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Partial *-Algebras of Closable Operators
I. The Basic Theory and the Abelian Case

By

Jean-P. ANTOINE*, Atsushi INOUE** and Camillo TRAPANI***

Abstract

This paper, the first of two, is devoted to a systematic study of partial *-algebras of closable
operators in a Hilbert space (partial Op*-algebras). After setting up the basic definitions, we
describe canonical extensions of partial Op*-algebras by closure and introduce a new bounded
commutant, called quasi-weak. We initiate a theory of abelian partial *-algebras. As an
application, we analyze thoroughly the partial Op*-algebras generated by a single closed symmetric
operator.

§1. Introduction

Ever since the pioneering days of Heisenberg's Matrix Mechanics, operator
algebras have played a prominent role in quantum theories. For instance, the
algebraic language is by now standard in quantum statistical mechanics (e. g. see
the monograph of Bratteli and Robinson [1]). However the algebras used in
this context consist invariably of bounded operators (in particular representa-
tions of abstract C*-algebras) and their bicommutants, that is, von Neumann
algebras. In particular the latter play a crucial role in the Tomita-Takesaki
theory [1].

Yet this framework is often too narrow for applications. The next step is
to consider algebras of unbounded operators, consisting of operators with a
common dense invariant domain. Take for instance a nonrelativistic one
particle quantum system. In the Schrodinger representation, with Hilbert space
L2(R3), the canonical variables are represented by the operators q and p, both
unbounded and obeying the canonical commutation relations [pj? qk~]
= idjk. The natural domain associated to this system is of course Schwartz
space ^(R3), and the corresponding *-algebra ^(£f) consists of all operators A
such that A£f c £f and A*tf a <?. This algebra (slightly generalized if spin is
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considered) appears as the basic object for nonrelativistic Quantum Mechanics,
and it has quite remarkable properties (see the forthcoming monograph [2] for
a detailed study). Elaboration of this model eventually led to the well-
developed theory of Op*-algebras [3-5].

However, it is sometimes unnatural, even impossible, to demand a common
invariant domain for all relevant operators in a given problem. To give a trivial
example: in the simple case described above, £f is invariant under q and p, but
it is of course not invariant under any of their spectral projections. Another
instance is a Wightman field theory, where the natural (Garding) domain is not
always invariant under the elements of (local) field algebras [6]. Furthermore,
the algebra J£?1'(&*) is not complete under the strong* topology, which is both
natural and convenient, and its completion is not an algebra. This state of
affairs prompted W. Karwowski and one of us (JPA) to introduce [7] the
concept of partial *-algebra of operators, or partial Op*-algebra. A systematic
analysis of those was undertaken in recent papers with Mathot and Trapani [8,
9], where, in particular, various notions of commutants and bicommutants were
introduced and studied.

Of course partial Op*-algebras are only a special case of (topological)
partial *-algebra. This concept, originally due to Borchers [10], was also
developed in Ref. 7. Several other types of partial *-algebras have been
discussed in the literature, for instance:

(1) The (topological) quasi *-algebras, introduced by Lassner [11] and
obtained by completion of a topological *-algebra for which the multiplication
is separately, but not jointly, continuous.

(2) The left partial Hilbert algebras, introduced by one of us (AI) in the
context of a generalized Tomita-Takesaki theory [12], and also, independently,
by Ekhaguere [13].

(3) Partial *-algebras of operators on partial inner product spaces [14, 15].
The objective of the present paper is to continue the systematic study of

partial Op*-algebras, and, in parallel, to develop a theory of representations of
abstract partial *-algebras, following the pattern familiar for *-algebras and
based on the Gel'fand-Naimark-Segal (GNS) construction. This approach has
been highly successful in statistical mechanics and in quantum field theory, and
so it seems desirable to extend it to partial *-algebras as well.

Before giving a detailed outline of the two papers, we have to emphasize a
crucial change with respect to the previous work on the subject. Instead of
considering closed operators on a Hilbert space, with a common core ^, we take
their restriction to 2: our partial Op*-algebras consist now of closable
operators. The two approaches are fully equivalent, but the new one simplifies
the picture on several counts. It facilitates the comparison with Op*-algebras
and clarifies the extension theory, which is especially useful for
representations. In order to make the papers self-contained, we will reproduce



PARTIAL *-ALGEBRAS OF CLOSABLE OPERATORS 361

here the main definitions, indicating along the way the differences (in particular,
in notation) with the earlier presentation. We refer to Ref. 8 for further details.

The present paper (Part I) is organized as follows. We begin, in Section 2,
by examining the notion of abelian or commutative partial *-algebra; the
structure of those is more complicated than in the usual case, because the partial
multiplication need not be associative. Section 3 reviews the basic theory of
partial *-algebras of closable operators on a Hilbert space. After recasting the
main definitions in this new framework, we present a systematic theory of
extensions of partial Op*-algebras, elaborating on the results of Refs. 7 and
8. We also define a new kind of bounded commutant, called quasi-weak. The
decisive aspect here is to incorporate in the definition of the commutant the lack
of associativity of the partial multiplication, a characteristic property of partial
Op*-algebras, and a very troublesome one. All these notions will prove useful
in the theory of representations described in Part II. Section 4 is devoted to a
thorough analysis of the partial Op*-algebras generated by a single symmetric
operator, and their bounded commutants. Here again the situation is rather
tricky, but a quick look at differential operators on a finite interval shows that
all possible pathologies do occur in practice. In particular, these partial Op*-
algebras are often really partial, that is, they are not *-algebras, and they are
rarely abelian. Of course the situation simplifies considerably, but not
completely, when the generating operator is self-adjoint: even then, the operator
generates often a genuine, non abelian, partial Op*-algebra. In the Appendix,
finally, we relate the quasi-weak bounded commutant to the various types of
commutants, bounded or unbounded, introduced in the earlier papers.

The central topic of Part II is the theory of representations abstract partial
*-algebras. The definition is the natural one: representation of a partial *-
algebra 51 is a homomorphism of 21 into some partial Op*-algebra (see Section
2 below). For these representations, the notions of extension and of adjoint,
familiar for representations of *-algebras, are defined with help of the extension
theory described here in Section 3. When it comes to the explicit realization of
a representation, the GNS construction [1] is usually the answer, so we have to
extend it to partial *-algebras. The problem is that, for a partial *-algebra,
positivity of a linear functional is not well-defined in general, hence we shall
consider positive sesquilinear forms instead. So the question we want to
address in Part II reads: to characterize a class of positive sesquilinear forms on
a partial *-algebra that makes possible a GNS construction.

In the case of a *-algebra 21, a positive sesquilinear form 0 on 21 x 21 is
called invariant if <t)(x*y, z) = </>(y, xz), for all x, y, ze2l and then the GNS
construction for 0 is always possible. But if 21 is partial *-algebra, the products
x*y, xz are not always defined and the definition above is not acceptable. We
will provide in Part II, Sec. 3, a new definition of invariance for sesquilinear
forms which does the job: as we show, the GNS construction is now possible for
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every invariant positive sesquilinear (i. p. s.) form and the resulting representation
has all the expected properties. The new concept of i. p. s. form generalizes that
of h-form, introduced previously by Lassner and one of us (JPA) for the same
purpose [16, 17]; the latter turns out to be unduly restrictive in practice.

If 91 is a topological quasi *-algebra [11], it is easy to construct i. p. s. forms
on 91 x 91 by taking limits of suitable linear forms on the dense subalgebra
9I0. But this approach fails for general partial Op*-algebra. For that reason,
we are led to introduce a restricted class, called partial GW*-algebras,
characterized essentially by a large content in bounded operators. This class of
partial Op*-algebras seems interesting in itself, and we study them in detail in
Part II, Section 4. In fact, they behave in many respects as a natural
generalization of von Neumann (W*) algebras, and of topological quasi *-
algebras as well. A related topic discussed in Part II (Section 5) is the question
of standardness of GNS representation of partial *-algebras. In the abelian
case, for instance, we show that the well-known criterion of Powers [3] extends
to abelian partial GW*-algebras.

Of course, there are many more aspects to the theory of partial (Op)*-
algebras, and a number of topics will be discussed in several subsequent
papers. For instance:

• the notion of cyclic or strongly cyclic vector for a representation [18] and
correlatively the regularity properties of i. p. s. forms [19].

• the order structure of the space of i. p. s. forms, in particular the extension
to partial *-algebras of the well-known Radon-Nikodym theorem and Lebesgue
decomposition theorem [20-22].

• the extendability of i. p. s. forms upon addition of a unit, in case the original
partial *-algebra does not contain one.

• the normality of i. p. s. forms on partial (Op)*-algebras, which is crucial for
applications to quantum theories.

The moral of the whole story is clear: partial *-algebras are vastly more
complex objects than *-algebras. This shows up in a particularly vivid fashion
in the study of the abelian case, outlined in the present Part I. Yet a
surprisingly large number of results do extend naturally from Op*-algebras to a
class of partial Op*-algebras, namely the partial GW*-algebras. This gives
hope that this theory will provide a viable framework for physical applications.

§2o Abelian *- Algebras

A partial *-algebra is a complex vector space 91 with an involution x
->x*(i. e. (x + Ay)* = x* + Ay*, x** = x) and a subset jTci 91 x 91 such that:

(i) (x, >oer i f lF(y , **)er;
(ii) if (x, y)eF and (x, y)eT, then (x, ly + /^z)er for all A, /^eC;
(iii) whenever (x, y)eF, there exists an element x-ye9l with the usual



PARTIAL *-ALGEBRAS OF CLOSABLE OPERATORS 363

properties of the multiplication:

x-(y + Az) = x-y + A(x-z) and (x-y)* = };*-x*, for (x, y), (x, z)eF and AeC.

An element e. of 91 is said to be a wmt if e* = e, (e, x) 6 F and ex = xe = x for
every xe9I.

Whenever (x, ^)er, we say that x is a fe/f multiplier of 3; and 3; a ng/U
multiplier of x, and write x e L(y) and y £ #(x). By (ii), L(x) and R(x) are vector
subspaces of 91. For a subset 91 c 91, we write

L(9l) - U L(x), H(SR) = U «(*).
xesR xeg?

Notice that the multiplication is not required to be associative, but it must
be distributive with respect to the addition by (iii). This lack of associativity
makes the structure of abelian partial *-algebras much trickier than usual; we
shall study this in detail below. However, in some cases, a weak form of
associativity is useful: a partial *-algebra 91 is called semi-associative [8] if
yeR(x) implies 3;-ze.R(x) for every ze<R(9I) and then one has (x-y)-2
= x-(y-). We shall meet examples below.

A *-homomorphism of a partial *-algebra 91 into another one 33 is a linear
map a such that (i) a(x*) = cr(x)* for each XG9I, and (ii) whenever xeL(y) in 91,
then <r(x)eL(cr(j;)) in 23 and a(x)-a(y) = a(x-y). Notice that, even if or is a *-
homomorphism of 91 onto SB and it is a bijection, cr"1 is not necessarily a *-
homomorphism. A *-homomorphism o of 91 onto 23 is said to be a *-
isomorphism if it is a bijection and cr"1 is a ^-homomorphism.

Abelianness in the context of partial *-algebras is defined in the natural
way:

Definition 2.1. A partial *-algebra 91 is said to be abelian, or commutative,
if the following conditions hold:

(i) (x, y)EFo(y, x)eT5 x, j;e9I;
(ii) x-j; = y-x, (x, y)eF,

or, equivalently,
(i) LJ(x) = R(x), Vxe9I;
(U) x • y = y • x, Vx e 91, y e R(x).

Examples of abelian partial *-algebras are quite familiar.

Example 1. Partial *-algebras of functions:

Let Q be a Lebesgue-measurable set in R";as usual, we denote by LP(Q) the
Banach space of all measurable functions /: Q -> C such that
\\f\\p = (If2\f\pdt)llp < oo. For /eZ/(£), consider the following set of real
numbers:
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We can now define a partial multiplication in LP(Q\ taking F as

F= {(/, g)eL>(0) x Lp(Q)\3reco(f);pr(r - p)-1

By Holder's inequality, (/, g) E F implies that the (ordinary) product fg belongs
to LP(Q). It is easy to check that under this operation JJ(Q) is a semi-
associative partial *-algebra. Abelianness is evident.

Example 20 Partial *-algebras of polynomials'.

Let ^J(z) be the set of all complex polynomials of arbitrary degree in the real
variable z. ^J(z) is an abelian *-algebra (where * is understood to be the
complex conjugation).

^J(z) contains plenty of abelian partial *-algebras. Let us denote by ^Pr(z)
the following subset of ^P(z)(by dp we mean the degree of the polynomial p):

It is readily checked that *$r(z) is an abelian partial *-algebra when we take as 7"
the following set

F= {(p, q}E^r(z) x ^r(z)\dp + dq< r}.

Typical examples of abelian algebras are those generated by one hermitian
element of a non-abelian algebra. If 51 is a partial *-algebra and x an element
of 91, we may consider the partial *-algebra 9W(x) generated by x as the
intersection of all partial *-subalgebras of 91 containing x. This is clearly a
well-defined object. If 91 is an algebra and x = x*, then SR(x) consists of all
polynomials in x and it is abelian, but this need not be true any more in our
case. Indeed, pathologies may arise from the following two facts which are
peculiar to partial *-algebras:

(i) an element x is not necessarily a multiplier of itself;
(ii) if they are defined, we may have several nth powers of x, because of the

failure of associativity.
So abelianness may fail. Let us examine the first few possibilities to clarify

our discussion.
Case 1 : x is not a multiplier of itself

^(x), and it is abelian.

Case 2: xGR(x) (<^>xeL(x)), but x<£E(x2), x2 - x-x.

(i) We may have x2<£K(x2); in this case:
(ii) If q(x) $ R(p(x)), for all polynomials p and q with 1 < dp < 2 and dq

= 2, then

$R(x) = {a0 + axx + a2x2 a£eC} = ^2W? abelian.
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(i2) We may have q(x)eR(p(x)) for some polynomials p and q with
1 < dp < 2 and dq = 2. In this case,

p(x)q(x)Em(x) and $2(x) £ 2R(x).

(ii) We may have x2e.R(x2). In that case, neither x2-x, nor x-x2 are defined,
but x2-x2 is defined. Then the structure of $R(x) is more complex than in case

(i).

In view of such pathologies, we have to be careful ! We begin with the
definition of powers, in a recursive way.

Definition 2.2. Let 21 be a partial * -algebra with unit 1 and xe2l. Then:
(1) Given an integer n > 2, we say that the nth power of x is defined iff all

products xk-xn~k, 1 < k < n — 1, exist and coincide. Their common value is
denoted, obviously, by xn.

(2) The element x is called well-behaved if its nth power xn is defined whenever
any one product xk-xn~k, 1 < k < n — 1, exists.

Remark. If x = x*, it is enough to consider the powers xfc with
1 < fc < [n/2], where [n/2] is the integer part of n/2.

Thus well-behaved elements are those for which associativity holds when
one multiplies their powers.

Clearly if the nih power of x is defined, so are all fcth powers xk, k
< n. Hence there must be a largest integer n for which this is true.

Definition 2.3. Given any XG2I, the length of x is the largest number
/(x) e N U { oo } such that all powers xk, 1 < k < l(x), are defined.

Examples 3. (1) If $1 is an associative partial * -algebra, then all elements
of 21 are well-behaved.

(2) If 21 is a semi-associative partial *-algebra, then each x e £(21) n L(2I) is
well-behaved and has infinite length.

Let 21 be a partial *-algebra with unit 1 and x = x*e2I. As we will see in
Section 4 below, the length /(x) is the crucial concept for characterizing the
behaviour of x. If x is well-behaved, /(x) is just the largest number such that
xe#(xfe) for all fc</(x) - 1 and x£R(xl(x)). Thus it has powers x, x2, . . . , x'(x), and
no product xp-xq with p + q > l(x) can exist. This does happen, however, if x is
not well-behaved. So we define the following subsets of 21:

S(x) - 9W(x) - 5R(x).

Thus we have:



366 JEAN-?. ANTOINE, ATSUSHI INOUE AND CAMILLO TRAPANI

2R(x) = M(x) + S(x),

and we call 5R(x) the regular part of 9K(x), S(x) its singular part. We will study
these concepts in detail in Section 4 below in the case of partial *-algebras of
closable operators.

§3, The Theory of Op*-Algebras
3cAo General Definitlons9 Abellanness

In order to make the paper self-contained, we will rewrite here the main
definitions about partial Op*-algebras, with the new convention that all
operators are now restricted to the common domain 2, hence closable instead of
closed as before. Along the way we will indicate the differences with the earlier
presentation.

As usual, 3? denotes a Hilbert space, fixed once and for all, and 2 a dense
subspace of $?. We denote by &\&, jff) the set of all (closable) linear
operators X such that D(X) = &, D(X*) ID ® [in the notation of Ref.8, J^f(^,
jf) = <g0(&, JP) = <£($} \&]. The set &\2, tf) is a partial *-algebra [8] with
respect to the following operations: the usual sum X1 + X2, the scalar
multiplication AX, the involution X\-*X^ = X*\2 and the weak partial
multiplication X^ D X2 = X\* X2, defined whenever Xl is a weak left multiplier
of X2 (X1eLw(X2) or X2eRw(Xl)l that is, iff X2®<=D(X\*) and X\*@
ci D(X$). When we regard <£\Q), $£} as a partial ^-algebra with those
operations, we denote it by ^(^, Jf)[thus JS?U®, ^} = %™(@) \3f\. Then a
weak partial Op*-algebra on & is a *-subalgebra 5DI of &l,(@, Jf);that is 5R is a
subspace of &\®, Jf) such that J^eSK whenever JTe^ and Zx D X2em for
any Xl5 X2em such that J^iel^C^).

On J2ff(^, ^) we also consider the strong partial multiplication: Xl °X2

= XiX29 defined whenever XleLs(X2)(Qi X^R^X^), which means X2@

<=D(Xi) and Xl@<=@(X\)[m the earlier notation, X1=Xf* and

X\ = X*~\. Equipped with this partial multiplication, J^1 ,̂ Jf) is denoted by
JSf J(®» ^)- We remind the reader that JSf J(®> ^) is in general not a partial *-
algebra, because the strong partial multiplication is not distributive with respect
to the addition [7, 8]. Thus we have to make a distinction. A subspace of
&l(@, 3?) which is stable under all operations will be called a strong pseudo-
partial Op*-algebra on @\ this is the case in particular of JSf J(^, 2tf) itself. If, in
addition, the distributive law holds, we will speak of strong partial Op*-algebra.

As before [7], an operator XE&\@, 3?} is called standard if it verifies any

of the equivalent conditions: (i) X =_X^*i (ii)X^ = X*; (iii)^ is a core for
X*. This is the case, in particular, if X is self-adjoint or normal. Similarly, a

partial Op*-algebra W is standard if every operator Xe^Jl is standard. Notice
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that in this case we don't have to distinguish between strong and weak
multiplication, since the two notions coincide on standard operators.

Let 91 be a t-invariant subset of ^($), 2tf\ Then there is a minimal weak
partial Op*-algebra on Q) containing 91, which we denote by SRw[9l]. But
there does not necessarily exist a minimal strong partial Op*-algebra containing
91. When it exists, we denote it by 50ls[9l](this object was introduced in Ref. 7
and denoted there 9W[9l]). Clearly 9Ws[9l] exists if and only if there exists a
strong partial Op*-algebra containing 91. Since this need not be the case, we
consider the minimal strong pseudo-partial Op*-algebra containing 91, i.e. the
minimal "("-invariant subspace 93s[9l] which is stable under the strong partial
multiplication and contains 91. It is easily shown that 93s[9l] always exists and
»a[9l] c SRw[9l];if SRs[9l] does exist, then 9Ws[9l] c SB, [91] c 9Kw[9l]. As in
Ref. 7, 2Rw[9l] and, when it exists, 9WS[9Q are called the partial Op*-algebras
generated by 91. The case where 91 consists of the restriction of a single closed
symmetric operator will be investigated in Section 4 below.

We will need in the sequel several topologies on partial Op*-algebras (see
Ref. 3 for a detailed study). The locally convex topology on y^(<&9 3?}
generated by the family of seminormsip^pQ = |(Z£|/7)|, £, ??e^(resp. p^(X)
= \\Xt\\, £eS', p f ( X ) = \\Xt\\ + \\X* £\\,' £e9) is called the weak topology
(resp. the strong topology; the strong* topology), and denoted by
£w(resp. £s;ts*). We recall that J^f(^, Jf) is complete for £s*, but not in general
for tw or ts [24]. For 91 c jS?f(®, tf\ we denote by [9l]s* the ts,-closure of
91. In particular, JSff(0, jf) = [&\3>)Y, i-e. the completion of the associated
Op*-algebra JSff(®), namely

2 and

Let 9W be a weak partial Op*-algebra on ^. We put

®co(a«) = {{Uc®; L" i l l ^ H 2 < ° ° and L'.ill^ll^00 for

The locally convex topology on 901 generated by the family of seminorms on

P{W.(^W=ZT-i 1(^.1^1, (U {'/.

(resp. p(W(X) = (Z,ao=i

is called the cr-w^flA: (resp. a-strong, a*-strong) topology relative to 9K, and
denoted by f?w(resp. t», ^).

Finally we come to the question of abelianness. According to the abstract
theory, a partial Op*-algebra 91 is abelian if it satisfies the conditions of
Definition 2.1. Now, for an algebra 91 of bounded operators, this may be
rephrased into the global condition 91 c= 91'. To get a similar statement for an
algebra of unbounded operators, a fortiori for a partial Op*-algebra 9K, we have
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to choose first the type of commutant, necessarily unbounded. Several
possibilities are at our disposal [9], for instance the weak unbounded commutant
[23, 24]:

50?; = {Ye&*(&, Jf?);(X£\Yri) = (Y^\X^r\] for each £ rje@ and Ze50?}, (3.1)
or the weak and strong natural commutants, which are smaller:

50?'n = {Fe50?;; YE L™(X) n RW(X), YHX = XH Y, for all Ze50?}, (3.2)

50?'o = { Ye 50?; ; 7e LS(X) n RS(X), Y • X = X * 7, for all X e m} . (3.3)

However, a global condition like m c 50?'n or 50? c 50?'. forces 50? to be an
algebra. As for the condition 50? £ 50?;, it implies indeed that 50? is abelian, as
follows from Proposition 3.1(i) below, but the converse is not true in
general. Notice that this stronger condition 50? c 50?; is verified in the
particular case of the partial *-algebra of commuting normal operators studied
in Ref. 25; we will recover this result in Section 4 below. Thus, for partial Op*-
algebras, it seems that abelianness cannot be formulated globally, but only
elementwise. The conditions may be formulated in several equivalent
ways. Indeed :

Proposition 3.1. Let 50? c J2?T(^, jff ) be a weak partial Op*-algebm. Then
the following conditions are equivalent.

(ii) m(]Lw(X) c {X}'n, VJTeSFL

(iii) m n RW(X) c {X}'a, \/X e 9W.

(iv) m n Lwpo c= {x}'a, vx e m.
(v) 501 w abelian.

Proof. 9 (i) => (if) : We show that SR n ̂ W(X) = 9K n LW(JT). If 501 n J^WW
c {X}'n for all Xe50l, then clearly 501n^w(X) c 50lnLw(^T); and so 50lnLw(Z)
= 501 n jRw(xY = (501 n ̂ w(Jrf))f c (501 n Lw(Zt))t = 501 n RW(X). Hence 501 n LW(X)
= m n irpQ c { Jf}'n for all X e 50?. We can prove the implication (ii) => (i) in a
similar way.
9 (i) => (iii) aw J (ii) => (it?) : This is obvious.
• (m)=>(i>):Let 7e 50? n KWW ; then 7e{^};, i.e.

(3.4)

Since YeRw(X) we have (r^i^1"??) - ((X D y)<J|r/) = (^| F^), which implies
that Z:^^D(y ts is). In an analogous way we get Y*:@^>D(X*). Thus
XGR™(Y) and from (3.4) X D 7- YD X. The implication (iv)=>(v) is proven
in the same way, and (v)=»(i) is clear from the definition. D
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An analogous statement holds true if SR is a strong partial *-algebra: SR is
abelian iff m^Rs(X) c= {X}'o, VJifeaR, etc.

3.B. Extensions of Partial Op*-AIgebras

As for Op*-algebras, a partial Op*-algebra may be extended by closure to a
larger domain, and in fact two such extensions, a priori different, have been
described in Refs. 7,8. Several other extensions will be defined below. To
make the discussion more systematic, it is handy to consider first the notion of
extension itself, at the purely algebraic level.

Let ®! c 92 c $e and Wll9 2R2
 two t-mvariant subsets of &\®l9 tf} and

&*(:@29 3?} respectively. If there exists a bijection e of 30^ onto SR2 such that
X c e(X) for all Xe9Rl9 then 5R2 is said to be an extension of 9Wl5 and this is
denoted by 5R2 = e(9^i) >-5Dli. Then, as it is easily shown, e is linear and f-
invariant, and if eCX\) D s(X2) is well-defined, then so is X1 D X29 but the
converse does not necessarily hold.

If s(mi)>mi, and X1 DZ2(resp. X^X2) is well-defined if and only if
epfJD 6(^2) (resp. s(X1)'&(X2)) is well-defined, then 8(9^) is said to be an
algebraic extension of (^R1 for the weak (resp. strong) partial multiplication,
which is denoted by 8(90^) >w SIR! (resp. s(Wl1)>s3R1). The following result is
immediate:

Lemma 3.2. Suppose 30^ is a weak partial Op*-algebra on <3)v and 2R2

= fi(9K1)X9K1. Then 30^2 is a weak partial Op*-algebra on @2 and s~l is a *-
homomorphism of $R2 onto SR1? but 8 is not necessarily a *-homomorphism. In

particular, z/e(S(R1)>-w9H lJ then s is a ^-isomorphism of Wl^ onto 9K2-

Remark. In the strong case, the additional assumption S0fl1 -<s$ft2 is
needed; otherwise we don't know if £(30^) is a strong partial Op*-algebra on Q)2.

We describe now three canonical extensions of partial Op*-algebras; the
first two have been discussed already in Ref. 8. Further extensions will be
introduced in Section 3. C below, under additional conditions.

Let SOI be a f-invariant subset of ^(@, 3?}. We denote by tm the induced
topology on Q) defined by the family of seminorms { \ \ - \ \ x ' 9 Xe$n}:

\ \ t \ \ x = \ \ t \ \ + \\Xt\\, t*&.

If the locally convex space (29 tm) is complete, then 9K is said to the closed.
Let SR be a f-invariant subset (resp. subspace) of <£\29 3?) and denote by

&(t^ the completion of 3) relative to the topology t^. Put

), XeW.
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Then f(50l)( = 50J) is a closed f -in variant subset (resp. subspace) of &\&(t^9 $£}
which is minimal among closed extensions of 501. In particular, if 501 is a weak
(resp. strong) partial Op*-algebra on 2, then SK is a weak (resp. strong) partial
Op*-algebra on ^(tj satisfying 5lR-<w50i (resp. 50!-<s50i) and i is a *-
isomorphism of 501 onto 501.

We put

If 2(Wl) = 2, then 50J is said to be fully closed. It is clear that

and hence if 501 is fully closed, then it is closed. The converse is false for a
general subset 501, as it is already the case for Op*-algebras, but we conjecture
that the two notions coincide for vector subspaces [25].

Let 50Z be a t-invariant subset (resp. subspace) of ^(Q), jf). Then [8] 501 is
a fully closed t-invariant subset (resp. subspace) of ^(^(501), ffl\ which is
minimal among fully closed extensions of 501. In particular, if 50? is a weak
partial Op*-algebra on ®, then 501 is a fully closed weak partial Op*-algebra on
(̂50!) satisfying 501 -<w 501 and 1 is a *-isomorphism of 501 onto 501.

If 50! is a strong partial Op*-algebra on 2, 501 is a fully closed, t-invariant
subspace of ^(^(SK), 3tf\ and it is stable under the string partial
multiplication. However distributivity may fail, and so 50Z is in general only a
strong pseudo-partial Op*-algebra on ^(9W) (this was overlooked in Ref. 7). If
distributivity holds in 9M, then i ~ 1 is a *-homomorphism of 501 onto 501, but not
a *-isomorphism in general.

Next we define the adjoint of a t-invariant subset 501 of ^\2), 3?}. We
put

Then i*(X) is a closable operator in ffl satisfying i*(X) =3 X for each X e50J, but
^*(50}) is not necessarily contained in D(i*(X)*)9 and so z*(S0l) is not t"invariant
(however, z*(9W) is invariant under another, less natural, involution, namely:^
-+(X\&)* r®*(5Dl), as shown in Ref. 7).
We now put

= r\x**D(i* (X)*)

i**(X) = i*^1)* f ®
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Lemma 3.3. z**(SR) is a fully closed ^-invariant subset 0/J&?t(0**(2R), 3f)
and an extension ofW. Suppose SR is a weak partial Op* -algebra on 2. Then
z**(90t) is a fully closed weak partial Op* -algebra on ^**($R), which is an
extension of 9ER.

Proof. For each £e^*(SR), nE@(m) and JTe2R, we have:

and hence t(X) c i**(X) for each ^eXR. Furthermore, since Xu =D z*^1)*, we
have

t(X) c i**(*) c= i*(*) (3.5)

for all Xem. We show that z**(^)f - z**(^f) for each Xe$R. This follows
from the equality:

(i*(Xl)*t\rl), by (3.5)
= (t\i*(Xi)r,)9 by (3.5)

for each £, ^e^**(S[R) and Xe^Jl. Hence, z**(9W) is a |-invariant subset of
JSft(®**(9W), Jf) which is an extension of 9K. It is clear that z**(SK) is fully
closed. The rest follows from Lemma 3.2. D

In view of the relations (3.5), it is natural to extend to the present case the
terminology used for Op*-algebras [4,5] :

Definition 3.5. Let W be a ^-invariant subset of J2?f(^, Jf ). Then 2R is
said to be self-adjoint if ^*(SR) = ®, essentially self-adjoint if
and algebraically self-adjoint if 0*(9W) = &

As a final remark, we may quote the following useful results [8]:
(0 if y*(9>, 2tf} is fully closed, then J&fJ(®, 3tf) is semi-associative;
(ii) if ^(@, tf} is self-adjoint, then &l,(2, Jf ) is semi-associative.

To give a simple example, let 9 = ^°°(r) = n ?=!/>( 7*) for a self-adjoint
operator T. Then ^(@, ffl} is self-adjoint, since every power 7* is self-adjoint
and belongs to £\Q), jf ), in fact to ^(2). Furthermore, Rw(^(@, Jf?)) is the
set of all bounded operators B such that EQ) c ^.

3.C. Bounded Commiitants

In the study of Op*-algebras [4,22,24,27-32], an important role is played
by the weak bounded commutant. The same is true for partial Op*-algebras,
where the weak bounded commutant Ww of 501 is defined exactly in the same
way [8,9,23], namely:

9 for each XeSR and & ?/e^}. (3.6)
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However, this commutant is not sufficient in general, because no requirement of
associativity was made for the partial multiplication. The same problem
appears with the other notions of bounded commutant introduced in Ref. 9 (the
so-called natural bounded commutants). In order to remedy this difficulty, we
introduce a new bounded commutant, called quasi-weak and denoted Wqw. The
idea is to incorporate the lack of associativity in the very definition of the
commutant. As we will show in the second paper, this is exactly what is needed
for the study of representations. The relationship between the quasi-weak
bounded commutant and the other types of commutants introduced in Ref. 9 is
discussed in the Appendix.

Let SR be a f-invariant subset of ^(2), 3tf\ Its quasi-weak bounded
commutant is defined as follows:

W; (CX\{\X2ri) = (C£\(Xi D X2)n] and

(C*xuix2i/) = (c*s\(Xinx2)n) (3.7)
for all X19 X2em s.t. jr1eLw(X2) and all &

Exactly as 901̂ , Wqvv is a weakly closed, *-invariant subspace of J*(Jf ), but none
of them is necessarily an algebra, even if 5ffl is an Op*-algebra [4,27,29].

Remark 3.6. (1) Suppose 9R is a weak partial Op*-algebra on 2. Then

mf
qw = {Ce9W'w; (CX\{\X2fi) = (C^X, D XM

for all X19 X2eW s.t. X1eUv(X2) and all &

that is, the two conditions in Eg. (3.7) are equivalent.
(2) Comparing the new bounded commutant with the earlier ones [9], one

gets readily the following inclusions (see Appendix) :

mf
s d m:b d wqw c wnb = ww. (3.8)

Notice that the last equality is valid for any -^-invariant subset 2R. This fact was
overlooked in Ref. 9 but it has no consequences for that paper.

Let W be a f-invariant subset of J^f(^, ^\ Then mf
qw g mf

w in general,
and examples are easily constructed (see Example 5 at the end of Section 4). So
we may ask, when does the equality Wl'qw = Ww hold? One obvious case is when
9W c= ^(Q}\ For the general case, the following easy result gives a sufficient
condition.

Lemma 307. Let 9K be a ^-invariant subset of &*(&, &). Consider the
following statements:

(1) 2R is essentially self-adjoint.
(2) 9W^0
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(3) X is affiliated with (WJ for each

(4) 501̂  is a von Neumann algebra, which equals 501 .̂
Then the folllowing implications hold:

(2)

(1) => | => (4)

(3) D

We remark that the converse implications need not hold even if 9K is an
Op*-algebra [4, 27, 29] ; also, 9K'W is not necessarily a von Neumann algebra,
even if it coincides with Wqvv, but we don't know if the converse holds.

Lemma 3.8. (1) Let Wl be a f -invariant subset of &(2, 3tf). Then:

and

(2) Suppose 5[R is a weak partial Op* -algebra. Then:

(3) Suppose SD1 is an algebraically self-adjoint ^-invariant subset of
tf). Then

Proof. (1) It is clear that

Since

(X^|Q) = (C*X*t\ri) = (i*(X+)C*t\fi) = (C*£\i**(X)ri) =

for each ^e9W, Ce9W'w, ^e^ and ^e^**(aR), it follows that

= Ci**(X)rj

for each JTeSR, CeOT; and f/e^**(9W), which implies

for each Z e 501, C e 9W'W and ^ r j E ^**(9W). Hence, C e z**(SR)'w for each C 6 50l'
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(2) Take an arbitrary CeWqw. Let X, Yem such that leLw(Y). Since
*m-»9[R is a ^isomorphism, ZeLw(Y) and XUY=XHY. For each £,

there exist sequences {£„}, {^m} in ^ such that:

lim £„ = £ and lim
«-»oo n-»oo

lim f/m = ^ and lim Yrjm = Yrj.
m-*oo m-*oo

Then we have

= lim \im(CX^n\Yr,J

= lim li
in~* oo n ~* oo

= lim((A-DY)*C{|»;J

Hence,
(3) Since z**(2R) is a self-adjoint f-invariant subset of

follows from Lemma 3.7 that /**(9M);w = z**(2R)'w. Hence, we have by (1):

If 51 is an Op*-algebra, additional extensions of 51 may be defined [31]
under the condition that its weak bounded commutant 91^ be an algebra (see
also Ref. 32). Similar results hold for partial Op*-algebras, as will be shown
now. The new extensions will play a crucial role in the theory of the so-called
partial GW*-algebras, to be developed in Part II.

Theorem 3.9. Let 2R be a "^-invariant subset (resp. subspace) of ^(2, tf).
(1) Suppose 2R'W is an algebra. Put
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1C^k) = Yl=lCkX^, XeW, E^C

Then £W($W) is a ^-invariant subset (resp. subspace) of <£ft(®w(SOl), Jf7) such that

If ^R is a weak partial Op* -algebra then ew w a "\-invariant linear bijection of 301
onto the partial Op* -algebra ew(9W), e"1 is a *-homomorphism, but ew is not
necessarily a *-homomorphism.

(2) Suppose Wqw is an algebra. Put

w a ^-invariant subset (resp. subspace) of & f(^w(9[R), J«f) ̂ wc/z
(2),
(2)2 fi
(2)3 fi

If Wl is a weak partial Op*-algebra, then £qw is a ^-isomorphism of the partial
Op*-algebra SR onto the partial Op*-algebra £^W(

Proof. We prove the statement (2). A similar reasoning applies to the
statement (1). Since

for each Xem and Z/cQC/c, Z/cK}e^w(2W), it follows that eqw(Wl) is a f-
in variant subset of ^f1"^^^), jf ) satisfying the statements 9[R -< e?w(5R), (2)2

and (2)3.
We show m <weqw(9K). Let Xl9 X2em such that J^i eLw(X2). Then we

have

Q, (by C'j*
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and

for each £fcQC*, Mf}e^w(9«). It follows that e^XJeV^XJ), and
hence 9K<we€W(9W), which implies by Lemma 3.2 that, if 9M is a weak partial
Op*-algebra on ^, then sqw is a *-isomorphism of 9JZ onto the weak partial
Op*-algebra eqw(3Jl) on ®gw(9K). This completes the proof. D

Let 5R be a f-in variant subset of &*(&, Jtf). As above, we denote by
9Ww[9l] (resp.9Ks[$R], 33S[$R]) the weak (resp. strong, strong pseudo-) partial
Op*-algebra generated by JR. We investigate the relations between their
commutants 9, MW SWa[9l]U »[«]U S»w[5K]; and S

Proposition 3.10. Ler SR te fl ^-invariant subset of ^(@, Jf?). Then the
following statements hold.

(1) 8

Suppose 50JS[5R] exists. Then

(2) Suppose yi'qw is an algebra. Then

9WW[5«]W = 9i;w = V(9iyw = 9Ww[E9

/« particular, if y\!qw 2 = 3}, then

aWwTOw = sn
(3) Suppose 9l'w is an algebra. Then

WW[KJW c SR; = £w(9i)'w
/n particular, if 9l'w£i = 3), then

sw»[9i]iw = si
Proo/. (1) It is clear that

We show 9l'w c 5Bs[9l]^,. Take an arbitrary Ce9l^ and define the set:

) and

= {c, c*};,
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where 91^ denotes again the weak unbounded commutant (3.1) of 21. Then 5lc
is a f-in variant subspace of J£?f(^, ffl ) containing 91. Furthermore, ftc is stable
under the strong partial multiplication, as follows from Ref. 9, Prop. 3.2(i), and
can be checked readily. Thus 33s[9l] c ftc. Hence Ce33s[9l]'w and we have

Suppose 5Rs[9t] exists. Then, since

it follows that

which completes the proof of (1).
To show the statements (2) and (3), we first show that 9Ww[9l]'w = 9l'w if

9l'w^ = S). It is clear that 9Kw[9l]'w c 9l'w. Take again an arbitrary
Ce9l'w. Since 5R'W0 c 0, it follows from Ref. 9, Prop. 3.3, that 5*c is a weak
partial Op*-algebra containing 91, which implies 9Ww[9l] c ftc. Hence we have
Ce9Kw[9l]'w for each CeSR'w. Thus finally we get aRw[9t]'w - 9l'w.

(2) By Theorem 3.9 we have fi,w(9l)'w^w(SR) - ^w(9l), and hence statement
(2) follows from the fact just proven.

(3) This follows similarly from Theorem 3.9 and the fact proven
above. This completes the proof. D

§ 4. Partial Op*- Algebras Generated by a Symmetric Operator

4. A. The Partial Op*-AIgebras 50^(7™) and mw(T^1])

Given a sense domain 2, we will study in this section the partial Op*-
algebra generated by a single symmetric element X of J*?1 ,̂ $?}. Of course,
there are two of them, a weak one and a strong one, if the latter exists. To
start with, we have to distinguish between weak and strong powers of X, and
between weakly and strongly well-behaved elements, in the sense of Section
2. The main question is whether these partial Op*-algebras are in fact abelian,
as one would naively expect. Also, what is the structure of their commutants?

Let T be a closed symmetric operator in 34? and 3) a core for T, i. e. T

= T\®. When 2 c D(T") for some neNu{oo}, where D(T°°) =

= n?=1D(Tk), we define:

7™= Tk\@, for k= 1,2,...,n.

Notice the relations

j* c- 7** c- jifc]*^
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We also define spaces of polynomials :

eC> k=l,2,...9n}9 if weN,

**7™; afceC, /c = l,2,...,m;meN}, if n = oo.

Given a complex polynomial ^W = Xfc=oafc t / C ' we Put:

We first investigate the structure of the weak partial Op*-algebra Wl
and the strong partial Op*-algebra SKS(T

[1]) generated by 7*1]. It is clear that,
if TO) c 0, then 5RW(T[1]) - 2RS(T[1]) - <p(T[1]). which is an Op*-algebra on
2. For an arbitrary operator T, we will show below that, contrary to the case
of a general t-invariant subset of ^($), 3tf\ the strong partial Op*-algebra

always exists and one has, for some n:

The following results of Schmiidgen [33] are well-known.

Lemma 4.1. Let T be a closed symmetric operator in a Hilbert space
2tf. Then the following statements hold.

(1) P(T) is a closed operator in ffl for every complex polynomial P.
(2) The norms IHIpcn ana l l ' l l r * are equivalent for every complex

polynomial P of degree n.
(3) A subspace @ c= D(Tn) is a core for Tn iff it is a core for every complex

polynomial P(T) of degree n.

As a consequence of this lemma, it suffices to consider powers of T for
controlling arbitrary polynomials in T. First we define properly the weak and
the strong powers of T[1] = T\<2>. Once and for all, n denotes the largest
number in Nil {00} such that 2 c D(Tn). The following lemma is
straightforward.

Lemma 4.2. (1) When ?ieN, 7™ D T[m~fc] exists and equals T[m] for each
m<n and each k < m. When n = oo, I**1 D T*11"*3 exists and equals T[m] for
each m e N and each k <m.
(2) If T[k}°T{m} exists for k, m < n, then k + m < n. D

Assume rceN(the case n = oo will be treated later on, in Theorem 4.6). By
Lemma 4.2(1), for each m=l ,2 , . . . ,n , T[m] is the weak mth power
J*1]n...C\ T[1](m times) of T[1](so the notation is consistent). Higher weak
powers of T[1] are now defined recursively. If all products T[k] D T[m] exist for
each pair fc, m E N with k 4- m = n + 1 and they coincide, we say that the weak
(n + l)th power of T113 is defined and we denote it by T[" + 1]. Successive higher
powers Tin + 2\ r[""^3],...may be defined in the same way, if the corresponding
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conditions hold.
For the strong powers, the situation changes dramatically. Let

m<n. Then, if all products T^'T[m~k] exist for k = 1,... m and they coincide, we
say that the strong mth power of l^11 is defined; we denote it by T(m), although it
coincides with T^ml But now the process stops at m = n : according to Lemma
4.2 (2), no higher strong power may be defined.

The easiest way to visualize the behavior of T[1] under the two partial
multiplications is to use the concept of length introduced in Section 2 : the weak
length /w(T[1])(resp. the strong length /S(T[1]) of T111) is the largest number m in
Nu{oo} such that the weak mth power T[m](resp. the strong mth power T(m)) of
T[1] is defined. Thus the discussion above may be summarized by the
inequalities 1 < /W(T[1]) < oo, I < ls(T

[1]) < n. The next result gives more
information on the behavior of T[1].

Lemma 4.3,, Let T be a closed symmetric operator in ffl and 2 a core for
T. Denote by n be the largest natural number such that 3> c D(T") and by m the
largest number in Nl){0}u{oo} such that Tn @ c D(T*m). Then the following
statements hold:

(1) IW(T[1]) = m + n if m<n, and 2n < lw(T^1]) <m + n if m>n,

(7*)*-" T" T 0, n + 1 < k <

In particular, if T is self-adjoint, then /w(7^1]) = n.

(2) 2<

Proof. (1) By the definition of the weak length lw(T[1]), it is easily shown
that /W(T[1]) < m 4- n and

k \2, k<n(by definition)
7™ = 1 (r*yc-nTn ^5 n+l <k

Suppose m <n. Take an arbitrary I < m + n and p, geN with p + q = I. If
g > n, then p < n and p + q — n = l — n<m, and hence we have

and
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for each & ?ye®. Hence, Tlp] D T[q] exists and it equals T*l~nTn \<®. In the
case q < n, we can show in the same way that Tlp] D T[q} exists. Hence, we
have lw(T[1]) = m + n. When m> n, it is similarly shown that the weak /th

power Tm of T[1] exists for each / < 2n, and so In < /W(T[1]) <m + n. If Tis
self-adjoint, then m = 0, and so /W(T[1]) = n.
(2) This follows from Lemma 4.2 (2). D

We proceed to the main theorem of this section and analyze the structure
of the partial Op*-algebras 2RW(T[1]) and 5^(7™). Let T, 2 and n be as
above. We begin with the weak case. When lw = lw(T*-1]) = oo, it is clear that

= (yr & T^" $ E C fc = 0 1 T r G N U(0))I L~tk = 0 k ' fc ' ? ? • • • ? ? u I / /

= (Vn .

afceC, k = 0, l, . . . ,n + p,

Hence we have only to study the structure of 9Ww(r[1]) when /w < oo. As usual,
we denote by 5RW(T[1]) the regular part of 2RW(T[1]), i.e. the set ?JZw(7*1]) of all
finite linear combinations of Tm (0 < k < /w), and by SW(T[1]) the singular part
aRw(T[1]) - 9?W(T[1]) of 9Ww(r[1]). The singular part is quite complicated,
because T[1] is not necessarily weakly well-behaved (T[p] D T[g] may exist for
1 < p, q < /w and p + q> lw\ and, even if T113 is weakly well-behaved, K! D R2

may exist for R1? R2e9lvv(T
ll]) and 7i + y2 > 'w» where yt is the degree of the

polynomial Ri(t). In fact, both ^lw(T[l]) and Sw(r[1]) may be constructed in a
recursive way. We define successively:

): the set of all finite linear combinations of polynomials G(1), where

G(1) = R1 D R2 exists for some #!, J^

: the set of all finite linear combinations of polynomials G(k\ where

= Gf"1 )DG?-1 ) exists for some Gf"", G

Then we have

: SJtw(T l lJ) + <=

= (Efcw=oafeT [ k ] + ^(^[1]); a f ceC(/c = 0,1,..., IJ and

= jy ^ r k r <

= 0,l,...,U and
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Let us analyze the space S^T113) in more details. We put:

= {A(T[1])- A(F1]) = T[p] D T[q] exists for some

1 <p, q<lw and p+q > /w},

[1]) = (a0/ + aiT
[1] + ... + a lwT [W) D

exists for some non-zero (a0,...,a,J, (jB0, . . . , 0 J 6 O,

but ako T^01 D j8mo T[mo] does not exist for some fc0, m0}.

Then we have

?(^)(i= 1,2,.. .,5), B/^eSKT11^^ 1,2,..., 0,

and |j8f| + l^-l / 0 for some i, j}.

The structure of the spaces 6fe(7
11])(/c > 2) is more complicated.

We turn now to the strong case, and begin by analyzing the structure of
33S(T

[1]), the strong pseudo-partial Op*-algebra generated by I113 (see Section 3.
A). As before, we define the regular part and the singular part of

Let us investigate the singular part S^T111) of 23S(T
[1]) in more detail. First, we

consider generalized powers (quasi-powers) and obtain an increasing sequence of
subsets :

where / is the integer defined by the condition 2*"1 ls < n < 2lls and we have
defined :

[T[r]; ls+l<r< 2/2, T[p]*T[q] exists for some p, q such that

1 < p, ^ < /s and p + g = r},

{T[r]; /s + 1 < r < 22/s, Tw = T[p]- T1^ exists for some

fti and

- {r1''3; /s + 1 < r < 2kls, T
lr] = T[p]-J*q] exists for some
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and T[q]e&k}, l<k<l+L

Notice that, for k = I and k = I + 1, the range of the exponent r is ls

+ 1 < r < n. Denote by SRJKT™) (1 < k < I + 1) the set of all finite linear
combinations of elements of St0\j$lk. Then the quasi-regular part of 5BS(T[1]) is
defined as

)8r7 l r l;akeC, fc=l,2,...,/, and &6C, reN,},

where Ns = {reN; T^ettJ.
In addition, we introduce, as in the weak case, the following spaces of
polynomials in T[1]:

951(r
[1]): the set of all finite linear combinations of polynomials P(1), where

for

2lfc(r
[1]): the set of all finite linear combinations of polynomials P(k\ where

p(fc) = p(fc-D8p(2fc-D exists for some

Notice that an element P(l) of S^T113) is a polynomial in T[1] of degree at most

n:

Consider any P(/ + 1) = P^-P^eSj + ̂ T™). Then we have:

which implies Pi + p2 ^ ^5 where pxand p2
are tne degrees of the polynomials P(l}

and P(2}, respectively. Hence we have

U U

91? (T^) c ... c ^iCZ™) = 9i?(T[1]).

Now we define the strongly singular part of 23S(T
[1]) as follows:

1 < k < I + 1,

Then we have:
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33S(T
[1]) = 5HS(T[1]) + 6S(T[1])

6S
S(T[1])

I^JrV* + S(T*^;*keC(k = 1,2,. ..,/s)

and &eC(reN s) and

Finally we are ready to show that SRS(T[1]) exists and equals $S(T[1]). As
shown above, we have $S(T[1]) c ^n(T

[1]). Take any Pe$s(T
[1]) and any pair

i, 62eLs(P). It follows from Lemma 4.1(2) that P(T[1])^ c D(Q(T[1])) iff

D(T* \2), where g is the degree of the polynomial Q, so that

which implies

Furthermore it is clear that

Hence it follows that Q1 + e2eLs(P), which implies that ^S(T^1]) = ms(T
[1]).

Thus 9^(7™) (resp. «?(T[1]), SS(T
[1]), S:(T[1])) will be called the regular

(resp. quasi-regular, singular, strongly singular) part of $Rs(r
[13).

Given two polynomials P, 2 in T[1], if P'Q and g'P both exist, then they

are equal. But PCT111)^ c D ( T ^ f ^ ) does not necessarily imply P

c=D(r* t®), and therefore PeLs(Q) is not equivalent to geLs(P). Hence

ms(T
[1]) is not abelian in general. Furthermore, when 9?f(T[1]) / 0, 2RS(T[1]) is

not associative either.
Before casting those results in the form of a theorem, it is useful to

emphasize the differences between the two cases.
(1) In the strong case, the powers {/, T^,..., T[n]} always exist, and they

divide into genuine powers (I, T(1),...5 T
(ls)} = &0 and the elements of the sets

5*l5...,5ls, which are quasi-powers Tq \Q) of T[1]:all together they generate the
quasi-regular part $Rf(T[1]) of $RS(T[1]). In addition, the latter may contain
strongly singular elements SeS^T111), which are products of polynomials, but
cannot be represented themselves as polynomials.

(2) In the weak case, if a product Tlp] D T[q] exists for some 1 < p, q < lw

and p + q > /w, its value is
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Tp\^(Tq-l^Tn\^, q>n,

which means that it is not even a quasi-power of T*11. Hence the analysis of
Wlw(F1]) cannot be pushed as far as that of ^(T111).

Summarizing now the whole discussion, we obtain the following

Theorem 4.4. Let T be a closed symmetric operator in ffl , 2 be a dense
sub space in the Hilbert space D(T), n be the largest natural number such that 2
c=D(T") and m be the largest number in Nll{0}u{oo} such that Tn 2
c: D(T*m). Then the following statements hold:
(1) 2 < ls < n < min(m, n) + n<lw<m + n
and

(2) When /w = oo,

{Zr
k = 0xkTW',xkeC, fc = 0,l,...,r, reNu{0}}

akeC, k = 0, l , . . . ,w + p?

and it is abelian and associative.
When lw < oo,

where 9lw(T[1]) w ?/ze regular part and SW(T[1]) w rte singular part of
9Dflw(r[1]). Furthermore, 9Pflw(r[1]) «^rf 6^ neither abelian, nor associative.

(3) 9

= iRJ

/J reC(reNJ

w/zm? JR^T111)^^- 5RK7111), SS(T
[1]), S^T113)) is the regular (resp. quasi-regular,

singular, strongly singular) part 0/9^(7™), and the latter is neither abelian, nor
associative, in general D

Clearly the situation, which is quite pathological in general, will improve if the
domain 2 is better adapted to the operator T. For instance:

Proposition 4.5. Let T, 2 and n be as in Theorem 4.4. Then the following
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statements hold:
(1) Suppose <£) is a core for each Tk for 1 < fc < n. Then ls = n,

= ^Bn(T
[1]) and its full closure SR^T*11) equals the fully closed strong partial Op*-

algebra ms(T \ D(T»)) = %n(T \ D(T>)) on D(T").
(2) Suppose T^is essentially self-adjoint for each 1 < k < n. Then ls = lw

= n, 2Rs(r
[1]) - SRW(T[1]) = ^(T111), and its full closure equals the standard

partial Op*-algebra Wla(T\D(T)) = Wlw(T\ D(T")) = ^n(T\D(Tn)) on D(T").

Proof. (1) Since all strong powers up to order n are defined, we have ls

= n. Hence it follows from Theorem 4.4 (1), (3) that SR^I113)
= $n(T

[1]). From the closed graph theorem, we can conclude that ls(T\D(Tn))
= n and 9Ws(rtD(T")) - ^n(T\DCr)). By Lemma 4.1 we have

= D(Tn) and P(T^l}) = P(T) for every polynomial P up to degree n, which

implies that JK^T™) = ms(T\D(Tn)) = ^n(T\D(Ttt)).
(2) By Theorem 4.4 (1) and statement (1), we have ls = lw = n and so:

c:

Suppose P, ge9?w(T[1]) are such that p + q > n and P D Q exists. Since

eCT113)^ c £(^(7™)*) = D(P(T))9

it follows from the spectral theory of self-adjoint operators that

which implies 2 c D(Tp+q). This contradicts the assumption p + q > n. Hence,
By (1) we have

and the standardness of ^(TfDCF1)) is clear. D

Conversely, some properties of 3Dflw(T[1])(or SW^T113)) may be used to prove that
T[1], r[2]... T[M] are essentially self-adjoint. For instance, a sufficient condition
is that 9^w(r[1]) be standard, as will be shown in Proposition 4.9 below.

Finally we treat the case n = oo, which is of course more regular.

Theorem 4.6. Let T and & be as in Theorem 4.4. Suppose that n = oo,
that is Q) c 2 °°(T). TTzew £/ze following statements hold:

(1) Jw = oo owrf aiUI™) = $(7™).
(2) z*(9Mw(T[1])) is a closed Op-algebra on n^DCT™*) and i**(Wlw(1*11)) is

a closed Op*-algebra. In particular, if T is self-adjoint, then z**(9Ww(T[1])) is a
standard Op*-algebra on ^°°(T) and equals the polynomial algebra

(3) If @ is a core for each T", rceN, then ls = lw=ao and
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(4) If T[n]is essentially self-adjoint for each rceN, then ls = lw = oo,
ms(T

[1]) = 9KW(T[11) = ^P(T[1]), and its closure is a standard Op*-algebra on
@°°(T). All algebras in (l)-(4) are abelian and associative. The closures and full
closures of each of these (partial) Op* -algebras coincide.

Proof. (1) This follows from Theorem 4.4 (1), (3).
(2) It is clear that ^*(9WW(TI1])) = f}?=1D(T[n]*). Let £e^*(9Ww(T[1])) and
H eN; then one has:

for each r\e^ and meN, and hence Ttn]*£e(}%=1D(T[m]*) = ®*(9WW(T[1])),
which implies that z*(aRw(T[1])) is a closed Op-algebra and z**(5XRw(T[1])) is a
closed Op*-algebra. Suppose Tis self-adjoint. Then we show

For w = l , the statement is clear. Assume f}l = 1D(T™*) = 0(7™), then we
prove the statement for n + 1. Since

we have

D(Tn+1)
Conversely, take an arbitrary vector ^ep|^iD(T[k]*). Then ^6D(T) and

), hence we have, for every

and therefore, ^eD(Tn+1). Hence,

nz
which implies

and thus /**(9Ww(r[1])) is a standard Op*-algebra on ^°°(T) and equals the
polynomial algebra ^(T|^°°(r)).
(3) This follows from (1) and Proposition 4.5 (1).
(4) By (3) we have 9WS(T[1]) = 2RW(T[1]) = ^(T[1]). By Lemma 4.1, we also
have

= H {D((P(T)\3})\ P is a polynomial}

= f|{D(F(T));P is a polynomial}
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and hence it follows from [30] that the closure of 2RS(T[11) is a standard Op*-
algebra on 3t«*(T).

It is clear that all algebras in (l)-(4) are abelian and associative. Since lw

= oo, it follows that P D P exists for any polynomial P, which implies that

is directed; that is , for any pair P, ge^Hr113), there exists an
element #e<P(T[1]) such that

for every £e^, so that the closure and the full closure of ^3(T[1]) coincide.D

Remark. When T is self-adjoint, one recovers in particular the results
obtained earlier [23, 34] for a family of strongly commuting self-adjoint or
normal operators, namely T generates an abelian, standard polynomial algebra
on 2*(T).

Example 4. As can be expected, all situations described above may be
realized by operators of derivation on a finite interval, with various boundary
conditions. Let us consider indeed the closed operators S, T and H in the Hilbert
space L2[0, 1] defined by

= {/6C[0,l]:/(x)-/(0)= (X f^dtfor some f, eL2[0, 1]}
Jo

T=S\D(T)'9

= {feD(S):f(l)=m},

H = S\D(H).

As it is well-known, T* = S and H is self-adjoint. It is possible to describe
explicitly the partial *-algebras generated by the above operators on the following
domains :

= 0, 1, 2, . . . n},

Then the following statements hold:
(1) ls(T \ ̂ ) = lw(T \ ̂ (

0
1}) = 1 and

(2) Let 2 < n < oo. Then ls(T \ ®(
0
B)) = 1, lw(T \ ̂ (

0
n)) = 2 and
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>',*Q9 al5 a2eC}.

(3) ls(H \ @(n)) = lw(H \ @(n)) = n, ms(H f ̂ (w)) = mw(H \ ̂ (n)) = <$n(H \ ̂ (n)) an d
its full closure equals the standard partial Op*-algebra 50ls(H \ D(Hn})

\D(Hn)) on D(Hn).

Proof. (1) Since D(T*T) g 9t$> c D(T), it follows that &$> is core for T
and (T \ &#}) n (T \ &(Q}) does not exist, which implies statements (1).

(2) Since 9*>(T*T) c ^(
0

n)c= D(T*T), it follows that ®($ is a core for Tand
T*T. Since ^V D(T2), it follows that T^-T™ does not exist, where T[1]

= T \ ̂ (
0
n). Hence we have /.(T™) = 1 and 501^7™) - ^(7™). Next we show

/W(TI1]) = 2 and TOJ7111) = $2(7™). Since @($ c D(T*T), it follows that
jti] Q j[i] exists. Since ^(

0
n) is a core for T*T9 it follows that T111 D T123 exists

iff r*r0(ow)ci>(:r*) and r^cz^r*^. But ^"V^(r*r2), so that
711] n 7*2] does not exist Furthermore, if T121 D T^23 exists, then ^(

0
n)

c D((T*T)2). This is a contradiction. Hence, T^ D T[2] cannot exist. Thus
we have /W(T[1]) = 2 and 5RW(T[1]) = ^2(T

[1]).
Suppose now that T^^g0 c D((a0/ + ax T

[1] + a2 T[2])*) for some a0, al5

a2 7^ OeC. Then we have:

r/) + (T^IS; r*Tf) + (T* r^|^"2 r* r/)

for every /, ^e^(
0

n). Let n > 3. Since ^(
0
n) c D(T*2T), we have

a.i™)* T*T/- oT0r*r/- ii r*2r/)

for every /, ^6^}, and therefore ®f> c D((T*T)2}. This is again a
contradiction. Let n = 2. Since D((T*T)2) g D(T*2T) c ^(

0
2), it follows that

a2 r
[2])* r* r/ - oT0 r* r/ - 5; r*2 r/)

for every gE@$} and/6D(T*2r), which implies D(T*2T) = D((T*T)2), another
contradiction. Thus P^T111) D P2C7111) cannot exist for all polynomials P^ and
P2 of degree 2. Similarly, P^T1^) D P2(T

[1]) cannot exist either for each
polynomial P1 of degree 1 and each polynomial P2 of degree 2. Thus finally

(3) It is easily shown that ^(n) c D(H") for each n e N, and, in particular,
0(a>) c Q^(H). Hence, #" f^(oo) is essentially self-adjoint for each weN, and
thus statement (3) follows from Proposition 4.5.
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4.B. Bounded Commutants of 9^(7™) and a

To conclude this section, we will now study the bounded commutants of
the strong and weak-partial * -algebra generated by T, 9WS(T[1]) and

Proposition 4.7. Let T and <& be as in Theorem 4.4. Then we have:
(1) OMT111)'* = {T \ &}'„ but in general 9^(7^ S W,(T™yw.
(2) T\2 is essentially self-adjoint if and only if 50ls(r

[1]);
w is a von Neumann

algebra.

Proof. (1) By Theorem 4.4 we know that, for some

The statement follows, since ^pn(T
[1])^ = {T[1]}'w, as it is easily shown. On the

other hand, Example 5 below shows that mw(T[1])'w ^ 9Ws(r
[1])'w in general.

(2) This can be proved in the same way as in Ref. 3, Lemma 3.2. D

Corollary 4.8. Let rceNu{oo} be the largest number such that Q)
c 0(7"). Suppose that SK^T*11) = $,,(7™). Then

Moreover the following statements are equivalent:
(1) Tll]is essentially self-adjoint.
(2) 9Mw(T[1]yw is a von Neumann algebra.
(3) /**(9KW(T[1])) is a self-adjoint partial Op*-algebra.

When this is the case, z**(8Dlw(r[1])) coincides with the standard partial Op*-
algebra ^n(T\D(Tn)\

Proof. Let C6{T[1]}^;then for all /, m with / + m < n, we get, for/,

(CJ*f\r"g) = (T*CTl-^f\Tmg) = (C7l~lf\7^lg) = (Cf\Tl+mg).

Therefore Ce9Ww(T[1]);w and, finally

9 (1) => (2) : This is clear.
®(3)=>(2): Since i**^^!111)) is self-adjoint, ^(SDUT111))^ is a von Neumann
algebra. Moreover, as one readily checks

Therefore, 9KW(T[11)'W is a von Neumann algebra.

e (3) =>(!): As we saw in the proof of Theorem 4.6,
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Therefore i**(WlJ(7\&)) = 1*^(7™)) = %n(7 fD(T")) is a self-adjoint partial
Op*-algebra on D(T). D

The results just obtained about weak commutants may now in turn be used
to get more information on the structure of the algebras themselves. In
particular, we obtain criteria for standardness. Notice that all the conditions of
the following proposition are satisfied in the case of the polynomial algebra
studied in Ref. 29.

Proposition 4.9. Let T and 2 be as in Theorem 4.4, and n e N U { oo } be the
largest number such that 2 c O(T"). Then the following statements are
equivalent'.

(1) The full closure ^(T111) of 2RJ7™) is standard.
(la) The full closure 9^(T[1]) of aRs(T

[1]) is standard.
(2) 9KW(T[1]) = ^(7™) and it is essentially self-adjoint.
(2a) 9MS(T

[1]) = ^Pm(T[1]) for some raeNu{oo}, and it is essentially self-
adjoint.

(3) T[1] is essentially self-adjoint and J(TOW(T[1])) = 0(7™) for some
meNu{oo}.

(3a) T\9 is essentially self-adjoint and J(9[RS(T
[11)) = 0(1™) for some

(4) 7111, T [ 2 ] . . . T [ n ] are essentially self-adjoint.
When this is the case,

Furthermore, if$Jls(T
[1]) is fully closed, then the above statements are equivalent to

(5) {^}'w® = ®;
(5a)

Proof. •(!)=> (4) and (la)=>(4) are straightforward.
@ (4) => (2) and (4) => (2a) follow from Proposition 4.5 (2).
m (2) => (3) and (2a) => (3 a) are easy consequences of Corollary 4.8.
© (3) =>(!): Since 2 c @(mw(T[1])) = 0(1™), we have m < n. On the other
hand, since %(T[1]) c mw(T[1]), it follows that 0(1™) = ^00UT[1]))
c ^n(T

[1])) c= D(T"), hence n < m. Therefore m = n and 2RW(T[1]) - ^n(T
[1]),

and it is a standard partial Op*-algebra on 0(7").
® (3a)=>(la): Since 2 c ^(SR^T113)) = 0(7"), we have m < n. Since 9)ls(r

cl])
is a strong partial Op*-algebra on D(Tm) and Tis self-adjoint, it follows that
Tk \ 0(1™) is essentially self-adjoint for each 1 < k < m and they all belong to
ms(T

[1]), which implies that m = n; thus WS(T[1]) is a standard partial Op*-
algebra on D(T).
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® Let us now suppose that 50ls(r
[1]) is fully closed; then (5)<=>(5a) follows from

Proposition 4.7.
® (la)=>(5a) is clear.
© (5)=>(4): If {I111}; 3> = 2, then {T[1]}; is a von Neumann algebra and T111

is essentially self-adjoint. Let again T=^aoME(l) and Em = J*mdE(A),
raeN. Since £me{T[1]}'w we get £m^ c 2, VmeN. Take now any fe with
l < f c < n . Since (J^=1£m^ c |J^=1£mD(Tfc) is dense in the Hilbert space
D(Tk) and (J%=1Em@c:@, it follows that T[/c] is essentially self-adjoint. D

Example 5. By applying the previous results to the situation described in
Example 4, we get the following statements.

(i) mw(T r ̂ L = mw(T \ <4X = ms(T \ ww = ms(T \ ̂ yqw.
(2) Tt^ (

0
n) is not essentially self-adjoint, but $RW(T f ̂ (

0
n)) is a self-adjoint

partial Op* -algebra on ^(
0
n) and thus

(3) 9Ww(rt^("}) is a standard partial Op*-algebra on D(Tn) and

w = mw(T \ &*)'„ = ms(T \ &*>)'„ =

Proof. (1) follows from Corollary 4.8.
(2) Since ^(

0
n) is a core for T*Tand

m^(T\^) = {^I+^T\^S} + ̂ T*T\^'9^9 al5 a2eC}?

it follows that @(mw(T \ ®^)) - ^*(9KW(T \ ̂ )) = D(T*T), and so
is essentially self-adjoint. Then Lemma 3.7 implies that
= mw(T \ g^)^ and it is a von Neumann algebra, but since

(Q} is not essentially self-adjoint, {Tf^(
0

n)}^ is not a von Neumann algebra,
so that

"% = ms(T
(3) This follows from Corollary 4.8. D

The results listed in Example 5 show that the situation for partial Op*-
algebras is quite different from that of Op* -algebras :

(1) The essential self-adjointness of^{w(T\2) does not imply that T\3> is
essentially self-adjoint and vice versa.

(2) Even if $Jlw(T \ @)'w is a von Neumann algebra, this is in general not true
for {T\9}'r

(3) The equality m^(T\@)'qw = 9WW(T f^)'w = {T\@}'w does not imply that
{Tf^}'w is a von Neumann algebra.

As remarked above, these pathologies largely disappear when T is self-
adjoint, since then T \3 = T[1] is essentially self-adjoint by definition, and



392 JEAN-P. ANTOINE, ATSUSHI INOUE AND CAMILLO TRAPANI

{T\@}'w is a von Neumann algebra.

Appendix

The bounded commutants $¥„ and yif
qvv introduced in Section 3 are the

bounded parts of the following unbounded commutants, respectively:

\ (X£\Yri) = (Y*t\X*ri) for each £ ;/e® and Xe9l}
(A.I)

X2)ii) and ((Ff D

nx2W for all X19 X2em s.t. XleLw(X2) and all &
(A.2)

In (A.2), 9Tn is the weak natural commutant [9] defined as follows:

SR'n = {re 91;; re L%Y) n JRWC3Q, 7D X = X D i; for all Xe$l}. (A.3)

Comparing those commutants with the other ones, also introduced in Ref. 9, one
gets easily the following relations:

911 c: 9ii c M;, c 9l'n c «;. (A. 4)

We remark that there is no natural equivalent 9l'.ff to 9l'qo in terms of the strong
partial multiplication. Putting X1°X2 in the r.h. s of the defining equality in
(A.2), one expects WL c Sftlff c gi'n. However:

(i) If one uses (F(t) ° X\) in the 1. h. s., then the two relations in (A. 2) are valid
for all r(t)e9^, the left mixed commutant introduced in Ref. 9.

(ii) If one uses instead (F(t) D X\), then the relation holds true for all
Y^eSR'n. Intersecting now all sets in (A. 4) with @t(3tf\ one gets:

W.b = WRb E Wqw E 5R'D6 = 5«'w (A.5)

(the last equality was not noticed in Ref. 8). As for the other putative bounded
commutant discussed above, one gets immediately:

911* = 9C = Kb* = ̂  (A-6)

so that indeed nothing new is obtained.
Coming back to the relations (A.4) and (A.5), there are many cases where

some of the inclusions are in fact equalities. The following criterion is useful,
and easy to check in terms of the definitions.

Lemma A8L Let ft be an ^-invariant subset of ^(Q), ffl\ Then :
(1) //ft®c$(ft), then

5«in ft = adrift = K'n nft = sn;na.

(2) 7j
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(3) If either &2) s 0*(9l) or 91® s ®*(ft),

Proof. Let C 6 9^ n & Then statement (i) results from the following chain
of equalities :

which means that Ce9lij The other statements are proved in the same way.

D

Applying those criteria to a number of particular cases, we recover several
implications stated in Ref. 9 (Corollary 2.2 and Appendix):

• With R = £(#), (2) gives:

WLb = Wab = 9C

• If 91 c &\9>\ (2) gives, with ft = <e\2>, JJP):

WL = WD = 91;.
• If 5R c &(#), (i) gives, with ft = 3V,:

Hi = 91^ = ̂ 'n = ^,

and therefore

^Lb = ^U = 9l'w = 5W' (the usual bounded commutant).

With R = 9i;, we get by (1):

With R = 91 ,̂ we get in the same way :
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