Q-
mixed Hodge structures.

Remark. Let MHMpQg? be the full subcategory of MHM(X)(p)whose objects
<M satisfies the condition:

(3.9.1) Jfm^EMHM(X x 7)(p)for any Y and J

Then we have

(3.9.2) MHM(pO£2 = MHM(pt)(p).

In fact, it is enough to show

for J?eMH(X, i)(p\

But this follows from the definition of Hodge Modules (because the Hodge
structures are stable by (g) ). We can show in general (cf. 3.28 below):

(3.9.3) MHM(J!OJP = MHM(X)p.

(3.b) Pure Case

3.10. Let X and D£ be as in 3.1. Put D = U ^rDt for 0 < r < n = dim X, and U
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- X\D with the inclusion ;: U-+X. Let (M, F) be a filtered (right) S^-Module
such that F is finite and GrfM are locally free coherent dVModules (in
particular, M is finite free over (9V). We assume M is quasi-unipotent, i.e. the
local monodromies of DRM are quasi-unipotent. We define j!jf8M(resp.j[e8M)
to be the regular holonomic (right) ^-Modules such that

'M ^DRM (resp. DR;[egM ^7, DRM).

Let (L, F) be the corresponding filtered left ^-Module such that

FpM = QH
u®Fp+nL,

and LDeligne's regular singular meromorphic extension of Lwith the lattices L~a

(resp.L>a) such that the eigenvalues of res F along Dt (1 < i < r) are contained in
[a, a + 1)(resp.(a, a + 1]). Then we have the natural isomorphisms:

(3.10.1)

for any aeQ, where F(0 (resp. V(i}) is the filtration V of j^egM(resp.L) along
Dt(l <i <ri) such that x^i — a is nilpotent on Gr^(l) (resp. Gr^(t)). Then V(i) on
L and L-° are the xradic filtrations for i > r (i.e. Vk

(i)L= xk
tL, etc.) and

(3.10.2) H V(^-J\e9M = On
x® L-* for a > -1.

i< r

We define the filtration F on l>a, L>a by:

(3.10.3) FpL
ifl = L^n;J|8F1,L (same for L>a)

and assume:

(3.10.4) FPL-a are coherent over (9X,

(3.10.5) n + 1 filtrations F, F(0 (1 < i < n) on L-a are compatible.

Then these two conditions are independent of a (because (FpZ/^x^-x,.
= FpL-a+1)5 and for a = 0 they imply:

(3.10.6) We have a free 0x-basis {u
P,a,k} °f £~° on a neighborhood of 0 indexed

by peZ, ae(Qn[0, l))r and 1 < fc < m(p, a) such that

where we put oct = 0 for i > r in the second formula.

In fact, (3.10.4-5) for a = 0 imply the existence of a free basis {up^k} indexed as
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above, such that up^k<=FpV'*l-° and {up^k}^k^m(p^ is a C-basis of
Gr?Gra

F,Gr°,,Z>0 (where Fa = n^ r^, Gr«v. = JQ^ Gr?(0, Gr^ = ]Q^,GO
because (FpF«I>0K- = FpFa+1<I>0 if a, > 0, and a finite ^,0-module M is free
iff the Xj-adic filtrations V(j) are compatible filtrations and Xj-:(M, J^)(i^./))
•^(F^M, F(0(i T^J)). Conversely (3.10.6) implies clearly (3.10.4-5) on neighbor-
hood of 0. If the monodromies are unipotent, (3.10.6) is equivalent to:

(3.10.7) Grplr° are finite free over (9X on a neighborhood of 0.

Note that the condition (3.10.6) is stable by the direct image for a finite
morphism ramified along D (because we have a basis {xvupi0ifk} on the
image). Therefore (3.10.4-6) are satisfied, if (L, F) underlies a polarizable
variation of Hodge structure, by the well-known result of Schmid.

We now define the filtrations F, G on j™gM by

(3.10.8)
GP]T?M = (Qn

x (x) L*-^Fp@x

and on jTegM by replacing L~~l with L>-1. We define the filtered differential
complexes [19, §2] by:

^(L, F) = (fliOogD), F) (X) (l*
(3.10.9)

K,(L, F) = (Oi(logD), F)®(L> 0

where the filtration F on Q'x(logD) is defined by Fp = c r>_ p (cf. [9]) and their
underlying complexes are the Koszul complexes for the action of x^ (i < r), dt(i
> r) on L-°, L>0 using the coordinates (x l5...,xn). We define filtration G on
DR"1 £,,,(,) (L) the underlying complex of DR'1^^^ F)(cf.[19, §2]) by:

(3.10.10)

and the filtration F(0 as follows: for D' = Vi<i<nDh put

then the filtration F(l) on DR"1]^^^)^) is induced by the natural inclusion into
^'L). We define

(3.10.11) (ftfM, F) = Coim((/TegM, F) -* ((f*egM, F))

so that

(3.10.12) Fpj\yM = %(Q»X (x) FiL
>-1)Fp_i@x in jf?M.

3.11. Proposition. Mr/z r/ze notations and the assumptions as above, on a
neighborhood of 0, we have the fallowings :
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(i) the n + 2 filiations on each component of (DR~1Xs |c(j)(L i F); G, F(i)) are
compatible and this n + 2 filtered complex is strict [19, 1.2.2],
(ii) fAe above complex gives a resolution of(j^M; F, G, F(I)(1 < i < n)) so that
the n + 2 filiations on J^^M are compatible,
(iii) we /z«t;e £/ze filtered isomorphisms :

(3.11.1)

..,^) (a<0)

;F, 7"> 0' / 0)
(3.11.2)

; F[- 1], F<^ 0' / 0) (a > - 1),

and (3.11.1)(resp. (3.11.2)) holds also for a = 0 (res;?. — 1) and i <r (where jr^
means f^M (resp. j[egM) and same for K^.

Proof. By definition, (DR'^K^L, F); G, F('}) is the Koszul complex for the
(left) actions of xjdj (j < r), 5^0' > r) on L-° (x) @x (resp. L> 0®^x) where
the filiations are shifted appropriately. Therefore, for the first assertion of (i), it
is enough to show the compatibility on

f>0(>0) /ON £Z> _ /T} f >0(>0) /ov ̂v
i-j vA/ °^^ — vX/ v ^i' '

But the filtrations are compatible with this decomposition, and the assertion
follows from (3.10.5). For the second assertion of (i) it is enough to show the
strictness of

(3.11.3) (GrFGrGDR~1KH!(!)(L); F(i))

and Hj of (3.11.3) is zero for j + 0, by [19, 1.3.6]. But, by the basis {up^k} in
(3.10.6), (3.11.3) is a direct sum of Koszul complex for the action of x^f (i < r),
^ (i > r) on ^Kl where ^ = gr dt and V(i} are shifted according to at- of a (if
this factor corresponds to up^ and depending on the image or the source of d{

if i > r, so that x fd£, dt are strict. We can verify that (3.11.3) is strict and Hj = 0
for j / 0 by taking inductively the cohomology for the action of x{dh db cf. [19,
§1.3]. For (ii), we verify that the isomorphism:

M (cf. (3.10.1))

and (3.10.2) induce the natural morphisms:

(3.11.4) (DR-^CL, F); G, F^) ->(/J} M; F, G, F

using the expression as Koszul complex as above (because (dx/x)xiSi = 0). Then
it is enough to show that (3.11.4) is a quasi-isomorphism forgetting the filtrations
by (i) (and by definition of the filtrations). Using a filtration of L, we can reduce
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to the case rankL= 1. Then the assertion is clear. Now (iii) follows from
(i)(ii), because (3.11.1-2), etc. are verified for each component of DR"1 K^(l}(L).

3el20 Proposition, With the notations and the assumptions as in 3.10, assume the
morphisms

(3.12.1) Nj : Gr«v, Gr°,, (1?°, F) -> Gr*F, G$n(l?°, F)

are strict for any ae([0, l)nQ) r and J c= {!,..., r}, where Nj = Yliej^t and NI
= Xidt — af (1 < i < r). Then, on the stalk at 0, we have the fallowings:
(i) the natural morphism:

(3.12.2) 07egM; F, F(0(l < i < n)) — > (j^M; F, F(0 (1 < i < n))

is strict so that the n + I filiations are compatible on jTJfM the image of (3. 12.2),
(ii) (jf;BM, F) is Cohen-Macaulay, and (3.11.1-2) hold for j\*J?M,
(iii) for v e ( [ — 1, 0)nQ)n and J c n\v (cf. 3.1), r/ze morphism:

(3.12.3) 3j: GrrOi.M, F) ->Grv
K

+lj(/!,M, F[

epimorphism whose kernel coincides with Ker A/j (/.e. ?/ze target of
(3.12.3) w identified with ImNj).

Proof. This follows from the next two propositions. In fact the assumption of
3.13 is satisfied by the strictness of (3. 12.1) (combined with GrK of (3.11.1-2)),
because we have a diagram:

Giv
v + 1 J ;, M — * G<+

and the first assertion of (ii) follows from 3.14 using the same argument as in the
proof of [19, 5.1.13] inductively. The other assertions are trivial.

3B13o Proposition. Let (M°, F) be a bounded complex of filtered @x-modules
such that MjeM(@x)rqunc (cf. 3.2). Then the n + I filtered complex (AT; F, F(i)) is
strict, if the following conditions are satisfied:

(3.13.1) the n + 1 filiations F, V(i} are compatible on each Mj,

(3.13.2) the conditions (3.11.1-2) hold for each MJ\

(3.13.3) Gr^M', F) is strict for any ve([- 1, 0]nQ)".

Proof. By induction on n. The case n = 1 follows from [19, 3.3.3-5]. In
general, the assumptions are satisfied on each Gr^(n)Me at the origin, and in the
proof of [loc. cit], we replace M by (n — l)-ple diagram of short exact sequences
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associated to any n— 1 subobjects V®M (i + n) (cf. [19, 1.1.13]), and complete
the diagram by adding the term for Fp/Fq whenever the inclusion Fp -> Fq

appears. Then we get the assertion, where we use the fact that the xn-adic
completion (on finite modules) is exact and fully faithful.

3.14 Proposition. Put (X, 0) = (C1, 0), (7, 0) - (X, 0) x (C, 0), & = 3Xt0

Q) — ̂ y 0. Let (M, F) be a filtered (Q), F}-module of finite type (i.e. GrFM is a
finite graded Gr@-module). Assume (M, F) is quasi-unipotent and regular along X,
i.e. M has the filtration V along X such that Ma = 0 for wa^Z, GrFMa are finite
over GrF^', and

t:(Ma, F)^(Ma_ l 5 F) for a<0

3,:(Ma, F)^»(Ma+1, F[-l]) for a > - 1

where Ma = Gr^M. Then GrFGrKM is Cohen- Macaulay (i.e. ExtJ
GrFGrvQ

(GrFGrKM, GrF Grv @) = 0 except for one j), z/GrFMa are Cohen- Macaulay over
GrF^', and dimGrF^ GrFMa is independent of a.

Proof. Put (M, F)A - ©a6A(Ma, F) for /leQ/Z so that GrF(MLF) = © (M,
F)A. Then we have a filtered quasi-isomorphism : C(M, F)A->(M, F)A, where
C(M5 F)A is defined by the mapping cone:

C((M0, Fr©(M_1F[l]r— > ( A f _ l 9 Ff©(M0 , Ff) for A - Z

C((Ma, Ff — > (Ma, Ff) otherwise where A = a + Z, - l < a < 0 .

Here (Ma, Ff:= (Ma, F) ®c(^, F), (A, F):= GrF(^co, F) - (C[t, 3J, F) and the
morphisms in the mapping cones are defined by:

(M (x) P, i; (x) 0 -^ ( - wt (x) P + v (x) 5tQ, w (x) rP - u5f (g) g) (aeZ)

(M ® P) •— > ( - M(t3t - a) (x) P H- w (g) (t3t - a)P) (otherwise).

(In fact, for the proof of filtered quasi-isomorphism, we can reduce to the case
where the action of tdt - a is zero ( - 1 < a < 0) and M_ l or M0 is zero, using a
filtration on Ma, because (g) (4, F) is exact.) Now let (La, F) -> (Ma, F) be a
resolution by a bounded complex of finite free filtered ^'-modules ( — 1 < a < 0).
We may assume the morphisms t, dt and tdt — a are extended to (La, F). Then
we get a free resolution of (M, F)A, by replacing (Ma, F) with (La, F) in the above
construction, because (g) (A, F) is exact. We verify the above construction is
compatible with dual, i.e. the dual of the above free resolutions are the mapping
cones associated to D(La, F). Then we get the assertion using the same
argument as above, because D(La, F) is strict and J«f jD(La, F) = 0 except for
one j (independent of a) by assumption.
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3.15. Remark. 1) In the case of polarizable variation of Hodge structures, the
assumtion (3.12.1) is satisfied by [6]. More generally, let X be a complex
manifold, D a normal crossing divisor on X and put;: U = X\D -»X. Assume
(L, F) underlies a polarizable variation of Hodge structure H of weight w on
U. Then we can define (f**M, F), etc. (globally) on X so that Q7*gM, F) is
Cohen-Macaulay and the polarization induces isomorphisms:

(3.15.1) B(j;egM, F) ^ (/PgM, F[w + dim X])

(3.15.2) D075?M, F) ^ (jfJfM, F[w + dim X])

by 3.11-12, because (3.15.1) holds by replacing (/*%M, F) with K+(l)(L, F) by
definition and we can apply 3.12 at every point of X.
2) Assume furthermore X is compact Kahler, and let (J£?(2)(H), F) be the filtered
L2-complex on X associated to H (cf. [8] [13][15]). Then Kashiwara and
Kawai constructed a morphism in DbFf(&x, DifT):

(3.15.3) DR(/7e*8M,F) -»(JS?(2)(H), F) [dim X],

inducing an isomorphism on U (forgetting F), cf. [15]. To show that (3.15.2) is
an isomorphism after taking RFpf, *) (cf. [loc. cit]), it is enough to verify the
well-definedess of the morphisms (induced by the polarization):

(3.15.4) (JS?(2)(H), F) (x) (JS?(2)(H), F) -» (JS?(1)(Q, F[ - w])

where (W, F) = (Jx, F[- dimX])[- 2dimJT] in [19, 2.5.1] and jgf(1) is with
respect to the Poincare metric. In fact, combined with the morphism (Tx, F)
-+(%x, F)[loc. cit], (3.15.3) induces a morphism in DbFf((9x, Diff):

(3.15.4) (JSf(2)(H), F) [dimX] —> D((jSf(2)(H), F)[dim JQ)( - w - dimX),

cf. [19, (2.4.11.2)], and this gives a left inverse of (3.15.3) using (3.15.2) (and the
dual functor D), i.e. (DR(j^8M, F) is a direct factor of (JSf(2)(H), F)[dim JQ, by
the octahedral axiom. Then the strictness of RFpf, (JSf(2)(H), F)) implies that
of RFpf, DR(7'[^8M, F)) and we get the desired isomorphism. (The advantage
of this argument is that we don't have to show the self-duality of (jSf(2)(H),
F)[dimZ] in DbFf(@x, Diff).) Note that, if 1 does not belong to the
eigenvalues of the local monodromies, (3.15.3) is trivial, because (j*egM, F)
= 07c*gM, F) - (j;egM, F) in this case.

3.16. With the notation of 3.2 (e.g. Q)x = &Xt0), let (M, F) be a filtered Q)x-
module. We say (M, F) is quasi-unipotent and regular of normal crossing type,
if:

(3.16.1) MEM(@X\'rncqu 5
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(3.16.2) the n + 1 filtrations F, V(i) are compatible,

(3.16.3) (Fp V^M)x{ = Fp V®. ,M for a < 0

(3.16.4) (FpGrr}M)dt = Fp+1 GrJ^M for a > - 1.

Here F is assumed to satisfy ()FpM = M and FPM = 0 for p«0 as always
(cf. [19,2.1.1]). In particular we have

(3.16.5) F is finite on V0M(= n F(
0°M).

We shall denote by MF(@x)rncqu the category of the above filtered Q)x-
modules. Then it is an exact category with respect to the n + 1
filtrations. Note that (3.16.3-4) are equivalent to (3.11.1-2) under the assumption
(3.16.1). By the same argument as the proof of 3.12, ii), we have

(3.16.6) (M, F)eM¥(@x)rncqu is Cohen-Macaulay,

because (M, F) is finitely generated by the argument below:
Let (M, F)eM¥(@x)rncqu and uptVtkeFpVvM such that {uptVtk}^k^m(piV) is a

basis of Gr^Gr^M for any peZ, ve (Qn[ - l , 0])". Then {uptVtk} generate
F ; more precisely

(3.16.7) FpV^M = ^uq^kx
adb(9x for peZ, M e ( Q u { + oo })",

where the summation is taken over geZ, v E ( Q n [ — 1,0])", 1 < k < m(q, v), a,
beW satisfying: q + \b\ < p; vt — at + bt < ^ for any i; at = 0 if vf = 0 or
l^i > vf ; bf = 0 if vf = — 1 or juf < vf ; jUf — 1 < vt — at if \JL{ < vf . In fact, the
assertion is clear by the same argument as in (3.10.6), if /^ < 0 for any i. Then
we can proceed by induction on \JL and dimX, because M¥(@x)rncqu is stable by
Gr^(l) for any z, a. (Note that we can replace (9X by C{xI(Vfb)} in (3.16.7), where
/(v, ft) = {f; vf 7^ 0, fr£ = 0}.) In particular we get:

(3.16.8) FPV^M = ^(Fp-lb]VvM)db for any p, M,

where the summation is taken over v e Q", b e N" satisfying : v£ = 0 if bt < ^ ;
v£ > — 1 and Vi + bt = fa if b£ > ^ > 0 ; bt- = 0 and vf = /^ f if ju£ < 0.

Conversely, let F be a finite filtration by d^-submodule of M0\= V0M for
MeM(^x),ncgu, where F0M = n F(

0°M. Assume:

(3.16.9) the n + 1 filtrations F, F(0 are compatible on M0,

(3.16.10) (FpFl£)M0)x, - Fpn°-iAf0 for a < 0

(3.16.11) (F.F^iMo)^. c: Fp+1 K^Mo

and define FpM = ^(Fp_jM0)Fj@x. Then:

(3.16.12) (M, F)EM¥(@x)rncqu and FpMnM0 = FpM0.
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In fact, we define F on MM:= FMM for ^e(Qu{ 4- oo})" by

(3.16.13) FpM^

where the summation is taken over v, b as in (3.16.8). Then (3.16.12) follows
from (3.16.13) and the next two assertions:

(3.16.14) the n + 1 filiations F, V(i) are compatible on MM,

(3.16.15) (MV;F, F(0)-»(M^;F, F(0) are strict monomorphisms as n + 1

filtered morphisms, if vf < juf for 1 < i < n.

Here note that (3.16.14-15) are clear by definition if \JL{ < 0 for any i (because
FpMfl = FpVflM0 in this case), and under the assumption (3.16.14), (3.16.15) is
equivalent to FPMV = MvnFpM^ (by [19, 1.2.12], if v£ = ^ (i / j))- We shall
prove (3.16.14-15) by induction on £ max^-, 0) and n = dimZ. We take
1 <j <n, feeN and //eQn such that ^- > 0, - 1 < ^- - b < 0, ^- = //$ (i /-;X
^. > ji} and Gr^0)M = F^M/FgM. Then, for (3.16.14), it is enough to show
the exact sequences for v = {vt (i

(3.16.16) 0 -> FPVVM^ -, FFFVM, -, F^F.Gr^M, -. 0

by [loc.cit], because (3.16.14) is verified for

(GrJ^M^.,,, F) cGr^M,, F[-fc])

by inductive hypothesis on dim ^T. But the surjectivity of the second morphism
in (3.16.16) is clear by (3.16.13) for Gr^.ftM^.^,.^. Therefore it remains to show
FpM^ = M^ftFpM^, but this is reduced to

by definition of F, because df. Gr^(J) -> Gr^+\ is injective for a > — 1. Then the
assertion follows from the inductive hypothesis. Here we have proved also
(3.16.15) in the case v7- < ^ for some j such that /^ > 0. Therefore it remains to
show (3.16.15) in the case ^ — v£ for i / /c, where /^fe < 0 (in particular; ^ k). By
the above remark after (3.16.15), it is enough to show the strict injectivity of (Mv,
F)->(MM, F), but this follows from that of (F$MV, F)->(7$MM, F) and
(Gr^0) MV5 F) -> (Gr^(i;) MM, F), because we can apply the same argument as
above to (Mv, F) by replacing \ik with vk.

3.17. Propositlon0 PFzY/z the notation as above, let (M, F)eM¥(@x)rncqu and g

= xm. We set (M, F):= (g*(M, F) - (M[5J, F), a«J fer F te r/z^ filtration V

along X x {0}. Then:

(3.17.1) t : FpFaM ̂ F^F^M for a < 0,
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(3.17.2) dt:FpG^M^*Fp+1Grv
x+1M for a > - 1,

(3.17.3) FPV«M = I(Fp_t.FmaM <g> 1)F^XM) for a < 0,

(3.17.4) (Gra
K M, F) G MF(^W >r a < 0,

(3.17.5) FpVv(Grttt) = ̂ Gr^F^V^M (x) l)(s - a)'

/or ve(Qsoy, a < 0.

Moreover if one of the conditions :

(3.17.6) x£: FpGrv
K

+llM^»FpGr;:M

(3.17.7) 3,: FpGrrM^»Fp+1Grv
K

+l iM

(3.17.8) ^: FpGrv
FM^»Fp+1Grr+l lM

iem (i.e. m. / 0), v e ( Q n [ — 1, 0])" 5-wc/z //zar vf = — 1, is satisfied, we
have respectively.

(3.17.9) (3.17.1) and (3.17.3) hold also for a - 0

(3.17.10) (3.17.2) /zoto also for a = - 1

(3.17.11) (F.Gr^MR = F^Gr^M.

Proof. Put 7 : {# ̂  0} -> X. Then (3.17.6) (resp. (3.17.7)) implies M =j^j~1M
(resp. j^rlM\ and (3.17.1) for a = 0 (resp. (3. 17. 10)) is reduced to (3.17.3) for a
= 0 (resp. (3.17.11)), because the above isomorphism implies the assertion
forgetting F. In general, (3.17.1) follows from (3.17.3), and we get (3.17.2) (and
(3.17.11) if (3.17.8) is satisfied) by the same argument as the proof of (3.5.2), using
(3.16.8) (or (3.16.7)) and 3.4 (because (3.16.7) and (3.17.8) imply F is generated by
its restriction to (n i-6^F (4 )

0M)n(n WF(
0°M)). We show (3.17.3) as follows.

Put FmaM = n^F^M, & = Oxldml where dm = {dt}iem.
We define the action of d{ on M (x) ̂ ^'[s] by

(u (x) P) — > uXidi (x) P — u (x) x^iP — u (x) m^P.

We define (JCa; F, G) by the Koszul complex

where F, G on K° = V'maM (x) ®'[s] are defined by

and they are shifted by j on K~j. By (3.4.5) we have the natural
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morphism: H°(K0) -> M whose image is VXM by 3.4. Therefore it is enough to
show this morphism is strictly compatible with F by (3.16.8). Let G be the
filtration on M = M[3J by the degree of dt. Then we have

(3.17.12) H°(Kai F, G) -»(J&; F, G),

and it is enough to show its strict injectivity. Because GrFGrGKa is the Koszul
complex of GrF V'maM[£m, s] with the action — (x^ + mts) for zem, and GrFGrG

of (3.17.12) is given by f£i-> - (^0)1, sh-»0T (where GrFGrGM - GrFM [T]), it is
enough to show {x^ + m^s (fern), g} is a regular sequence of Grf V'maL V"M[£m,
s] for veQ^™ by the same argument as the proof of (3.5.1) (using the localization
by g, and taking the limit v -> + oo). But it can be reduced to the flatness of
GrFV'maV"M over C{xm}.> and we can verify this by induction on v and on
dimX. If (3.17.6) is satisfied, the above argument applies also to a = 0, because
F0 M is generated by F0 M (x) 1 in this case (i.e. g (or t) acts bijectively on M (or
M)). Therefore it remains to show (3.17.4-5).

Put Sv = FVM (x) C[s] for ve(Q>0)m x (Q>0)
n^ and define the action of x f5£

by (u (x) s-^Xidi = (uxidt 0 sj) — (u (x) m{s
j+l). Then, for a < 0, we have the

natural 0x[s]-linear morphism:

compatible with the action of x£dj. By the proof of 3.4, we have lmAa

= F0(Gr^M). Put Sa = Sma, R« = Ker^la. We define F, F(i) on Sv by

FPSV = ^Fp.jVvM (x) s', VfSv = (F^+ViMn FVM)[S]

so that the n + 1 nitrations F, F(I) on 5"v are compatible, and Aa preserves F, F(0

and is strictly compatible with F(l) for any L We define W on Sv by

where /(v) = {ierh: Gr^(l)M / 0} and FJ
<0 = (]iel F

(i}0. By induction on n and
|/(v)|, we show that the n + 2 nitrations F, P^ F(0 on Sv are compatible and

p w y s — V F F/(V)U F S1 py¥h¥n^v Z^IcI(v),\I\<kr P y <0 V°v

using [19, 1.2.12] and taking Gr£(0Sv for iel(v). Then GrfSv is the direct sum
of Gr£JF^v

0
)U Sv for / c /(v) such that |/| = fc and this decomposition is

compatible with F, F0). By 3.4, Grjf j£a is the direct sum of the images of the
endomorphisms nie/*;^; on these direct factors, where v = ma and the action of
x^i is defined as above. Using the filtration by the degree of s, we verify :

are strictly injective as n + 1 filtered morphisms. In particular, their restriction
to Gr£J 7^uSa are also strictly injective so that the n + 1 filiations on Grf R^
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are compatible. Moreover the n + 2 filiations F, W, V(i} on Ra are also
compatible by [19, 1.2.12], because (Yl^x^UV^S^ ^ R« and [19, 1.2.12.vi] is
satisfied. Then R^ -> Sa is strictly injective as an n + 2 filtered morphism (taking
Grf), and we define F', Won ImA^ = F0(Gr^M) to be the induced filtration by
F, W on Sa so that the n + 2 filtrations F', W, V(i) are compatible. Then the
conditions (3.16.9-11) are satisfied for F', V(l) on 70(Gr£M), because (3.16.10) is
satisfied taking Grjf (and using the filtration by the degree of s), and (3.16.11) is
verified using the strict surjectivity of An. Then by (3.16.12) and (3.17.3), we get
F = F' and (3.17.4-5). This completes the proof of 3.17.

3ol8o Let X be a complex manifold of dimension n, and D a reduced normal
crossing divisor on X. Put j: U = X\D->X. Let (M, F) be the underlying
filtered ̂ -Module °f a Hodge Module of weight w with strict support X, and
assume M\v is coherent over (9U9 i.e.

(3.18.1) (L, F) = (M, F)®(Qn
x, F)"1

 v underlies a variation of Hodge
structure of weight w — n.

Then we have the canonical isomorphism:

(3.18.2) (M, F)^(j^(Q«v®L\ F)

where the right hand side is defined as in (3.10.11). In fact, the assertion is well-
known forgetting F, and is local. Therefore we may assume the notations are as
in 3.2. Then, by 3.12, (M', F) the right hand side of (3.18.2) satisfies:

(3.18.3) (M', F)eMF(@x)rncqu

(3.18.4) dt: G<(M', F) -» Gr^+li(M', F[ - 1]) are strictly surjective for any
i and ve (Qn[ - 1, 0])n such taht v£ = - 1.

Therefore by 3.17, (M', F) is quasi-unipotent and regular along any g such that
^-1(0)red = D, and (3.18.2) follows from [19,3.2.2]. We shall show later the
converse in the polarizable case, cf. 3.20.

Now, with the notation of 3.2, 3.4, assume (M, F)EM¥(@x)rncqu satisfies
(3.18.1-2) and the variation of Hodge structure in (3.18.1) is polarized, where (M,
F) is identified with a coherent filtered ^-Module on X by restricting X. We
define {(£J, F)} = !P£(M, F) by

(3.18.5) (E}9 F) = Grr+ll(M, F[n - |

for ve (Qn[ - 1, 0))", / c n\v. Put

(3.18.6) (EJ
I9 F)=®v=j(El F).

Then, by [8, (1.16)] [15, 2.1.5] and (3.18.4), we have:

(3.18.7) ((EJ
I9 F), N19...,NJ underlies a nilpotent orbit of weight w + |/| - n,
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where its Q-(or R-) structure is induced by ¥g = Wn °DR, and the polarization
by SPJi) ° D = D ° ¥% cf. 3.2. In particular, (EJ

X;F, W) is a mixed Hodge
structure, where Wis the monodromy filtration for ]T;^; shifted by w + |/| — n.

Put g = xm as in 3.3. We define E} by (3.3.1), and put Ej = 0M=jFJ so
that Fj has the R-structure induced by the natural one on £/[N], where we

choose i = ^/ — 1 so that the Tate twist (x) Z(n) is trivialized and N is defined
over Q, i.e. N = log Tu. We also define the filtration F, FFon EJ

T so that they are
compatible with the decomposition Ej = 0 E} and FpE\, W&F/ are the
quotients of

if

otherwise

where \JL = v' + v0me(Q/Z)", /' - /\{0}, 6 = | / nm| and

Then (E} ; F, FF) is isomorphic to

0o^<6-i(^\*; ̂  WOO - & +7) 0 (£f-; ̂  WO otherwise,

forgetting the action of canf, etc. Therefore (£f ; F, WO are mixed Hodge
structures. We also verify that can£, Var^ and Nt induce morphisms of mixed
Hodge structures. In particular,

can:(£^;F, W) ->(£}; F, W)

is strictly surjective and (E} ; F, W) is identified with

Coim (N : (E}. ; F, W) -^ (Ev
r ; F, W) ( - 1))

if /aO, because can: \l/gtl -» 0ffil is surjective. By 3.17 the isomorphism (3.4.2) is
compatible with F, i.e.

(3.18.8) (E}, F) = Grv^ + ll,(Grro + (lr)o(M, F[n+l- |/|])),

because the case laO is reduced to the other case by (3.17.11) and the above
argument, where we use the strictness of N: Gr^^M, F) -> Gr^M, F)( - 1) in
M¥(@x)rncqu, cf. 3.13. Similarly (Fj, F) underlies a nilpotent orbit by the
following result of Kashiwara, because the case / 9 0 follows from the other case
using the above strict surjectivity and [8, 1.16] [15, 2.1.5].

3,19o Proposition. Let ( ( H ; F , W); Nt (1 < i < n); S) be a nilpotent orbit of
weight w, where W is the monodromy filtration for ^A/^- shifted by w. Take
m e N", / c= m such that I ^ 0, and put
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], W\_ - 2/]) ->(H[AT|; F9 W))

((/?z; F, PF); AT, Rt + m fJV (1 < i < n); Sj) is a nilpotent orbit of weight w
+ 1 — /; in particular W is the monodromy filtration for N + £(A^ + m^AT)
shifted by w + 1 — /. Here Sj is defined by

(3.19.1) Sj(u, v) = Res S(N^u, v) for u, SeSl9

where S is extended to S\H[_N, N~l]®H[_N, N'^^C^N, AT1] by
S(u ®N\ v (x) Nj) = ( - l)lS(u9 v) (g) Ni+j and Res(^ at ®Ni) = a-l.

(See Appendix for the proof.)

Remark. We use Deligne's convention of positivity (i.e. S(u, Cu) > 0) so that we
have

(3.19.2) ^(caM, v) = Sr(u, Var^)

for we#r, iJeH/5 where / = /' U {/} c m and c'anf (resp. VarJ is induced by Nt

- mtN (resp. id) on H[JV], cf. 3.3. In the case (H, F) = (£|, F), where {(£/, F)}
corresponds to (M, F) as in 3.18, we can verify that Sj corresponds to the duality
on i/^(M, F), cf. [25]. Here the assertion for the R-part is essentially due to
Kashiwara.

From the above results, we can deduce:

3.20. Theorem. Let X be a complex manifold of dimension n, D a reduced
normal crossing divisor, and j: U = X\D -» X the natural inclusion. Let (M, F,
K) be a filtered regular holonomic @x-Module with Q- (or R-) structure such that
(3.18.1-2) are satisfied and the variation of Hodge structure in (3.18.1) is polarized
by S'. Then (M, F, K) is a Hodge Module of weight w polarized by the duality S
induced by S' .

Proof. By (3.15.2), S' induces the duality S of (M, F, K). We show by
induction n that (M, F, K, S) is a polarized Hodge Module. The assertion is
clear if n = 0. For n > 0, we have to verify the condition in [19, 5.1.8] for \j/g

and [19, (5.2.10.2)], because [19,5.1.8] for 0,fl follows from [19,5.1.17] and (M,
F) is quasi-unipotent and regular along g by 3.17. Therefore the assertions are
local. We may assume g~l(tyTedVD is a normal crossing divisor by Hironaka's
desingularization and using [19, 5.3.4]. Then we may assume g'1^)^ ^ D by
replacing D with gf~1(0) r e du A because (j^j~lM, F) is uniquely characterized by
the condition (3.18.1) and
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(3.20.1) at any xeX, there exists a coordinate neighborhood A" of x such
that (M, F)xEM¥(@An)rncqu (cf.3.16) and (3.18.4) is satisfied for
(M, F)x.

Taking a finite covering (and by [19,5.3.4]), we may assume further that M has
unipotent monodromies and g = (x^'-xtf with local coordinates (xl9-~9xn). By
inductive hypothesis, it is enough to show:

(3.20.2) W on i//g(M, F) is defined in MF(@An)rncqu at each point of X and
the primitive decomposition of GT^\j/g(M9 F) is compatible with F,

(3.20.3) PGr^\l/g(M9 F, K) admits the strict support decomposition compat-
ible with F such that each Z-component corresponds generically to a
polarized variation of Hodge structure of weight k — dim Z and its
pull-back to Z satisfies (3.20.1) at any point of Z,

where W is the monodromy filtration shifted by w — 1, and Z in (3.20.3) are
smooth (because the assertion is local). Here note that (M, F)EM¥(@An)rncqu is
of the form zJM', F) with i: Am -» An and (M', F)eMF(^w)rnc^, if supp M
c= Am for m<n.

We first get (3.20.2) by 3.13 and Deligne's inductive construction of W[10],
because N on E\ underlies a morphism of mixed Hodge structures. For the
strict support decomposition in (3.20.3), it is enough to show:

(3.20.4) PG^Ei = Im(can, :

© Ker(Vart.: PGrf EJ
X — > PGrf EJ

r)

for any /, /' c n, ten such that / = /' U {i}, where Fj = 0 for J ^ 0, {0} and
Fj{0} = (Ff*)0"1. In fact, we can use [19, 5.1.4] inductively, combined with the
equivalence of categories (3. 1.2) (3.2.2), because the condition (3.20.4) is stable by
direct factor and induces a direct sum decomposition in the category of mixed
Hodge structures so that canf, Vart- induce strict morphisms in M¥(@An-i)rncqu by
3.13. Here we have also proved the condition (3.20.1) for any Z-
component. To show (3.20.4) we have to use 3.19. Here we may assume J = 0
in (3.20.4). Then we have

Ef = Coker(NInm: £^[N] -> Fj\m-[]V])

by definition. If we define Sj on Ef as in 3.19 (where we replace JV7 by NInm in
(3.19.1)), we get (3.19.2) for any /, /' c n, ten such that / - /' U {i}. Therefore
the assertion follows from [19, 5.2.15] and the remark below, because ]V£ = Nt

on Gr^. Here we restrict to the nilpotent orbit of two variables for N, N{ (by
changing F). Then we first take the limit for N and PGrjf to get a nilpotent
orbit for Ni9 and then take the limit for Nt and Gr^0, where W(i) is the
monodromy filtration for N{. Now it remains to show that each Z-componemt
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of PGr^i//g(M, F, K) corresponds generically to a polarized variation of Hodge
structure of weight k — dimZ. But this follows from 3.19 and its remark,
because at the generic point of Z, the Z-component of PGr^i/^(M, F, K)
corresponds to a direct factor of PGr^lw+1Ef on which the action of Nt is
trivial, where Z = Dj and W on Ef is the monodromy filtration (not shifted) so
that PGr™-w+1E$ underlies a nilpotent orbit of weight k + \I\ — n = k — dimZ,
cf.3.18. This completes the proof of 3.20.

Remark (Kashiwara). Let (H, F, N, S) and (H', F, N, Sr) be nilpotent orbits of
one variable of weight w and w + 1, and u: (H, F) -> (H'9 F), v: (H'9 F) -> (if, F[
— 1]) morphisms defined over E such that vu = N, uv = N and

S'(ux, y)= ± S(x, vy) for xeH, yeH'

Then Grwu = 0, Giwv = 0, i.e. u(Wk H) c Wk.^H'9 v(WkH') c= Wk.^H9 where PT
is the monodromy filtration. In fact, we can reduce to the case N = 0 using the
primitive decomposition, then to the case dimff = 1 or 2 (same for H').

As a corollary we get (by [19, 3.2.2 and 5.3.1]):

3.21. Theorem. For a reduced irreducible separated complex analytic space X of
dimension n, we have an equivalence of categories:

(3.21.1) MHX(X, w)p ̂  VHSgen(*, w - rif

where MHX(X, w)p is the category of polarizable Hodge Modules of weight w with
strict support X (cf. 2.1 and [19, 5.1.6]) and VHSgenpf, w)p is the inductive limit of
VHS(17, w)p the categories of polarizable variations of Hodge structures of weight
w with quasi-unipotent local monodromies on smooth dense Zariski open subsets
U. Moreover the polarizations correspond bijectively.

Remark. 1) This implies the condition (2.7.6) in 2.7, if Ji' is polarizable and
(2.7.1) is satisfied.

2) Let /: X -> Y be a proper morphism of separated reduced complex
analytic spaces such that X is Kahler (or of class # in the sense of Fujiki). In
this remark, we assume that the Hodge Modules are defined over R, i.e. so are
their underlying perverse sheaves. Then we have cohomological functors (cf.
2.13):

tftft: MH(X, w)p -» MH(i; w + j)p.

In particular, Kollar's torsion-freeness holds also in the proper Kahler case, and
the conjecture in the intorduction of [19] is verified.

To show jfsftJteMH.(Y, w + j), we may assume that J?EMHX(X, n)p

and X is irreducible. Let D be a closed subspace of X such that Ji is a
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variation of Hodge structure on X\D. For any yeY, we take g1,...,gre@Y,y
such that n#f x(0) = {y}, and take a resolution n: X -* X such that n~l(D') is a
normal crossing divisor, where D'= Ugj~1(Q)()D. Let <jfbe the polarizable
Hodge Module with strict support X whose restriction to X\n~1(D') is
isomorphic to that of Ji to X\D'. Then we can prove the assertions of [19,
5.3.1] for ejf and / =/TC : X -» Y on a neighborhood of y, using [15, 0.11.1] [16]
and 3.20. In fact we get the hard Lefschetz for / by the same argument as the
proof of [19, 5.3.1] using the inductive assumption, and we take further a
resolution of X associated to any point near y to show the other assertions. We
use [19, 5.3.1] and Deligne's uniqueness of the decomposition for n^Jtio deduce
the assertion J^jf^^eMH(Y9 w + j\ For the global polarizability, we use the
spectral sequence:

E%* = tfpi*jeqftJ( =^^fp+q+1f:,je-1^^ in MHW(7)

for a closed immersion i: y0->Y such that x0:=/~1(y0) is a locally principal
divisor of x, where the natural inclusion X0 -> X is also denoted by i, cf. [26].

(3.c) Mixed Case

3o22o Let MH be the abelian category of graded polarizable Q-(or R-) mixed
Hodge structures M = (H, F, W), where H is the underlying Q-(resp. R-)
module. Let MHL be the category of the objects of MH with a finite increasing
filtration L. Let MHL" be the category of the objects (M, L) = (H, F, W, L) of
MHL endowed with commuting n morphisms

Nt:(M9 L)-»(M(-1), L) (1 < i < n)

such that (GT%H, F; A^(l < / < n)) underlies a nilpotent orbit of weight k and W
is the relative monodromy filtration of (If, L) for Xi<i<«^i- Here MHL°
= MH, i.e. L = W on H, if n = 0. Then we have:

(3.22.1) MHL" is an abelian category such that any morphism induces a
3-filtered strict morphism for F, W, L.

In fact, the assertion is clear, if M is pure (i.e. L is trivial). In general it follows
from [19, 5.1.15]. We have also

(3.22.2) Assume the relative monodromy filtration W(n) of (H, L) for Nn

exists, where (M, L; A^ = ((H, F, W), L; ty) e MHL". Then Ww

induces the relative monodromy filtration of (M, L) for Nn in the
exact category MHL (in particular, F, W, W(n\ L on Hc are
compatible) and (M, W(n); Nt(l < i < n - 1))6MHL"~1 so that
Nn: (M, W(n))-*(M(- 1), W(n)[2]) induces a morphism in MHL11"1.
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In fact the assertion follows from [6, §3] in the pure case, because Nn is a
morphism in MH and W(n} is a filtration of M in MH. In general we can
proceed by induction on the length of L as in the proof of 2.4 using 1.2, 1.4-5
and (3.22.1). By the same argument as the proof of 2.5, we have:

(3.22.3) The assumption of (3.22.2) is stable by subquotients in MHL".
Moreover, for an exact sequence in MHL":

0 — > (M', L) — > (M, L) — > (M ", L) — * 0

such that W(n) exists on (M, L), we have the exact sequence in

0— »(M', W(n))-+(M, W(n))—*(M", W(n})-+0.

Here we can use the splitting by the polarization on Gr£ of the exact
sequence. We define the full subcategory MHL"d of MHL" by induction on
n: MHL°d = MHL°( - MH) if n = 0, and for (M, L)eMHL"(n > 0), it belongs
to MHLn

ad iff the assumption of (3.22.2) is satisfied and (M, W(n)) e MHL ;d~ *. By
definition, MHL \d = MHL 1 and we have for n>2:

(3.22.4) for ((H, F, W), L; AT.) e MHL", it belongs to MHL^ iff the relative
monodromy filtration W(l) of (H, W(i + 1}) for Nt exists inductively
for 1 < i < n, where W(n + 1}:= L.

By (3.22.3) we have:

(3.22.5) MHL^d is stable by subquotients in MHL" and for ((H, F, W),
L; AQeMHL^ the induced filtration W(i) on LkH/LjH coincides
with the filtration W(i) defined inductively on LkH/LjH by (3.22.3-4)
for k > j.

Then [6, §3] implies for 1 < i < j < n + 1:

(3.22.6) W(i} is the relative monodromy filtration of (H, W(j}] for any
L^<; *hNk such that tk > 0.

In fact it is enough to show Nj Wf c W^L 2 for i < j. But it is clear if i = j, and
follows from the functoriality of W(i} if i < j. By induction on n and the length
of L, we can also prove:

(3.22.7) n + 2 filiations F, W(i) (1 < i < n + 1) on HC are compatible,

(3.22.8) W(n} induces the relative monodromy filtration of the (n + l)-filtered

module (Hc\ F, W(i) (1 < i < n), L) for Nn: (Hc, F, W®9 L)-+(HC,

F[-l], ^}[2], L),
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(3.22.9) any morphism in MHL^ induces an n + 2 filtered strict morphism
of (ffc, F, *0° (1 < i < n 4- 1)), where W(n + 1) = L, cf. (3.22.4).

In fact, in the pure case, (3.22.7) and (3.22.9) follow from the inductive hypothesis
(because (M, W^eMHL^-1), and (3.22.8) from [6, §3]. In general (3.22.8)
implies (3.22.7) inductively, and (3.22.9) is reduced to the pure case by (3.22.7)
and [19, 5.1.15]. We prove (3.22.8) by induction on the length of L using 1.2,
(3.22.5) and (3.22.7), (3.22.9) for MHL^"1.

3.23. Let P(n)M be the full subcategory of P(n)(cf.3.1) such that Evj = 0 for
v /0"e(C/Z)", i.e. the objects of P(n) are {Er} with morphisms

for /' = / U {i} such that Nt = Var£-°can£- or can^0 Varz- are nilpotent and can,-,
Var7- commute mutually.

We define M(n) to be the category whose objects are Ji = {Mj} with
morphisms cani? Var£ as above such that Mj = {H/5 F, W] e MH (cf. 3.22) and
can£ : Mj -» Mr, Var£ : Mr -> Mr( — 1) are morphisms of MH. Then we have a
natural functor M(n) -> P(»)M. Note that M(w) is an abelian category by [9], and
it has an inductive structure, i.e. M(w) is equivalent to the category whose objects
are (Ji'^M"} where M\ Jt"£M(n-i) and M'^Ji", J("->Jl'(-V) are
morphisms in M(n — 1). In fact, we associate (JT +* Ji"} to Ji so that

M; = Mj, Mj - M/u {n} for / c= n\{n}.

In this case we also put:

(3.23.1) ^w^r = ^r/, 0(ll)^r = ̂ r".
We say ^eM(«) has j/r/c/ support /(or Dj), if M7 = 0 for I y6 J and can,-: M7

-+ Mr (resp. Var f: Mj ' -»Mj(— 1)) are surjective (resp. injective) for 1, /' => J
such that /' = J U {i}. We say J?eM(ri) admits strict support decomposition, if
we have a (unique) decomposition:

(3.23.2) Ji = 0 Jt(J)

such that Jt(J) has strict support J. In this case, J((J) is called the J-(or Dr)
component of Ji. Note that (3.23.2) is equivalent to

(3.23.3) Mj = Im(canf : Mj, -> Mj) © Ker (Var^ : M7 -* Mj-( - 1))
for / = /' U {i}.

In fact we can verify this by induction on n using the inductive structure of M(w)
as above, because (3.23.3) is stable by direct factors in M(w) and the first factor of
the right hand side of (2.23.3) is identified with CoimNn for i = n. We say
Jt e M(w) is pure of weight w, if
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(3.23.4) M admits the strict support decomposition,

(3.23.5) ((HI9 F), Nt(l < i < n)) underlies a nilpotent orbit of weight
w — n + |/| such that W is the monodromy filtration for Xi<t<«^i
shifted by w- n + |/|,

where M = {M,} and M7 = (HI9 F, W). (If n - 0, M is a polarizable Hodge
structure of weight k ; in particular Grf = 0 for i / fc.) Let J^- be pure of weight
kt with strict support Jt(i = 1,2). Then

(3.23.6) Hom(^l5 JT2) = 0 if Jl ^ J2 or fex > fc2.

Let ML(n) be the category of the objects of M(n) with a finite increasing
filtration L such that Gr£ are pure of weight k. Then for (M, L) = {(M/5

L)}eML(n), we have (M/? L[|/| - w]; AQ e MHL " (cf. 3.22) by definition. We
define the full subcategory ML(n)ad of ML(n) by the condition :

(3.23.7) (MI9 L[|/| - n\\ NJeMHL^ for any /.

By [19, 5.1.15], (3.23.6), (3.22.5) and (3.22.9) we have

(3.23.8) ML(n) is an abelian category such that any morphism induces 3
filtered strict morphisms on (Hj (x) C ; F, W, L),

(3.23.9) ML(n)ad is an abelian full subcategory of ML(n) such that ML(n)ad

is stable by subquotients in ML(n) and any morphism induces
(n + 2)-filtered strict morphisms on (Hj (x) C ; F, W(i) [ |J | - n]
(1 < i < n + 1)),

where W(n+l} = Land W(i) is the relative monodromy filtration of (jFf/5 W(i + 1})
for Ni(l < i < n) so that P^(1)[|/| - n\ = W by (3.22.6). By 1.5 and the same
argument as in the proof of (3.20.4), we get the functors \l/(n}, 0(n) : ML(n)ad

-> ML(n - l)ad such that

(3.23.10) il/(n}(J(9 L) = W(n)Jf, W^l - 1])

0(n)(^r, L) = (4>(n}jt9 w(n\
cf. (3.23.1). Then we have the natural morphisms:

(3.23.11) cann: J/W(J(9 L) -, 0(II)(^T, L)

Varn: 0(B)(^T, L) -* ^(ll)(^r, L)(- 1)

by (3.23.3) for z = n and 1.7. Here we define the Tate twist (k) by

(3.23.12) (J(9 L)(k) = (Ji(k\ L[ - 2k])9 cf. (2.17.7).

Let ML(n)^+1 be the category whose objects are Jl = (MjJeMfr) with a finite
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increasing filtration Land an endomorphism Nn + 1: (Ji, L)-+(J((— 1), L) such
that (MI9 L[\I\-n- 1]; A^eMHL^1 for any I and (3.23.3) holds for
Gi^Ji. Then ML(n)"d

4"1 is also an abelian category and we have a functor

^ + 1):ML(rc)«d
+1— ML(n)ad

by \l/(n+1)(Jt, L) = (Jf, W(n + 1)l- 1]), where W(n+1) is the relative monodromy
filtration of (Jt9 L) for Nn. Let ML(n)'ad be the category whose objects are {(Jt1,
L\ (Jl\ L); u, v} where (JIT, L)eML(n - l)n

ad, (Jg\ L)eML(n - l)fld, and
u: \l/(n}(J?f, L)->(^", L), v: (Jt", L)->\l/(n)(J('9 L) (— 1) are morphisms in ML(n
— l)ad such that vu = Nn. Then by 1.9 we have an equivalence of categories

(3.23.13) MUn)ad^ML(n)f
ad

by assigning \(Ji', L), 0(n)(^, L); cann, VarJ to (Jt, L), where (Ji' , L) is the
restriction of (Ji, L) such that (M/, L) = (M/5 L) for n$I (in particular \lt(n)(J(',
L) = ^(H)(^J ^))- Now let ML(n)i'd be the category whose objects are (^, L)
where Ji eM(n) and L is the filtration of M/ for //^ such that (3.23.7) is
satisfied for any I ¥= n and (3.23.3) is satisfied for any Gr£ M for l + n. Then the
natural restriction functor induces an equivalence of categories :

(3.23.14) ML(n)ad^*ML(n):d,

i.e. the filiations W(i} on M^ are constructed functorially by induction on i using
W(i} on the other M7 and FFon Mr In fact this is just (3.23.13) if n = 1, and we
can prove it by induction on n using (3.23.13).

3.24. With the notation as in 3.2 and 3.4, take (M, F)EM(@x)rncqu(d.3.l6) with
a filtration W such that

(3.24.1) (M, F, W) is the stalk at 0 of the ^-Module part of some

(3.24.2) the (n + 2)-filtrations F5 V(i\ W on M are compatible.

We define (E}> F\ (EJ
f, F) by (3.18.5-6) so that £/ has the natural R-

structure. Let L be the filtration on E}, EJj induced by W on M. If the
condition :

(3.24.3) for any order of the coordinates of X ( = An\ the vanishing cycle
functors \l/Xi, 0Xi>1 are inductively well-defined for Ji at the stalk of 0,

is satisfied, we have by (3. 18.7) (3.22.4) and (3.24.2):

(3.24.4) EJj has the weight filtration W such that (£/; F, W, L[|/|-w];
(d. 3.22) for any order of the coordinates.
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Here W is independent of the order of the coordinates by (3.22.6). From now
on, we assume (3.24.1-2) and (3.24.4).

For g = xm, we define (FJ; F, W) and (F/; F, W) by the same way as in 3.18
so that Fj has the natural R-structure. Let Lbe the filtration on E], EJj induced
by Pl^on M. Then, by the same argument as in 3.18, we verify:

(3.24.5) (Fj; F, W) is an R-mixed Hodge structure so that L is a filtration
of mixed Hodge structures and can£, Var£, Nt are morphisms of
mixed Hodge structures for 0 < i < n.

Assuming (3. 24. 1-2) (3. 24.4), we can prove by induction on \m\:

(3.24.6) the relative monodromy filtration L of (Fj, L) for N exists so that
(EilF, W, L[ | / | -n] ;N l 5 - - . ,AT n )eMHL^ for any order of the
coordinates.

We fix an order of the coordinates. By 3.18-19 and [6, §3], the assertion is
proved in the pure case, and it is enough to show the existence of L and W(i} in
(3.22.4), because we can proceed by induction on the length of Las in the proof
of (3.22.2), (3.22.8) and 2.4, where we use the canonical splitting of L on Gr£ to
show that (Gr£ F/; F, W\ N l 9 ' - - 9 N n ) are nilpotent orbits (in particular Wis the
relative monodromy filtration of (Fj, L[|/| — ri]) for £Nf). If |w =1 and g
= xai, the assertion follows from (3.22.6), (3.24.4) and 3.3-4, because E}
= Evi\+

{i}
om(iel, Q$I), EV

I{{0} (iel, Oe/), and 0 (otherwise) so that Nj = Nj(j ± i\
N{ = 0 and Nt = aN on E}. Assume |m| > 1. If /^f , we take m' such that m}
= nij (j / i) and m- = 0, and define F7

V similarly by replacing g with g'
= xm'. Then we have an isomorphism as filtered C[ AT] -modules:

such that the action of Nj is compatible for j ^ i and Nt on E} corresponds to
NI — mtN on the right hand side. Therefore the assertion is verified if
I?n. We can apply (3.23.14) to {Ff}Ji0, {Fj01}^, {Ff}/30, because they
belong to ML(n)'^d by the above argument, where (3.23.3) for GrL and for J / n
follows from 1.5 and the assertion in the pure case. Thus we get L, W(i} on F}
also for / ID n such that L is the relative monodromy filtration of (F}5 L) for N,
because the above construction is compatible with Gr£ and L on Grj^F}
coincides with the monodromy filtration shifted by k by the assertion in the pure
case, where ]VLJ-c:LJ-_2 follows from the functoriality of (3.23.14).

As a corollary of (3.24.6) we get :

3.25. Proposition. Let X be a complex manifold of dimension n, D a normal
crossing divisor on X, g a holomorphic function on X such that g~ 1(Q) c D and Ji
= (M, F, K;W)EMHW(X)P such that Ch(M) c u T$MX, where D(i) are the
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intersections of local irreducible components of D. Assume :

(3.25.1) for any point of D there exist local coordinates ( x i 9 ~ - , x n ) such that
D c= UfXrHO) and (3.24.1-2), (3.24.4) are satisfied for the stalk of (M,
F, W).

Then the vanishing cycle functors along g are well-defined for Jt (cf. 2.2) and ^QJi,
Qg^Jl satisfy (3.25.1).

Proof. By (3.24.6) the condition (2.3.3) is satisfied. To show (2.2.1) we have to
verify the surjectivity of (3.7.7) for a < 0 by (3.17.2). But this follows from
(3.17.3) if a < 0, and for a - 0 we apply [19, (3.2.6.4)], (3.16.7)(resp. (3.17.11)) to
the Z-component of Grf Jl such that Z c gT^O) (resp. Z cjigT^O)). Then by
2.4, \ligJt, </>gtlJ[ belong to MHW(X)P and (3.24.1) is verified. By (3.22.4) and
(3.24.6), (3.24.4) follows from (3.24.1-2). Therefore it remains to show (3.24.2),
and we may assume the notations are as in 3.16. We first show the
compatibility of the n + 2 filiations F, V{i\ Lon GrJfM for - 1 < a < 0, where L
is induced by Won M. By 3.20, Gr[Gr^(M, F)eU¥(@x)rncqu and it is enough
to show the surjectivity of

by [19, 1.2.12]. But this follows from the same argument as the above proof of
the surjectivity of (3.7.7), using (3.17.5) for a < 0 and applying 3.13 to N: \l/9tl

->^, i(— 1), because CoimN = </)gtl in the pure case if supp M
cjigT^O). Therefore L is a filtration of Gr^(M, F) in the exact category
M¥(@x)rncqw where a strict morphism in this category is strict for the n + 1
nitrations F, V(i) by definition. Then (3.18.8) is a filtered isomorphism also in
the mixed case, because the inclusion c is clear for each Fp and the equality
holds on Gr£ by the above argument. Now we can show the compatibility of
the n + 3 filiations F, V(i\ W, L on Gr^M, which completes the proof of
3.25. The pure case was proved in 3.20, because the assertion for Gro follows
from the strictness of

^(Gr^MjF, V(i\ W)— >(Gr^iM;F[- 1], V(i\ W[2]),

where the case suppM c gT^O) is clear by [19, 3.2.6]. Then by the same
argument as the proof of (2.4.1), it is enough to show the strictness of

-^L^M', F,

as (n + l)-filtered morphism, where M' = Gr^M. But this can be reduced to the
strictness of Gr{^ of the morphism, and follows from (3.24.5) and (3.18.8) in the
mixed case proved just above.
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3026. Proposition. Let X, D and Jt be as in 3.25, and D' a union of irreducible
components of D. Put j" : U':=X\D'^>X. Assume (3.25.1). Then j\]~^Ji,

are well-defined (cf. 2.17) and they satisfy also (3.25.1).

Proof. By 2.11 and 3.25, the assertion is local and we may assume D' is locally
irreducible by factorizing / locally because j!, /^ are unique once an ideal of D' is
fixed (cf. 2.11) and they satisfy the conditions for j'J, /^ for any ideal if the
condition (3.25.1) is verified (cf. 3.25). Therefore we may assume X = zP, D'
= {xn = 0} and Dn(zJ*)" - 0. We define Jt=j\j'-lJl in MHWpOp by 2.11
using the product X = D' x A. Then (3.24.4) follows from [13,5.5.4] and it
remains to show (3.24.2). We have by definition:

(3.26.1) the n + 2 nitrations F, V(i\ Ware compatible on V($0M = V($0M.

We first show

(3.26.2) the n + 1 nitrations F, V(l)(i ± n\ PFare compatible on Gr^M for
any a > 0.

Clearly it is enough to show the assertion for a = 0. Put (M', L) = Grl7 (M,
WT- 1]) and (M", L) - Gr£(n)(M, W), and let L be the filtration on M' such
that

dt: (M'; F, V(i)(i * n\ L) -*(M"; F, V^(i * n), L)

becomes an (n 4- l)-filtered isomorphism. Then we have

(3.26.3) L'kM
f = Ker(ATn: L^M' + WkM' — > M'/L^M')

by (2.8.4), where W is the relative monodromy filtration of (M', L) for Nn. By
the proof of 3.25, W, L are 2 nitrations of (M', F) in MF(0^-i)rnc(Iir In
particular the n + 2 nitrations F, V(i\ L, W are compatible. To show (3.26.2) it
is enough to show the strictness of the morphism in (3.26.3) as a morphism in
M¥(@An-i)rncqu. By 3.13, it is reduced to that of Gr^, and follows from the fact
that W, L underlie filiations in MHW^""1). Therefore, to show (3.24.2), it is
enough to check the surjectivity of

Fp F;, Wk Fin) M — > Fp F;, Wk Gr^(n) M for a > 0

by (3.26.1) and [19, 1.2.9], where v'eQ"'1 and Vv, = n V(». But this follows
from the same argument as the proof of 2.9 if a = 0, and the other case is clear
by the action of dt, where t = xn. We have a similar argument for
7*/"1 ^- This completes the proof of 3.26.

Remark. With the notation as above, let g be a meromorphic function on X
such that g is holomorphic on U' and gf"1^) c= D. ThenjJ, /^ are well-defined
for \ljgj'-

lJl, ^,1/~1^T if M satisfies (3.25.1), and (3.25.1) is stable by the
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compositions of j'J, j'# and if/gf'1, ^.i/"1. In fact, we can reduce to the case g
holomorphic on X, because we can multiply g by xa

t locally by (3.7.8) if Ta

becomes unipotent where T is the monodromy of \l/g.

3.27. Theorem. Let X be a complex manifold of dimension n, and U a
Zariski open dense subset. Then we have an equivalence of categories

VMHS(C/)? -^ MHM(U)P
X

S

where the right hand side is the category of the polarizable smooth mixed Hodge
Modules on U extendable to MHM(X)P, and the left hand side is the category of
admissible variations of mixed Hodge structures on U relative to X (cf.
[13]). Here smooth means that the underlying perverse sheaf is a local system up
to a shift, and the functor is given by ((L, F), K\ W)\-*((L, F) (g) (QJ, F)9

KM; WW).

Proof. We may assume D = X\U is a normal crossing divisor. Let j: U -»X
be the natural inclusion, and take ((L, F), K1 \_-n\\ W[- n])eVMHS(C/)Jd. Put
(Mf, F) = (Qn

u, F) (g) (L, F) so that J(' = ((M', F), K1; W)EMHW(U)P (cf. [19,
5.4.3]). We first show the existence of J( = ((M, F), K,; W)eMHW(Zf,
denoted by j+JC', such that K =j*K' and (M; F, W) satisfies (3.25.1). By 2.11,
the assertion is local, because j+JC is unique by 3.26. Therefore we may
assume X = An as in the proof of 3.26. We define (M, F) =jr**(M', F) as in
3.10. Assume D = U j< rD£ and we factorize j by j =Ji-~jr9 where jt: Ut -> Ui-1

and X\Ui = (Jk<iDk. We define7+ by the composition (A)*•••(./,,)* using 2.11, if
(2.7.2-4) are verified inductively. Here W is determined inductively by (2.8.4),
(2.11.2) and (3.1.3), (3.2.2). Therefore we may forget the Q-structure. Because
(2.7.4) is verified inductively by [13, 5.5.4], we get W on MeM(^x)rncqu. To
show (2.7.2-3), it is enough to verify the compatibility of the n + 2 filiations F,
V(i\ W at every point of D. Therefore we may assume the notations are as in
3.16. By [13] they are compatible on V<QM by taking a finite covering. We
define the filtrations W(i) on M by

DR(W(i)kM) = (jf
t)J['lDE(WkM)

where j't: Ut-*X. Then W= W(Q), and for {(EJ, W(i))} = ¥n
2(M, W®\ we

have W(i)kE} = WkE} for / n { l , - - - , i } = 0 and Var,- are bijective for j < I By
the isomorphism

Xl~.xr:(V0M',F, V®, W(r})

-^ (F_! M; F, V(i} [1] (i < r), F(i) (i > r), W)

we get the compatibility of F, V(i\ W(r) on F0M and then on M using the same
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argument as in the proof of 2.9 and (3.16.14), because Gr^(r)(M, F)
= /*egGrf (M', F). We can verify inductively the compatibility of F, V(i\ W(j)
by the same argument as the proof of (3.26.2). In fact W(j) = W(j — 1) on
V(i)0 M and the n + 2 nitrations F, F(i) (z / j), ^ W( j) are compatible on
Gr^fM by induction on the length of W(j) where Wis the relative monodromy
filtration of Gr^M, W(j)\_- 1]) for AT,, Then we get the compatibility of F,
V®(i 767), M/ - 1) on Gr£(J)M and that of F, V(i\ W(j -1) on F(

0
j)M and then

on M.
Now we show j^Jt eMHMpf). Because the construction of j% is

compatible with the smooth pull-backs, it is enough to verify the iterations of
A/'"1,/*/"1, ^g, 00,1- But we can reduce to the normal crossing case as in the
proof of 3.8 by Hironaka's desingularization and 2.5, 2.12, 2.14. Then the
assertion follows from 3.25-26, and this completes the proof of 3.27.

Remark. In the algebraic case, we can show the equivalence of categories :

VMHW (X}ad

for a smooth separated algebraic variety X, where MHM(X) will be defined in
4.2, s is for smooth as in 3.27, and the left hand side is the category of algebraic
variations of mixed Hodge structure (in particular the underlying connection has
regular singularities at infinity) satisfying the admissibility condition defined by
the curve test (cf. [13] [22]). In fact this follows from the same argument as the
proof of 3.27, combined with the remark after 3.26. Then this equivalence and
2.8, 2.28 imply by induction on dimX:

MHM(X) -^ MHM(Jrfl%,n

for any separated algebraic variety X and any completion X of X, where an
means the associated analytic space.

By a similar argument and [13], we have

3.28. Theorem. The polarizable mixed Hodge Modules are stable by the
external products (E.

Proof. By 3.21, MHW(JQ are stable by m. We can verify that J(
m j f E M H M ( X x Y) for M eMHM(X)s and ^eMHM(Y) by induction on

dim supp Jf using the equivalences of categories 2.8 and 2.28, because the
assertion follows from [13] in the case of admissible variation of mixed Hodge
structure. Then the general case follows from the same argument as abeve.

3.29, Remark. Let X and D be as in 2.5, MHW(Z; D)p the full subcategory of
MHW(X)P whose objects satisfy the assumptions in 3.25, and MHMpT; D)p the
full subcategory of MHM(X)P such that the characteristic varieties of its objects
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satisfy the assumption in 3.25. Then we have

(3.29.1) MHW(X; D)p = MHMpT; D)p (in MHW(X)P).

In fact, the assertion is local, and we can prove it by induction on the dimension
of the support using 2.8, 2.28 and the functors (j^JT1 as in the proof of 3.27.

§4 Algebraic Case

In this section, algebraic varieties are defined over C and separated reduced.

4.1. Let X be an algebraic variety. For a subfield A of C, let PQTV(AX) be
the full subcategory of Perv(Axan) whose objects have algebraic stratifications
such that the restrictions of their cohomology sheaves to the strata are local
systems. If X is smooth, M¥h(@x) denotes the category of filtered (algebraic)
^-Modules (M, F) such that M is regular holonomic [4] [5] and GrFM is
coherent over GrF@x. Then we have the functor DR: MFh(@x) -» Perv(C^) as
usual, and we repeat the definition of MFh(@x, Q), MFhW(@x, Q), MH(Z)(X, n)(p}

and MHW(X)(P\ etc. in [19, §5.1-2], where Z is an irreducible closed subvariety
and 17, g in the definition of Hodge Module and polarization are algebraic. By
the same argument, the main results in [19, §5] remain valid, e.g.

(4.1.1) MH(Z)(X, n)(p\ MHW(JO(p)are abelian categories,

(4.1.2) Q?[dJeMH(X, dx)
p(d.2.il for the definition of Q?[djJ)

(4.1.3) for f:X-+Y a projective morphism and for ^eMH(X, n)p (or
MHW(Xf), /JM, F) is strict and 3ff jf^eMH(X, n+j ) p (or

), cf.2.14 for the mixed case,

where (M, F) is the underlying filtered ^-Module and we use an affine open
covering and the associated Cech complex for the definition of/!js(MJ F). (If one
prefers, the can use filtered S^an-Modules (M, F) such that DR(M, F)ePerv(Qx)
in the definition of MH(X, n)(p\ etc., because the final result is the same by
GAGA and the extendability.) Moreover the results in §2 (except for the
definition of MHM(X)(P)) are valid in the algebraic case. (Note that the mixed
Hodge Modules are assumed polarizable and extendable in the algebraic case,
cf.4.2.) For example, if X is singular, we define MH(X, n)(p\ MHW(X)(P) as in
2.1 using local embeddings. Then (4.1.1) and (4.1.3) remain true for singular X,
Y. For a function g on X, (ig)^J£eMHW(X x C)(p) is well-defined for
J?eMHW(X) and we can define the condition:

(4.1.4) the vanishing cycle functors along g are well-defined for Jt,

as in 2.3 (i.e. assume (2.2.8) (2.3. 3) which are independent of the local embedding
of X and the local extension of g.) Then 2.4 is also valid and we can define
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^igJi and <$g^M^ if (4.1.4) is satisfied. By 2.5-6 and 2.14, we have

(4.1.5) the condition (4.1.4) is stable by the dual functor D, subquotients in
MHW(^)(p)and projective direct images as in (4. 1.3) (in the polarizable
case), and (2.6.2) is valid if (4.1.4) is satisfied.)

Let D be a closed subset of X. We say D is a weakly locally principal divisor
(abbreviated by w.l.p.d) if

(4.1.6) locally there is a function g (called a local equation of D) such that

Here D might contain an irreducible component of X, i.e. g might be zero on this
component. Let j: U -» X be an open immersion such that X\U is a w.l.p.d. (in
particular, j is affine). We say j,«^'(resp. j*Jf') exists for Ji' eMHW (U)(p\ if

(4.1.7) there exists an extension j,Ji' (resp. j^J^')eMHW(X)(p)o^ Ji1 such
that the vanishing cycle functors along any local equation of D are
well-defined and its underlying perverse sheaf is of the form j{K' (resp.

7',*').

(Here K' is necessarily the underlying perverse sheaf of Ji'^) By the same
argument as in 2.8 and 2.11, we have

(4.1.8) ^^'(resp.j^^') is unique and functorial (for M' satisfying (4.1.7)) and
we have the natural (unique) morphism inducing the identity on U:

j { j ~ l Jt — > M (resp. Ji — >j*j~1^)

for ^eMHW(Jif)(p)such that the vanishing cycle functors along any
local equation of D are well-defined for Ji and (4.1.7) is satisfied for
r^jt.

Here we apply 2.8 and 2.11 to (ig)^M('\ Then j\Ji' and j^Ji' are uniquely
determined, once a local defining Ideal of D (generated by g) is fixed, but they
might depend on the Ideal. We eliminate this ambiguity by assuming the
condition for any g. By 2.12 we have

(4.1.9) the condition (4.1.7) is stable by subquotients in MHW(X)P,

where the polarizability is used to show the splitting of Grw of (2.12.1).

4.2. Let X be an algebraic variety. For the definition of the category of Mixed
Hodge Modules MHM(X), we consider all the smooth varieties Y9 open sets [/j of
I/--!, open immersions j; : Ut -> U't such that C/|\t/f are w.l.p.d. (cf. (4.1.6)), and
functions gi on Ut for i > 0, where U'0 = X x Y. Then MHM(X) is the full
subcategory of MHW(X)P defined by the following condition on J?eMHW(X)p

for any Y9 Ui9 U'i9 gi(i>G) as above (inductively on i):
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(4.2.1) the vanishing cycle functors along gt are well-defined for J?i_1\Ui

(cf. (4.1.4)) and (jjl9 (j^ exist (cf. (4.1.7)) for both ^M^\^ and
00,,1-^i-i cv where Jt$ = ̂  ^ Q? [^y] and Mi is obtained by
operating (jf), or (j^ after \l/gi or 0ffitl to ^-J^ (i > 0). (Here

x Y)p is also assumed.)

By definition we have

(4.2.2) MHMpO is stable by the operations in (4.2.1): IE) Q?[dy], ;'„ 7*, ^,
0 f f j l, where Y is smooth and j is as in (4.1.7).

because IE Qf [dy] commutes with these functors and </>gtl = id if 0 = 0. By
(4.1.1), (4.1.5) and (4.1.8-9) we have

(4.2.3) MHM(Z) is an abelian full subcategory of MHW(A7, stable by the
dual D and subquotients in MHW(AT), and Dj, = 7*0 for j as in
(4.1.7).

Let i : X -» Y be a closed immersion of algebraic varieties. By the remark after
(4.1.4), we have a functor:

(4.2.4) i* : MHM(^) — » MHM^(F),

where MHMX(F) is the full subcategory of MHM(F) whose objects have support
in X. To show that (4.2.4) is an equivalence of categories, we give the second
definition of mixed Hodge Module as follows :

Let X be a projective variety. Then MHMpQ' is the full subcategory of
MWW(X)P such that the condition (4.2.1) is satisfied for any smooth projective Y
and Ui9 U-, gt such that U'0 = X x Y. For an open set 17 of X, MHM(U)'X is
the full subcategory of MHW(U)P whose objects are the restrictions of those of
MHMpO'- We shall see that MHM(I7)^ depends only on 17 and define
MHM(t/)' - MHM(U)'X. Then for any algebraic variety X, MHM(X)' is
defined using an affine open covering and we shall verify the independence of
the covering and MHM(X) = MHM(X)'. We first note

(4.2.5) for a projective variety X, MHM(X)r satisfies (4.2.2-3) by replacing
Ji> 7* with J J ~ l , 7*7 ~1 and \//g, (j)g^ with the compositions of 7,, 7*
with \l/gj~l, 0fl,i7~1

J where the complement of Im 7 is a w.l.p.d. on
X and Fis smooth projective.

Then this implies

(4.2.6) for a projective variety X with an open covering X = U Ui9

^eMHW(X) belongs to MHM(Z)' iff its restriction to U{ belongs
to MHM(l/^ for any i.

In fact we may assume X\Ut is a w.l.p.d. and Ut are finite (taking a refinement of
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the covering), where we assume M|[/ieMHM(l/I-)^ because the converse is
trivial. Then the Cech complex associated to this covering (using j, or jj gives
a resolution of M (in MHW(JQ) by objects of MHMpQ', whose differential is
induced by (4.1.8). Therefore .^TeMHMpO' by its stability by Ker, Coker in

To show the equivalence of categories (4.2.4) for the second definition, i.e.
for MHMPO', etc. (where X, Y are projective), it is enough to show the stability
of MHMX(Y)' by the operations in the definition of MHM(X)'. Because
MHWpf) = MHWx(y) and the condition (4.1.4) and the definition of \//g, </>gtl

are independent of the closed immersion (cf. the remark after (4.1.4)), it is enough
to check the stability by the composition of j,, j^. with i//gj~

l, ^ij"1, where
j\ U — » X is an open immersion such that X\U is a w.l.p.d. and g is a function
on U. Let Y= U V{ be an open covering with functions ht on V{ and gt on
J^XfefMO) such that 17 n Vt = X^V^^Q)), g^Un Vi = g\U [} Vi and Y\Vt is a
w.l.p.d. Then Y\(Vt\h^l(0)) is also a w.l.p.d. and the assertion is verified locally
by (4.2.5) applied to Vi\hri(Q)-+Y and gt. Therefore (4.2.6) implies the
assertion, i.e. we get the equivalence of categories :

(4.2.7) i* : MHM(X)' -^ MHMX( Y)'

for i : X -> Y a closed immersion of projective varieties. Then this implies the
stability by pull-backs by the same argument as in 2.19:

(4.2.8) for a morphism of projective varieties/: X -+ Y,
tfjf* are well-defined as functors between MHMpQ' and MHM(Y)',
and they are compatible with the functors on the underlying perverse
sheaves.

In fact, the assertion for direct images follows from (4.1.5). For pull-backs, we
use a factorization /= p°i such that p = p^ : Yx Z -> Y with Z smooth and i is
a closed immersion. Then for a closed immersion we take an open covering
Y\X = U Ut such that Y\Ut is a w.l.p.d. (by the same argument as in the proof
of (4.2.7)). For the independence of factorization, we have to show (2.19.1) in
the case / is a closed immersion (and p as above). We extend local equations of
Im i in Im/ x Z to Y x Z and get locally an etale morphism Y x Z -> Y x Cdz

over Y. Therefore the assertion is reduced to the case Z = C" and Imi = Im/
x {0}, and it follows from the same argument as in 2.19.

By (4.2.8), MHM(l/& is independent of X and MHM(I/)' is well-
defined. Moreover it is an abelian full subcategory of MHW(L7), because we
can take X such that X\U is a locally principal divisor and use 7, or j^ for the
extension. Similarly it is stable by \//g9 (/)gjl for a function g on (7, IE Qf [dz] for
a smooth quasi-projective Z, and subquotients in MHW(C7), and (4.2.8) holds for
a morphism of quasi-projective varieties, where J^fjfi =£ ̂ jf^ (if /is not proper)
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and they are defined as in 2.18 (the independence of factorization follows from
the uniqueness of 7, and 7^).

For the well-definedness of MHM(X)f for a general X and for the
compatibility with its definition for a quasi-projective variety, it is enough to
check (4.2.6) for X quasi-projective. We take a projective completion X such
that X\X is a locally principal divisor, and take a refinement of the covering X
= U Ut such that X\Ut is a w.l.p.d. Then the Cech complex gives a resolution
of jiJt or i^M where j: X -+X, and we get the assertion as in the proof of
(4.2.6). We now show

(4.2.9) MHMpQ - MHMCAT)'.

The inclusion c: is clear by definition. For the converse we have to show the
stability of MHM(X)f by the operations used in (4.2.1). By definition the
stability by 13 Q? [dy] and vanishing cycle functors follows from the above
argument in the quasi-projective case. For the stability by 7,, j% for an open
immersion;: U -> X as in (4.2.1) we may assume X is affine and X\U = g'1^)^
by the uniqueness of j,,7^ (taking a covering of X). Then the assertion is clear.

As a corollary of (4.2.9) we get the equivalence of categories (4.2.4), because
it can be reduced to the case Y affine (and then projective). We can also define
Jf J"/,, tf'fv 3?jf\ Jti7jf* for any morphism of algebraic varieties. (For the
direct images it is enough to define ffljf^Jl in the case/proper and Jl pure,
cf. 2.16. But this can be reduced to the projective case by Chow's lemma,
combined with the stability by pull-backs and subquotients and Deligne's
uniqueness of the decomposition.) But we give a better definition later, cf. 4.3.

By (4.2.2) and (4.2.4) we can define £g as in 2.22 and get the results in (2.e)
similarly. Moreover, for a closed immersion of algebraic varieties i: X -> Y we
have an equivalence of categories

(4.2.10) i+: DbMHM(X) -^ D^MHM(F).

In fact it is enough to check the effaceability as in [3, (3.1.16)]. By the next
assertion, we can reduce to the case Y affine using an affine covering as in
[1]. Then we may assume X = g~1(0)Ted by induction. We have also

(4.2.11) Let 7 : 17 -> X be an affine open immersion. Then we have the exact
functors

7,, 7*: MHM(C7) —> MHM(X)

compatible with the functors on the underlying perverse sheaves and
representing the adjoint functors of j"1, i.e. we have the natural
functorial morphisms jj'1 —»id and id —>7'*7'~1.

By uniqueness we may assume X affine. Then the assertion is proved if U
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= ^\gf~1(0)red. We prove the assertion using the associated Cech complex to a
covering of U by such open subsets (as in the proof of (4.2.6) for X quasi-
projective). Here the condition j affine is used only for the acyclicity of 7,,
7^ (i.e. they preserve the perversity).

By the same argument as in 3.8-9, we have

(4.2.12) MHM(pt) = {polarizable Q-mixed Hodge structures}.

Let MHM(X)ep be the full subcategory of MHM(X) whose objects Jt satisfy the
condition:

(4.2.13) the mixed Hodge Modules are stable by ^Jt.

Then MHM(X)ep is an abelian full subcategory and stable by the natural
functors as above by their commutativity with [x] Jt. In particular, we have

(4.2.14) MHM(pt) = MHM(pt)ep,

because the Hodge Modules (or structures) are stable by the external product
with the Hodge structures. By the same argument as in (3.c), we can show in
general:

(4.2.15) MHM(X) = MHM(X)ep.

4.3. Theorem. Let f: X -> Y be a morphism of algebraic varieties. Then we
have the functors

/,, ft: DbMHM(X) —> DbMHM(Y)

compatible with the functors on the underlying Q-complexes.

Proof. We repeat the argument in [1, §3] using (4.2-8), (4.2.11), i.e. if X, Fare
affine, they are the right or left derived functors of 3t?°fi, ^°/#' an<^ in general
we reduce to this case using affine open coverings of X, Y compatible with /,
because we can take a functorial resolution of a finite number of given objects in
MHMpf) simultaneously such that each component is acyclic for the direct
images (/j), (or (//)*), where/7 are the restrictions of/to the intersections of the
affine open sets of the coverings, cf. [1,(3.3)]. We can check the independence of
covering by taking the covering whose open sets are the open sets of two
coverings.

As a corollary of the proof, we have a canonical isomorphism in DbMHM(Y):

(4.3.1)

for affine open subsets 7": U -»X and 7": V -> Y with /': U -> U' such that fj
= j'f and for ^eMHM(l/) whose underlying perverse sheaf is

°/;)-acyclic.
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In fact, if X = (ji>0 Ut and Y= ^i>0U'i are affine open coverings such that
f(Ut) c U-, so are X = y £>0 C7(., 7= u f > 0 I/;, where E/g* = U(r}. Then j\Jtf0f\J(
is a subcomplex of the Cech complex, associated to the second coverings, whose
components are the direct images (j'i)\^Q(fi)\JTlj\J^, where /j: U 1 -> Uj and
Ji :C/ j ->7. Therefore, taking a resolution of j^ as above, we get the
morphism j\3tfQf\J( -*fi(j\^)9 which is an isomorphism, because it is true for
the underlying Q-complexes.

By (4.3.1) we have the natural isomorphisms:

(4-3.2) (9f)i=9ifi, te/),=0J*

for /: X-+Y, g:Y-+Z, because we can take a resolution such that each
component is Jf?0(//)!-acyclic and Jf°(gf///)!-acyclic at the same time by the
construction in [1, (3.3)].

We can also show the canonical isomorphism

(4-3.3) /!=/,

if / proper. In fact it is enough to show the isomorphism

O=/*(7i^)in MHM(7)

compatible with the canonical isomorphism on the underlying perverse sheaves
for j: U-*X and M as in (4.3.1), because every objects of DbMHM(X) is
isomorphic to a complex (in D + MHM(^)) whose components are of the above
type (by the proof of 4.3). Let ] : U -> X be an open immersion and n : X -> X a
proper morphism such that X is quasi-projective and n] = j. If the assertion is
verified for n and fn, we get

by (4.3.2). Therefore the assertion is reduced to the case X, Y projective and
follows from the next assertion:

For/: X -+ Ya morphism of projective varieties and J?eMHM(X), we have
the canonical isomorphism in MHM(7):

(4.3.4) Hj(f,J{} = (3ejf*)Jt = Hj(f*Jf)

compatible with the canonical isomorphisms on the underlying perverse
sheaves. (Here tfjf+ is defined in (4.2.8).)

By the definition of /,,/„. and by (4.3.1), it is enough to show that {J^jf^} is
extended to a cohomological functor from DbMHM(X) to MHM(Y). But this is
verified by the same argument as in 2.14-16, because the Q-part of an object of
DbMHM(X) defines a quasi-filtered object of Dc

b(Q*)(cf. [19, (5.2.17)]) by the
functor real defined in [3,3.1.10] so that the weight spectral sequence is well-
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defined as in the proof of 2.15 (here the weight filtration on X is shifted by the
degree of complex so that HjG*Y is of weight i + j).

Similarly we can show

(4.3.5) D/=/,D.

In fact, it is enough to show for j^M as above. Because we have

(where /, /' are as in (4.3.1)), it is enough to show

in the case X, Y affine, or in the case X, Y smooth projective by
definition. Then this follows from the compatibility of the algebraic and
topological dualities, because the weight spectral sequence is compatible with the
duality. Here the algebraic duality is easily verified in the case / = pr2 : X = P"
x 7-> Y, because the trace morphism is easily defined (and compatible with the
topological one).

4.4. Let/: X -> 7 be a morphism of algebraic varieties. We define/* (resp. /!)
by the left (resp. right) adjoint functor of /^ (resp. /,). Then D/! =/*D by
(4.3.5). Let g : Y-+ Z be a morphism of algebraic varieties. Then (gf)* exists
and (gf)* ~ /*#* if /* and g* exist by (4.3.2) (same for (gf)'). We show the
existence of/*,/! and their compatibility with the functors on the underlying Q-
complexes using the factorization/: X -^> X x Y-*Y.

(4.4.1) Let i: X -> Y be a closed immersion, and j: U -> Y the immersion of
the complement. Then y =j* = j~1, and i* (resp. r) exists and is
compatible with Q-structure. We have the functorial triangles for

(resp. — *i^i'Jt — +Jt — ̂ jjj-j"1^ — >)

compatible with those for the underlying Q-complexes.

This follows from the same argument as in 2.20. We take an affine open
covering of U and use the associated Cech complex (with (4.2. 10-11)) to define
the triangles and i*, f. Then the first assertion follows from the existence of
morphisms jtj"1 -^id-^^j"1 (in the triangles), and it implies
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, j ' 1 ^ ) = 0.

Thus we get the adjunctions by the triangles.

(4.4.2) For a projection p: X x Y-* Y, p* (resp. pl) exists and is represented
by M m for any M e Db MHM(X)ep (cf. (4.2.13)) with a morphism in
DbMHM(pt) : Q* -> (ax)+ Jt (resp. (ax\ M -> Q*) such that axQ
(resp. a^Q) underlies M and the natural morphism Q-+(ax)*

a*Q
(resp. (ax)i aJyQ -> Q) underlies the above morphism. In particular, M
^ axQ* (resp. al

x Q*), and if X smooth, M ^ Q?(resp. Q*(dx) [2dJ).

Here ax: X -»pt - SpecC, and Q?[dJ = ((flJr, F), QxWJ; »0 with Gif
= Gr^i - 0 for i / d^ (if X smooth).

We prove the assertion for p*, because the argument is dual for p1. We
have to construct the functorial morphisms

a : id — > p^p*, j8 : p*?* — > id

such that the compositions

are the identities. We define a by the external product of Qft -> (a^^Jt. For j8
we use the diagram:

* x y<-^— ^ x ̂ r x y^— jr x y

D

y<

where i is the diagonal embedding such that qj ° i = id. We define ^ by the
composition :

where the last isomorphism is induced by (4.3.2) and the following assertion
(applied to i and q^):

Let f : y-» JF x ybe a section of the projection p: X x y~» y, and «^f as in
(4.4.2). Then the composition:

N -^ p+(ji m jr) —+ p*i*i*(Ji mjf} = i*(jt m jr)

is an isomorphism. (In fact, it is true for the underlying Q-complexes.)
Then p^ p ° a = id is clear, and )8 ° p*a = id follows from the symmetry of the
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diagram, i.e. the isomorphism : i*(J( H3 j( m Jf} ~ M |xl Jf used in the
definition of j8 is independent of the choice of the projection onto X x Y.

Here note that the above argument and the arguments in 4.3 and (4.4.1)
hold with MHM(X) replaced by MHM(Z)ep (cf.(4.2.13), here we can also use
(4.2.15)). We show the existence of M satisfying the conditions in (4.4.2). If X
is smooth, M = Q?[dx] = JfdxaJQ* belongs to MHM(X)ep by (4.2.14). By
(4.4.1) for MHM(X)ep, the assertion is verified locally, and it is enough to show
the following:

If X is covered by two open sets Ut such that M{ exists on Ut (i = 1, 2), Jl
exists on X.

Put 1/3 = U1r\U2 and let jt: U^X be the natural inclusions. By the
adjunction for I/3 -> l/4 and Ut -> pf, ^3 ^ ag3 Q^ exists on l/3 (in
DbMHM(U3)ep) and we have the isomorphism Ji^^Ji^^ such that QjJ
~~>(at/3)*=y^3 is given by the composition:

Qpt — > (*u)*-*i — ^ («C/3)*^3

for i = 1, 2, because the adjunction isomorphism for % is give by a. We define
Ji by the mapping cone:

so that we have the exact sequence

0 ~+HQ(ax)*Jf -> 0 H°(a^)*->*£ — H°(a[/3)^3.

Then the assertion is clear, because H\ax)^J{ = 0 for i < 0.

Remark. The above construction of /? is due to Kashiwara, i.e. the use of the
diagram (*) is suggested by him.

As a corollary of the above argument, we have

(4.4.3) For a cartesian diagram

we have the canonical isomorphisms:

compatible with the natural isomorphism on the underlying Q-
complexes.

In fact, we may assume g is a closed immersion or a projection. The projection
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case is clear by definition. In the closed immersion case, we take affine open
coverings X = u iel U'i9 Y = U iel Ut compatible with / and satisfying U' = U iej U'i9
U = UieJUi for J c /, where /: U' = X\W-*X, j:U = Y\Z-> Y. We take a
resolution of MeC&MHM(X) compatible with these coverings to define
f^M. Then its quotient complex whose components are the direct images from
^ieK^'i with KaJ represents f*j'*(j')~lJt, and the mapping cone of the
quotient morphism represents g*f*(g')1^ =f*g'*(g')1^- We verify that this
quotient morphism also represents the morphism, f^M -+j*j~ V*^, applying
id -> j*j~~l to this morphism, where j ^ j ~ l is also defined in the level of complex
using a covering. Then we get the assertion.

45. We say that J?eDbMHM(X) is of weight < n (resp. > n), if the following
condition is satisfied:

(4.5.1) Gr?HjJ( = 0 for i > n + j (resp. i<n + j).

By 2.26 and (4.3.4), we can verify:

(4.5.2) the condition (4.5.1) is stable by the functors/,,/* (resp. /^ /!).

We say that J?EDbMHM(X) is pure of weight n, if GT?HJJ( = 0 for i =£j
+ n. By (4.5.2) this condition is stable by /# if /is proper. (Actually the last
assertion is first proved in the proof of (4.5.2) for direct images, where we use
Chow's lemma and the decomposition (4.5.4) below.) We can also verify

(4.5.3) ExtJ'(^, J/°) = 0 for Ji, N pure of weight m, n such that m < n + j,

using Yoneda's extension, because MH(X, n)p are semi-simple and MHM(AT) is
stable by sub-quotients in MHW(X) (or we can use MK(X, n)p a MHMpQ,
which follows from the algebraic version of 3.27). As a corollary, we get a non
canonical isomorphism in DbMHM(X):

(4.5.4) Ji^ ®HjJfl-n

if Ji is pure of weight n. (These facts are analogue of [3].)
For an algebraic variety X, we define

(4.5.5) Qf:=<«Q£

where ax: X -+pt (:= Scec C) and Q£:=(C, F, Q; W)eMHM(pt) with Grf
- Gif = 0 for i * 0, cf. 3.8. Then

(4.5.6) /TQf = 0 for i > dx(:= dim X),

because the functor rat is faithful and pJffi(Qx[dx]) = 0 for i>0 by
definition. By (4.5.2), Qf is of weight < 0; in particular we get

(4.5.7) Gi?Hdx Qf = 0 for i > dx.
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By (4.5.6) we have also

(4.5.8) Hom(Q? [dj, Jl) = Hom(H°(Qf [dj), ^T) = 0

for ^ e MHM(^T) such that dim supp M < dx, because these groups are
isomorphic to Hom(Qf [dx], ^) for Z = supp^ by adjunction. Let U be the
maximal smooth open subset of X of pure dimension dx, and X' the closure of U
in Z. Then (4.5.8) implies

(4.5.9) Gr£ff"*Qf = ICX,Q*,

because MH(Jf, dx)
p( c MHMpQ) is semi-simple. Here ICX-QH is a unique

object of MHM(^T) such that its restriction to 17 is Q0[d*] and it has no
subobject and no quotient object in MHM(X), whose support is contained in
X\U. Then 1CX>QH is simple and pure of weight dx, because so is Qu[dx~] by
definition. For the uniqueness of ICX-QH, we have the natural isomorphism
(cf. [3]):

(4.5.10) 1C*. QH = ImUf0./, (QSWJ) — H%(Q«[dJ))

where j : 17 -> X. In fact we have the adjunction morphism

HQj{j-
lJt^J{ (resp. Ji — +H°jJ-1J?)

for ^ = ICX-QH by (4.4.1), because Hijlj~
1J( = Q ( i > Q ) (resp. WjJ'1^

= 0 ( i < 0 ) ) for J?EMHM(X) by definition. Then the surjectivity
(resp. injectivity) of the adjunction morphism is clear, and we get (4.5.10).

As a corollary of (4.5.6-7) and (4.5.9), we get the natural (quotient) morphism
in DbMHM(X):

(4.5.11) Q?-^IC^Qfl[-dJ.

Taking the composition with its dual, we get the natural morphism in
DbMHM(X):

(4.5.12) Qf -> (DQf)( - dx) [ - 2dJ,

because we have the self-duality:

(4.5.13) D(IC^Qfl) = IC^QH(dJf).

(In fact (4.5.13) is trivial on U by definition.) By (4.5.8) and its dual, we get

(4.5.14) Hom(Qf , (DQf)( - dx) [ - 2dJ) = End(ICx, Q
H) = Q"

where r is the number of the irreducible components of U. In particular the
morphism (4.5.12) is uniquely determined by its restriction to an open dense
subset of U.

Let Z be a closed subvariety of dimension d of X. We apply (4.5.12) to
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Z. Taking its composition with the adjunction morphism Qf -> Qf and its
dual, we get a morphism in

(4.5.15) Qf _>(DQf)(-<0[-2d].

By definition its restriction to X\Z is zero, and we get a factorization:

(4.5.16) Qf ->Qf ->(DQf)(- d)[- 2fl ->(DQ?)(- d)[- 2d],

which is unique if Z is irreducible.
Assume now Z is irreducible, and let n : Z -> Z be a resolution of singularity .

Then the morphism (4.5.15) is the composition of the natural morphism:

(induced by the adjunction) and its dual, because the middle morphism of (4,5.16)
is uniquely determined by its restriction to Zreg. By adjunction for ax, the
morphism (4.5.15) corresponds to an element c/f of

(4.5.17) Hom(Q« (ax) JD Qf )( - d) [ - 2d]),

which is equal to the composition:

Q* ̂ H°(az)*Qj ^H°((az)*ICzQ
Hl- d]) ^H°((az

f )( - d)[ - 2d]) -> (%)*(DQ? ) ( - d) [ - 2d])

and called the (Hodge) cycle class of Z. If X is smooth, we have the self duality
DQf = Q?(djr)[2dJ by (4.5.13), and (4.5.17) is isomorphic to the Q-Deligne
cohomology :

Hom(Q«, (fl^Q?(p)[2p]),

if X is smooth and proper (cf. [2]), where p = codim Z. Note that
H'(ax)^Qx gives the mixed Hodge structure on the Borel-Moore homology of
X in general. We can show that the above construction induces the cycle map :

(4.5.18) CHd(X) (x) Q -> Hom(Q* (ax)+ dx QH
pt ( - d) [ - 2fl),

where D Qf = a^ Qfr by 4.4. Let Z be a cycle of dimension d+1 on Y=X
x P1, and Zt its intersection with JT x {t} for teP1. Then Z determines an
element of

Hom(Q* n-Qj(-d)t-2dl)

by the above construction (taking the sum of the cycle class of each irreducible
component, multiplied by the coefficient), where S = P1 and n: Y->S is the
second projection. For each teP1, we can take the vanishing cycle functor \jj
along X x {t}, and get an element cft of
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Hom(Qf, a5rQ*(-d)[-2fl),

because \j/ is an exact functor, and TT is defined by M d'x Q^r which commutes
with the vanishing cycle functor (same for Qf = n* Qf ). By definition of Zr and
cl't we can check that cl't coincides with the cycle class of Zt, using the
factorization by Qf -> Qj||, the natural morphism of functors i* -» ij/ [1] (cf. 2.24)
and their duals, and observing at the generic point of Zf|, where |Z| and \Zt are
the support of Z and Z,. Then we see that the adjunction isomorphisms are
compatible with the vanishing cycle functor, because it is induced by the external
product with QJJ -> (a^ Qf , cf. the proof of (4.4.2). Therefore it is enough to
check the following:

(4.5.19) for J?£DbMHM(pt) and £eHom(Qf, Qf M Jf)9 i
the vanishing cycle of £ along teS = P1 is independent of t.

By [2] we have Extl(J(, JT) = Q (i > 2) for Jt, Jf e MHM(pt), and it is enough
to show the assertion for Jt and Ji\\~\ with ^eMHM(pt). Then the assertion
for Jt is clear, and that for ^[1] follows from 2.27 (applying it to the variation
of mixed Hodge structure corresponding to the extension class), because S is
simply connected. This completes the proof of (4.5.19) and the well-definedness
of (4.5.18). Next we show:

(4.5.20) the morphism (4.5.18) induces the Abel-Jacobi morphism of Griffiths,
tensored by Q, if X is smooth and proper.

By Deligne, Griffiths' Abel-Jacobi map is expressed as follows : Let Z be a cycle
on X, homologous to zero. Then we have an exact sequence in MHM(pt):

Q-+H2>-l(X, Q)-^H2^1(U, Q)-^Hff}(X, Q)0-»0

where |Z| is the support of Z, U = X\\Z\, p = codim Z and Hf/\(X)0

= Ker(fffz^(Z)->//2^)). Here Hfa(X) and Hf/}(X)0 are pure of type (p, p),
and the image of Griffiths' Abel-Jacobi map of Z in the intermediate Jacobian
tensored by Q corresponds to the extension class defined by the pull-back of the
above exact sequence by the morphism

Q( - p) -> Hf%(X, Q)0 ( c= Hfa (X, Q) = 0 Q( - p))

which is defined by (the coefficients of) Z, i.e. we replace H2p~1(U, Q) in the
exact sequence by the kernel of the natural morphism onto the cokernel of
Q( — p) -> Hf/\(X, Q)0, using the diagram of the nine lemma. Then we have to
show that the above construction gives the same extension class. But it is clear
by a morphism of triangles :
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Here the composition Q( - p) -> Hf^(A'9 Q) -> (ax)* Q?[2p] coincides with c/f by
definition, where

#fz1 (X, Q(P)) - H°(fl|z|), *!z| QH( - 4) C - 2dz]

using R F |Z| = ij r with z : | Z | -> X , and %QH = Q?(dx) [2dJ. Then the

composition is factorized by T<0(%)*(Qf [2p]) by assumption, and we apply the
functor T>_! .

Remark. In the above argument we used the compatibility between Deligne's
mixed Hodge structure [9] and that of 4.3-4. We can easily verify it for the
cohomology H'(Z) and the local cohomology H'Z(X) (i.e. the Borel-Moore
homology of Z) in the case Z is a closed subvariety of a smooth variety X. In
fact, using an embedded resolution of Z and the functoriality of the mixed
Hodge structures (with the base change (4.4.3)), we can reduce to the case where
Z is a normal crossing divisor. Then the assertion is clear.

46. Remarks. 1. For J?€DbMHM(X) we have:

(4.6.1) Jt is of weight < n (resp. > n), iff Hki*J{ (resp. HktxJ() is of weight
< n + k (resp. > n + k) for any fe and x.

Here ix : {x} -> X, and the condition for fx is equivalent to : Hki*DJ( is of weight
< — n + fe, by duality. In fact, the assertion follows by induction on the
dimension of the support, using the distinguished triangles in (4.4.1) and (4.5.2),
because it is clear generically, i.e. for a variation of mixed Hodge structure.
2. We have a t-structure (CD^°, CD^°) on DbMHM(X) such that
cD^°(resp. CD^°) is defined by the condition:

(4.6.2) for any closed immersion is: S -> X, there is a non-emptity open
subset 17 of S such that HkijJ?\v = Q for k> dimS (resp. HkfsJf\v = 0
for k < dim 5).

Here S may be assumed irreducible by definition. For the proof we use [3,
1.4.10] and a stratification associated to each JfeDbMHM(X). We can also
check that (4.6.2) is equivalent to:

(4.6.3) HkilJi = 0 for k > 0 (resp. k < 0) for any xeX, i.e. ^fferat(^) - 0
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for k > 0 (resp. k < 0).

Here we use again the distinguished triangles in (4.4.1) and the stratification as
above. Then this t-structure corresponds to the classical (i.e. not perverse) t-
structure on D*(QX).

47. Remark. The condition of Steenbrink-Zucker [22, (3.13)] for good
variation of mixed Hodge structure is reasonable only in the case where the local
monodromies around the points at infinity are unipotent. In fact, the definition
of *F is not clear in the quasi-unipotent case, and if we interpret the condition
(3.13) ii) so that the nitrations F and P7 extended to those on Deligne's canonical
extension (i.e. the eigenvalues of the residue of the connection are contained in
[0, 1)) and Gr^Gr^ are free on A, this condition is not stable by the base
changes of A, and we have an example that the conditions in (3.13) are satisfied,
but the decomposition (4.11) is not compatible with the Hodge filtration F\

Example. Let S be a Riemann surface, and t a local coordinate around
OeS. Put S* = S\{0}. Let L0 and Lt be local systems on S* underlying
variations of Hodge structures of weight 0 and 1, and rank 1 and 2
respectively. Let 3? { be Delinge's canonical extension of L{ as above, so that the
Hodge filtration Fp is extended to a holomorphic subbundle of yt (i = 0,
1). Let Tt be the local monodromy of Lt around 0. We assume that T0 = id,
T1 is semi-simple, 1 is not an eigenvalue of Tl5 and Gr^^f1 =0 for p ^ 0,
1. (For example, Lx is associated to a family of elliptic curves constructed by
Kodaira.) If there is an 0s-linear morphism 0: F1^ -> J5?0 inducing an
isomorphism near 0 (e.g. S is an open disc), we define a Hodge filtration F and a
weight filtration W on JSf := Sf0 0 ^l by

+ id): F1^ — » JSf), F° = JS?,

W1 = &.

Then the conditions (3.13) in [22] are satisfied (if we interpret (3.13)ii) as
above). But they are not satisfied for the pull-back of 3? |s* to a finite covering
of S* so that the local monodromy becomes unipotent. Moreover we can check
that the decomposition (4.11) in [loc. cit] is not compatible with the Hodge
filtration F in this case. Note that in [loc. cit] they have not proved the
compatibility of the decomposition (4.11) with the Hodg!e filtration F, which
seems to be essential for the proof of the theorem (4.1). In fact we have to
prove the compatibility of the three filtration F, W, V on Deligne's extension
(where Fis the m-adic filtration in the unipotent monodromy case), because they
use implicitly the isomorphism FpGr^Gry =FpGiy Grf which is not true if
they are not compatible, cf. [9]. Here Wis the modified filtration which gives
the weight filtration on & (x) O|(log D), cf. [loc. cit] (see also 2.8-9), and Gr£
corresponds to taking the residue at 0 in the unipotent monodromy case.
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Appendix

By

Masaki KASHIWARA

In this appendix we give a proof of Proposition 3.19 which is used
essentially in the proof of Theorem 3.20.

Ado In this appendix, HI9 Sj will be denoted by H, S for simplicity, and N is
replaced by s. We may assume mt = l(iel) by replacing Nt with mf~

 l Nt. We

choose i = ^/ — 1 so that the Tate twists (n) = (x) (2ni)nZ are trivialized. In
particular, Ni9 s, etc. are defined over R. By definition we have

(A.1.1) ft = H

(A.1.2) S(s*u, skv) = S(u, (- l)''Resa_o(rL/(s - N^l)^kv) for u,

where H is identified with H (x) 1( c H[s]) and Ress=0 is defined by
Res^oCXjez5"7^-) — u-i f°r ^eH. Here H has a mixed Hodge structure such
that the last isomorphism of (A.1.1) is compatible with it and s: H -> H( — 1) is a
morphism of mixed Hodge structures. Then we have

(A.1.3) 5(u, sjv) = S(u, v) (j = l- 1) and 0 (0 < j < I - 1) for u,

Let ]V0e^"=1 HJV£, and put N't = Nt + N0. We define a mixed Hodge structure

R' = HM/Cokerdlfej^ - NJ)) ̂  00^<^ <8> 5'J'

and S' as above with s, Nt replaced by s', IV-. Then

A.2. Lemma- We have a natural isomorphism of mixed Hodge structures (j): H'
-*• H such that

(A.2.2) ^'(M, iJ) - £(0(0), 0(0)) /or M,

Proof. We define 0 by (A.2.1). Then the well-definedness is clear, and (A.2.2)
follows from

Ress=0 0(w) = Ress, = 0w for we!£[s', s'"1],

where 0 is naturally extended to H[s', s'"1]-^//^, s"1] using (s + IV

= s"1(EJ>o(-^o)J'^J).

A3. Proof of Proposition 3.19. We apply Lemma A.2 to any N0 = Y,ai^t
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at > 0. Then by [6], the assertion is reduced to the following assertions

(A.3.1) sk:G^+l_l+kH^G^+1^kH for any k > 0

(A.3.2) S(id (x) sk) is a polarization on the primitive part PGi^+1_l+kH:=
Kcr s*4"1 for any k > 0,

under the assumption

(A.3.3) N: G^+kH ^Gr^_kH(k > 0) and S(id (g) Nk) is a polarization on

PGi*+kH(k > 0) for any N = ̂ iaiNi with ai ^ °-

AA Proof of (A.3.1). We proceed by induction on I and dim H. The
assertion is clear if dim H = 0, and we may assume dim H > 0. If I = 1, the
natural isomorphism If -^ H is compatible with S, S, and the assertion is
clear. Assume / > 1. Take ie/ and put /' = /\{i}. We define H"
= H[s]/Coker (flier (5 ~ Nt)) and £" as above with / replaced by /'. Then we
have a natural morphism of mixed Hodge structures \j/ : H -> H" induced by the
identity on H[s]. On the other hand, by [8, 1.16] [15,2.1.5], we have uniquely
(Hr; Ni,...,Nni Sr) a nilpotent orbit of weight w + 1 with surjective (resp.
injective) morphism of mixed Hodge structures can: H -» H'(resp. Var : H' -> H
(— 1)) compatible with Nj such that Var°can = ]V£, can°Var = ]Vi and
5'(can (g) id) = 5(id (g) Var). We define f t ' , Sf as above with H replaced by
H' . Then the assertion holds for H', S' by inductive hypothesis, and can, Var
are naturally extended to can : H -> H', Var : H' -» H( — 1) by can (g) id, etc. so
that Var ° can = Nt, can ° Var = Nt and S'(ca^n ® id) = S(id (x) Var).

Now take u = ̂ j<ls
juj€Ker sk^G^+1_l+kH with M J-eGr^+ 1_ / + f c + 2j

H, and put i; = s^"1^. Then sv = 0 implies

s = s~l(Uj*i(s - NJ - l\jei(-Nj))v for veG^+1+l_kH such that

By inductive hypothesis we get

0 < S'(can(u), Ccan(iJ)) - S(u, CNtv) = S(u0, CNtv) = S(u0, CNtv)

0 < S"(^(ul Cil/(v)) = S"(u0, C\l/(v)) = - S(u0, CNtv)

because v = Hjel,(s - N> - s" HEM5 ~ ̂  ~ 0J6/'( - #W- Therefore
we get cain(M) = 0, ^f(fi) = 0, which imply w7-eKer Gr^JVj c GrrH and u
= flje/'(s ~" -^j)w ^or w6^1"^^-!^^^- Thus we get u = ul_1 = 0 by / — 1 4- k
> 0, and hence 5 = 0. Then (A.3.1) follows from
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A.5., Proof of (A3.2). By (A.3.1) and the continuity of eigenvalues, it is enough
to prove (A.3.2) under the assumption Nt = Nj for i, jel. Put N = Nh N' = s
- N. Let (R[AT]/(AT'); N'; S') denote a nilpotent orbit of weight 1 - / such
that S'(N'1, Nfj) = (- I)1 (if i+j = 1- I) and 0 (otherwise). Then we have

(#, S) = (H, S)®(R[JV']/(JV"), S')

and the assertion follows from the commutativity of tensor with limiting mixed
Hodge structures.
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