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Sharp Estimates of Lower Bounds of
Polynomial Decay Order of Eigenfunctions

Dedicated to Professor Teruo Ikebe on his sixtieth birthday

By

JuN UcHivaMa* and OSANOBU YAMADA**

§0. Introduction

In this paper we shall study the lower bounds of polynomial decay order as
|x| - oo of the not identically vanishing solution u(x)e H2.(2) of the second
order elliptic equation in 2 = {xeR"||x| > R}

no (0
- l_,;l (a—xi+\/ —1 b.-(x)> a;;(x) (%h/ —1 b,-(X))“(X)+(t11(x)+q2(X))u(X)=0,

where the matrix (a;;(x)) is uniformly positive definite, b;(x) (1 <i < n) and q,(x)
are real-valued functions, and ¢,(x) is a complex-valued function. Our aim is to
combine the results given in Uchiyama [3], Yamada [4] and Agmon [1] in one
theorem. We shall state the main parts of the assumptions for the case a;;(x)
= J;; (Kronecker’s delta) as follows: there exist some constants f, y;, y, and real-
valued bounded functions o(r), #(r) such that

>0, yy<2, 2-2<y,<2,

o(r) >0, rlgg n() =0,
limsupr? =22 a(r) "' [rd,4:(x) + (1 + n(1))q:(x) + o(r) ™} rg, ()|
+Q2—y) IBXx[*] <0,

limsupr?~? 6 (r) ™! [16,4,(x) + (72 + 1(1)q:(x) + 2 — v2) "' [B(x)x[’] <O,
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4:(x) = 0" 2a(r), |B(x)x| = O(* "'\ /a(r))  asr— oo,

where B(x) = (0;b;(x) — 0;b;(x)) is an n x n matrix. Moreover we assume that
there exist some constants 0 <a<1, C>0, —o0<d; <00 and 4, <f—2
such that

f (@) - () wx)Pdx < af [Pw(x)[>dx + CJ o1 w(x)|?dx
(] 2 2

for any w(x)e Cg (),
(Re[g;])-(x) < Cr* for |x| > Ry,

where (f)-(x) = max{0, — f(x)} for a real-valued function f(x). More detailed
conditions are stated in §1. Then by Theorem 1.2 given in §1 we have

1 R
lim inf RO/ *mas0 sy VL |7 10 + 00 ) lu(x)[2dx > 0.
R=>w 2 Ro r R<|x|<R+1
Moreover if
© R
R~ (0/2)~max{0.61.02} ey Y i (VR dr pdR = + ©
Ro 2 Ro r ’

then we have u(x)¥ L*(Q).

Roughly speaking the case o(r) = g, > 0 (sufficiently small), #(r) = 0 and y,
= v, corresponds to the result in Uchiyama [3], the case o(r) = (r) = (logr) ™!
corresponds to Yamada [4] (but no detailed treatment was given), the case o(r)
=) =r"% (g, > 0 sufficiently small) corresponds to Agmon [1]. Yamada
[4] and Agmon [1] assumed ¢,(x) < O for r > R,, but we do not assume this
condition in this paper. So our results also can be applied to the atomic-type
many body potential (e.g. see Remark 1.4).

We note that the smaller y; <2 we choose, the better estimate as lower
bound we have. In Example 1.7 we choose y; =2 — 2f and so we cannot, in
general, let y,=vy,. But in case ¢,(x)<0 for r>R, and |B(x)x|

=o(r*~*./a(r)) as r - co we have only to choose 7, to satisfy 2 — 28 <y, <2
and y, <v,, which is the reason that Yamada [4] and Agmon [1] did not
assume the condition depending on 7y,.

Example 1.7 and Remark 1.8 show the following: let

— du(x) — (® + Yu(x) + g,(x)u(x) =0 in Q >0, — 0 <1< ),
u(x) € H, (),
supp[u] is not a compact set in Q.

If
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gz (x) =o(r®?"Y)  as r — oo,

then we have

Jim R“’/Z”’GJ lu(x)|?dx = oo for any & > 0,
R<|x|<R+1

R-
u(x)s L*(2) for 0<f<2.
If
4, (x) = o(r®? " (logr)™!)  as r — o,
then we have

A%R(o/z)(log R)EJ |u(x)|?dx = + o for any ¢ > 0,

R<|x|<R+1

ux)e L2(Q) for 0<f<2
If
g, (x) = 0(r¥?~17% as r — for some ¢ > 0,
then we have

lim inf R("/Z’J lu(x)|2dx > 0,

R<|x|<R+1

u(x)g L*(Q) for 0<0<2,

which is the best possible result. These results show that the more gently g,(x)
behaves at infinity, the better estimates as lower bounds we have.

Eastham-Kalf [2] has given fruitful informations and rich references on the
problem treated in this paper.

In §1, the assumptions and main results are explained. We give the proof
of Theorem 1 in §2 and the proof of Theorems 2 and 3 in §3. The method of
proof is similar to the one used in Uchiyama [3] and Eastham-Kalf [2, Theorem
6.3.3].

§1. Assumptions and Main Results
We list up the notations used here, which are the same as given in
Uchiyama [3].
Notations:

<€7 f]> = 51’11 + o+ én”n for 6= (615-'-9£n)5 n= (’113--'571n)ecn;
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1€l = (<&, EX)2 for £eCs

X =x/|x| and r = |x| for x = (x,,...,x,) eR";

0;=0/0x; and 0, = 0/0r;

Dj=0;++/—1bj(x) and D = (Dy,...,D,);

I (r) (d/ dr)f(r) and f"(r) = (d*/dr*)f ( )s

Vf=(0.f,...,0,f) for a scalar-valued function f(x);

divg=0,g9,+ --- + 0,9, for a vector-valued function g(x)=(g;(x),...,g,(¥));
A = A(x) = (a;(x)) is an n x n matrix;

B = B(x) = curl b(x) = (0;b;(x) — 0;b;(x)) is an n x n matrix;

(f)-(x) = max{0, — f(x)} >0 for a real-valued function f(x);

supp[f] denotes the closure of {x|f(x) # 0};

CJ(R) denotes the class of j-times continuously differentiable functions;
Ci(Q) = {f(x)e C/(Q)|supp[f] is a compact set in Q};

Cq(Q) = ﬂ Ci(Q);
L*(Q) = {f(X)IJ [fo)?dx < 00};

L%.(Q) = {f x)| for any compact set K < Q, J |f(x)]2dx < oo};
K

H™(Q) denotes the class of L?-functions in Q such that all distribution
derivatives up to m belong to L*(Q);
HT.(Q) denotes the class of L2 -functions in € such that all distribution
derivatives up to m belong to L?.(2);

(f — f )f(x)dS = f f(x)dS — f f(x)ds.
x| =t |x|=s |x|=t x| =s

Next we shall state the conditions required in the theorems.

Assumptions:

(A1) each a;(x)eC*(Q) is a real-valued function;

(A2) a;;(x) = a;(x);

(A3) there exists some constant C; > 1 such that for any xeQ and any
EeC" we have

CrHEP <<AMm)E &) < Ch)E;
(B1) each b;(x) is a real-valued function;
(B2) for any w(x)e HL, () we have b,(x)w(x), (0;bj(x x))w(x) € L2,.(Q);
(C1) g4(x) is a real-valued function;
(C2) for any w(x)e H;,(2) we have \/|q;(x)| w(x) € L},(Q);

(C3) for any w(x)e H;,(2) we have \/|Vq,(x)| w(x)e L,(€);
(D1) g,(x) is a complex-valued function;
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(D2) for any w(x)e H,.(Q) we have \/|q,(x)| w(x)e L},.(Q);
(E) there exists some constant R, > 1 such that Q > {xeR"| |x| > R}
(F) there exist some constants o, f, ¥y, ¥, 4, 45, a3, 4, and some real-
valued functions #(r), o(r)e C*(R,, co) such that the following (F1) ~
(F9) hold.
FH)O<a<pP,a,>1,a,>1,a;>0, a, > 1;
(F2) o(r)=0(1) as r > oo and o(r) > 0 for r > R,,
n(r) = 0(1) as r - oo,
71+ limsupn(r) < 2,
R-2<)2—-2a<y,+ Ii}g{iﬂnfn(r) <7, + lirrrLsoklpn(r) <2;
(F3) lim 7% (r) = oo;
(F4) lim '~ fe(r)"16'(r) = 0 and lim rre(r) y'(r) = 0;
(F5) lirrgsoélprz‘zﬂo(r)'l [r<AX)X, 2> CAX)Vq,(x), £
+ (1 +1)g1(x) + a o (r) " CA)X, X )7 Hrgy ()2
+ a2 =y, — ()" (AKX, X )72
“(A(x)B(x)A(x)x, B(x)A(x)x >] <0;
(F6) limsupr®~ 2 a(r)™! [r (A(X)%, £ 71 CAX) Vg1 (x), £
+ (2 + 1())g, (X) + aza ()~ CAG)X, £ rgy (%)
+a42 =y, — ()" CAR)X, XH 72
"(Ax)B(x)A(x)x, B(x)A(x)x >] < 0;
(F7) rhjg o(r)” ! (a;(x) — d;;) = 0, where §;; is the kronecker’s delta;
(F8) rli"’r{.%)ro"(r)'18,41!-]-(x) =0;
¥9) rlirgrz’”a(r)‘lakalaij(x) =0;
(G1) there exist some constants 0 <as <1, —o0 <d; <00 and C, >0
such that for any w(x)e C§’(22) we have

J (@1)- ()| w(x)[2dx < asJ [P w(x)|?dx + sz P w(x)*dx;
Q Q Q
(G2) there exist some constants d, < ff — 2 and C5 > 0 such that for any

r > R, we have
(Re[q,])-(x) < Cymin{r®, r"~2a(r)},
where Re[z] means the real part of zeC.

Now we have the

Theorem 1.1. Let u(x) satisfy
— <D, AD Y u(x) + {g,(x) + q2(x)}u(x) = 0 in Q,
(#):] u(x)e Ho(Q),

supp[u] is not a compact set in Q (closure of Q).
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Let (A) ~ (G) hold. Then we have the following:

1) lilr(gglfR”‘/z)di(R) [I< ADu, £>|*> + {r'2 + (ql)_}lulz]dS >0,
|x|=R
where
R
2J)ro r

(2) for any ¢>0
liginfR‘V‘/z’+’““"‘°"’""2}<15(R)J lul?>dx > 0;
® R<|x|<R+e

(3) moreover if
@
J\ R—(71/2)—max(0,61,ﬁz)ds(R)—ldR = + o0,
Ro

then u(x)e L*(Q).

Now we shall consider the more special case a;;(x) = J;; under the weaker
conditions.

Theorem 1.2. Let u(x) satisfy
- <D5 D >u(x) + {ql(x) + qZ(x)}u(x) = O in Q)
(+#): ¢ u(x)e Hpo(Q),
supp[u] is not a compact set in Q.

We assume (B) ~ (G) with a;;(x) = J;; except for (C3). Instead of (C3) we assume
(C3Y for any w(x)e Hi.(R) we have |0,q,(x)|"*w(x)e L%, (Q).

Then we have the same results as given in Theorem 1(1) ~ (3), where we replace

a;;(x) with 6;;.

Lastly we shall consider the most special case a;;(x) = ;; and b;(x) = 0 under the
weakest conditions.
Theorem 1.3. Let u(x) satisfy
— du(x) + {g1(%) + g;(x)}u(x) =0 in Q,
(exx): { u(x)e Hipo(Q),
supp[u] is not a compact set in @,

where A is a Laplacian in R". We assume (C) ~ (G) with a;(x) = d;; and b;(x)
=0 except for (C3) and (F2). Instead of (C3) and (F2) we assume (C3) and
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(F2Y o(r)=0() as r - oo and o(r) >0 for r > R,
n(r)=0(1) as r - o,
Y+ 1) <2 fori=1,2 and r > R,,

2-2<)2—20<y,+ 1im&nf11(r).
Then we have the same results as given in Theorem 1(1) ~ (3), where we replace
a;;(x) with 6;; and b;(x) with 0.
Remark 1.4. We have the following:

(1) If n(r) = 0 and o(r) = v > 0 where v is a constant, then I;l_r)rc}O R7"? @(R) < wo.
This case is the one considered in Uchiyama [3].

(@) If n(r) =a(r) = (logr)~1, then Lim (logR)"!®(R) < oo. This case almost
meets with Yamada [4]. However [4] did not give its complete proof and
assumed more strict conditions such as g,(x) <0 for r > R,.

(3) If there exists ggrgo @(R), the results given in Agmon [1] are almost
reproduced. However [1] assumed more strict conditions such as ¢,(x) <0
for r > R,.

(4) In our assumptions that g,(x) < 0 for r > R, is not assumed. Then we can
apply our theorem to the atomic type many body potential

Nz Z;
X0 ==Y =5+ Y oo

S0 1< Sen|x® — x|

where x = (xV,...,xM)eR3¥, x@ = (x3;_,, x3;-1, X3)€R?, 1 >0, z; and z;;
are real constants. In this case we choose y; =7y, =1 and #(r) = 0.

Remark 1.5. If we add the following conditions
q,(x) = 0(r* " 2a(r)) as r — o,
|BAx| = O(r* "' /o(r) asr— o
in (F), then (F5) and (F6) can be replaced with weaker conditions

(F5y liﬂsgp 27 2e(r) T r (AR, XY T AV gy, XD 4 (91 + 1()) g4 (%)
+ () (A%, X )7 Hrg, ()2
+@2—7, —nr) (A%, £) 2( ABAx, BAx )] < 0;

(Fo)y limsup r2~ 2o (r) "1 [r (A%, £) 71 CAV gy, XD + (02 + 1) g1 (%)
+@2—y, — 1) *{AX, > 2{ ABAx, BAx )] < 0.

In fact the quantity given in (F5) depends continuously on a, and a, under our
additional conditions. So (F5) leads to (F5). The same happens in (F6).
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Remark 1.6. If in (F5)

2—-20<y, + lirrggonfn(r) <7+ lirrrL%lp nr) <2

holds, then (F6) is automatically satisfied.

In fact we have only to choose 7y,
=1y,, a3 =a, and a, = a, in (F6).

Example 1.7. In (**) let n =3 and
q:(x) = h(x) + Vx) — 4,
4, (x) =o(®?~1)  as r — oo,
by(x) = — 27 box,f(r), by(x) =27 box,f(r), bs(x) =0,
where
— © < 4, by < 0o are constants,

h(x) is a negative continuous homogeneous function of degree 6 > 0,

Mx) is a real-valued function satisfying
x) = o(r%), 6,V (x) = o(r’"?) as r — oo,
f(r)eCY(R,, o) is a real-valued function satisfying
if'(r) + 2f(r) = o(r¥?~1)  as r — oo.

In this case (B) ~ (E) are satisfied, where we replace (C3) with (C3)'.

We choose
in (F) and (G)

B=1+(0/2)>0, yy=—0(=2-2p), n(r) =0o(r),
0,=0,0,=0/2)—1=-2<60=904,
and let «, a,, a,, a;, a, be arbitrary constants satisfying

O<a<1+4+@/2)=p,a,>1,a,>1,a;>0, a,>1.

Then we have

(y1/2) + max{0, é,, 6,} = 6/2.
Noting

|Bx|? = 471b3(x3 + x3)|rf'(r) + 2f(") I,
we have

P () 10,0, () + (1 + 10)as () + ay0() g ()
+ a2 =y, —n(r))"'|Bx|*]
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=r%(x)+r () 1 [rd,Vx) + (o(r) — O Vx)]
—r % ()" Y(a(r) — 0)
+a;r ()" rg,(x)1* + a,2 + 60 — a(r)) 1471 b
x 170t + x3)a ()M rf (1) + 21 () 2.
Now we shall consider the following three cases.
Case 1. Let
Nx) = o(r%), 6,V (x) =o(®"1)  as r— oo,
q,(x) = o(r¥?~1) as r — oo,
rf'(r) + 2f(r) = o(r®?~1) as r — 0.
In this case we choose
o(r) =e,
where ¢ is a constant satisfying 0 <e <2+ 6. Noting
r~%h(x) < max{h(x)| |x| =1} <O for any r > R,
(F) and (G) are satisfied by any y,e(min{2 —2a —¢, —6},2 —¢). Then by

Theorem 1.2 and ,1132 r ¢®(r) < oo, we have for u(x) satisfying (sx*)

R— o0

lim R“’/z)”f lu(x)|2dx = + oo for any ¢ > 0,
R<|x|<R+1

u(x)g [2(Q) for 0<0<2.

Case 2. Let
x) = o(r’(logr)~?), 0, x) = o(r® (logr)~!) as r — o,
4z (x) = o(r®>~*(logr) ™) as r — o0,
1 '(r) + 2f(r) = o(r®» "} (log r)~1/?) as r — o0.

In this case we choose for any ¢ >0
a(r) = e(logr) ™",

and then (F) and (G) are satisfied by any y,e(2 — 20, 2). So we have by
Theorem 1.2 and '_ILII% (logr)~*d(r) < 0

I;i_{rgoR‘o/Z’(logR)‘J lu(x)|*dx = + oo,  for any ¢ >0,

R<|x]<R+1

u(x)e L2(2) for 0<f <2
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Case 3. Let for some ¢ >0
x)=0""9), o ,Ux)=0(°" 175  as r— oo,
q,(x) = 0P~ 17¢) as r — oo,
f'(r) + 2f(r) = O(r®?~17¢) as r — oo.
In this case we choose
o) =r"",

where ¢ is a constant satisfying 0 < ¢ < min{e, f —a}. Then (F) and (G) are
satisfied by any y,€(2 — 2a, 2). So we have by Theorem 1.2 and rllrg D(r) < o©

lim inf R“’/Z’j lu(x)|*dx > 0,

R<|x|<R+1

u(x)§ L*(Q) for 0<f<2.
Remark 1.8. The result given in Example 1.7 Case 3 is best possible. In
fact we shall consider the following case in (##):
a(x)=~r" (0>0),
4:(x) =0,
(b1(x),...,b,(x)) = (0,...,0).
Then

_ 2
ug(x) = r ")/2-I|n—21/(2+e)<2 - 0,.1 +(9/2)>

satisfies (x*) with Q = R", where J,(r) denotes the Bessel function of the first kind
of order v. This solution u,(x) satisfies

lim sup RO f lup(x)|2dx < + o,
R<|x|<R+1

up(x)eL*(Q)  for 6> 2,

since J,(r) = O(r~'/?) as r -» oo.

§2. Proof of Theorem 1

In this section all the conditions (A) ~ (G) are assumed. And let u(x)
satisfy (), which is given in Theorem 1.

Definition 2.1. For real-valued functions p(r)e C2(R,, o), f(x)e C*(22) and
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g(x)e CH(R), let
v =0(x; p) = e"Vu(x),
ki =ki(x; p) = —{p'(N}* CAX)%, £,
ky =ky(x; p) = p"(r) {AX)X, X> + p'(r)div{A(x)x},

F(t;p,f,g)=f [f(x) (A%, 2){2¢ A%, %) |<ADv, £)[*—< ADv, Dv)

x| =t

—(q; + ky)Iv|*} + g(x)Re[{ ADv, % »7]]dS.

Lemma 2.2. We have for t > R,

F(t;p,f, 9) = ez"‘"_[ [f(x){21< ADu, £)|* — (A%, £ )< ADu, Du )}

x| =2

+ {20/ A%2D + g}Re[{ ADu, 2]
+ (2P A%, 2 + (90’ — far) CA%, %)} ul21dS.

Proof. Noting Definition 2.1, we have the assertion by straight-forward
calculation. 0

Lemma 2.3. For any t > s> R, we have
F(t;p./,9)—F(s; p,f, 9)
=f ({2 AR, £)0,f+ g — (AVS, %) — fdiv(4R)} (A%, )71
<||<:Dv £y
+ {2 AR, R + g — CAVS, £ — fdiv(4%)}
-{{ADv, Dv ) — { A%, %)"'|{ ADv, % )I?}
+ 2Re[{ ADv, (7 — %8,)f Y ADv, %]
+ 2r L f{|ADv|* — (A%, % »{ ADv, Dv >}
+ 2fRe[<({ ADv, ¥y A)Dv, % )] — fRe[ {(< £, AV )A)Dv, Dv »]
— 2fRe[/— 1 { ABAR, (Dv — % { A%, £ Y"1 { ADv, % ))>7]
+ 2fRe[{ ADv, % >q,v] + Re[{ ADv, Vg >#]
+{(g — CAVf, %) — fdiv(4%))q, — f{ AV qy, %> + gRe[qg,]}|v]*]dx

+ j [4p'fI{ ADv, £ >1> + 2(fk, + gp)Re[{ ADv, % ) 7]
s<|x|<t

+{(g — <AV, 25 — fdiv(A%)k, —f{AVky, X5 + gk} v]*]dx.
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Proof. See Lemmas 2.7 and 2.8 of Uchiyama [3]. In order to obtain the
above relation, the conditions (A) ~ (E) are fully used. O

The meaning of the following Definition 2.4 can be partly clarified by
Lemma 2.5.

Definition 2.4. For i = 1,2 and x satisfying r = |x| > R,, let
filx) = CA%, 25712 (),
g:(x) = h(x)r" 271 d(r),
hi(x) =27 Y{a(r) — n(r) — v} + r (A%, X )71 div(4X)
+ r{AV({ A%, )7, £,

where

D(r) = exp{%fr Mdr}.

Ro r
And for weHZ,(2), i =1, 2 and x satisfying r = |x| > R,, let
Gi(x; w) = a(r) { A%, £>~[< ADw, % )|?
+ (2= — 1)) {{ADw, Dw > — (A%, %> 7} |< ADw, £)[?}
+ 2rRe[{ ADw, V({ A%, 2>~ 1) > ADw, £>]
+ 2{( A%, >~ Y| ADw|*> — { ADw, Dw )}
+2r{ A%, £> 'Re[{({ ADw, V > A)Dw, %3]
—r{ A%, £>"'Re[{({ %, AV > A)Dw, Dw )]
— 2( A%, £> 'Re[/— 1 { ABAx, (Dw — % A%, £) !
“(ADw, %) yw]

+ 2r{ A%, £>"'Re[{ ADw, % >q,w] + Re[{ ADw, V'h;> W]
+ @) hi{n(r) + o(r) + y; — 2} Re[{ ADw, % W]
—{r(AX, 2T ICAV gy, R + (0 + 1(1)g; — hiRe[g,]} w].

Lemma 2.5. We have the following relations for i =1, 2:

1) for r >R,
gi — CAVfi, ) — fidiv(AX) = — (y; + n(r))r" 271 (n),
2{ A%, X50,f; + g, — CAVf;, 2> — f;div(4X)
= {o(r) + 2r{ A%, X >0,({ A%, X >~ 1) }r®?~ 1 (),
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2r i AR, XD 4 g — CAVS, £ — fidiv(4R) = 2 — y; — n(n)r"P 71 d(r),
(2) F(t; p, fi» 9) — F(s;5 p, f1s 99)

- J PR B([G (x; 1) + drp’ (A%, 2571 ADp, £
s<|x|<t

+ 2{rp" + rp'{ A%, x )~ 1 div(4X) + h;p'} Re[{ ADv, £ 7]
+ (AR, 2D{(i +n()p'? + 2rp'p” — rp?CAV(C AR, D7), %)
+ hp” + hip' (A%, %71 div(AR) Y o|*]dx

for t > s> R,.

Proof. Noting Definition 2.4, Lemma 23 and &'(r)=(2r) {o(r)
+ 7(r)} ®(r), we have the assertions by direct calculation. O

We prepare an auxiliary Lemma 2.6.

Lemma 2.6. We have the following:
(1) limo() (<A £> —1)=0 and lim (A%, %) =1,
2 lim ro(r)”*V({ A%, £>) =0 and lim ra(r) WV ({AX, )" =0,
3 lim 2 Pe(r) 1 0,0,({ A%, £>) =0 and

lim r*7a(r) 7" 0,0,(C A%, £577) =0,

@  lim ra(r)”*{div(4%) — (n — 1)r '} = 0 and div(4%) = O(r™ ") as r — o,
() limr2Po(r) 17 {div(A%)} =0,
(6) hi(x)=0(1) as r — o for i=1, 2,
7 lim 1 Pe(r) " Whi(x)=0 for i=1,2.

Proof. We have by direct calculations
VAR, £)) =< (VA)X, £> + 2r 1{(4A — E)X — 2{(A — E)%, %)},
V(CAR, £)71) = — (A%, X)72P (A, %)),

00, (CAX, X)) = Z {(akataij)fif‘j + (akaij)al(}eiﬁj)

L=t
+ (0,a:) 0, (X: X)) + a;;0,.0,(%; %))},

00 AR, X )71 = 2C A%, £) 72 {0,(( A%, X 3)}Ha(< 4%, X))}
— (A%, 2>720,0,(C A%, X)),

div(A%) = (n — )r ' + div{(4 — E)%},
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8, {div(AR)} = z_ ((Cedia)%; + (3ua)(@:%) + (0,2,)(B,%)
+ a;i(0,.0,;X))},
h(x)=n—1+2"{a(r)—n(r)— 7} +r{ A%, £ ) {div(A%) — (n — 1)r~ '}
+ (= 1)(CA% 2>71 = 1) + r CAP(CAR, 2571, £,
0,h(x) = 2,{271(0' (1) — (") + C A%, £~ div(A%)
+(AV(CAR, %71, )
+ P[0, A%, 2> 1) div(AS) + A%, £ 710, {div(4%)}]

+ Y r{%0;a)0({ A%, £>7") + %,ay0;0,({ A%, X))

kI=1
+ a,0,({ AX, X >-1)aj32k}s

where E = (J;;) is the n x n identity matrix. So noting (F) and

9% =0("") and 0,0,%; = 0(r™?) as r — oo,
limrfo(r) = + 0 (by (F3)),

we have the assertions. O

Lemma 2.7. There exist some constants C, >0 and R, > R, such that for
any r > R, and any we HE (Q) we have

G,(x; w) = Caa(r){|{ ADw, £>|* + r*#~2|w|?}.

Proof. 1In the sequel ¢(r)(i = 1, 2,...) means a positive function for r > R,
which tends to 0 as r—oo. Choose a constant aj satisfying 1 <aj
< a,. Using

[CAG)E nd| < CAX)E, EXVEC A, 1)1
for any xeQ and any ¢, neC,
CA{Dw — £ A%, £ )71 ADw, %)}, {Dw — £{ A%, )1 ADw, )}
= (ADw, Dw) — { A%, £>"1[{ ADw, % >|?

for any xeQ and any we HZ (), and noting Lemma 2.6, conditions (A3), (F7)
and (F8), we have the following:

2rRe[{ ADw, V({ A%, £>™1) > ( ADw, £>] > — & (r)o(r){ ADw, Dw >,
2{( A%, > |ADw|*> — {ADw, Dw >} = 2{ A%, >~ '( ADw, (A — E)Dw >
+2(C A%, X>~1 = 1){ ADw, Dw ) > — &,(r)a(r){ ADw, Dw ),
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2r{ A%, £> " 1Re[{ (£ ADw, V)A)D—MT, X>] > — &5(r)a(r){ ADw, W),
—r{ A%, > 'Re[{({ %, AV > A)Dw, Dw >] > — £,(r)o(r){ ADw, Dw >,
— 2 A%, £)7'Re[/— 1{ ABAx, (Dw — £{ A%, £>~1{ ADw, £))>w]
> — 2{ A%, XY *{{ ABAx, BAx »}'*|w|
{{ADw, Dw ) — { A%, £>7'[{ ADw, £ ?}1/2
> — (2 -y, — n)az *{<ADw, Dw ) — (A%, %>~ |[< ADw, % )|}
— 2=y, —n) " 'a,{ A%, X > 2( ABAx, BAx >|w|?,
2r{ A%, > 'Re[{ ADw, % >q,w]
> —a; to(r){ A%, XD "1 ADw, %) |?
—ayo(r)” (AR, £) 7 rg, P wl?,
Re[{ ADw, Vh, Yw] > — e5(r)a(r) {{ ADw, Dw ) + r**~2|w|?},
@21~ thy {n(r) + o(r) + v, — 2}Re[{ ADw, £ >W]
> — 2711 — a Yo () A%, £> "< ADw, 2>
=87 hi(1 —a;7 )T AR, £)r 2T + o + vy — 27 W),
hiRe[q;] = — (a, — a1)< A%, £) " 1a(r) " {rg,|?
— 47 Ya, —a}) " ta(r)h? A%, £ )r 2.
Noting Definition 2.4 and

{ ADw, Dw » = {{ ADw, Dw > — { A%, %>~ 1[{ ADw, % )|}
+ (A%, X )71 [<ADw, X |2,

we have

Gi(x;w>0({27'1 —a;™ ) — _5 &(r)}(AX, X )71 [<ADw, % >|?

i

H@ =7 =101~ a) = o) . a0}
{{ADw, Dw Y — { A%, %)~ 1|{ ADw, £>|?}
— {rC(AX, X7 ICAV gy, £ + (v + 1()gy + a,0() 7!
(A%, £> 7 rg,)?
+a,2 =y, —n(r) ' (AX, £ )72{ ABAx, BAx ) }|w|?
—{es(Na(r**=2 + 87 'hi(1 —a;™ ") !
(AR, XD+ o+, —2)%a(r) " r2
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+47Ya;, —a}) T 2 AR, X Ya(r)r 2wl

We note that we have by (F1) and (F3)
rlirglor"a(r) = 4 .

Therefore by (A3), (F1), (F2), (F5) and Lemma 2.6 there exist some constants
C, >0 and R; > R, such that for any r > R, we have

271 —ai™") — i &)} A%, X)7 > Cy,

2=y —n@) —ay?)— U(")ii1 &(r) =0,
— {rCAR, ) TIKCAV gy, X ) + (9, + () gy + ay 0 ()7 HCAR, £ 7 Hrg, 2
+ a,(2 —y; —n(r)) '{AX, X ) 2( ABAx, BAx >}
> 2C,r*724(r),
—{es(Nr* " 26(r) + 87 h2(1 —a ) AR, XD+ o+ 7, —2)*r 2a(r)?
+ 47 Y(a, — a)) T i AR, X )r7%a(r)}
> — C,r* 20(r).
So using
(ADw, Dw > — { A%, 2>~ |< ADw, £>|*> > 0,
we have the assertion. O

Lemma 2.8. There exist some constants Cs >0, Cs > 0 and R, > R, such
that for any r > R, and we H () we have

Gy(x; W) = Csr* 720 (r)|w|? — Ce|< ADw, £ 2.

Proof. We use the same estimates as given in the proof of Lemma 2.7
except for the following: Choose a constant aj to satisfy 0 < aj < a5, and we
have

— 2 A%, £ )7 'Re[/— 1{ ABAx, (Dw — £{ A%, £>~1{ ADw, ) >W]
> —a; (2 — 7, — n()){CADw, Dw) — (A%, £)71[< ADw, %)%}
—a,(2 =7y, — () (A%, £)"2( ABAx, BAx Y|w|?,
2r{ A%, £> 'Re[{ ADw, % >q,w]
> — a3 ta() AR, X7 HCADW, 2) P —aza(r) T AR, X )7 g2 wl,

(2r)"*hy(n + 0 + 7, — 2)Re[{ ADw, % ) W]
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> — 27 1o(r)( A%, £> " |{ ADw, %) |?
— 8 1h3( AR, X + 0 + v, — 2)%r 2a(r) T wl?,
hyRe[q,] = — (a3 — a3){ A%, X )" 1a(r)” ' rq,|?
— 47 Yay — ay) (AR, 2 YREr 20 ().

Combine the above estimates with the remaining ones given in the proof of
Lemma 2.7, and we have by Definition 2.4

Gl W) > 0(){27 = 3, 6ir) — ay 1} A%, £ [< ADw, £
=1

Q=7 —m—a;)— o) Y &)} {< ADw, Dw >

— (AR, X7 ADw, )17}
— {r<AX, )T HCAV Gy, XD + (2 +1(1))qy + a30(r) T AR, X7 rg,
+as2 — y, —n(r)) 1< A%, X )72 ABAx, BAx ) }|w|?
—{es(Mr**20(r) + 8 1hI(AX, X )(n + 0 + y, — 2)*r " 2a(r) !
+ 47 a3 — a3) AR, ROhr2a(n) Wl

By (F1), (F2), (F6), Lemma 2.6 and }Lnalo rfo(r) = + oo, there exist some
constants Cs >0, Cq > 0 and R, > R, such that for any r > R, we have

o2 — Y 6lr) — a5 1} C AR £ > — G,

i=1
@ =7 = 10D —a5") = 00) 3 6) 2 0,
— {r (A%, X)TICAV Gy, 2D + (12 +1()) g1 + as AR, £ 71 a(r) 7 rg,|?
+ a,(2 — v, — () 1(AX, X )72 ABAx, BAx )}
> 2Csr?P " 24(r),
—{es(r** " 2a(r) + 87 h3{AX, X )(n + 0 + y, — 2*r 2a(r) !
+ 47 (a3 — ay) AR, D> hir2a(n)}
> — Csr?P~2g(r).
So we have the assertion. O

Lemma 2.9. There exists some constant Ry > R, such that for any constant
m>1 and any t, s satisfying t > s > R; we have

F(ta mraaf29 gZ) = F(S, mra5f2a gz)

Proof. In Lemma 2.5 let i =2 and p(r) = mr*. Then we have
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drp'{ AX, £ ) Y| { ADv, £ >|? = dmar*{ A%, £ ) 1|{ ADv, X >|?,
2{rp" + rp'( AX, >~ *div(AR) + h,p'} Re[{ ADv, % >7]
=2mor* " *{o — 1 + r{ A%, £> " 1div(A4X) + h,} Re[{ ADv, X > ]
> — mur*( A%, )" }|{ ADv, X >|?
—mar*”*{o — 1 + r{ AX, X )7 1div(4AR) + h,}2 (AR, X ) |v|?,
02 +1)p? + 2rp'p" — rp? AV (C AR, X5 71), XD
+ hyp" + hyp'( Ax, x Y~ 1div(4X)
=m2a?r** 2y, + n(r) + 20 — 2 — r{ AV({ A%, £)71), )}
+ hymar*™2{o — 1 + r{ A%, X ) ~1div(4%)}.
By Lemma 2.8 we have for any r > R,
G,(x; v) + drp’ (A%, £~ 1|C ADv, %2
+ 2{rp" + rp'{ A%, £ )~ 'div(AX) + h,p'}Re[{ ADv, X 7]
+ (AR, 2 {(r2 +n()p? + 2rp’p" —rp? CAV(C AR, X571, %)
+ hyp” + hyp'{ AR, £~ 1div(AX)}|v]?
> Csr**720(r)|v)? — C4|{ ADv, % >|* + 3mar*{ A%, 2>~ 1|{ ADv, X >|?
+ mar*~2[{y, + n(r) + 20 — 2 — r{ AV({ A%, X)), X > ymor®
+ hy{a — 1+ r{ A%, £ )1 div(4%)}
—{a— 1+ r{ A%, £>1div(AR) + hy)2 AR, £] 0l

Noting Lemma 2.6 and (F2), there exists some constant R; >R, such that for
any r > R; and any constant m > 1 we have

3mur*{ A%, £)"1 — C¢ >0,
{yo + 1)+ 20— 2 — r{ AV({ A%, )71, £ )} mar®
+hy{o—1+r{A%, £>71div(4%)} — {a — 1 + r{ A%, £ )~ 'div(4X)
+ hy}2 (A%, %)
> 0.
So we have the assertion. O
We intend to prove Theorem 1.1(1) by reduction to a contradiction.

Lemma 2.10. If

li,grging‘“’z’di(R)f [I<ADu, 231 + {r™2 + (q1)-}|ul*1dS = 0,

[x|=R
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then we have for any m=0, 1, 2,...
j rmet D=1 (r)a(r){|< ADu, X )|* + r**72|u|*}dx < co.
|x| > Ro

Proof. By Lemma 2.2 and Lemma 2.6, there exist some constants C; >0
and R, > R, such that for any t > R, we have

F(t, Oafl, gl)
_ th@(t)f [2{ A%, 2>~ 1| ADu, £)|? — { ADu, Du >
x| =t
+ hlr“Rel[l< ADu, X Yu] — q,|u|*1dS
< (;7,3(71/2)<1§(I)J‘| [I<ADu, £>1* + {r~2 + (q,)_}|u|*1dS.
x| =t

So we have
litn_l.ioan(t; 0,f1,91) <0.

Letting ¢t — oo along the suitable subsequence in Lemma 2.5, we have, by
Lemma 2.7, for any s > R,

C4J r7D=1d(r)a(r){I< ADu, X 1* + r* ~2u*}dx < — F(s; 0, f1, g1),
[x|>s
which shows that the assertion holds for m = 0. By the above estimate, and by

Definitions 2.1 and 2.4 and Lemma 2.3 we have

t
C4j s("'“”'ldsj r2-1@(r)a(r){| ADu, £ 1> + r**~2|u*}dx
Ry |x|>s

IA

13
— J sm+ba=1p(s. 0, f,, g,)ds

Ry
= J rm+ Dat (121 (r) {{ ADu, Du) + q,|ul?
Ry <|x|<t

— 2{ AX, )" Y|{ ADu, *>|*> — hyr"*Re[{ ADu, X Yu]}dx
— F(t; 0, 0’ r(m+ 1)a+(y1/2)—1¢(r)) _ F(Rl, 0’ 0, r(m+1)a+(y1/2)—1¢(r))

_J P Dat D=1 P ) [2¢ A%, £ > 1| ADu, % H|?
Ri<|x|<t

+{m+Da+2"'nr) +o(r)+y,)— 1+ h}r *Re[{ ADu, X Y]
+ Re[g,]|ul*]dx.
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Now we assume that the statement is true for m. Then by (G2), (F3), « < f and
Lemma 2.6 we have for any ¢t > R,

—f pm+ Vet 012 =1 () [2 A%, % )71 ADu, X Y|
Ryi<|x|<t

+r Y (m+ Do+2" () +0@)+y,)— 1+ h }Re[{ ADu, % >i]
+ Re[q,]|ul*]dx

< j Pt D23 g (r)[8 7 r* 2o (r) " {(m + Da
|x| >Ry

+27 M+ 0 +y) = 1+ 2 AR, %) + Car* Pl ul?dx
< + 0.
On the other hand by Lemma 2.2 we have
F(t; 0, 0, pm* Da+01/2) =1 g(r))

_ f rom+ Dat U2 =1 (r)Re [ ADu, % di]dS
|x]=t

< 2'1J rmet 0D @(r)a(r)[|< ADu, X )12 + r*P=2{r* ¢ (r)} ~%|u|*]dS.
|x|=t
Noting that the assertion holds for m, we have by (F3)
H,@éoan(t; 0, 0, rm* D=+ /21 p(r)) < 0.
Therefore we have

o0
+ o0 > f s""“’“—ldsj r02=1@(r)a(r){|{ ADu, £ >1* + r*#~2|u|*}dx
|x|>s

Ry
=(m+ 1)"1a_lj {rm* Dz _ R+ D}y 02D~ 1 (r) o (r)
|x] >Ry

x {|< ADu, X )|* + r**~2|u|?}dx,

which shows that the assertion is true for m + 1. O

Lemma 2.11. There exist some constants Rs > Ry and Cg > 0 such that for
any real-valued function (r)e C§(Rs, 0) we have

f V() {IDul® + (g,)-ul*}dx < Csf {rmex@ry (r)? + ()} [ul? dx.
Q Q

Proof. See Lemma 2.3 of Uchiyama [3], where (A), (G) and rllrg {a;;(x)
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— ;4 = 0 have been used. O

Lemma 2.12. Let Ry be the one given in Lemma 2.11. There exists some
constant Co >0 such that for any R>Rs and any real-valued function
{(r)e C'[Rs, 0) satisfying

J [Fmax@003¢ (12 4+ (1) lul?dx < oo,
|x|>Rs

lirginfj‘ {(r)?*|ul?dx = 0,
e t<|x|<t+1
we have

f (@ {IDul® + (q1)-|ul*}dx
|x|>R+1

< Cgf {rmex0u0a ()2 4 {'(r)*} lul*dx + CQJ L(r)? |ul?dx.
|x|>R R

<|x]<R+1

Proof. See Lemma 2.4 of Uchiyama [3], which can be obtained from
Lemma 2.11. O

Lemma 2.13. There exist some constants 65 > 0, C,o > 0 and C,, > 0 such
that for any r > R, we have

Cior B2 < ®(r) < Cyy1.

Proof. By (F2) there exist some constants d; >0 and Rg > R, such that
for any r > R4 we have

— 285 < 1(r) + o(r) < 255,

Then we have for any r > R¢

1 (Rey(r) + a(r) r 1" nr)+a()
1 (Reqy(r) + a(r) r
< — - .
< ZJRO " dr + (33log—R6

Note that @(r) is continuous in [R,, c0), where R, > 1. Then letting

(&
Cio= min{R‘;’exp{EJ Mdr

Re
Ci = max{Rg"i‘exp{%f Mdr}, R ax r—"3q5(r)} >0

<r<
Ro r 0<r<R

}, min r53¢(r)}>0,
Ro<r<Rs

Ro r
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we have the assertion. O
Lemma 2.14. If
ligg’glfR‘“”@(R)f [I{ADu, £ )1*> + {r~2 + (q,)-}|ul*1dS = 0,
|x|=R

then we have for any constant m > 0

f ™[ Dul* + {1 + (g,)-}u|*]dx < oo.
|x|>Ro

Proof. By Lemmas 2.10 and 2.13 and (F3) we have for any m > 0

f ™|ul?dx < co.
|x| > Ro

() =rm2.

Let

Then we have
J‘ {rmax{él,éz}CZ + C’2}|u|2dx
|x|>Rs
= J P rmex0na 4 47y 2p= 2|y dx < oo,
|x|>Rs

CzlulzdxSlitrgx'gonft‘lj~ ™+ yl2dx = 0.
t<|x|<t+1

litn_} jonf f

t<|x|<t+1

Therefore by Lemma 2.12 we have the assertion. O

Lemma 2.15. If

lim inf R"/2®(R) [I<ADu, £ )1> + {r~ + (q;)-}|u|*1dS = O,

|x|=R

then for any constant m > 0 there exists some constant R, > R,, where R, is the
one given in Lemma 2.8, such that for any t > s> R, we have

e""“J (A%, 2> |ul?dS < e"‘s"j (A%, £>|ul?ds.
Ix| =t |

x| =s

Proof. For fixed m > 0 let
a(r) =27 {mar* + n}.

By Lemma 2.6 and (F2) there exists some constant Rg > R, such that for any
r > Rg we have
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(A%, %> rdiv(A%) < n.

Then for any t > s > Ry we have by integration by parts

(j — j )e’"’“(Aﬁ, % >|ul*ds
|x| =t |x}=s.

= J e"“[2Re[{ ADu, £ Y] + r~*{mor* + { A%, £ ) 'rdiv(4X)}
s<|x|<t
(A%, 2> |ul*]dx

< ZJI e"““drj [Re[{ ADu, % Yit] + a()r~*{ A%, X D|u|*]dS.
|x]=1

s

So we have only to show that there exists some constant R, > Rg such that for
any © > R, we have

f [Re[{ ADu, % Yu] + a(r)r *{ A%, X Y|u|*]1dS < 0.
|x]=1t

Let

—2a(1)

p(r) = a(r)logr, g(r) =r
Then by Definition 2.1 and by direct calculation we have
e?Wg(r) =1, 2p'(N)g(r) + g'() =0,
ki(x) = —a()?r 2 A%, XD, ky(x) = — a(t)r 2{ 4%, £)

+ a(r)r~ ' div(4%).

Therefore by Lemmas 2.2 and 2.3 and by Definition 2.4 we have for any ¢; >
> Rg

(J —f >[Re[<ADu,>€>ﬁ] + a(r)r 1 A, X Y|ul?]dS
ZI ;(ltl ; al(’:;;g r, 0, r~24) — F(t; a(t)logr, 0, r~24®)
= f rT2O[{ ADv, Dv ) + (¢; + Re[q,])Iv]?
+r:zl(’;|)<rtiz{rdiv(A>2) — (A, £) — a(tr){ A%, % ) }|v|*]dx

31
= —f sy ZAOTR2AD(s,) T [F (s, ; a(t)log 1, 3, g,)

+ 2C3 s "2 (s,)a(s,) (A%, % )|v|*dS]ds,

|x] =51
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n j r-20 2 AKX, £ > Y|{ ADv, X |?> + hyr 'Re[{ ADv, % Y7]
T<|x|<t;

+ {Re[g,] + a(r)r~2(rdiv(4%X) — { A%, £D)
+ 2C3rP 72 AR, 2 a(r)}|v|*]dx,

where C; is the one given in (G2) and v = v(x; a(r)logr). By (G2), Lemma 2.6
and 0 < a < f, there exist some constant C;, > 0 and Ry > Ry such that for any
r>1 >Ry we have

2 A%, £ >~ C ADv, X >|*> + hy,r " *Re[{ ADv, X Y7]

+ {Re[q,] + a(r)r2(rdiv(4X) — (A%, £ )+ 2C3r* "2 A%, £ Da(r)}|v|?
> {—871h3r (A%, 2> — (Re[q,])- (x)

+ a()r 2 (rdiv(AR) — (AR, X)) + 2C31rP 72 AR, % Ya(r)}|v)?
>(271C3r* 26(r) — Cyyr* H|v)?

>0.

By integration by parts we have for any t, > s; > Ry

|x|=t2 |x]=s1

= f rv2/2+8=2¢(r)g(r)[2Re[{4Dv, X ) 7]
s1<|x| <tz
+ r Hrdiv(AR) + Q7)) + o(r) + 72)
+ B —2+ra(r) 1 (r) { A%, % ) }|v[*]dx.
Using Lemma 2.5 and the above relation we have for any t, > s, > Ry

F(ty; a(r)logr, f5, g;) — F(sy; a(v)logr, f3, 95)
+ 203“ —J >r(”/2’+”'2¢(r)a(r)<AJ€, £ |v|*dS
|x] =tz |x] =51

- f 521 D) Gy x; 8) + da(D)C AR, £ [C Ao, %)
s1<|x|<t2

+ 2a(0)r " {h, + r{ A%, >~ 'div(AX)— 1}Re[{ ADv, X > 7]

+ (A%, 2 a@r 2 [{y, +1() — 2 — r{AV (AR, 2)71), X }a(r)
+ hy{r{ A%, £ )~ 1div(4%) — 1} ]Iv]?

+ 4C5r* " 1a(r)Re[{ ADv, X 7]

+2C3rP 2 AR, £ Y0 {r{ A%, %>~ 1div(4%)
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+ 27 ) + a(r) + y2) + B— 2+ ra(r) " o' (1)} v|*]dx.

By a > 0, Lemmas 2.6 and 2.8 there exist some constants R;, > Ro(= Rg = R),)
and C,; > 0 such that for any r > 7 > R,, we have

G,(x; v) = Csr*#726(r)|v|? — C4|{ ADv, X H|?,
[a(@)r= ' {hy + r{ A%, %>~ 'div(4%) — 1} + 4C5*~La()]Re[ { ADv, £ 7]
> —a(t){ A%, XD Y ADv, £)|> — C13(r* 2 + r** " 2g(r)2 17 9|v|?,
a(@)r 2 A%, X [{y, + () — 2 — r{AV(CAX, £ )71, %) }a(n)
+ hy{r A%, %) 1div(4%) — 1}]
> — C 31372,
2C, P72 AR, 20 (r){r{ A%, £)~1div(4X)
+27 ) + o)+ )+ B—2+ra(r) o' (r)}
= — Ci (P2 + 7 e (1))

By (F1) ~ (F4) there exists some constant R, > R, such that for any r > 7 > R,
we have

3a(t){ A%, x> — Ce =0,
Csr726(r) — Ci5(r* 2+ r¥# 20()*t " +r* 2 4 "2 + #7115’ (r)|) > O.
Therefore we have for any t, >s;, >t >R,

F(sy; a(r)logr, f5, g5) + 2C35(1“/2)+ﬂ_2¢(s1)0'(51)J (A%, £ |v*dS

|x|=51
< F(ty; a(v)logr, f5, ga) + 2C313P P2 b(t,)a(t,) (A%, % y|v|?dSs.
|x|=t2

By (F2), Lemmas 2.2, 2.6, 2.13 and Definition 2.4, for any 7 > R, there exist
some constants R,; > 7> R, and C,, > 0 such that for any t, > R,;

F(t;; a(r)logr, f3, g;) + 2C3t(2“/2)+ﬂ_2¢(t2)0(t2)f (AX, 3E>|U|2ds

|x|=t2

< C14t%““’+‘“’2’+"’f [I<ADu, 31> + {72 + (q:)-}|u|*1dS.

|x| =t2
Therefore by Lemma 2.14 we have

lltl'lllclt;lf[F(tz > a(T)log r, f2: 92)

+ 2C3t92/2’+ﬂ‘2¢(t2)6(t2)j (A%, %>|v|2dS] <0,

Ix| =12
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and then we have for any s; > 17> R,

F(sy; a(t)logr, f3, g2) + 2C3J ro¥ 20729 (r)o (r) A%, £ )|v]?dS < 0.

x| =51

So at last we have for any t; > 7> R,

f [Re[{ ADu, X >i] + a(t)r 1 A%, X Y|u|*]dS
|x|=1

< j [Re[ ADu, X Y] + a(r)r "1 A%, X >|u|*]1dS.
|x|=t1

Letting t; — oo along a suitable subsequence, we have, by Lemma 2.14, for any

T>R,
.[ [Re[{ ADu, X Yu] + a(r)r 1{ A%, X >|ul?]dS <0,
|x|=1

which is the desired result.

Lemma 2.16. If

lim inf R"/2&(R) [I<ADu, £31* + {r* + (q:)-}u|*1dS = 0,

Ix|=R

then for any constant m >0 we have

f e [1Dul? + {1 + (a,)-}|ul*ldx < oo,
|x]>Ro

Proof. Replacing m with m + 2 in Lemma 2.15 we have for any r > Ry,

f |ul?dS < Cyse” ™+,
Ixl=r

where

Rlz = max{Rs, R7},

C15 = Cle(m-"z)R%‘J' <A.£, xA>lul2dS,

|x|=Rs
R, is the one given in Lemma 2.12 and C, is the one given in (A3).

[« 9]

j ™ty 2dx < Clsf e "dr < 0.
|x|>Ri12

Ri2
Let

£(r) = e,

So we have
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Then there exists some constant C,4 > 0 such that we have

J‘ {rmax(al,éz)C(r)Z + C’(r)z}lulzdx < Cle e(m+1)r°=|u|2dx < 00,
|x]>R12

|x]>Ri12

0< litrp,gonfj‘

C(r)2|u|2dxslitr{1’infe"’“J‘ ™y 2dx = 0.
t<|x|<t+1 © t<|x|<t+1

Applying Lemma 2.12 we have the assertion. d
Now we can prove Theorem 1.1(1).

Proof of Theorem 1.1(1). By Lemma 2.9 we have for any m > 1 and any
t>s>R,

F(s; mr*, f5, g5) < F(t; mr*, 5, g5).

By Lemma 2.2 and Lemma 2.13 for any m > 1 there exists some constant C,,
> 0 such that for any ¢t > R; we have

F(t; mr*, f5, g)) < C17e(2m+1)r¢j [|D“|2 + {1 + (‘11)—}|“12]ds'

[x|=t

Now we assume that Theorem 1.1(1) is not true. By Lemma 2.16 we have
h{ggoan(ta mraafZa gZ) < 05

and then for any m > 1 and any s > R; we have
F(s; mr, f2, g2) < 0.
On the other hand for a fixed s > R; we have the followings:
e 2™"F(s; mr®, f5, g,) is a quadratic in m,

the coefficient of m? in e”2™"F(s; mr®, f,, g,) is

2oc2s2°‘”2+‘”/2)d5(s)f (A%, X )|ul?ds.

|x|=s

Since supp[u] is not a compact set in Q, there exist some constant R, > R,
such that we have

f (AR, %>|ul?dS > 0.
|x]=R13

Then there exists some constant m, > 1 such that we have

F(Ry3; mor*, f3, g5) > 0,



446 JuN UcHiYAMA AND OSANOBU YAMADA

which is a contradiction. O
In order to prove Theorem 1.1(2) we prepare the following.

Lemma 2.17. Let 0 < a < b be constants and v(r) be a real-valued function
satisfying

I;i_r}}osup{lv(r) —VR)| |IR+a<r<R+b}=0.

Then for any ¢ >0 there exists some constant R,, > R, such that for any
R > R,, we have

(b—a—¢)exp{v(R)} < JR”exp{v(r)}dr <(b—a+¢&)exp{v(R)}.

R+a

Proof. For any & > 0 there exists some constant R,, > R, such that for
any R > R,, and any r satisfying R+ a<r <R + b we have

lexp{v(r) —v(R)} — 1| <& —a) .

Then we have for any R > R,

R+b
J [exp{v(r) — v(R)} — 1]dr| < ¢,

R+a
which shows for any R > Ry,
R+b
—¢ SJ exp{v(r) —v(R)}dr—(b—a)<¢.
R+a D
Now we give the proof of Theorem 1.1(2).
Proof of Theorem 1.1(2). Let ¢ >0 and let for r > R,
1 r
v(r) = — {27 'y, + max{0, é,, J,} }logr — EJ Mdr.

Ro
Since for any R > R, we have
sup{|v(r) — v(R)| IR + (¢/3) <r < R+ (2¢/3)}

< {101/2) + max{0, &, 3,}| + 27" sup [n(r) + muw%,
lim sup{|v(r) — v(R)| IR + (¢/3) <7 <R +(2¢/3)} = 0

holds. By Lemma 2.17 with a =¢/3, b =2¢/3 and ¢ = ¢/6, we have for any
R>Ry,
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6— 1 SR —(y1/2) —max{0,61,02} ¢(R)_ 1

R +(2¢/3)
< J‘ r_(?l/z)_max{o,ﬁl,62}¢(r)—1dr
R+(¢/3)

< 2—18R—(V1/2)-maX(0,61,dz)Q(R)—1_

By Theorem 1.1(1) there exist some constants R;5 > R, and C;g > 0 such that
for any R > R,;

CigR™2OR)™! < J [I<ADu, £31* + {r™? + (q1)-}|u|*]dS

|x|=R

SJ [ A%, £ ADu, Duy + {r"2 + (q,)-}|u|*1dS
|x|=R

< ij [1Dul® + {r™2 + (a1)-}|ul*1dS,
|x|=R
where C; > 1 is the one given in (A3). Let £x(r)eC3(R, R + ¢) satisfy the
following: éx(r) =1 for R+ (¢/3)<r <R+ (2¢/3),0<ég(ry<lfor R<r<R
+ ¢ and there exists some constant C;4 > 0 such that for any R > R, and any

r>R we have |[&r(r)]<C,y. Applying Lemma 2.11 with y(r)
= Egp(r)r~3max(0:91.92 " we have for any R > max{Rs, Ry4, R;s}

61 BCISR—(vx/2)—max{0.61,6z}¢(R)— 1

R+(2¢/3)
< f Clsr—(w/Z)—max{0,61,62}¢(r)—1dr
R+(¢/3)

< Cff (Er()r™Em=xi00002 {1 Dy|? + (q,) } u|*dx
R<|x|<R+e
+ CIZJ r—max{o,a,,az)—zlulzdx
R<|x|<R+e

< Cfcsj [1 + 2{&r()* + 4~ ' (max {0, 6, 8,1)*}]ul?dx
R<|x|<R+e

+ Cff |u|?dx
R<|x|<R+eg

2
< Czof lul*dx,
R<|x|<R+e¢

where
Cyo = C#[Cg{l +2C% + 27 Y(max {0, §,, 5,1+ 1]1>0.

This shows the assertion. O
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Lastly we give the proof of Theorem 1.1(3).

Proof of Theorem 1.1(3). By Theorem 1.1(2) with ¢ =1 there exist some
integer N, > R, and some constant C,, > 0 such that for any integer N > N,
we have

f Iu‘2dx > C21N_("‘/z)_m“‘o"""mdi(N)_1,
N<|x|<N+1

Applying Lemma 2.17 with a =0, b =1 and ¢ = 1, there exists some integer
N, > R, such that for any integer N > N, we have

N+1
—(71/2)—max{0,41,d2} -1 —(y1/2)—max{0,d1,62} -1
2N S(N)™ ' > r @D(r)” dr.

N

Let N, =max{N,, N,}. Then for any integer M >0 we have

N2+ M N2+M-1
j |u|2dx > C21 Z n-(w/z)—max(O,&l,az}@(n)—1
N> n=N>

N2+M
> 2—1C21 J r—(y1/2)—max{0,51,62}¢(r)—ldr’
N>

which shows the assertion. O

§3. Proof of Theorems 1.2 and 1.3

Proof of Theorem 1.2. By Lemma 4.1 of Uchiyama [3], Lemma 2.3 is also
true under our weak condition (C3). So we can follow the proof of Theorem
1.1. O

Proof of Theorem 1.3. Lemma 2.3 also holds under our weak condition
(C3). By Definition 2.4 we have

Gilx; W) = o (oWl + (2 — 9 — n){IVw]* — 16,w]2} + 2rRe[g,wd,w]
+ Re[{FPw, Vh )w] + 2r)"*h{n(r) + a(r) — y; — 2} Re[wd,w]
— {rd.q:() + (: + n(r))g1 (x) — h;Re[q,1}|wI?,
where
h(x)=n—1+42"Ya() —nr) — v}
Since h; is a function depending only on r, we have
Re[{Vw, Vh;>W] = h{(r)Re[wd,w].

So in the estimination of G;(x; w) given in Lemma 2.7 and Lemma 2.8, we need
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not use the term (2 — y; — n(r)){|FVw|* — |6,w|?}, which is non-negative by our
weak condition (F2). Therefore Lemmas 2.7 and 2.8 are also true and we can

follow the proof of Theorem 1.1. O
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