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On a Theorem by Florek and Slater on Recurrence
Properties of Circle Maps

By

Georg LOHOFER* and Dieter MAYER**

Abstract

An obviously little known result by Florek and Slater about the exact recurrence times of the
sequence mf} mod 1 with respect to an arbitrary connected interval / in the unit interval is
generalized to disconnected intervals /^ = [0, a)\j(b, 1) when b = 1 — a, a < 1/2. It is shown that
the formula of Florek and Slater expressing the possible recurrence times in terms of the interval / is
valid also in our case. This let us expect that this formula is valid also for general intervals of the
form /££. The relation of this result to the recurrence properties of integrable Hamiltonian systems
with two degrees of freedom is obvious.

§ 1. Introduction

Some time ago when investigating ergodic properties of certain chaotic
semiflows with strange attractors [1] we came about a nice but seemingly little
known result by Florek [2] and Slater [3] about the distribution of the sequence
{nf$ mod 1} n£jy, for irrational ft on the unit interval / = [0, 1). Their result
concerns the so called gap problem for this sequence: If Ja b denotes the interval
a ^ x < b in /, denote by Nft(I0tb) the set Np(I0tb) = {neJ^:n^ mod 1 e/f l>b}. If
we arrange the elements of Np(Iafb) according to their order nt < n2 < n3 < •••
the gap problem consists in determining the numbers i{ = nt +1 — n{ for all
i G Jf. The rather astonishing result of Florek and Slater then says that for a
connected interval Jf l>b the gaps it- can take at most three different values,
expressible by the continued fraction expansion of the number /?. This result
has a simple interpretation in the theory of dynamical systems: if Rp: St -^>S1

denotes the map Rp(p = cp + /? of the 1-sphere S1 = <%/ ̂  into itself we see that
the sequence {n/$ mod 1} is obviously just the orbit of the point cp = 0 under the
above map. Hence Florek and Slaters's result describes the recurrence
behaviour of the dynamical system Rft: S1 -> Sx with respect to the connected
interval /fljfc of the 1-sphere. This problem, how the orbit of a system recurs to
an arbitrary set of the phase space, arises for arbitrary dynamical systems and
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plays an important role in the foundation of statistical mechanics [4], [5]. In
general not much is known about the exact recurrence properties of an arbitrary
system, so that it is not too astonishing that even for such a trivial system as the
above pure rotation Rp of S1 the problem is not yet completely solved. The
first step to such a solution has been done by Florek and Slater who proved

Theorem 0. For any connected interval Ia>b in I with 0 ^ a < b and any
irrational j$ there are at most three different gaps r1 in the set Nft(IUtb):

il = min{m: mfi mod 1 < b — a = |/flj6|}

(1) T2 = min{m: m/? mod 1 > 1 — \I0tb\}

*3 = TI + T 2 .

The gap T3 does not arise for all intervals I0tb.

In this form the result was announced the first time by Florek in [2]
without a proof, which in fact was given for the case of intervals of the form IUtb

with a = 0 by Slater in [3] . He had determined the gaps ii in this case already
before in [6] , expressing them in terms of the best Diophantine approximation
denominators qn of the number /? determined by this number's continued fraction
expansion. It is not clear how Flored indeed proved his result (see also a
remark by Slater in [3]).

To solve the general gap problem for the rotation Rft of the 1 -sphere, that
means the gaps for any orbii {Rnp<p} for arbitrary cpeS1 with respect to an
arbitrary connected interval in S1? one has obviously to show that the result of
Florek and Slater stays true also for intervals of the form [0, a)U(b, 1) which are
disconnected in / but become connected when regarded as a subset in Si. It
was not clear to us how Slater's approach in [3] could be applied directly to
intervals of the above kind which we denote by /££. So we had to look for
another proof. We found such a proof for the case of intervals of the form
Ia,i-a with a < 1/2. In this case we get obviously

(2) *50e/ f l i l_ f l iff \\nft\\ <a9

where the symbol || n$ || denotes the so called Diophantine norm of the irrational
P. The gap problem with respect to the interval / f l f l _ f l of the sequence [nfi
mod 1} is then equivalent to the gap problem of the sequence {||H/?||} with
respect to the interval /g^. This last problem showed up in connection with
certain ergodic properties of a class of semiflows studied in [7] : a crucial role
there plays the asymptotic behaviour of the function Fn(X) for Re A > 1 in the
limit n -» oo, where this function is defined as follows

(3) FB(A) = X m-\
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where the gn's are the denominators of the rational approximants of /? defined by
its continued fraction expansion.

If MV(P) denotes for 0 < <p ̂  1/2 the set

(4) M^Y = {me^: mfi\\ < q>}

then we can formulate our main result as

Theorem 1. For any irrational ft with continued fraction expansion ft
= [&0, bl9 & 2 > - - J and any (p with 0 < cp ̂  \\qQP\\ tne set M9(ft) has at most three
different gaps. For aJfc)S|| + \\qi + 1 /J|| < (p ̂  (a, + \)\\q£\\ + \\q^J\\9 I ^ a,
^ i>i + 1 , there are in the case

a] 2bi+l > 2a{ ̂  bi+l + 1 exactly the three gaps ^_1 9 ̂  - ^_ 1 9 ̂ ,
6) 2at- ̂  bi^.1 — 2 0Z wo^ £/ze three gaps qt, qi + 1 — 2aiqi, qi+1 — (2at — l)qt

for cpf^tp^vi, the gaps qi9 qi+1 - (2at + 1)^, qi+1-2aiqi for
9t ^ 9 ^ ^P? «^ ^«a/(y rte gaps qt, qi+1 - 2(at + l ) q t , qi + 1 -
(2at + l)qt for <pf ^ cp ̂  cpf

c) 2at = bi+1 at most the three gaps ^_1 5 qi9 qt + qi-l qtfor cpf ^ <p ̂  <p\
and the gaps qt_l9 qt - qt-l9 qt for q>l ̂  cp ̂  (p?

d) 2#j = bi + 1 — 1 at most the three gaps qt, q{ + ^ j _ l 5 q{-i + 2qt for
<Pi < < p ^ ( p i , the gaps q^ 15 ^, q{ + q^ v for q>\ ̂  cp ̂  (pf and finally the
gaps qt-qt-i, qt-l9 q{ for cpf ^ q> ^ cpf

e) a{ = bi+1 at most the three gaps qt_l9 qt - qt_l9 qt for (p? ̂  q> ^ q>?9

4;-2> « i - i - ^ -2» «i-i /or ( p f ^ V ^ V ? if bt=l respectively qt_l9

4i-l<li-i>
It ~ fli-i /^ 9? ̂ 9^ <pf if bt ̂  2.

The quantities (pk
t are thereby defined as follows :

As an immediate consequence of Theorem 1 we get

Corollary 1. There exists a constant c = c(X) such that for any irrational ft,
any A, > 1 an d any i ^ 1

Corollary 2. For any interval / f l > 1_ f l with a ^ \\q0P\\ the recurrence times il

are given by
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11 = min{m:mjS mod 1 < |/ f l ji_J = 2a}

12 = min {m : m/3 mod 1 > 1 — 2a}

*3 = TI + T2

w/zere the last one is, depending on a, not always realized.

This shows that the Florek-Slater formula is also true for this class of
disconnected intervals and this let us expect the formula to be valid also for
general !%$.

Remark: Our result on the gaps with respect to the interval /Q_fl can be
interpreted also as a result on the sequence of gaps arising in the visits of the
sequence m/? mod 1 in the set [a, 1 - a] . Besides some partial results of Slater
on this problem for the interval [0, a] to our knowledge nothing is known for
general intervals. The method of our proof relies on the continued fraction
expansion of the number ft and is in its spirit analogous to Slaters approach in
[6].

§28 A Representation of ||m/?|| In Terms of ||gn/J||

Let us start with some definitions and well known properties of the
continued fraction expansion of an irrational number j8 and its relation to the so
called Diophantine norms \\nfi\\. If ft = [fr0, fe1?...] is the infinite continued
fraction expansion of /? with fr0eJf and b{eJf for z ̂  1, the n-th principal
convergent pjqn, n = 0, 1,... is defined by the finite continued fraction pn/qn

= [fe0, fo1?...,foj. The numbers pn, qn fulfill simple recursion relations [9]:

Pn+l = bn+1 Pn +Pn-l

(4)

fln+l = & n + l flu + flii-1

with boundary conditions p^1 = 1, p0 = b0, q_1 = 0, q0 = 1. The Diophantine
norms ||m/?|| of /? for me Jf are defined as [10]

(5) ||m0||: = m i n m j 8 « r | .
re^

Since \qn(3 - pn\ = (- l)B(0n+1 ^ + ^-J'1 where 0n is defined through 0 = [fe0,
bl9...9bn-l9 0J (see [9]) one gets for n ^ 1 :

For n = 0 on the other hand one finds

0\\ if b
oP-Po\= , 1 „ ai. .- , t.1 - l l ^ f o j S H if ft£= 1.



RECURRENCE PROPERTIES OF CIRCLE MAPS 339

Furthermore the following recursion relations hold:

(7) \\q, + 1P\\ = -b, + 1\\qJ\\ + \\9n-J\\ Xn

\\q0p\\ if
(8) ...

.1 - || floj&U if fej = 1,

respectively

if b

Our first aim is now to express the numbers ||m/?|| in terms of the best
Diophantine approximations ||gn/?||, where the gn's are the best Diophantine
approximation denominators determined by the principal convergents (4) of the
irrational j6.

To start with we recall the following well known fact [8]:

Lemma I. If qn, n = 0, 1,... denote the sequence of denominators of the
principal convergents of the irrational number $ then any integer mEjV can be
uniquely written as

00

(!0) m= Z Wk
k = 0

where the integers rk satisfy the conditions

a) r0e{0, !,...,&! - 1}

ft) rfee{0, 1,...A+1-1} i/rfc.^0

respectively

rfe6{0, l , . . . ,b f c + 1} z / r f c _! =0.

Hereby the bb i > 0, are r/ze partial quotients of j8:

We want next derive a similar expansion of the number || mj8 1| in terms of
the || qnP || . For this let pk be the numerators of the principal convergents pk/qk

00

to /?, defined by its continued fraction expansion. For m = ]T rkqk denote by
fc = 0

a(m) the unique integer such that

rojB - Z rfcPfe + •
fc = 0

Then obviously
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(11) - Z a(m)+ X (-l)krk\\qkp\\

We can then show

Lemma 2. For all m^Jf with \\mfi\\ ^ l l ^o^ l l ^e number a(m) vanishes.

Proof. Using the properties of the coefficients rk in expansion (10) of m and
the recursion relations (7)-(9)

Z (- tfrk\\qkp\\ ̂  £ ^ll«
fc = 0 j=0

+ Z ^ + i l l « 2 7 / » l l = ( f c i -
j= l

where the strict inequality comes from the fact that for any mejV there exists a
k(m) such that rfe = 0 for k > k(m). A similar argument as above shows also that

Z (- tf '*«&/» II > - Z ^ + i l l «27 + i / » l l > - Z
k=0 j=Q j=0

This shows that o-(m)e{0, 1, -1}. Assume that cr(m) ^ 0 for some
. Then the above estimates imply

* |<r(m)| -

contrary to the assumption \\mfi\\ < \\qoP\\-

00

The expression ]£ (— l)krk\\qkf}\\ can be somewhat simplified. If m namely

has the expansion

then we fied

Lemma 3.

f: We only have to show that the right hand side is positive:

- )*"*0^ll^ll ^^ol l^H - Z
fe=feo

(12)
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If /c0 = 0 then r0 ^ 1 and hence b1 ^ 2. In this case formula (8) gives ||g0j8||
= ^i lki^l l + || #2/f II and expression (12) is larger than

If on the other hand fc0 ^ 1 we get using formula (7)

This proves Lemma 3.

The results of Lemma 1 to Lemma 3 put together give

Proposition 2, If m^Jf has for irrational $ the expansion m =
k = kQ

rko i=- 0 then the Diophantine norms of all m with || m/? || ^ || q0fS \\ have the
representation

mp\\ = I (-ir*0'* ii 9*0 ii
where the qk's are the denominators of the principal convergents of /?.

Remark: The referee kindly informed us that Prop.2 is closely related to
what in discrepancy problems is called a canonical form as discussed for instance
in [11].

§3. Proof of Theorem 1

The proof will be similar in spirit to the procedure in [6] to solve the gap
problem for m/? mod 1. We first discuss certain cp's for for which Mv can be
determined explicitly and reduce the general problem then to this case. Let us
start with the well known fact (see [6], Lemma preceeding Theorem 3) that every
number cp with 0 < cp ̂  || q0fi || can be written uniquely as

where the integer i takes values in the set Jp with J^ = Jf for b^ ^ 2 and Jp

= J^\{1} for b1 = 1, the integer at takes values in 1 ̂  a{ ̂  bi+l and the real
number \j/ fulfills 0 ^ ^ < || qj || .

The special role played by these numbers was seen already in [6] where the
induced partition of the interval [0, 1] was used to solve the gap problem for the
sequence m/? mod 1. If we denote these numbers by q>{ = cp£(af) that means

(13) ^(fl«) =

we have
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Proposition 3. The number m belongs to M9i if and only if one of the
00

following conditions holds for the expansion m = £ rkqk, rfeo ^ 1:

(32) k0 = i — l:ri_1 = i, rt = bi + 1 — at, there exists n ^ 1 swc/z ^/zfltf rfe = 0 for
i + 1 ̂  k < i + 2n and ri + 2n ^ 1

(33) k0 ^ i: z/ fc0 = i then 0 < rf < ^.

Unfortunately, the partition induced by these cpt is not yet fine enough to
solve the gap problem for || mfi || . So we have to look for finer partitions. For
this consider the numbers \jj{ = il/fa, ci+l)

(14) ^ =

where the integers a{ and ci + l can take the values

1 ^ a,. ^ fet.+ 1 - 1 respectively 1 ̂  ci + 1

and therefore are defined only for bi+l ^ 2. Trivially

In this case we find

Proposition 4. The number mEJf belongs to M^ if and only if one of the

following conditions holds for the expansion m = £ rkgfc, rko > 1:
fe = fe0

(41) fc0 = i ~ 1 ^i-i = 1, bi + 1 -ai<ri^bi + 1-l
(42) k0 = i- l:ri.i = 1, ri = bi^1 - ab Q^ri^.1 ^ci + 1 - 1
(43) k0^i: if k0 = i then 0 ^ rf < ai + 1. If rt = at+ I then bi + 2 - ci+1 ^

ri+1 ^ fe-+2 — 1. If ri+1 = bi + 2 — ci+1 then there exists n ^ 1
5wc/z //za^ r f + f e = 0 for 2 ^ k ^ 2n and ri + 2n + i ^ 1.

Because the proof of Prop. 3 is very similar to the proof of Prop. 4 we give
only the last one:

Proof of Prop. 4. We show first that conditions (4J to (43) are
necessary. If k0 ^ i — 2 then by Prop. 2 we get

7=1

If fc0 = i - 1 but r,_! ^2 we find
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\\mp\\ >2\\ql.1p\\-(bl+1 - 1)11^11 - bt+l+2J\\qt2Jp\\ = \\K-
j= l

+ \\qj\\ =bl+1\\qtp\\ + \\qt+1P\[ + \\qtP\\ =bl + 1\\q,p\\

We show next that for k0 = i — 1 and rt _ 1 = 1 the condition rt > b( + ± — at is
necessary. Assume rt ^ bl^.1 — at — 1. Then

\\mp\\ > \\qt-J\\ -(t l+i -«;- -1 + 2 j l ^i

If fc0
 = ^ ~ 1 and ri = bi+l — ai then condition (42) is necessary. Otherwise

ri + 1 ^ ci + 1 and we find

- Z ^ + 3^
J = l

If k0 ^ i then r^ at + 1 is necessary. This is clear for at = bi + 1 — 1. If at

< bi + 1 — 1 assume rf ^ af + 2. Then

If rt = at + 1 then bi + 2 — ci+i ^rt+i ^ bt + 2 — 1 is necessary. This is clear for
ci + 1 = bi + 2. For ci + l < bi + 2 assume ri + 1 ^ bi + 2 — ci + 1 — 1. Then we get

on

\\rnp \\>(at-

^11 >l/,t.

If finally r^ = a{ + 1 and ri+l = bi + 2 - ci + l then there must exist an n ^ 1 with

r.+fc = 0 for 2 ^ k < 2n and ri + 2n + i ^ 1. Assume on the contrary there exists a
m ^ 1 such that ri+k = 0 for 2 ̂  fc < 2m - 1 but ri + 2m ^ 1. In this case

\\m0\\ > (a{

+ 2

= at\\qtp\\
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This shows that conditions (4J to (43) are necessary. Let us next show that

they are also sufficient. If the expansion m = Z rkqk fulfills condition (4J we
k = k0

get

\\mfi\\ < Ik,- J II -&+i -f l«

If m fulfills condition (42) we find

II»0II < \\9i-iP\\ ~(bt + 1 - a

qi + 1P\\ + \\qt+2P\\

If m fulfills condition (43) with k0 ^ i + 1 we find

l l»«/f | | < II q*ft\\ + Z ^o+1 + 2;lk,o + 2/ll = II Wll +
j= l

< l k « + i ^ l l + l l
If m fulfills condition (43) with k0 = i and r; < a; then

If ri = flj + 1 and fci + 2 -
 c;+i + 1 < f r + i < bi + 2 - 1 we get

l l m ^ H < (ai + 1)||̂ || - (bl+2 - ci+1 + l)||gl+10|| + (bi + 3

00

+ Z bi + 3 + 2j\\qi + 2 + 2jP\\ =<*i\\1iP\\ +ci+1\\qi + 1P\\ <\l/t.
j=i

If finally rt = at + 1, ri+l = bi + 2 - ci+1 and ri+k = 0 for 2 ̂  k ^ 2n,
we find

|| ml || < (a, + 1)||̂ || - (bi+2 - ci+ J l l ^ + ^ l l - r,2B + 1 | | fc + 2

00

Z &» + 2n + 3 + 2j II ̂ i + 2n + 2 + 2j

Consider next the numbers Xt = Xt(ai) defined as

(15) M = a, || q£\\ + 1/2 1| «i + i / J H , 1 < a, ̂  bi + 1.

It is clear that Xt(ai) < <Pi(ai)'
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For the corresponding set MXi we find

Proposition 5. meJf belongs to MXi(at) if and only if its expansion m

= Z rk^ rkQ ̂  1 fulfills one of the conditions:(51)-(53) which are conditions
k = k0

(4J- (43) of Prop. 4 with

il/. = if/fa- 1, bi+l\ or

(54) either k0 = i — l:ri,l = 1, rt = bi+1 — at and there exists n^l with
ri+k = 0 far 1 < fc < 2n - 1, ri + 2n ^ 1 or
/c0 = l\ri = a{ and there exists n ^ 1 with ri+k = 0 for 1 ̂  k ^ In — 1
and ri + 2n ^ 1.

Remarks: 1) In case a£ = 1 only conditions (53) and (54) make sense.
2) Condition (54) means that exactly one of the two numbers

™2 = Wi + Z r
j=li-2n

belongs to the set MXi. This follows from the fact that

NiJSII + \\m2p\\=2at\\ + ||^ + 1J8|| and that ||mj3|| = \\nft\\

for irrational j8 iff m = n.
Finally we need for irrational /? with b f + 2 = 2/ i+1 the special numbers £*

They fulfill cp^) < ^(ab li+1) < xfa + 1) < (pfa + 1).

For them we find

Proposition 6. The number mzJf belongs to the set M^ iff one of the

following conditions holds for the expansion m = Z rfcfe rfc0 ^ ^: Conditions (4^
k = ko

to (43) o/ Prop A for ^ - ^£.(a£, /i+1), or
(64) ez/Aer fc0 = f — I : r f _ l 5 rt = bi + 1 — at, ri + 1 = li + 1 and there exists n ^ 1

with ri+k = 0 /or 2 ^ fe ̂  2n — 1 and ri + 2n ^ 1
or k0 = i, rt = at+ 1, ri+1 = li + 1 and there exists n^\ such that ri+k = 0
for 2 ^k ^2n — I and ri+.2n ^ 1-

The proofs of all these Propositions run along the lines of the proof of
Prop. 4 so that we can omit them here.
Knowing this way the set M^ explicitly for certain values of q> it is not difficult
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to determine next for these cp also the gaps in the sets M^.

Proposition 7, For f$ = [50? ftl5...] irrational and cp = (Pi(a^ = a{ \\ q$ \\

+ ||*+10||, ieJp the set M9 has for 2at ̂  bi + 1 + 1 the gaps qt_l9 qt - qt_l9 qt

and for 2at ̂ bi+1 the gaps qi9 *+1 - 2atqi9 qi + 1 - (2at - i)qt.

Proposition 8. For ft as in Prop.l and cp = #(a£) = fli||*0|| + 1/2 ||* + 10||
the set M9 has for 2at ^ bi+1 the gaps q^ qi^.1 — (2at — l)qt. For bi+1 = 1 the set
M9 has the gaps qi9 qt_lt

Proposition 9= For ft = [fo0, &1 9 . . . ] irrational and (p = ^ =

P\\ + \\<li + 2P\\) far bi + 2 = 2li+1 respectively cp = ^
i0 l l + ||* + 20|| far bi + 2 = 2li+l + i the set M9 has

for 2at ̂ bi + 1 the gaps qi9 qi+1-

The proofs of Prop.7 to 9 are straightforward. Using Prop. 3 one
determines the right and left nearest neighbours of any point in the set M which
determine the gaps. Because this is a rather tedious but very simple task we
omit the details hera and refer for more details to the appendix.
We are now ready to prove our main result, Theorem 1.

Proof of Theorem 1. Consider the interval a^qfil + ||gi+1j8|| ^ (p < (ai

+ 1)11*011 + Iki+iR ieJp, l ^ f l i < 6 i + 1- Then any <p with 0 ^ <p ^ \\qj\\ is
contained in one of these intervals.

For 2bi+1 > 2at ^ bi^.1 + 1 by Prpos.7 there are the three gaps g{-_ l 5 qt

— qt-i, qt- If a( = bi + l the above interval becomes \ \ q i - i f i \ \ ^ (p < \\qi-iP\\
+ ||*J8|| . For (p? = \ \ q t - i f l \ \ the gaps are by Prop.7 again ^_15 *-*_i,
qt. For < p ? = ||*_ i0|| + 1/211*011 the gaps are by Prop.8:^_l5 qi-qi-1 if
bt^2 respectively g f _ l 5 qt_2 for bt=l. This shows that for all cp with
(p? ^ (p ^ (p? the gaps are q{-^ qt — qt-ly q» where the gaps qt disappear one
after the other by being divided into two gaps of length qi_1 and qt — qi-1 at the
point (p = (p?. At the cp-value cpf = H*-^!! + ||*0|| by Prop.7 the gaps are

*-2» *-i-*-2» *-i if bi=l respectively qt_l9 qi-2qi^1, *-*-i if
bt ^ 2. This shows that for cpf ^ cp ̂  cpf the longest gaps present at cp = cpf,

which are qt — qi^l respectively ^ £ _ 1 5 are subdivided into two gaps of length

qi-1 and qi — 2qi,l respectively ̂ -_2 and q^^ — qi_2- Hence for all cp in the
interval cpf ^ cp ̂  cpf there are only these three resulting gaps
present. Therefore part a) and part e) of Theorem 1 are proved.

Let us next discuss part b). For 2at^bi+1 — 2 ^ bi + 1 we see from Prop.7
that for (p = (p9 = at\\qS\\ + Il* + i0l l there are the gaps qi9 qi + 1- 2atqt, qi + 1

- (2at - l)q. For cp = q>\ = ai\\q£\\ + / i+1 1|* + 10|| + 1/2 (||* + 10|| + ||* + 20||)
in case bi+1 = 2/, + 1 respectively q>\ = at\\q£\\ + (li^1 + 1)||*+10|| + ||* + 2 0II
for bi + 1 = 2li + 1 + I we see from Prop. 9 that there are the gaps q i9 qt + 1

— 2aiqi. This shows that for cp in the interval ( p f ^ ( p ^ (p} all gaps of length
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qi+1 — (2a{ — l)qi disappear step by step by being divided up in gaps of length qt

and qi + i— 2aiqi. Therefore in this (^-interval only gaps of length qb qi+l

— 2aiqi, qi + i — (2at — l)qt are present. Because 2(at + 1) < bi + l we see from

Prop.7 that for cp = (pf = (at + l ) \ \ q t P \ \ + \\qi+lP\\ there are the gaps qi9 qi+l

- 2(a, + l)fc, qi+1 - (2at + l)q. For <p = (pf = (at + 1)||̂ || + l/2\\qi+10\\ on
the other hand Prop. 8 shows that M^ has the gaps qi9 qi+l — (2a( + l)qim This
shows that for <p\ ^ cp ̂  (pf the gaps of length qi + 1 — 2aiqi are step by step
subdivided into gaps of length qt and qi + 1 — (2a£ + l)qt so that in this (p- interval
only the three gaps qb qi + 1—2aiqi, qi+i — (2at +l)qt are present. In the
interval (pf ^ <p ̂  (pf finally the gaps of length qi+1 — (2at + l)qt are further
subdivided into gaps of length qt and qi + 1 — (2at + 2)q{ so that for this cp-interval
only the gaps qi9 qi+1 — (2at + I)qi9 qi+1 - (2at + 2)qt are present. This proves
part b) of Theorem 1.

Let us discuss next part c). If 2at = bi+1 then Prop. 7 shows that for <pf

= flf Ik f0 l l + \\<li + iP\\ there are the gaps qi9 qi+l- 2aiqi, qi+1- (la, - 1) .̂ For
cp = (pi Prop. 9 gives the gaps qt, qi + 1 — 2atqt and hence for all (p in the interval
c p f ^ c p ^ (pi there are the gaps qb qi + 1 — 2atqi9 qi+1 — (2at — l)qt, the last one
being step by step divided up into gaps of length qh qi + 1 — 2aiqi. Because 2at

= bi + l these gaps are therefore qh qt_l9 qt + q^^ For q> = cpf = (at + I)||^j8||
+ Iki + ij8|| we find 2(a( + 1) = bi+1 + 1. Prop. 7 shows then that for this <p
= (pf we find the gaps qt_l9 qi - qt_l9 qt. For (pi ^ cp ̂  cpf the gap qb longest
for cp = <p\, is step by step subdivided into gaps of length ^_1 9 qt — qi_l which
shows that in this interval the gaps are just ^_15 q{ — qi^1 and qt.

Remains to prove part d) of Theorem 1. If 2at = bi^l — 1 we find for <p

= cpf the gaps qb qi + 1- 2aiqi, qi + 1- (2a{ - l)qt. For <p = <p\ Prop. 9 gives the
gaps qb qi + i — 2aiqi = qi-l+qi, that means the longest gap at (p = <p°

disappears by divided up into gaps of length qt and qi + l — 2atqi9hence we find
for (p? ̂  (p ^ (pi the three gaps qi9 qt + qt_l9 2q{ + qi-1. Because for (p = (pf

= (at + I)||^-j8|| + l/2||^-+1j8|| we have 2at = bi+1 - 1 < bi + l9 Prop. 8 gives for
this (p-value the gaps g £ _ l 5 qt and hence for cpl ̂  (p ^ <p? we have only the gaps
qt-l9 qb qi + qi-i- For <p = (pf finally Prop. 7 gives again the gaps qt_l9 qi

- qt_l9 qt and hence for (pf ^ cp ̂  (pf the gaps qt_l9 qt - qt_l9 qt.
This concludes the proof of Theorem 1.

Unfortunately we were not able to treat with our method also those values
of <p with \\q0fi\\ ^ (p < 1/2. We are quite convinced that our results extend
also to this case. It would be interesting to extend our results also to rational ft
and to study also the relative frequencies of the different gaps.

Having established the gap structure of the sets M9 we are now prepared to

prove also Corollary 1. For ieJp the set Mt = [m: \\qtp\\ < \\mfi\\ < \ \ q i - i f i \ \ }
is obviously contained in the set M^ with (p = bi+1 \\q$\\ + \\qi+iP\\

= \ \ q i - i f i \ \ . Since moreover for cp' = bi + 2 \\qi+1P\\ + ||^ + 2j8|| = ||^j8|| we have
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M, c « M A ^ where

'. \\mfi\\ ^ \\qj\\}.

Hence Mt = M(pn((^M(p>\{qi}). From these remarks we deduce

00

Lemma 4. meMt if and only if its expansion m = ]T rkqk, rko ^ I, fulfills
k = k0

one of the following conditions'.
(1) k0 = i~l:ri_1 = l bi+1-l^rt^l
(2) k0 = i — l:ri-1 = 19 there exists n ^ 1 such that ri+k = 0 for

0 ^ k ̂  2n - 1 to ri + 2n ̂  1
(3) /c0 = i:rt- = 1, there exists n ^ 1 swc/z ?to r i + k = 0 for 1 ̂  k ^ 2n — 1

This Lemma being an immediate consequence of Prop. 3 we can omit the
proof. According to Lemma 4 the set M{ can be decomposed into three disjoint
subsets Mf\ k = 1, 2, 3 defined by the three conditions (1) to (3) of Lemma
4. It is rather trivial to see that every gap within one of these sets is bounded
below by qt. This implies Corollary 1 as follows:

Ft(l)= I m ~ A = X I m ~ A - If M}") = {wg I ) <wif ) <-} we find m^
meMj n = 1 meM j">

= qi-1+qi, m(
0
2) = ^ _ / + ^ + 2, m(

0
3) = ^ 4 + q £ + 2 and hence m^M) - m(

0"
}

+ X <*£}_!, for all fc ^ 1 with dff\_^ = mf - mfl x for all n = 1,2,3 and all
j = i

7^1 . Because d£J_i 5= «£ and hence mj^ > m(
0

n) + fc qi ^ (k + 1)^4 for all k ^ 0
we get

I
n = l

If therefore c(A) = 3 /c~A we find

for all i and all irrational /?.
The proof of Corollary 2 follows immediately when comparing our Theorem

1 with the following result of Slater in [6].

Theorem 2(Slater). For cp = a£||^)8|| + ||^ + i)8|| + ^, where O ^ i / /
the gaps of the sequence {mp mod 1} within {m/?mod I < q>} are the integers qt,
qi+1- aa and qi + 1- (a{ - l)qt.

It turns out that the gaps in Theorem 1 are exactly the gaps of the sequence
m/J mod 1 with respect to the cnnected interval [0, 2a). But for such intervals
Slater has shown that formulas (1) are valid. But this shows that they are valid
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also for the kind of disconnected intervals /Q_U we are looking at.

Appendix : Proof of Prop. 7

For meM0i set mL = max {m' e M 0i : m < m} respectively mR — min {m',
mr€M0i:m' > m}. In case the first set is empty we define mL = 0. The gaps dL

and dR are then defined by dL = m — mL and dR = mR — m. Theorem 3 shows
that the set M0i can be decomposed into disjoint subsets M(^, k = 1,2,3, where
m e M($ if m satisfies condition (3fc) of Prop. 3. For fixed 0t define the variable
si = bi+1 — at with 0 ^ si + 1 — 1. We start our discussion with the case

I. at= 1, ai^si(2ai^bi+1)
In this case M^ is empty and we have s^ 1 respectively bi + 1 ^ 2.

1) Consider meM^ given as m = qi.1 + s^ 4- Z rflr
j = i + 2«

If n ^ 2 or n = 1 and ri + 2 ^ bi + 3 we find

j = 1 + 2n

If n = 1 and ri + 2 = bi + 3 we get

2) Consider next m £ M^, m = E r A'5 n ^ ^ an(^ ri = ^ if w = 0.
j=t + «

If n = 1 we get

if r i+l
j = i+l

respectively

^R = (n + 2k- i + l)«,-+2k-i + Z
j=i + 2k

where k = min{l:ri + 2l.1 ^ bi+2l}: dR = qt.

If n = 0 we have m = qt + Z
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mL — Z rflj^M^\ dL = qi9

respectively

™* = 4i+i + Z rflp if ' is odd or st^l:dR = qi + 1 - (2at
j = i + l

II. at= 1, a^Si+1 (2at^bi + 1 + l)

In this case st = 0 respectively bi+1 = a{ = 1.

1) meM($, m = q{_^+ ^ r^p n ̂  1 and we find:
j=2n

mL = Z

2) meM(4}: m = Z rA' ^ ^ 0 and r£ = 1 if n = 0.
j = i + «

If n = 1 we find

mR = qt + m, if r£ + 1 < fr£ + 2: rfK - ^

respectively for ri+1 = bi + 2

^ = (^ + 2 + 1 ) ^ + 2+ Z rflj^M(ll''dR = Cii'

If n > 1 and even we find

n/2

i + n - lki + n + Z

™R = <li-i+ Z r
j=i + n

If n > 1 and odd
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• • I
J — i~rn

If n = 0 and therefore m = q{ + Z rA> ' 5* 1 we get

mL — #i-i + Z rfljEM($l in case / is even: dL = qt — qi-1

mL = Z rfijEM(l] in case / is odd: dL = #,-

m^ = (r/ + 1 + l)^j + i + Z rfljE^(^ ^n case ' = 1; ̂ u = ^ f i - i J

+ Z rj4jGM(o* if / ^ 3, or / = 2 owd r£ + 2 < foi + 3: dR = g f _ !

^ = to + 3 + lki + 3 + Z rflj£M(& if ' = 2 and r£ + 2 = bf + 3:
j = i + 4

This concludes the discussion of the case a{ = 1.

III. fl;>l, ai^S^lfl^&i+i)

In this case 6£ + 1 ^ 2 and M%\ / 0 for k = 1,2,3.

1) meM^, m = ^^ + (s£ + k)qt + Z rA' I ̂ k^at- 1, n2
j = i + n

For 1 < k < a£ — 1 we get

mL = m- g^M^l'. dL = qt

mR = m + ̂ eM^: ^R = q-v

For /c = 1 and therefore m = q{_^ + (s£ + l)^f + Z rA'' w ^
j = i + n

we find

^L = ^-i + s#» + Z rfljeM(ll if w is even: 4 = Qi,
j = i + n

™L = Wi + Z rfljeM($ if n is odd: 4 = Qt + i ~ (2at - l)qt
j = i + n

and

For k = at — 1 and hence m = <?;_! + (bi+i — l)qt + Z rflj we §et
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(ll H n=l:dR = qt
j = i + 2

mR = q. + 1 + ^T rflj€M(Q if n ^ 3 or n = 2 and ri+2 < bi + 3:
j = i + n

dR = qb

™R = (ri + 2k-i + l tef+2k- i + Z rfljEM^ if ri + 2 = bi+3 and
j = i + 2fc

fc = min{/:r£ + 2, < &i + 2/-i}^n = ^r

2) meM(|t
} with m = ^,-_1 + s^j + ^ r^-, n ^ 1. In this case we find:

mR = m + qi

3) me M^, m = £ r^7-5 n ^ 0 and 1 ̂  rf ^ a,- in the case n = 0.
j=i + n

If n = 0 and 1 ̂  rf < af one finds

If n = 0 and rt = at we get

^ for fc odd: ^ = ̂  + 1 - (2at - l)qt
j=i + k

respectively

for fc even' k^2:dR = qi + 1- 2aiqi.

If n = 1 and hence m = ri+1qi + l + £ r^ one gets
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If n ^ 2 and hence m = Z r^- we get for n even
j=i + n

n/2

™L = Z bt + 2j<li + 2j-i + (r^n ~ Itei+n + Z 'freM^'. dL = q,
j=l j=i+n+l

whereas for n odd one finds

J = l

mR = m + qtEM($: dR = qt both for odd and even n.

IV. ai>l,ai^si + l (2at^bi+1 + 1)

$: m - ^_x + (st + %f + Z r

j = i + n

If fc = 1 / fl. - 1 then

mR = (st + 2)^ + Z rfljeM(ll if ^ > *f + 1: dR = <li- li-i
j = i + n

respectively

mR = m + qte M(#] if ^ = s£ + 1 : dR = qt.

If fc = 1 = at — 1 and hence af = 2 we see from a£ ^ sf + 1 that fti+1 = 3

and therefore m = qi-l+2qi+ Z rA-' w ^ 1. Hence we get
.7 = 1-1-11

If fc ̂  2 we get for k = ai-\\m = qi^1

and hence

(ll if at = ^+I^K-
j = i + n
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Z rflj^M(ll if ai < bi + i and n = l or n

j = i + n

(%, if flf < fei+1, w = 2,
j = i + 4

rz- + 2 = bi + 3: dR = qt.

Remains for m e M(£* the case 1 < k < at — 1 :

if st + k ^ a,- + 1 then

ML = It- 1 + «i + - qt +
j = z +

where as for sf + k ^ af

The corresponding right neighbours are

mR = m + q^M^l if s£ + fc ̂  af: rf^ = ^

= (st + fc + 1)^- + r^M(l if

2) me M^: m = q^ 1 + s^f. + Z r

j = i + 2n

For at ^ s£ + 1 one finds

rflj 6 MS :dL = <li-i
i + 2n

3) meM^: m = ^ r^-, n ̂  0 and 1 ̂  rt ^ at if n = 0.
j = i + n

If n = 0, 1 < r,. < a/ we therefore have m = r$£ 4- Z rA'>
j = i + i

For / = 1 we find

^L = fc ~ l)9i + Z rfljtM™ if r« < 5i + 1: 4 = «i
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mL = Qi-l + (ri ~ l)#i + Z TfliE^(^. *f ri > Si + I' dL = Qi ~~ Qi-l-

For / ^ 2 we find

^ = st + 1, I even: dL = qt

— s&i + Z rfljeM(^ rt = st + 1, / odd: dL = qt — qi^.1

For the right neighbour we find in the case n = 0 and 1=1:

mR = (rt + l)qt + Z rflj^M(ll if ri < sf + 1: 4 = <li
j = i+l

(i}, if rf = s£ + 1: 4 = qi-1

(<y if r£ > sf -f 1, r£ ^ a£ < fti+1 or r{<a{ =

if ri = «i =
j = t + 2

For / ^ 2 we find for 1 ̂  rf ^ s£ — 1

= flf-i + s^i + Z rfljGM™ if rt = «i, ' even: ^ - ^_!

l if r^ = si9 I odd: ̂ K = qt.

For rf = st + 1 we find

^K = «i-l + ( « i + l)«i+ Z rj(ljGM(0l''
dR = (li-l-

j=i + l

If / ^ 2 and af ^ rt- > sf + 1 we see that

™R = <li-i + meM{# if r^ bi+1:dR = qi_1

Z rflj^M(ll if H = flt = &.+ 1, ^ + 2
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MR = fa+2*-i + ltei+2*-i + Z WEM™ if

j = i + 2k

and k = min{/: ri+2l < bi + 2l+1}: dR = q^v.

If n = 1 we have m= ]T rA' an^ hence

mR = qt + meM(H if ri + 1 ^ b i+2 - 1: dR = qt

(li' if r ^ + i = fe* + 2 and

fc = min{/: ri + 2l.l < bi + 2l}: dR = qt.

If n ^ 2 we have for even n:

n/2

and for n odd

This then proves Prop. 7. The proofs of Prop. 8 respectively 9 proceed
along the same lines.
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