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Coherent Boson States
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Abstract

Specifying their (normally ordered) characteristic functions we determine all states of the boson
C*-Weyl algebra which satisfy Glauber's coherence condition and are not realizable as density
operators in Fock space. The pure ones are shown to be just the eigenstates of the annihilation
operators in their GNS-representations (in contrast to the Fock case) and are characterized in many
equivalent manners. The central decomposition of an arbitrary coherent state has the macroscopic
phase variable as parameter and is supported by the pure coherent states, which is in fact the only
way for a maximal decomposition. The set of all coherent states with the same absolute factorizing
function is proven to be a Bauer simplex. The appearence of a classical coherent field part is
studied in detail in the GNS-representations and shown to correspond to an enlargement of the set
of one boson states by just one additional mode.

§1. Introduction and Preliminary Results

In one of his first papers on quantum optics [6] Glauber emphasizes the
importance of states with a large number of photons for the description of light
beams (and contrasts this with the few photon excitations in perturbational
quantum electrodynamics). The relevant states, which have some degree of
coherence, are investigated by him and his colleagues, however, only in the Fock
representation. Since in laser beams there are in fact macroscopically many
photons one may doubt if this formal limitation is justified. In [12] examples of
fully coherent states are given, which cannot be represented by density operators
in Fock space. A systematic study, where both Fock and non-Fock coherent
states are investigated in the smeared field formalism, has been started recently
in [13]. The aim of this paper is to carry on this analysis with the emphasis on
non-Fock states.

We start here from Glauber's factorization condition for a (fully) coherent
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state [7]. If the creation and annihilation operators are smeared with one-
boson test functions this coherence condition leads to a product of the values of
a certain linear form on the test function space and its complex conjugate. In
this formulation the consequences of the coherence condition can be deduced in
a rigorous way, especially by means of the formalism of operator algebraic
statistical mechanics [4]. If the mentioned linear form is bounded, then every
state fulfilling this condition is given by a density operator in the Fock
representation (i.e., is relatively normal to the Fock representation). Even in
this more familiar case the complete classification of all coherent states seems not
to have been carried through. If the mentioned linear form is unbounded the
set of all (normalized mode) occupation numbers is unbounded and the
corresponding state is no more representable by a density operator in Fock
space (is disjoint to the Fock vacuum). In this case the typical operator
algebraic techniques come into play. The statistical correlation inherent in the
coherence condition extends now over so many photons (in states with finite
particle density) that macroscopic classical features are generated, especially a
macroscopic phase observable is displayed. Just these non-Fock structures
seem to fit very well to many experimental situations with a high photon
density. They are also in a certain analogy to the condensation phenomena of
massive bosons, where in fact the "off-diagonal long-range order" is considered
to be related to the coherence condition (cf. [11, p. 39]). In the reconstructed
quantum mechanics over these ordered states (by means of the GNS-
representation) the collective phenomenon is concisely expressed by an
additional classical field. Altogether there seems enough motivation for a
thorough elaboration of the non-Fock coherent boson states.

In detail we proceed as follows. After preliminary results on states on the
Weyl algebra we start in §2 with an analysis of the pure coherent states and
refine the results of the literature. We use already here the technique of the
Kolmogorov decomposition for positive-definite kernels (which is shortly
introduced in the Appendix) in spite of its power being only visible in the case of
mixed coherent states. The general form of coherent states is attacked by
means of the (twofold) analytic power series of the normally ordered generating
function. In spite of a quite different technique the result resembles that of
[16]: the form of this series is fixed up to an infinite number of complex
coefficients, which constitute an infinite positive complex matrix, where only the
diagonal elements are determined by the coherence condition. The non-
diagonal elements are here further analyzed for the non-Fock case, where one
can show directly via the unboundedness of the mentioned linear form, that they
depend solely on the difference of the integer matrix indices. This is in contrast
to the Fock case, where the variety of admissible coefficients is larger. The
Kolmogorov decomposition of the matrix coefficients leads to a Kolmogorov
decomposition of the normally ordered generating function.
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In § 3 we only treat the non-Fock case and show that the spectral measure
of a certain unitary operator in the mentioned Kolmogorov decomposition leads
to a unique decomposition of the given coherent state into pure coherent states
and reveals the set of all coherent states with a fixed linear form to be a Bauer
simplex. The GNS-representation is easily constructed and known in the
literature for similar situations since [2]. Here it is gained by means of the
minimal Kolmogorov decomposition of the characteristic function. It is always
a tensor product of the Fock representation and the classical part. Especially
elegant is the formulation of the represented Weyl algebra if the one-boson space
is enlarged by an additional mode. This suggests also a natural enlargement of
the C*-Weyl algebra so that the classical field part may vary independently from
the Fock part. The mathematical structure of this new C*-Weyl algebra over a
degenerate symplectic form is analyzed, a formalism which incorporates a whole
classical statistics over the phase variable of the coherent field. This nontrivial
classical part is shown to be approximable by local field expressions (without a
classical component) in the strong resolvent sense.

Equipped with this mathematical machinery it is now easy to identify the
decomposition of an arbitrary coherent state into pure coherent states as the
central decomposition (which requires more than the pairwise disjointness of the
supporting states). Moreover it is also shown to be the unique decomposition
of a coherent state into a family of pure states (by means of a maximal measure
not necessarily orthogonal). Related with this result is the fact that a coherent
state can only be decomposed into countable many states if the latter are
coherent with the same linear form as the given one, showing that the set of all
coherent states with the same linear form is a face of the convex and compact
state space of the original Weyl algebra.

Having anticipated some of the unique features of the non-Fock coherent
states let us now start with the basic mathematical notions we shall need.

We denote by E the pre-Hilbert space with (right linear) scalar product
<.|.>, containing the genuine one-boson states which the free quantum particles
may assume. (In certain situations it is physically reasonable to extend £, cf.
e.g., §3.) Let iT(E) be the unique C*-algebra, which is generated by non-zero
elements W(f), fe E, satisfying the Weyl relations

W(f)* = W(- /), W(f) W(g) = exp - - 3 </| 0> W(f + g)

for all/, geE. The states cp, which are elements of the weak*-compact convex
state space ^ of if(E)9 are in bijective affine correspondence with the
(characteristic) functions C : E -> C with C(0) = 1 and for which the map

(/> fl)|->exp< 3</l0> C(9 — f) constitutes a positive-definite kernel ExE

C (cf. Appendix). If C^ is the characteristic function of cpe^9 the minimal
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Kolmogorov decomposition of the associated positive-definite kernel is denoted
by Vy: E -> Jtfv9 where Jtf^ is some Hilbert space. The set of all C^ (pet?, is
denoted by C(E).

If, e.g., cpF is the Fock vacuum state, then C<pF(/) = CF(/) = exp< — -1|/||2

and V9F(f) = Vp(f) is the coherent vector Q\ —/=/ I in the Bose-Fock space ffl

over E, where E is the completion of (E, <.|.» and

n = 0 ^/Yl\

with the special case Q(0) = QF, the Fock vacuum vector. The Fock
represented Weyl operators are characterized by the transformation property

Ylp(w(f)) = WF(f):Q(g)t-+exp\—=9{(f\gy > Q(g + —p/), g,feE.

A state cpe^ is called regular, if C9(tf) is continuous in teR for all/e£,
and (p is said to be of class ^m, if R3t\-^C(p(tf) is m-times differentiable for each
feE. We set ^°°:= nm>!^m. <p is analytic, if for each/££ the map ti-+C9(tf)
may be extended in a complex neighborhood of t = 0 to an analytic function

z;f). If for every feE this neighborhood is all of C, then (p is called

' analytic. Especially (pF is entire analytic with CF(z;f) = exp< — -z2

In the GNS-representation (11̂ , H9, Q9) of a regular state cp the boson field

operator <Z^(/):= - i — is selfadjoint with domain ^(0<p(/)) (given

by the existence of the derivative), and the annihilation and creation operators

are closed on ^(^(/))n^(^(i/)), «*(/) = fl,(f)* and/H^a*(/) is linear. If
P(^) symbolizes a polynomial in the field operators (depending on a finite
selection of one-boson states), then we often write <cp;P(^)> for
<flj/>(#„)£„>, provided that Q(pe^(P(0(p}). The latter is the case for each
polynomial with degree less or equal to m, if cp is of class C2m. We mention,
that the cyclic vector Q9 of the GNS-representation of cp is an analytic (resp.
entire analytic) vector for each 0^(/),/e£, iff <p is analytic (resp. entire analytic).

If q> e £f is analytic, for each fe E there is a neighborhood Uf of the origin of
the complex plane, such that
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C,(z;/) = Z^<p;<P,(/r>, "I/,.
« = o n\

In this case there is also a possibly smaller neighborhood U'f of the origin with

where the truncated expectation values <<p;.>T may be defined by this power
series expansion of the left hand side (compare [4], Vol. II, p.40).

Lemma 1.1. Let cpE^f. cp is analytic, iff for each /e E there is a function
Nv(zl9 z2;/), analytic in Uf x Uf ^ C2 (Uf a neighborhood of the origin of C),
such that

C,(zf) = Cf(zf) Nv(z, z ;/) Vz e Uf. (1.2)

In this is the case, then it follows for the analytic extension of R 3 1 1-> Cv(tf)

Cv(z ; f) = CF(z ; /) Nv(z, z ; f ) V z e V f . (1.3)

Especially cp is entire analytic, iff N^z^ z 2 ; f ) is entire analytic on C2 for every
feE.

Moreover, the analyticity condition and (1.2) determine Nv uniquely to have
the form

(1.4)

= Z n^: «*(/)"«.(/)'>' *i> z^uf d-5)

Proof. Let <p be analytic. Define N9 by equation (1.4). Then N^ is well
defined and analytic in a neighborhood of the origin of C2, since Q^ is an
analytic vecotr for &9(f) and ®9(if\ Using the Weyl relations, one easily
checks that (1.2) and (1.3) are fulfilled. Equation (1.5) is the Taylor series of
(1.4), which one gets by use of the canonical commutation relations or the Baker-
Hausdorff formula.

Conversely, if there exists an analytic function Nv (.,;/) satisfying (1.2), then
it is unique by [3, p. 36] and agrees with the one defined by (1.4). C3

A state cp is called quasi-free, if it is analytic and <cp; ̂ (/)">T = 0 for n > 2
and all/e£. One concludes from (1.1) that in this case

where
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Definition 1.2. ^4 state OJE^ is called coherent, if it is of class ^°° and if
there is a linear form L : E -> C such that

<o>; a* (/i) • • • a*(/k) a J^) - - - am(gfo = L(/x) - - - L(fk) LfoJ • • • Lfo,) (1-6)

/or all k, IEN0 with k = I and all/x,..., fk, gl9...9gleE. The set of all coherent
states with linear form L is denoted by &*L.

From (1.6) it follows that tfL is convex (the extreme boundary of which is
denoted by 3e«5^L[l]). If aje^L, then also COE^ZL for all elements z of the
torus

T:={weC||w| = l}. (1.7)

§2. Series Expansions and Koimogorov Decompositions
for the Characteristic Functions

The most common states in quantum optics, which satisfy the coherence
condition, fulfill (1.6) even for all fc, /eN0. We first analyze this class of states in
the smeared field formalism and demonstrate, beside other things, that in fact all
choices of the linear form L lead to well defined states on the Weyl algebra
HT(E\ The following results extend Theorem 2.1 of [13].

Proposition 2.1 Let L'.E^C be an arbitrary linear form. It follows:

(a) The function CL: E -> C, given by

CL(f) = CF(f) exp{*V2<RL(/)}, /e£, (2.1)

is in C(E) and defines an entire analytic state cpL with (cf. Lemma 1.1)

Vzl5 z2eC

The minimal Koimogorov decomposition of the associated positive-definite
kernel is of the form

VL(f) := VF(f) exp {i^/2 5RL(/)} e JfF,

where-as in Section I-the index "F" refers to the Fock vacuum.
(b) For (pe<? the following conditions are equivalent:

(i) (p = cpL;
(ii) cp is of class ^°° and satisfies (1.6) for all k, /eN0;
(iii) (p is of class %2 and satisfies (1.6) for (/c, /) = (0, 1) and (k, I) = (1.1)

for all f=g;
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(iv) cp is regular and satisfies a(p(f)Q(p = L(f) O^V/eE in its GNS-

representation.
(c) For (pe^ is equivalent:

(i) cp = <pzL for some zeT;
(ii) <pe^L and cp is quasi-free.

(d) Acpe^ with
(i) cp = cpzL for some zeT
satisfies also
(ii) cpe yL and cp is pure.
It then (trivially) fulfills
(Hi) (p 6 £fL and cp is primary ;
(iv) (pEdeyL;
(v) cp is in the support of a maximal measure (on 5^), which decomposes

an

Remark. For unbounded L all the conditions of (d), and thus of (c), are
equivalent to those of (b), if therein Lis replaced by zL, zeT (cf. Proposition 3.6
(a))-

Proof, (a) CL is the product of CFeC(E) and a positive-definite function
on £, which leads to CLeC(E) and the stated minimal Kolmogorov
decomposition. Obviously NL(zi9 z2',f) is entire analytic on C2 and gives the
analytic extension CL(z ; /) = CF(z ; /) NL(z, z ; /), as well as CL(zf) = CF(zf) NL(z,
z;/) (cf. Lemma 1.1).

(b)(ii) => (iii) and (iv)=>(ii) are trivial. (i)=>(iii) is obtained by calculating

the derivatives l, z2;/) for (fc, /) = (0,1) and (/c, /) = (1,1) and
dz\ dzl

2

comparing this with (1.5). (iii)=>(iv): One calculates directly ||(fl^(/) —

= | L(f) — A|2, which is zero for A = L(f) . (iv)=>(i) one gets by use of (1.2)

and (1.5) with z = 1: C9(f) = CF(/)X25RL(/).
(c) (i) => (ii): Comparing CzL(f) according to (2.1) with (1.1) we find

and <cp; A<&9(f)
2} =-1|/||2

2

and the higher truncated functionals vanishing, thus cpzL is quasi-free. Coherence
follows from (b)(ii). The reverse implication is given in the Appendix of [13].

(d) (i) => (ii): From (a) and the Appendix we conclude that the Weyl
operators in the GNS-representation of cpzL are scalar multiples of the Fock-
Weyl operators and hence generate an irreducible C*-algebra and thus <pzL is
pure, (ii) => (iii) and (ii) => (iv) are immediate, (ii) => (v) is gained by taking for co
the pure state <pzL. D
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As a preparatory step for he general case let us consider condition (1.6) for
k = l= 1.

Lemma 22. Let CD e^ be of class ^2, then the following two conditions are
equivalent:

(i) |<«; a*(f)am(g)>| = | |aa(f)Qa\\ \\aJg)Qm|| for allfigeE;
(ii) there exists a linear form L: E-»C such that <co; a*(f)alo(g)y =

L(f) L(g) for all f, geE.

Moreover, if these conditions are satisfied, then

Ug)am(f)Qm= L(f) am(g)Qm V/,

The linear form L is determined uniquely by (ii), up to a phase.

Proof, (i) => (ii): If CD = cpF this is trivially valid with L = 0. If CD ̂  cpF,
there exists a /ZG£ with || aJ/OR* II = 1- Choose L(/):= <co; a*(/)aw(/i)>. One

easily checks \\(am(f) - L(f) am(h))Qm\\2 = OV/e£, from which one gets am(f)Qm

= L(f) a^tyQ^. Now (ii) and L(g) aJJ)Qm = L(f) aJ^Q^ are immediate.

(ii)=>(i) follows directly since \\am(f)Qm\\2 = <co; a*(f)am(f)) = |L(/)|2. D

Let co be of class ^ and satisfying the conditions of Lemma 2.2 for some
linear form L(first order coherence [16]). If we choose for L^ 0 an heE such

that L(fc)=l( i ff L=0 then co = <pF\ then by Lemma 2.2 a(0(f)Q(0= L(f)

V/e E. Consequently

Hence for a state coe^ to be in £fL it is necessary and sufficient that co is of
class ^°° and

<co; a*(/)aJ0)> = L(/)Lfe) for all /, geE and

<co; a*(hY a0(hyy = \Uh)\2n for some /z<£ker(L) for each n > 2.

Proposition 2«3. Ler be CDE^ and L an arbitrary linear form on E. Then it
is equivalent:

(i) coe^L;
(ii) there exists a family c(k, /jeC, k, /eN0, which constitutes a positive
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definite kernel on N0 x N0 with c(k, k) = 1 VfceN0 such that for each /e£

\k + l 1 1 k 1

fc!f! L (2.3)

Further on, the properties of the c(k, 1) imply c(k, I) = c(l, k) and |c(fe, /)| < 1 /or a//

/:, /eN0, showing CD to be entire analytic.

Proof, (i) => (ii): Let co e SfL. Use equation (2.2) and set

c(/c, /):= <«; a*(hfam(h)l> V/c, /eN0, (2.4)

from which also the positive-definiteness of the kernel c(fc, /) follows. Letting n
fc(k,k) c(kj)

= 2 in equation (A.I) of the Appendix, we see that the matrix .
\ c(l, k)

must be positive and therefore selfadjoint with positive determinant. As co is

coherent we have c(fe, fe) = 1 = c(l9 /), which implies c(kj) = c(l, k) and |c(fe,

01 < 1 for all fc, /eN0. Consequently, inserting (2.2) in (1.5), the convergence of
the series Nw(z^ z2;/) is absolute for each zl5 z2eC and from (1.2) we obtain
(2.3) by setting z = 1. By Lemma 1.1 co is entire analytic. (ii)=>(i): Obviously

« / i \k + l 1 1 t , fr 1
Cw(zf} = CF(zf) }_, —r= TT7TZ Z M/) L(/) c(fc, /) for all zeC and

where the double series converges absolutely because of |c(fc, /)| < 1. Hence

with (1.2) and (1.5) one gets <co; a*(ffam(f)ly = L(f)k L(f)lc(k, I). Now use

c(l.l) = 1 and the polarization identity to verify <co; a*(f)aco(g)y = L(f}L(g) V/,

, which implies (2.2) for an heE with L(h) = 1. For this h (2.4) is then
again valid, which leads with c(k, k) = 1 V/ceN0 to the coherence condition
(Definition 1.2). D

We now give the cases in which Lis unbounded a special treatment, where
often the following simple fact is employed for arguments, which go back to [2].

Lemma 2.4 If L : E -> C is unbounded, then there is for every oceC a
sequence (/J)BeN in E with

Proof. Since Lis unbounded, there is a sequence (/n)neN in £ with ||/J| = 1

and lim L(/J = oo. Without restriction in generality L(/J / OVrc, and we may
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Proposition 2.5. A coherent state coe<£fL is normal to the Fock represent-
ation, iff L is bounded.

Proof, (a) Let Lbe bounded. By (1.5) and Proposition 2.3 the functions
E3f\-+N(0(zl9 z2, f) are continuous for all zl9 z2eC and hence co extends

canonically to 'W(E). Moreover, there is a he E so that JJJ) = </i|/>
V/eE. Then ~E = E± ® E2 with E1 = Ch. From (2.3) one concludes that CD

= co1(g)Q)2 is a product state on H^(E) = H^(E^ (x) i^(E2\ where CDI is
normal to the Fock representation of i^(E^ — since E1 is finite-dimensional [4,
Corollary 5.2.15] — and co2 is the Fock vacuum on i^(E2).

(b) If L is unbounded, we find from equation (2.3) with the sequence of
Lemma 2.4

oo / i \k + l I I _

lim CJ/«) = £ -/= H TT a* a ' c^, 0 Va 6 C' (2-5)
n-»oo k,l = 0 \>/2/ A C M !

Since c(/c, k) ^ 0 VfeeN0 , the values (2.5) are not constant in a (which is seen by
an analytic extension to C2 and [3, p. 36]). If on the other hand there would be
a density operator pw on ffl F which represents co, then

lim CJ/«) = lim t^PwW = 1 VaeC

since by [4, Proposition 5.2.4] WF(.) : E -> &(34?F) is normrespectively strong
operator continuous. To avoid this contradiction co cannot be normal to the
Fock representation. D

For unbounded L we now show that the kernel c(k, I) of Proposition 2.3
only depends on the difference k — I.

Theorem 2.6 For a given linear form L : E -> C consider the following
conditions on the function C : E -> C :

(a) C = CM for some CD e <9*L ;
(b) there exists a positive-definite function d: Z -» C with d(0) = 1 such that

for all feE

1 1

(c) there exists a Hilbert space 3tfv, a unitary v acting on 3?v and a
normalized we3?v such that for all feE

C(f) = CF(f)N(f) V/e£ (2.7)

where N(.) is a positive-definite function on the additive group E with
a Kolmogorov decomposition
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Y(f) = exp 1 - (L ( / ) r + L(/) «*) W. (2.8)

zY /z0 Ids (a) => (b) z/ L is unbounded, whereas (b) <=> (c) => (a) is valid for
arbitrary L.

Proof, (a) => (b) for unbounded L: From the equations (2.2) and (2.4) we
get for /£ ker (L) and / > fe

<co; a*(ffam(f)ly = L(f)k L(f) c(/c, 1), <co; am(f)l~ky = L(f) c(0, / - k).

Hence

'c(fc , /)-c(0, / - f c ) ) | =

(ff - \L(f)\2k)Qw\\ \\am(f)l~kQm\\. (2.9)

Here we have by the canonical commutation relations and Definition 1.2

2 =
2 r O * 2 k ~ r 2k~ra (f}2k~rQ ^ 4-ua>\J ) *"*(o/ "

for certain qr e N0 with ^r / 0 at least for one r. Observing this and

ll<a/T*OJI - m/)r* in (2.9) yields
2»-

Using the sequence (/J)neN of Lemma 2.4 with a / 0 gives c(/c, /) = c(0, / — k) for

l>k. lU<k then c(k, 0 = cKUO = c(0, k - 1) = c(k - I, 0). Defining

c(m, 0) if m > 0
c(0, - m) if m < 0

gives d(k - I) = c(k, /)Vfe, /eN0 and transforms (1.2) and (1.5) with (2.3) into (2.6),
where d(Q) = c(/c, k) = 1 by the coherence definition.

(b) => (c) for arbitrary L: Applying for d the Kolmogorov decomposition for
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positive-definite functions on groups (cf. Appendix) one obtains d(k — I) =
<i;*w|i;fcw>, weJfy and v an unitary on 3^v for some Hilbert space Jjfv.
Inserting this into (2.6), where / gets replaced by g— /, leads to N(g—f)
= <F(/)| !%)> with Y given by (2.8) and the exponential is definable by a power
series converging in the operator norm. Thus N is a positive-definite function
on E and 1 = d(0) = ||w||2 - || 7(0)||2 = N(0).

(c) => (b) and (c) => (a) for arbitrary L: C(f) := CF(f)N(f) is normalized and

(/, 0)1—»exp<-3</|0> >C(g —/) a positive-definite kernel because of the product

property. Thus CeC(E) and therefore defines a state coe^. Now, using N(f)
= < F(0)| F(/)> we see that it has the form (2.3) with specialized c(k, I)
= <yw|ykw> = <w|t; fc-'w>:= d(k - I) from which c(k, k) = || w||2 = d(0) = 1
follows. D

From the above proof it is obvious, that k i->vkw is a minimal Kolmogorov
decomposition of d, iff Y of (2.8) is so for N.

For unbounded linear forms L: E -> C, Theorem 2.6 solves the classification
problem for coherent states completely. We shall see in the next section that in

this case —^(L(/)v + L(f) v*) is the classical part of the field operator &m(f) in

the GNS-representation of the coherent state co.

§3o Integral Decompositions and GNS-Representations

In this section we stick to the assumption that the linear form L: E -> C,
occurring in the coherence definition (Definition 1.2), is unbounded.

The one-dimensional torus T (cf.(1.7)) is a compact abelian group, the dual
(character) group of Z (Z equipped with the discrete topology). T acts on
iff (E) by means of the *-automorphisms (the gauge transformations of the first
kind)

T z ( W ( f ) ) = W ( z f ) , z e T .

Since ||(TZ - l)(W(f)) = 2 for all z ^ 1 and /^ 0, the action of these gauge
transformations in the Heisenberg picture is not pointwise norm continuous. By
means of the dual transformations T*((p):=^°tz, cpe^, zeT (Schrodinger
picture) we define for given linear form L the mapping

JL : T -> ^, z -> T*((?L) =:;L(z), (3.1)

where cpL is the pure coherent state of Proposition 2.1 (a). From the
characteristic functions CzL(cf.(2.1)) we see that jL is a weak*-continuous
injection. The set M+ (T) of all probability measures on T is a Bauer simplex,
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since T is a compact Hausdorff space [1, Corollary II. 4.2]. The extreme
boundary deM\(T) may be identified with T , since it consists of the point
measures on T . For later use let us introduce for every aeC the function

Obviously gaeC(T), the continuous functions on T. In fact LH{#a|aeC} is a
subalgebra of C(T), which is invariant under complex conjugation and separates
points of T; thus it is norm dense in C(T) by means of the Stone- WeierstraB
theorem [14, Theorem IV. 10].

Theorem 3.1. Let L : E -> C be an unbounded linear form. It follows, that
there is a one-to-one correspondence between coherent states OJE^L and
probability measures / ^eM+(T) such that

.
\ ' '

Moreover, ^L is a Bauer simplex with extreme boundary

de¥L = {i*((?L)|zeT} = {c?ZL|zeT}.

Proof, (a) For CDE^L consider in Theorem 2.6 equation (2.8) the spectral
decomposition v = JT zdEv(z) and obtain N(f) = < 7(0) | Y(/)> = M0L(/))> where
dfjL(z) = (w\dEv(z)wy. Then by (2.7) and the gauge invariance of CF(f) one gets
CJJ) = JT CL(zf)dfi(z). Since the affine bijection between states and character-
istic functions associates T*((pL) with CL(z/), the validity of (3.2) follows.

(b) Let (3.2) be valid for some ^eM+(T). Define on E the positive-
definite function N(f):= ^(gL(f}\ If Jfv:=L2(T, n) and (vf) (z) := z/(z) and
w(z) = 1, then Y(f) defined by (2.8) is a (minimal) Kolmogorov decomposition of
N. Hence equation (2.7) of Theorem 2.6 defines a coherent state coe^L.

Since LH{gaL aeC} is dense in C(T) two measures p, p agree, iff ju(0a)
= p(0a)Va and from <co; PF(/)> = CF(/)/%L(/)) follows the uniqueness.

(c) The bijection from M+(T) onto ^L given by (3.2) is also affine and

vague-weak*-continuous : /^ — > IJL in the vague topology of M+(T) is equivalent
ie/

to /^-(0a) — > /x(gfa) Va e C. Thus, for the associated states cof and oj we have

CWl(/) = CF(/)Mi(0L(/)) ̂  CF(/)/ifeL(/)) - Cw(/) V/6 £,

which gives cof — » co in the weak*-topology. Hence ^L is a Bauer simplex

affinely isomorphic to M+(T) with de¥L given by the images of the point
measures in M + (T), which coincide with jL(z\ zeT. D

Of course, it also would have been possible to use Bochner's theorem for the
positive-definite function d of Theorem 2.6 to get the integral decomposition
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(3.2). But in the above proof, via the spectral decomposition of the unitary v,
we have indirectly shown the equivalence of the Kolmogorov decomposition and
the decomposition due to Bochner's theorem for the d(k - 1) = ^zk~ld^(z)
= (vlw\vkwy. Iff the Kolmogorov decomposition of d is minimal, the support
of the corresponding measure ^eMV(T) agrees with the spectrum of v.

Proposition 32. Let L be unbounded. For CD e £SL the minimal Kolmogorov

decomposition V ̂ (associated with the kernel exp<-3</|#> \Cw(g — /)) has the

form

where Y = Yw given in (2.8) is choosen minimal. If Wv(a):= exp<—^=(

1

1-y ^
, a e C, for the GNS-representation of CD we have

''/& _ 31^ /\ 't/£> (~) _ /^) /O\ ...
<^t £, - <?l p (^ Jl Vy SltS^ - Z,£p (X) W

and

Ua(W(f)) = WF(f) (g) Wv(L(f)} V/e£,

which is not continuous in /e E with respect to the strong operator topology. If
Jiv is the W* -algebra generated by the Wv(a) in ffl v then

and the center is

where (x) denotes the W*-tensor product introduced in [15].

Proof. For (/J)n6N of Lemma 2.4 we get for all aeC

5 - lim WF(f$ ® WJMft) = 1F® WJM,
n-*ao

where the strong operator continuity of Wp(.): E^@(3FF)[4, Proposition 5.2.4]
and that of Wv (.): C -* &(jf v) has been used. Thus nm(W(.)) is not strong
operator continuous. From (3.3) and the cyclicity of w we conclude that

QF®jev^ LH{Va(f)\feE}. Since [WF(f) (x) Wv(Uf))] [1F (x) Wv( - L(/))]

QF (x) w = WF(f)QF (x) w we also find JPF (x) w c LH ^{f^feE}, which leads
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to jf F (x) $ev = LH{7tD(/)|/e£}. Now it is easy to check that (U^ 2tf 0, QJ is

the GNS-representation of CD. The rest follows again from (3.3) and the fact that
Jtv is a maximal abelian von Neumann algebra on Jf^ (having the cyclic vector
w) and from [15, Chapter IV]. D

The discontinuity of na(W(.)): E->#pfJ for CD e ̂ L (L unbounded) may
be overcome by modifying E and defining a new C*-Weyl algebra.

Let us first equip E with the new scalar product (f\gyL'.=

+ L(/) L(#), f,geE. This suggests to work with pairs £ :=/©ae£ 0C

=: Jf (£ is the completion of E with respect to the old scalar product <.|.» and

to embed E therein by means of

Since the natural scalar product in JT is <£l*7>,3f = </!#> + aj? for ^ = /© a

and q = g ® ft we have <A(/)|A(0)>3r = </|0>LV/, #e£ and for the sequence

(/SDneN of Lemma 2-4 holds lim P(/«) - 0 0 a|| ̂  = 0, which shows that JT is
n->oo

the completion of E with respect to <.|.>L. Because of || A(/) ||x > ||/|| V/ e£ the

inverse map I"1: /l(£)-»£ extends to a contraction %: Jf -> E.

In view of an extension of the Weyl algebra iT(E) we first introduce the
nondegenerate symplectic form cr on A(£) by cr(A(/)? /l(#)):3</|0> V/, ̂ e£, which
is bounded since |(j(£, i/)| < |<z(/)|^)>| < ||{||3rl|ij||jr V& iyeA(£). Denote by

the continuous extension of a to all of Jf

Lemma 3.3. It is %(/© a) =/V/e£, ae C

Jfs:= ker(z) - {{e Jfl^K, i/) - OV^e jf } - 0 © C.

Moreover, the positive quadratic form E x £9(/, 0)i-> L(/) L(^) w singular (with

respect to <.|.» awcf £/ze minimal singular subspace is Jfs.

Let / © a E Jf and (/„ )H6N a sequence in £ with lim
n->oo

— /© a l l j f = 0- Then lim ||/n —f\\ = 0 and hence by the continuity of % one
«->• oo

gets z(/©a)= n mxW/«))= lim/« =/• By a similar approximation proce-
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dure we obtain o>( f 0 a, g 0 /?) = 3</|#> from which ker^^) = ker(#)

= 0 0 C follows. Since % restricted to Jf © Jfs is an unitary onto E the form

L(. )L(.) is purely singular. The latter concept is part of a theory described in

[8]- D

Define Jf := E 0 C. We want to extend if(E) to a Weyl algebra over this
pre-Hilbert space jf . Since cr^ is degenerate on Jf* there is no canonical way to
associate a C*-Weyl algebra with it, and we do this in a special way in the GNS-
representations of the coherent states CD e SfL. For certain purposes W (E) may

be even extended to a Weyl algebra over Jf .

Proposition 3.4 For CDG^L (L unbounded) consider the GNS-representation

of Proposition 3.2 and define for £> =/

If $#v denotes the C* -algebra generated by the Wv(a), aeC, then it holds
( i ) Wm(l(f)) = Hw(W(f)\ for all /e£;
( i i ) Wm(Q=Wm(?)9 iff f = f and gfr) = g«(z) for ^almost all zeT?

where \i is the measure associated with CD according to Theorem 3.1;

(iii) W^)WM07) = e x p - ( £ , il)wj(t + r,) and

for all &

( i v ) <Q(a\

(v) Wco('): ^ ~^ ̂ u ™ continuous in the strong operator topology,

( v i ) m{J^(£)|£eJf} = nF(TT(£))(g) J/U5 w/z^re j/, is r/ze C*-algebra

generated by the Wv(a)9 xeC(the C* -tensor product is unique, s/v

being abelian [15, Chapter IV]);

(vii) LH{Wco(^G^} = UF(i^(E))(g)^v;

(viii) LHs{Wto(£)\£ejrs} = &to = J('(0(the closure in the strong operator

topology)',
( ix ) Let ¥„(£) resp. 0J/) generate the unitary groups {^(tf); f eR}

resp. {n (W(tf));t<=R}, where £e$T and feE, and let <PH(a):=

1 _ -
— P (au+ at;*), aeC. Tfew jf 9^ =/0 an-> ^(Q = 0F(/) (x) lr

(X) ^u(a) is continuous in the strong resolvent sense and ^^(f)



NON-FOCK COHERENT BOSON STATES 413

, approximates therefore YJ&) for all £ejf.

Proof, (i) follows from Proposition 3.2. (ii) : The Fock parts are equal,
iff / =/'. From' || (WM - WV(P)) Wv(y)w \\2 = 2 - 2 9K0J^>, and the cyclicity
of CD one gets Wv (a) = WJ$)9 iff 0a = gp ^-almost everywhere, (iii) and (iv) follow
by direct calculation and (v) by the strong operator continuity of E 9/i-> WF (/)
and C 3 a i-> Wv (a). (vi) and (vii) one finds directly from the definition of the
WJ&) and (viii) is immediate from Proposition 3.2 and WJO 0 a) = 1F (x) P^(a)-
(ix) follows from (i) and (v). D

If s^ = supp(ju) is the support of the measure jueM+(T) associated as
before with CDE^L, then by the spectral mapping theorem [9, Theorem 4.4.5 and
Example 2.4.11] we have

where dn(z) = <w|d£u(z)w>, zeT with v = ^zdEv(z) and W^,(a) gets identified
with ga|sM restricted to sr

For some more insight into the structure of the extended Weyl algebra of
Proposition 3.4 we give the following remark. In [10] there is defined a C*-
Weyl algebra d(H, a) over a (possibly degenerate) symplectic space (H, a) by
means of the completion with the maximal C*-norm of the *-algebra A(H, a),
which in turn is algebraically generated by functions 5X on H )dx(x) = 1 and 6x(y)

i

= 0 elsewhere) with the product dx-dy = e~^a(x'y) dx+y and involution (5J
= 6_x. If there is another C*-norm ||.||0 on A(H, o\ there exists a closed *-
ideal ZT in A(H, a) such that one has the quotient structure A(H, a)

Now, if co = JT if(cpL)d^(z) this gives rise to the symplectic space (JT, aK)

and the corresponding C*-Weyl algebra zlpf, a^). With C(/© a):= Cf(/)
fi

/^(gfa) is associated a positive-definite kernel Jf x Jf3(£, ^/)f-^exp<-
2

which by [10] defines a state £ on ^(Jf, cr^) with

= Q^) Vf £ Jf. Obviously co is an extension of o>, its GNS-representation is
given by jfa = jfw, Qa = Qw and U^(d^) = Wm(Q, ^tf. The representation
11^ defines a C*-or a C*-half-norm on 4(jf, tr^), the completion of which is
TT (£) (x) ̂ (5M), the C*-algebra of Proposition 3.4 (vi). If /i is the Haar measure
on T, then one gets HT (E) (x) «(T). Each COG^L can be extended to an CD on

so that o5(^(/) (g) gj = CF(/)^a) and the algebras
can be obtained as the quotient of HT (E) (g) #(T) with the closed

*-ideal HT(E) (g) ̂ ao("T\5^)(C00(X) denotes the continuous functions vanishing at
infinity).
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In order to analyze further the decomposition of (oe^L by means of the
measure ^GM+(T), which is described in Theorem 3.15 let us transfer \JL to a
regular Borel measure /xcoeMt(y) on the state space £f (equipped with the
weak*-topology) by setting

^(B):= n(Jll(B)) for each Borel set B <= tf , (3.4)

where jL is from (3.1). Since T is compact and jL continuous, jL(T) = de^L is
weak*-compact an u^ is supported by de^L. Every /^-measurable function
h : T -» C is transferred to a /^-measurable function /J : 9* -> C by setting /i(<p)
= 0 if cp^de^L and /z(<p) = h(z) if <p = cpzL, zeT. In this way I/(T, //) and

O can be identified for every pe[l, oo].

Proposition 3.5. For (DE^L (L unbounded) the measure u^ of (3.2) and (3.4)
is its central measure.

Proof. The Tomita map fc^: L°°(^, //„)-> ̂ 1, for /^COGM+(C9?) is uniquely
defined by (cf.[4, Lemma 4.1.21])

For any /e £ and a e C we calculate

= gJM<<p,L',w(f)ydij(z)
T

Replacing W(f) by linear combinations of Weyl operators and performing limits
in the norm of if (E) we obtain

M^)=^,(00a) VaeC.

Obviously k^ is a *-homomorphism on NL:= LH{g^\(x.eC}. Since JVL is
a(U°, L1)-dense in L°°(t9

?, /zj we conclude from the continuity property of fcw [4,
Lemma 4.1.21] that it is a *-homomorphism from L°°(^, uw) onto the smallest
abelian von Neumann algebra in Hw(i^(E)}' which contains all WW(Q 0 a),
aeC. Now the assertion follows from [4, Proposition 4.1.22] and Proposition
3.4 (viii). D

If E is separabel, each state <p = ^L^supp^J c 3e«$^L has the GNS-

representation (O^ ^fF, QF) with Hfl,(W
r(/)) - exp{ i\/29l (zL(/))} FKF(/) and
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separable Fock space JfF. Then the direct integral exists and by Effros'
theorem [4, Theorem 4.4.9] we get a spatial decomposition of the GNS-
representation of co

/TT ffl r) \ _

Let us still draw some further conclusions from the described decomposition
of coherent states.

Proposition 3.6. Let L be unbounded. Then:
(a) For each coe^L there is a unique maximal measure n E M \ ( £ f } such that

a) = ^deSe (pdp,((p), namely the central measure ^ = nw. Moreover, in
Proposition 2.1 (d) we have the implications (i) <=> (ii) <=> (iii) <=> (iv) <=> (v).

(b) <fL is a face of &.

Proof, (a) follows from Ji'^ = 2£w and [15, Lemma IV. 6.26] and the fact
that the only pure and only primary states of £fL are in de&*L = {(pzL\zeT}.

(b) If a} = Icpi + (1 — A)cp2, co6^L, (pl9 cp2^^ and 0 < A < 1, then find
two maximal measures //19 / j2eM + (<S^) decomposing cpl and q>2 (see e.g. [4,
Proposition 4.1.3] for the existence). Then JJL:= A/^ + (1 — A)//2is a maximal
measure (cf. [4, Proposition 4.1.14]), which decomposes cu, and is equal to the
central measure according to the reasoning in (a). Consequently supp(/^k) c
3ecS^L for fce{l, 2}, and therefore cjp l 5 (p2€<^L. D

Altogether the foregoing mathematical analysis provides a detailed picture
how a classical collective structure arises from the coherence condition with
unbounded linear form L. For all such L's there shows up exactly one
macroscopically occupied mode with a classical (central) phase observable.
Giving this phase fluctuation free values is the only way to decompose the given
coherent state into pure quantum states. If the considered bosons are photons
then classical fields in the GNS-representations give an indication, how classical
optics may be founded by quantum optics, a view which is also supported by the
examples in [12].
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Appendix

We collect here some basic notions and facts on positive-definite kernels and
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apply this to the characteristic functions of states on the Weyl algebra.
Restricting the definition of [5] to the complex valued kernels we call a

mapping K : X x X -» C a positive-definite kernel, if for all n e N, all
xl9...,xnEX, X being an arbitrary set, and all z l J . . . , z n eC

. i >

A Kolmogorov decomposition of the positive-definite kernel K is defined to be a
mapping V: X -» Jf r, where Jf F is a (not further specified) Hilbert space, such
that

K(x, y) = <V(x)\V(y)> Vx, yeX. (A.2)

On the other hand (A.2) implies positive-definiteness of the kernel K. A
Kolmogorov decomposition is called minimal, if

For every positive-definite kernel there exists a minimal Kolmogorov
decomposition. If V: X -> Jf v and F : 2tfv. are Kolmogorov decompositions of
K and F is minimal, then there is a unique isometry U : Jtifv -> Jf F>, such that
K(x) = UV(x)VxeX. If F is also minimal, then 17 is unitary.

Let be ^ a group, then T: & -> C is called a positive-definite function, if K(g,
g'):= T(0~ V) constitutes a positive-definite kernel ^ x # -> C. In this case the
Kolmogorov decompositions of JC are given by vectors f%) = 11(0) we JfF,
where weJfV and II is a unitary representation of ^ on JfF.

If K 1 / 2 : ^ x Z - » C are two positive-definite kernels with Kolmogorov
decompositions F1/2: X -> Jf1/2? then ZBXI-^ ̂ (x) (x) F2(x) gives a Kolmo-
gorov decomposition of the positive-definite kernel K1(x, j)X2(x5 y): ^ x ̂ T
-> C. It is in general not minimal, even if the F1/2 are so.

For every state <pe£f on the Weyl algebra i f ( E ) with the characteristic

function C^: £ -> C, the mapping E x Es(f, ^)(-»exp<-3</|^> VC^^ -/) is a

positive-definite kernel. If f^ : E -» ^f v is the corresponding minimal Kolmo-
gorov decomposition, then one checks immediately (compare [5, p.44]) that V^-

is also one. Thus the mappings Wv(g): V9(f)\-+ V^f

+ #)exp< -3</|^> > extend to a unique family of unitaries on Jf v, which satisfy

the Weyl commutation relations, and by (A. 3) is cyclic with respect to the vector
&<?'•= Kp(0)- By Slawny's theorem (the uniqueness of the Weyl algebra up to *-
isomorphism) and since ^(p\W(p(f)Q(py = C^f) we have a realization of the
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GNS-representation (!!„, J0%, Q9) of i f ( E ) corresponding to cp, and H9(W(f))
= W(p(f)\/fEE. This shows that to every function C in C(E)(defined in the
Introduction) there corresponds a unique state cpe^9 which is constructively
given by the cyclic vector in the minimal Kolmogorov decomposition of C.
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