Sharp Estimates of Lower Bounds of Polynomial Decay Order of Eigenfunctions

Dedicated to Professor Teruo Ikebe on his sixtieth birthday

By

JUN UCHIYAMA* and OSANOBU YAMADA**

§0. Introduction

In this paper we shall study the lower bounds of polynomial decay order as $|x| \to \infty$ of the not identically vanishing solution $u(x) \in H^2_{loc}(\Omega)$ of the second order elliptic equation in $\Omega = \{x \in \mathbb{R}^n | |x| > R_0\}$

$$-\sum_{i,j=1}^{n} \left(\frac{\partial}{\partial x_{i}} + \sqrt{-1} b_{i}(x)\right) a_{ij}(x) \left(\frac{\partial}{\partial x_{j}} + \sqrt{-1} b_{j}(x)\right) u(x) + (q_{1}(x) + q_{2}(x))u(x) = 0,$$

where the matrix $(a_{ij}(x))$ is uniformly positive definite, $b_i(x)$ $(1 \le i \le n)$ and $q_1(x)$ are real-valued functions, and $q_2(x)$ is a complex-valued function. Our aim is to combine the results given in Uchiyama [3], Yamada [4] and Agmon [1] in one theorem. We shall state the main parts of the assumptions for the case $a_{ij}(x) = \delta_{ij}$ (Kronecker's delta) as follows: there exist some constants β , γ_1 , γ_2 and real-valued bounded functions $\sigma(r)$, $\eta(r)$ such that

$$\begin{split} \beta > 0, \quad \gamma_1 < 2, \quad 2 - 2\beta < \gamma_2 < 2, \\ \sigma(r) > 0, \quad \lim_{r \to \infty} \eta(r) = 0, \\ \limsup_{r \to \infty} r^{2 - 2\beta} \sigma(r)^{-1} [r \partial_r q_1(x) + (\gamma_1 + \eta(r)) q_1(x) + \sigma(r)^{-1} |r q_2(x)|^2 \\ &+ (2 - \gamma_1)^{-1} |B(x)x|^2] < 0, \\ \limsup_{r \to \infty} r^{2 - 2\beta} \sigma(r)^{-1} [r \partial_r q_1(x) + (\gamma_2 + \eta(r)) q_1(x) + (2 - \gamma_2)^{-1} |B(x)x|^2] < 0, \end{split}$$

Communicated by S. Matsuura, October 22, 1987.

^{*} Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606, Japan.

^{**} Department of Mathematics and physics, Faculty of Science and Engineering, Ritsumeikan University, Kyoto 603, Japan.

JUN UCHIYAMA AND OSANOBU YAMADA

$$q_2(x) = O(r^{\beta-2}\sigma(r)), |B(x)x| = O(r^{\beta-1}\sqrt{\sigma(r)}) \quad \text{as } r \to \infty,$$

where $B(x) = (\partial_i b_j(x) - \partial_j b_i(x))$ is an $n \times n$ matrix. Moreover we assume that there exist some constants 0 < a < 1, C > 0, $-\infty < \delta_1 < \infty$ and $\delta_2 \le \beta - 2$ such that

$$\begin{split} \int_{\Omega} (q_1)_{-}(x) |w(x)|^2 dx &\leq a \int_{\Omega} |\nabla w(x)|^2 dx + C \int_{\Omega} r^{\delta_1} |w(x)|^2 dx \\ & \text{for any } w(x) \in C_0^{\infty}(\Omega), \\ (\operatorname{Re}[q_2])_{-}(x) &\leq Cr^{\delta_2} \quad \text{for } |x| > R_0, \end{split}$$

where $(f)_{-}(x) = \max\{0, -f(x)\}\$ for a real-valued function f(x). More detailed conditions are stated in §1. Then by Theorem 1.2 given in §1 we have

$$\liminf_{R \to \infty} R^{(\gamma_1/2) + \max\{0, \delta_1, \delta_2\}} \exp\left\{\frac{1}{2} \int_{R_0}^R \frac{\eta(r) + \sigma(r)}{r} dr\right\} \int_{R < |x| < R+1} |u(x)|^2 dx > 0.$$

Moreover if

$$\int_{R_0}^{\infty} R^{-(\gamma_1/2)-\max\{0,\delta_1,\delta_2\}} \exp\left\{-\frac{1}{2}\int_{R_0}^{R}\frac{\eta(r)+\sigma(r)}{r}dr\right\}dR = +\infty,$$

then we have $u(x) \in L^2(\Omega)$.

Roughly speaking the case $\sigma(r) \equiv \varepsilon_0 > 0$ (sufficiently small), $\eta(r) \equiv 0$ and $\gamma_1 = \gamma_2$ corresponds to the result in Uchiyama [3], the case $\sigma(r) = \eta(r) = (\log r)^{-1}$ corresponds to Yamada [4] (but no detailed treatment was given), the case $\sigma(r) = \eta(r) = r^{-\varepsilon_0}$ ($\varepsilon_0 > 0$ sufficiently small) corresponds to Agmon [1]. Yamada [4] and Agmon [1] assumed $q_1(x) < 0$ for $r > R_0$, but we do not assume this condition in this paper. So our results also can be applied to the atomic-type many body potential (e.g. see Remark 1.4).

We note that the smaller $\gamma_1 < 2$ we choose, the better estimate as lower bound we have. In Example 1.7 we choose $\gamma_1 = 2 - 2\beta$ and so we cannot, in general, let $\gamma_2 = \gamma_1$. But in case $q_1(x) < 0$ for $r > R_0$ and $|B(x)x| = o(r^{\beta-1}\sqrt{\sigma(r)})$ as $r \to \infty$ we have only to choose γ_2 to satisfy $2 - 2\beta < \gamma_2 < 2$ and $\gamma_1 \leq \gamma_2$, which is the reason that Yamada [4] and Agmon [1] did not assume the condition depending on γ_2 .

Example 1.7 and Remark 1.8 show the following: let

$$\begin{array}{l} -\Delta u(x) - (r^{\theta} + \lambda)u(x) + q_{2}(x)u(x) = 0 \quad \text{in } \Omega \ (\theta > 0, -\infty < \lambda < \infty), \\ u(x) \in H^{2}_{loc}(\Omega), \\ \text{supp}[u] \text{ is not a compact set in } \overline{\Omega}. \end{array}$$

LOWER BOUNDS OF EIGENFUNCTIONS

$$q_2(x) = o(r^{(\theta/2)-1})$$
 as $r \to \infty$,

then we have

$$\lim_{R \to \infty} R^{(\theta/2) + \varepsilon} \int_{R < |x| < R+1} |u(x)|^2 dx = \infty \quad \text{for any } \varepsilon > 0,$$
$$u(x) \in L^2(\Omega) \quad \text{for } 0 < \theta < 2.$$

If

$$q_2(x) = o(r^{(\theta/2)-1}(\log r)^{-1})$$
 as $r \to \infty$.

then we have

$$\lim_{R \to \infty} R^{(\theta/2)} (\log R)^{\varepsilon} \int_{R < |x| < R+1} |u(x)|^2 dx = +\infty \quad \text{for any } \varepsilon > 0,$$
$$u(x) \in L^2(\Omega) \quad \text{for } 0 < \theta \le 2.$$

If

$$q_2(x) = O(r^{(\theta/2)-1-\varepsilon})$$
 as $r \to \infty$ for some $\varepsilon > 0$,

then we have

$$\liminf_{R \to \infty} R^{(\theta/2)} \int_{R < |x| < R+1} |u(x)|^2 dx > 0,$$
$$u(x) \notin L^2(\Omega) \quad \text{for } 0 < \theta \le 2,$$

which is the best possible result. These results show that the more gently $q_2(x)$ behaves at infinity, the better estimates as lower bounds we have.

Eastham-Kalf [2] has given fruitful informations and rich references on the problem treated in this paper.

In §1, the assumptions and main results are explained. We give the proof of Theorem 1 in §2 and the proof of Theorems 2 and 3 in §3. The method of proof is similar to the one used in Uchiyama [3] and Eastham-Kalf [2, Theorem 6.3.3].

§1. Assumptions and Main Results

We list up the notations used here, which are the same as given in Uchiyama [3].

Notations:

 $\langle \xi, \eta \rangle = \xi_1 \eta_1 + \dots + \xi_n \eta_n$ for $\xi = (\xi_1, \dots, \xi_n), \eta = (\eta_1, \dots, \eta_n) \in \mathbb{C}^n$;

$$\begin{split} |\xi| &= (\langle \xi, \bar{\xi} \rangle)^{1/2} \text{ for } \xi \in \mathbb{C}^n; \\ \hat{x} &= x/|x| \text{ and } r = |x| \text{ for } x = (x_1, \dots, x_n) \in \mathbb{R}^n; \\ \partial_j &= \partial/\partial x_j \text{ and } \partial_r = \partial/\partial r; \\ D_j &= \partial_j + \sqrt{-1} b_j(x) \text{ and } D = (D_1, \dots, D_n); \\ f'(r) &= (d/dr)f(r) \text{ and } f''(r) &= (d^2/dr^2)f(r); \\ \overline{Vf} &= (\partial_1 f, \dots, \partial_n f) \text{ for a scalar-valued function } f(x); \\ \operatorname{div} g &= \partial_1 g_1 + \dots + \partial_n g_n \text{ for a vector-valued function } g(x) = (g_1(x), \dots, g_n(x)); \\ A &= A(x) &= (a_{ij}(x)) \text{ is an } n \times n \text{ matrix}; \\ B &= B(x) &= \operatorname{curl} b(x) &= (\partial_i b_j(x) - \partial_j b_i(x)) \text{ is an } n \times n \text{ matrix}; \\ (f)_{-}(x) &= \max\{0, -f(x)\} \geq 0 \text{ for a real-valued function } f(x); \\ \operatorname{supp}[f] \text{ denotes the closure of } \{x|f(x) \neq 0\}; \\ C_j^j(\Omega) \text{ denotes the class of } j\text{-times continuously differentiable functions}; \\ C_0^{-}(\Omega) &= \int_{j=1}^{\infty} C_j^j(\Omega); \\ L^2(\Omega) &= \left\{f(x)|\int_{\Omega} |f(x)|^2 dx < \infty\right\}; \\ L_{loc}^2(\Omega) &= \left\{f(x)|\int_{\Omega} |f(x)|^2 dx < \infty\right\}; \\ L_{loc}^2(\Omega) &= \left\{f(x)|\int_{\Omega} |f(x)|^2 dx < \infty\right\}; \\ H^m(\Omega) \text{ denotes the class of } L^2\text{-functions in } \Omega \text{ such that all distribution derivatives up to } m \text{ belong to } L^2(\Omega); \\ \left(\int_{|x|=t} - \int_{|x|=s}\right) f(x) dS = \int_{|x|=t} f(x) dS - \int_{|x|=s} f(x) dS. \end{split}$$

Next we shall state the conditions required in the theorems.

Assumptions:

- (A1) each $a_{ij}(x) \in \mathbb{C}^2(\Omega)$ is a real-valued function;
- (A2) $a_{ij}(x) = a_{ji}(x);$
- (A3) there exists some constant $C_1 \ge 1$ such that for any $x \in \Omega$ and any $\xi \in \mathbb{C}^n$ we have

$$C_1^{-1}|\xi|^2 \le \langle A(x)\xi, \,\overline{\xi} \,\rangle \le C_1|\xi|^2;$$

- (B1) each $b_i(x)$ is a real-valued function;
- (B2) for any $w(x) \in H^1_{loc}(\Omega)$ we have $b_i(x)w(x)$, $(\partial_i b_i(x))w(x) \in L^2_{loc}(\Omega)$;
- (C1) $q_1(x)$ is a real-valued function;
- (C2) for any $w(x) \in H^1_{loc}(\Omega)$ we have $\sqrt{|q_1(x)|} w(x) \in L^2_{loc}(\Omega)$;
- (C3) for any $w(x) \in H^1_{loc}(\Omega)$ we have $\sqrt{|\nabla q_1(x)|} w(x) \in L^2_{loc}(\Omega)$;
- (D1) $q_2(x)$ is a complex-valued function;

- (D2) for any $w(x) \in H^1_{loc}(\Omega)$ we have $\sqrt{|q_2(x)|} w(x) \in L^2_{loc}(\Omega)$;
- there exists some constant $R_0 > 1$ such that $\Omega \supset \{x \in \mathbb{R}^n | |x| > R_0\}$ (E)
- there exist some constants α , β , γ_1 , γ_2 , a_1 , a_2 , a_3 , a_4 and some real-(F) valued functions $\eta(r), \sigma(r) \in C^1(R_0, \infty)$ such that the following (F1) ~ (F9) hold.
- (F1) $0 < \alpha < \beta$, $a_1 > 1$, $a_2 > 1$, $a_3 > 0$, $a_4 > 1$; (F2) $\sigma(r) = O(1)$ as $r \to \infty$ and $\sigma(r) > 0$ for $r > R_0$, $\eta(r) = O(1)$ as $r \to \infty$, $\gamma_1 + \limsup_{r \to \infty} \eta(r) < 2,$ $(2-2\beta <)2-2\alpha < \gamma_2 + \liminf_{r\to\infty} \eta(r) \le \gamma_2 + \limsup_{r\to\infty} \eta(r) < 2;$ (F3) $\lim_{n\to\infty} r^{\beta-\alpha}\sigma(r) = \infty$; (F4) $\lim_{r \to \infty} r^{1-\beta} \sigma(r)^{-1} \sigma'(r) = 0$ and $\lim_{r \to \infty} r^{1-\beta} \sigma(r)^{-1} \eta'(r) = 0$; (F5) $\limsup r^{2-2\beta} \sigma(r)^{-1} [r \langle A(x)\hat{x}, \hat{x} \rangle^{-1} \langle A(x)\nabla q_1(x), \hat{x} \rangle$ + $(\gamma_1 + \eta(r))q_1(x) + a_1\sigma(r)^{-1} \langle A(x)\hat{x}, \hat{x} \rangle^{-1} |rq_2(x)|^2$ $+ a_2(2 - \gamma_1 - \eta(r))^{-1} \langle A(x)\hat{x}, \hat{x} \rangle^{-2}$ $\cdot \langle A(x)B(x)A(x)x, B(x)A(x)x \rangle \rceil < 0;$ (F6) $\limsup r^{2-2\beta} \sigma(r)^{-1} [r \langle A(x)\hat{x}, \hat{x} \rangle^{-1} \langle A(x)\nabla q_1(x), \hat{x} \rangle$ $+ (\gamma_2 + \eta(r))q_1(x) + a_3\sigma(r)^{-1} \langle A(x)\hat{x}, \hat{x} \rangle^{-1} |rq_2(x)|^2$ $+ a_{4}(2 - \gamma_{2} - \eta(r))^{-1} \langle A(x)\hat{x}, \hat{x} \rangle^{-2}$ $\cdot \langle A(x)B(x)A(x)x, B(x)A(x)x \rangle] < 0;$ (F7) $\lim_{r\to\infty} \sigma(r)^{-1} (a_{ij}(x) - \delta_{ij}) = 0$, where δ_{ij} is the kronecker's delta;
- (F8) $\lim r\sigma(r)^{-1}\partial_k a_{ij}(x) = 0;$
- (F9) $\lim r^{2-\beta}\sigma(r)^{-1}\partial_k\partial_l a_{ii}(x) = 0;$
- (G1) there exist some constants $0 < a_5 < 1$, $-\infty < \delta_1 < \infty$ and $C_2 > 0$ such that for any $w(x) \in C_0^{\infty}(\Omega)$ we have

$$\int_{\Omega} (q_1)_{-}(x) |w(x)|^2 dx \le a_5 \int_{\Omega} |\nabla w(x)|^2 dx + C_2 \int_{\Omega} r^{\delta_1} |w(x)|^2 dx;$$

- (G2) there exist some constants $\delta_2 \leq \beta 2$ and $C_3 > 0$ such that for any $r > R_0$ we have $(\operatorname{Re}[q_2])_{-}(x) \le C_3 \min\{r^{\delta_2}, r^{\beta-2}\sigma(r)\},\$
 - where $\operatorname{Re}[z]$ means the real part of $z \in \mathbb{C}$.

Now we have the

Theorem 1.1. Let u(x) satisfy

$$(*): \begin{cases} -\langle D, AD \rangle u(x) + \{q_1(x) + q_2(x)\}u(x) = 0 \text{ in } \Omega, \\ u(x) \in H^2_{loc}(\Omega), \\ \text{supp}[u] \text{ is not a compact set in } \overline{\Omega} \text{ (closure of } \Omega). \end{cases}$$

Let $(A) \sim (G)$ hold. Then we have the following:

(1)
$$\liminf_{R\to\infty} R^{(\gamma_1/2)} \Phi(R) \int_{|x|=R} [|\langle ADu, \hat{x} \rangle|^2 + \{r^{-2} + (q_1)_-\} |u|^2] dS > 0,$$

where

$$\Phi(R) = \exp\left\{\frac{1}{2}\int_{R_0}^R \frac{\eta(r) + \sigma(r)}{r} dr\right\};$$

(2) for any $\varepsilon > 0$

$$\liminf_{R\to\infty} R^{(\gamma_1/2)+\max\{0,\delta_1,\delta_2\}} \Phi(R) \int_{R<|x|< R+\varepsilon} |u|^2 dx > 0;$$

(3) moreover if

$$\int_{R_0}^{\infty} R^{-(\gamma_1/2)-\max\{0,\delta_1,\delta_2\}} \Phi(R)^{-1} dR = +\infty,$$

then $u(x) \in L^2(\Omega)$.

Now we shall consider the more special case $a_{ij}(x) = \delta_{ij}$ under the weaker conditions.

Theorem 1.2. Let u(x) satisfy

$$(**): \begin{cases} -\langle D, D \rangle u(x) + \{q_1(x) + q_2(x)\}u(x) = 0 \text{ in } \Omega, \\ u(x) \in H^2_{loc}(\Omega), \\ \text{supp}[u] \text{ is not a compact set in } \overline{\Omega}. \end{cases}$$

We assume (B) ~ (G) with $a_{ij}(x) = \delta_{ij}$ except for (C3). Instead of (C3) we assume (C3)' for any $w(x) \in H^1_{loc}(\Omega)$ we have $|\partial_r q_1(x)|^{1/2} w(x) \in L^2_{loc}(\Omega)$.

Then we have the same results as given in Theorem 1(1) ~ (3), where we replace $a_{ij}(x)$ with δ_{ij} .

Lastly we shall consider the most special case $a_{ij}(x) = \delta_{ij}$ and $b_i(x) = 0$ under the weakest conditions.

Theorem 1.3. Let u(x) satisfy

$$(***): \begin{cases} -\Delta u(x) + \{q_1(x) + q_2(x)\}u(x) = 0 \text{ in } \Omega, \\ u(x) \in H^2_{loc}(\Omega), \\ \text{supp}[u] \text{ is not a compact set in } \overline{\Omega}, \end{cases}$$

where Δ is a Laplacian in \mathbb{R}^n . We assume (C) ~ (G) with $a_{ij}(x) = \delta_{ij}$ and $b_i(x) = 0$ except for (C3) and (F2). Instead of (C3) and (F2) we assume (C3)' and

(F2)'
$$\sigma(r) = O(1)$$
 as $r \to \infty$ and $\sigma(r) > 0$ for $r > R_0$,
 $\eta(r) = O(1)$ as $r \to \infty$,
 $\gamma_i + \eta(r) \le 2$ for $i = 1, 2$ and $r > R_0$,
 $(2 - 2\beta <) 2 - 2\alpha < \gamma_2 + \liminf_{r \to \infty} \eta(r)$.

Then we have the same results as given in Theorem 1(1) ~ (3), where we replace $a_{ij}(x)$ with δ_{ij} and $b_i(x)$ with 0.

Remark 1.4. We have the following:

- (1) If $\eta(r) = 0$ and $\sigma(r) = \nu > 0$ where ν is a constant, then $\lim_{R \to \infty} R^{-\nu/2} \Phi(R) < \infty$. This case is the one considered in Uchiyama [3].
- (2) If $\eta(r) = \sigma(r) = (\log r)^{-1}$, then $\lim_{R \to \infty} (\log R)^{-1} \Phi(R) < \infty$. This case almost meets with Yamada [4]. However [4] did not give its complete proof and assumed more strict conditions such as $q_1(x) < 0$ for $r > R_0$.
- (3) If there exists lim_{R→∞} Φ(R), the results given in Agmon [1] are almost reproduced. However [1] assumed more strict conditions such as q₁(x) < 0 for r > R₀.
- (4) In our assumptions that $q_1(x) < 0$ for $r > R_0$ is not assumed. Then we can apply our theorem to the atomic type many body potential

$$q_1(x) = -\sum_{i=1}^{N} \frac{z_i}{|x^{(i)}|} + \sum_{1 \le i < j \le N} \frac{z_{ij}}{|x^{(i)} - x^{(j)}|} - \lambda,$$

where $x = (x^{(1)}, \dots, x^{(N)}) \in \mathbb{R}^{3N}$, $x^{(i)} = (x_{3i-2}, x_{3i-1}, x_{3i}) \in \mathbb{R}^3$, $\lambda > 0$, z_i and z_{ij} are real constants. In this case we choose $\gamma_1 = \gamma_2 = 1$ and $\eta(r) = 0$.

Remark 1.5. If we add the following conditions

$$\begin{aligned} q_2(x) &= O(r^{\beta - 2} \sigma(r)) & \text{as } r \longrightarrow \infty, \\ |BAx| &= O(r^{\beta - 1} \sqrt{\sigma(r)}) & \text{as } r \longrightarrow \infty \end{aligned}$$

in (F), then (F5) and (F6) can be replaced with weaker conditions

(F5)'
$$\limsup_{r \to \infty} r^{2-2\beta} \sigma(r)^{-1} [r \langle A\hat{x}, \hat{x} \rangle^{-1} \langle A\nabla q_1, \hat{x} \rangle + (\gamma_1 + \eta(r))q_1(x) + \sigma(r)^{-1} \langle A\hat{x}, \hat{x} \rangle^{-1} |rq_2(x)|^2 + (2 - \gamma_1 - \eta(r))^{-1} \langle A\hat{x}, \hat{x} \rangle^{-2} \langle ABAx, BAx \rangle] < 0;$$

(F6)'
$$\limsup_{r \to \infty} r^{2-2\beta} \sigma(r)^{-1} [r \langle A\hat{x}, \hat{x} \rangle^{-1} \langle A\nabla q_1, \hat{x} \rangle + (\gamma_2 + \eta(r))q_1(x) + (2 - \gamma_2 - \eta(r))^{-1} \langle A\hat{x}, \hat{x} \rangle^{-2} \langle ABAx, BAx \rangle] < 0.$$

In fact the quantity given in (F5) depends continuously on a_1 and a_2 under our additional conditions. So (F5)' leads to (F5). The same happens in (F6).

Remark 1.6. If in (F5)

$$2 - 2\alpha < \gamma_1 + \liminf_{r \to \infty} \eta(r) \le \gamma_1 + \limsup_{r \to \infty} \eta(r) < 2$$

holds, then (F6) is automatically satisfied. In fact we have only to choose $\gamma_2 = \gamma_1$, $a_3 = a_1$ and $a_4 = a_2$ in (F6).

Example 1.7. In (**) let n = 3 and

$$\begin{aligned} q_1(x) &= h(x) + V(x) - \lambda, \\ q_2(x) &= o(r^{(\theta/2)^{-1}}) \quad \text{as } r \longrightarrow \infty, \\ b_1(x) &= -2^{-1}b_0 x_2 f(r), \ b_2(x) &= 2^{-1}b_0 x_1 f(r), \ b_3(x) = 0, \end{aligned}$$

where

 $-\infty < \lambda$, $b_0 < \infty$ are constants,

- h(x) is a negative continuous homogeneous function of degree $\theta > 0$,
- V(x) is a real-valued function satisfying

$$V(x) = o(r^{\theta}), \ \partial_r V(x) = o(r^{\theta-1})$$
 as $r \to \infty$,

 $f(r) \in C^{1}(R_{0}, \infty)$ is a real-valued function satisfying

 $rf'(r) + 2f(r) = o(r^{(\theta/2)-1})$ as $r \to \infty$.

In this case (B) \sim (E) are satisfied, where we replace (C3) with (C3)'. We choose in (F) and (G)

$$\begin{split} \beta &= 1 + (\theta/2) > 0, \ \gamma_1 = -\theta(=2-2\beta), \ \eta(r) = \sigma(r), \\ \delta_1 &= \theta, \ \delta_2 = (\theta/2) - 1 = \beta - 2 < \theta = \delta_1, \end{split}$$

and let α , a_1 , a_2 , a_3 , a_4 be arbitrary constants satisfying

$$0 < \alpha < 1 + (\theta/2) = \beta, \ a_1 > 1, \ a_2 > 1, \ a_3 > 0, \ a_4 > 1.$$

Then we have

$$(\gamma_1/2) + \max\{0, \,\delta_1, \,\delta_2\} = \theta/2.$$

Noting

$$|Bx|^{2} = 4^{-1}b_{0}^{2}(x_{1}^{2} + x_{2}^{2})|rf'(r) + 2f(r)|^{2},$$

we have

$$r^{2-2\beta}\sigma(r)^{-1}[r\partial_r q_1(x) + (\gamma_1 + \eta(r))q_1(x) + a_1\sigma(r)^{-1}|rq_2(x)|^2 + a_2(2-\gamma_1 - \eta(r))^{-1}|Bx|^2]$$

LOWER BOUNDS OF EIGENFUNCTIONS

$$= r^{-\theta}h(x) + r^{-\theta}\sigma(r)^{-1}[r\partial_r V(x) + (\sigma(r) - \theta)V(x)] - \lambda r^{-\theta}\sigma(r)^{-1}(\sigma(r) - \theta) + a_1 r^{-\theta}\sigma(r)^{-2}|rq_2(x)|^2 + a_2(2 + \theta - \sigma(r))^{-1}4^{-1}b_0^2 \times r^{-\theta}(x_1^2 + x_2^2)\sigma(r)^{-1}|rf'(r) + 2f(r)|^2.$$

Now we shall consider the following three cases.

Case 1. Let

$$\begin{split} V(x) &= o(r^{\theta}), \ \partial_r V(x) = o(r^{\theta-1}) & \text{as } r \to \infty, \\ q_2(x) &= o(r^{(\theta/2)-1}) & \text{as } r \to \infty, \\ rf'(r) &+ 2f(r) = o(r^{(\theta/2)-1}) & \text{as } r \to \infty. \end{split}$$

In this case we choose

$$\sigma(r)\equiv\varepsilon,$$

where ε is a constant satisfying $0 < \varepsilon < 2 + \theta$. Noting

$$r^{-\theta}h(x) \le \max\{h(x)| |x| = 1\} < 0 \text{ for any } r > R_0$$

(F) and (G) are satisfied by any $\gamma_2 \in (\min\{2 - 2\alpha - \varepsilon, -\theta\}, 2 - \varepsilon)$. Then by Theorem 1.2 and $\lim_{r \to \infty} r^{-\varepsilon} \Phi(r) < \infty$, we have for u(x) satisfying (**)

$$\begin{cases} \lim_{R \to \infty} R^{(\theta/2) + \varepsilon} \int_{R < |x| < R+1} |u(x)|^2 dx = +\infty \quad \text{for any } \varepsilon > 0, \\ u(x) \notin L^2(\Omega) \quad \text{for } 0 < \theta < 2. \end{cases}$$

Case 2. Let

$$V(x) = o(r^{\theta}(\log r)^{-1}), \ \partial_r V(x) = o(r^{\theta-1}(\log r)^{-1}) \text{ as } r \longrightarrow \infty,$$

$$q_2(x) = o(r^{(\theta/2)-1}(\log r)^{-1}) \text{ as } r \longrightarrow \infty,$$

$$rf'(r) + 2f(r) = o(r^{(\theta/2)-1}(\log r)^{-1/2}) \text{ as } r \longrightarrow \infty.$$

In this case we choose for any $\varepsilon > 0$

$$\sigma(r) = \varepsilon (\log r)^{-1}.$$

and then (F) and (G) are satisfied by any $\gamma_2 \in (2 - 2\alpha, 2)$. So we have by Theorem 1.2 and $\lim_{r \to \infty} (\log r)^{-\epsilon} \Phi(r) < \infty$

$$\begin{cases} \lim_{R \to \infty} R^{(\theta/2)} (\log R)^{\varepsilon} \int_{R < |x| < R+1} |u(x)|^2 dx = +\infty, & \text{for any } \varepsilon > 0, \\ u(x) \in L^2(\Omega) & \text{for } 0 < \theta \le 2. \end{cases}$$

Case 3. Let for some $\varepsilon > 0$

$$\begin{split} V(x) &= O(r^{\theta-\varepsilon}), \ \partial_r V(x) = O(r^{\theta-1-\varepsilon}) & \text{as } r \to \infty, \\ q_2(x) &= O(r^{(\theta/2)-1-\varepsilon}) & \text{as } r \to \infty, \\ rf'(r) &+ 2f(r) = O(r^{(\theta/2)-1-\varepsilon}) & \text{as } r \to \infty. \end{split}$$

In this case we choose

$$\sigma(r)=r^{-\varepsilon'},$$

where ε' is a constant satisfying $0 < \varepsilon' < \min{\{\varepsilon, \beta - \alpha\}}$. Then (F) and (G) are satisfied by any $\gamma_2 \in (2 - 2\alpha, 2)$. So we have by Theorem 1.2 and $\lim_{r \to \infty} \Phi(r) < \infty$

$$\begin{cases} \liminf_{R \to \infty} R^{(\theta/2)} \int_{R < |x| < R+1} |u(x)|^2 dx > 0, \\ u(x) \in L^2(\Omega) \quad \text{for } 0 < \theta \le 2. \end{cases}$$

Remark 1.8. The result given in Example 1.7 Case 3 is best possible. In fact we shall consider the following case in (**):

$$q_1(x) = -r^{\theta} \qquad (\theta > 0),$$

$$q_2(x) = 0,$$

$$(b_1(x), \dots, b_n(x)) = (0, \dots, 0).$$

Then

$$u_0(x) = r^{(2-n)/2} J_{|n-2|/(2+\theta)}\left(\frac{2}{2+\theta}r^{1+(\theta/2)}\right)$$

satisfies (**) with $\Omega = \mathbb{R}^n$, where $J_v(r)$ denotes the Bessel function of the first kind of order v. This solution $u_0(x)$ satisfies

$$\begin{cases} \limsup_{R \to \infty} R^{(\theta/2)} \int_{R < |x| < R+1} |u_0(x)|^2 dx < +\infty, \\ u_0(x) \in L^2(\Omega) \quad \text{for } \theta > 2, \end{cases}$$

since $J_{\nu}(r) = O(r^{-1/2})$ as $r \to \infty$.

§2. Proof of Theorem 1

In this section all the conditions (A) \sim (G) are assumed. And let u(x) satisfy (*), which is given in Theorem 1.

Definition 2.1. For real-valued functions $\rho(r) \in C^2(R_0, \infty)$, $f(x) \in C^1(\Omega)$ and

$$v = v(x; \rho) = e^{\rho(r)}u(x),$$

$$k_{1} = k_{1}(x; \rho) = -\{\rho'(r)\}^{2} \langle A(x)\hat{x}, \hat{x} \rangle,$$

$$k_{2} = k_{2}(x; \rho) = \rho''(r) \langle A(x)\hat{x}, \hat{x} \rangle + \rho'(r) \operatorname{div} \{A(x)\hat{x}\},$$

$$F(t; \rho, f, g) = \int_{|x|=t} [f(x) \langle A\hat{x}, \hat{x} \rangle \{2 \langle A\hat{x}, \hat{x} \rangle^{-1} | \langle ADv, \hat{x} \rangle|^{2} - \langle ADv, \overline{Dv} \rangle - (q_{1} + k_{1})|v|^{2} \} + g(x) \operatorname{Re} [\langle ADv, \hat{x} \rangle \overline{v}]] dS.$$

Lemma 2.2. We have for $t > R_0$

$$F(t; \rho, f, g) = e^{2\rho(t)} \int_{|\mathbf{x}|=t} [f(\mathbf{x})\{2|\langle ADu, \hat{x} \rangle|^2 - \langle A\hat{x}, \hat{x} \rangle \langle ADu, \overline{Du} \rangle\}$$

+ $\{2\rho' f \langle A\hat{x}, \hat{x} \rangle + g\} \operatorname{Re}[\langle ADu, \hat{x} \rangle \overline{u}]$
+ $\{2f\rho'^2 \langle A\hat{x}, \hat{x} \rangle^2 + (g\rho' - fq_1) \langle A\hat{x}, \hat{x} \rangle\} |u|^2] dS.$

Proof. Noting Definition 2.1, we have the assertion by straight-forward calculation. \Box

Lemma 2.3. For any $t > s > R_0$ we have

$$\begin{split} F(t; \rho, f, g) &- F(s; \rho, f, g) \\ &= \int_{s < |x| < t} \left[\{2 \langle A\hat{x}, \hat{x} \rangle \partial_r f + g - \langle A\nabla f, \hat{x} \rangle - f \operatorname{div}(A\hat{x})\} \langle A\hat{x}, \hat{x} \rangle^{-1} \\ &\cdot |\langle ADv, \hat{x} \rangle|^2 \\ &+ \{2r^{-1}f \langle A\hat{x}, \hat{x} \rangle + g - \langle A\nabla f, \hat{x} \rangle - f \operatorname{div}(A\hat{x})\} \\ &\cdot \{\langle ADv, \overline{Dv} \rangle - \langle A\hat{x}, \hat{x} \rangle^{-1} |\langle ADv, \hat{x} \rangle|^2 \} \\ &+ 2\operatorname{Re}[\langle ADv, (\nabla - \hat{x}\partial_r)f \rangle \langle A\overline{Dv}, \hat{x} \rangle] \\ &+ 2r^{-1}f \{|ADv|^2 - \langle A\hat{x}, \hat{x} \rangle \langle ADv, \overline{Dv} \rangle \} \\ &+ 2f\operatorname{Re}[\langle (\langle ADv, \nabla \rangle A)\overline{Dv}, \hat{x} \rangle] - f\operatorname{Re}[\langle (\langle \hat{x}, A\nabla \rangle A)Dv, \overline{Dv} \rangle] \\ &- 2f\operatorname{Re}[\sqrt{-1} \langle ABA\hat{x}, (Dv - \hat{x} \langle A\hat{x}, \hat{x} \rangle^{-1} \langle ADv, \hat{x} \rangle) \rangle \overline{v}] \\ &+ \{(g - \langle A\nabla f, \hat{x} \rangle - f \operatorname{div}(A\hat{x}))q_1 - f \langle A\nabla q_1, \hat{x} \rangle + g\operatorname{Re}[q_2]\} |v|^2] dx \\ &+ \int_{s < |x| < t} [4\rho'f| \langle ADv, \hat{x} \rangle|^2 + 2(fk_2 + g\rho')\operatorname{Re}[\langle ADv, \hat{x} \rangle \overline{v}] \\ &+ \{(g - \langle A\nabla f, \hat{x} \rangle - f \operatorname{div}(A\hat{x}))k_1 - f \langle A\nabla k_1, \hat{x} \rangle + gk_2\} |v|^2] dx. \end{split}$$

Proof. See Lemmas 2.7 and 2.8 of Uchiyama [3]. In order to obtain the above relation, the conditions (A) \sim (E) are fully used.

The meaning of the following Definition 2.4 can be partly clarified by Lemma 2.5.

Definition 2.4. For
$$i = 1, 2$$
 and x satisfying $r = |x| > R_0$, let
 $f_i(x) = \langle A\hat{x}, \hat{x} \rangle^{-1} r^{(\gamma_i/2)} \Phi(r),$
 $g_i(x) = h_i(x) r^{(\gamma_i/2)-1} \Phi(r),$
 $h_i(x) = 2^{-1} \{ \sigma(r) - \eta(r) - \gamma_i \} + r \langle A\hat{x}, \hat{x} \rangle^{-1} \operatorname{div}(A\hat{x})$
 $+ r \langle A\overline{V}(\langle A\hat{x}, \hat{x} \rangle^{-1}), \hat{x} \rangle,$

where

$$\Phi(r) = \exp\left\{\frac{1}{2}\int_{R_0}^r \frac{\eta(r) + \sigma(r)}{r}\,dr\right\}.$$

And for $w \in H^2_{loc}(\Omega)$, i = 1, 2 and x satisfying $r = |x| > R_0$, let

$$\begin{split} G_{i}(x; w) &= \sigma(r) \langle A\hat{x}, \hat{x} \rangle^{-1} | \langle ADw, \hat{x} \rangle |^{2} \\ &+ (2 - \gamma_{i} - \eta(r)) \{ \langle ADw, \overline{Dw} \rangle - \langle A\hat{x}, \hat{x} \rangle^{-1} | \langle ADw, \hat{x} \rangle |^{2} \} \\ &+ 2r \operatorname{Re}[\langle ADw, \overline{V}(\langle A\hat{x}, \hat{x} \rangle^{-1}) \rangle \langle A\overline{Dw}, \hat{x} \rangle] \\ &+ 2\{ \langle A\hat{x}, \hat{x} \rangle^{-1} | ADw |^{2} - \langle ADw, \overline{Dw} \rangle \} \\ &+ 2r \langle A\hat{x}, \hat{x} \rangle^{-1} \operatorname{Re}[\langle (\langle ADw, \overline{V} \rangle A) \overline{Dw}, \hat{x} \rangle] \\ &- r \langle A\hat{x}, \hat{x} \rangle^{-1} \operatorname{Re}[\langle (\langle \hat{x}, A\overline{V} \rangle A) Dw, \overline{Dw} \rangle] \\ &- 2 \langle A\hat{x}, \hat{x} \rangle^{-1} \operatorname{Re}[\langle (\langle ADw, \hat{x} \rangle \overline{q_{2}w}] + \operatorname{Re}[\langle ADw, \overline{v}h_{i} \rangle \overline{w}] \\ &+ 2r \langle A\hat{x}, \hat{x} \rangle^{-1} \operatorname{Re}[\langle ADw, \hat{x} \rangle \overline{q_{2}w}] + \operatorname{Re}[\langle ADw, \overline{v}h_{i} \rangle \overline{w}] \\ &+ (2r)^{-1}h_{i}\{\eta(r) + \sigma(r) + \gamma_{i} - 2\} \operatorname{Re}[\langle ADw, \hat{x} \rangle \overline{w}] \\ &- \{r \langle A\hat{x}, \hat{x} \rangle^{-1} \langle A\overline{V}q_{1}, \hat{x} \rangle + (\gamma_{i} + \eta(r))q_{1} - h_{i}\operatorname{Re}[q_{2}]\} |w|^{2}. \end{split}$$

Lemma 2.5. We have the following relations for i = 1, 2:

(1) for
$$r > R_0$$

 $g_i - \langle A\nabla f_i, \hat{x} \rangle - f_i \operatorname{div}(A\hat{x}) = -(\gamma_i + \eta(r))r^{(\gamma_i/2) - 1} \Phi(r),$
 $2 \langle A\hat{x}, \hat{x} \rangle \partial_r f_i + g_i - \langle A\nabla f_i, \hat{x} \rangle - f_i \operatorname{div}(A\hat{x})$
 $= \{\sigma(r) + 2r \langle A\hat{x}, \hat{x} \rangle \partial_r (\langle A\hat{x}, \hat{x} \rangle^{-1})\}r^{(\gamma_i/2) - 1} \Phi(r),$

$$2r^{-1}f_{i}\langle A\hat{x}, \hat{x} \rangle + g_{i} - \langle A\nabla f_{i}, \hat{x} \rangle - f_{i}\operatorname{div}(A\hat{x}) = (2 - \gamma_{i} - \eta(r))r^{(\gamma_{i}/2) - 1} \Phi(r),$$
(2) $F(t; \rho, f_{i}, g_{i}) - F(s; \rho, f_{i}, g_{i})$

$$= \int_{s < |x| < t} r^{(\gamma_{i}/2) - 1} \Phi(r) [G_{i}(x; v) + 4r\rho' \langle A\hat{x}, \hat{x} \rangle^{-1} |\langle ADv, \hat{x} \rangle|^{2} + 2\{r\rho'' + r\rho' \langle A\hat{x}, \hat{x} \rangle^{-1} \operatorname{div}(A\hat{x}) + h_{i}\rho'\} \operatorname{Re}[\langle ADv, \hat{x} \rangle \bar{v}] + \langle A\hat{x}, \hat{x} \rangle \{(\gamma_{i} + \eta(r))\rho'^{2} + 2r\rho'\rho'' - r\rho'^{2} \langle A\nabla(\langle A\hat{x}, \hat{x} \rangle^{-1}), \hat{x} \rangle + h_{i}\rho'' + h_{i}\rho' \langle A\hat{x}, \hat{x} \rangle^{-1} \operatorname{div}(A\hat{x})\} |v|^{2}] dx$$

for $t > s > R_0$.

Proof. Noting Definition 2.4, Lemma 2.3 and $\Phi'(r) = (2r)^{-1} \{ \sigma(r) + \eta(r) \} \Phi(r)$, we have the assertions by direct calculation.

We prepare an auxiliary Lemma 2.6.

Lemma 2.6. We have the following:

(1)
$$\lim_{r \to \infty} \sigma(r)^{-1} (\langle A\hat{x}, \hat{x} \rangle - 1) = 0 \text{ and } \lim_{r \to \infty} \langle A\hat{x}, \hat{x} \rangle = 1,$$

(2)
$$\lim_{r \to \infty} r\sigma(r)^{-1} \nabla(\langle A\hat{x}, \hat{x} \rangle) = 0 \text{ and } \lim_{r \to \infty} r\sigma(r)^{-1} \nabla(\langle A\hat{x}, \hat{x} \rangle^{-1}) = 0,$$

(3)
$$\lim_{r \to \infty} r^{2-\beta} \sigma(r)^{-1} \partial_k \partial_l (\langle A\hat{x}, \hat{x} \rangle) = 0 \text{ and}$$
$$\lim_{r \to \infty} r^{2-\beta} \sigma(r)^{-1} \partial_k \partial_l (\langle A\hat{x}, \hat{x} \rangle^{-1}) = 0,$$

(4)
$$\lim_{r \to \infty} r\sigma(r)^{-1} \{ \operatorname{div}(A\hat{x}) - (n-1)r^{-1} \} = 0 \text{ and } \operatorname{div}(A\hat{x}) = O(r^{-1}) \text{ as } r \to \infty,$$

(5)
$$\lim_{r \to \infty} r^{2-\beta} \sigma(r)^{-1} \nabla \{ \operatorname{div}(A\hat{x}) \} = 0,$$

(6)
$$h_i(x) = O(1) \text{ as } r \longrightarrow \infty \text{ for } i = 1, 2,$$

(7)
$$\lim_{r \to \infty} r^{1-\beta} \sigma(r)^{-1} \nabla h_i(x) = 0 \text{ for } i = 1, 2.$$

Proof. We have by direct calculations

$$\begin{split} \nabla(\langle A\hat{x}, \hat{x} \rangle) &= \langle (\nabla A)\hat{x}, \hat{x} \rangle + 2r^{-1} \{ (A - E)\hat{x} - \hat{x} \langle (A - E)\hat{x}, \hat{x} \rangle \}, \\ \nabla(\langle A\hat{x}, \hat{x} \rangle^{-1}) &= -\langle A\hat{x}, \hat{x} \rangle^{-2} \nabla(\langle A\hat{x}, \hat{x} \rangle), \\ \partial_k \partial_l (\langle A\hat{x}, \hat{x} \rangle) &= \sum_{i,j=1}^n \{ (\partial_k \partial_l a_{ij}) \hat{x}_i \hat{x}_j + (\partial_k a_{ij}) \partial_l (\hat{x}_i \hat{x}_j) \\ &+ (\partial_l a_{ij}) \partial_k (\hat{x}_i \hat{x}_j) + a_{ij} \partial_k \partial_l (\hat{x}_i \hat{x}_j) \}, \\ \partial_k \partial_l (\langle A\hat{x}, \hat{x} \rangle^{-1}) &= 2 \langle A\hat{x}, \hat{x} \rangle^{-3} \{ \partial_k (\langle A\hat{x}, \hat{x} \rangle) \} \{ \partial_l (\langle A\hat{x}, \hat{x} \rangle) \} \\ &- \langle A\hat{x}, \hat{x} \rangle^{-2} \partial_k \partial_l (\langle A\hat{x}, \hat{x} \rangle), \\ \operatorname{div}(A\hat{x}) &= (n-1)r^{-1} + \operatorname{div}\{ (A - E)\hat{x} \}, \end{split}$$

$$\begin{split} \partial_{k} \{ \operatorname{div}(A\hat{x}) \} &= \sum_{i,j=1}^{n} \{ (\partial_{k}\partial_{i}a_{ij})\hat{x}_{j} + (\partial_{k}a_{ij})(\partial_{i}\hat{x}_{j}) + (\partial_{i}a_{ij})(\partial_{k}\hat{x}_{j}) \\ &+ a_{ij}(\partial_{k}\partial_{i}\hat{x}_{j}) \}, \\ h_{i}(x) &= n - 1 + 2^{-1} \{ \sigma(r) - \eta(r) - \gamma_{i} \} + r \langle A\hat{x}, \, \hat{x} \rangle^{-1} \{ \operatorname{div}(A\hat{x}) - (n - 1)r^{-1} \} \\ &+ (n - 1)(\langle A\hat{x}, \, \hat{x} \rangle^{-1} - 1) + r \langle A\nabla(\langle A\hat{x}, \, \hat{x} \rangle^{-1}), \, \hat{x} \rangle, \\ \partial_{j}h_{i}(x) &= \hat{x}_{j} \{ 2^{-1}(\sigma'(r) - \eta'(r)) + \langle A\hat{x}, \, \hat{x} \rangle^{-1} \operatorname{div}(A\hat{x}) \\ &+ \langle A\nabla(\langle A\hat{x}, \, \hat{x} \rangle^{-1}), \, \hat{x} \rangle \} \\ &+ r [\partial_{j}(\langle A\hat{x}, \, \hat{x} \rangle^{-1}) \operatorname{div}(A\hat{x}) + \langle A\hat{x}, \, \hat{x} \rangle^{-1} \partial_{j} \{ \operatorname{div}(A\hat{x}) \}] \\ &+ \sum_{k,l=1}^{n} r \{ \hat{x}_{k}(\partial_{j}a_{kl}) \partial_{l}(\langle A\hat{x}, \, \hat{x} \rangle^{-1}) + \hat{x}_{k}a_{kl}\partial_{j}\partial_{l}(\langle A\hat{x}, \, \hat{x} \rangle^{-1}) \\ &+ a_{kl}\partial_{l}(\langle A\hat{x}, \, \hat{x} \rangle^{-1}) \partial_{j}\hat{x}_{k} \}, \end{split}$$

where $E = (\delta_{ij})$ is the $n \times n$ identity matrix. So noting (F) and

$$\partial_k \hat{x}_i = O(r^{-1}) \text{ and } \partial_k \partial_l \hat{x}_i = O(r^{-2}) \text{ as } r \to \infty,$$

$$\lim_{r \to \infty} r^\beta \sigma(r) = +\infty \quad (\text{by (F3)}),$$

we have the assertions.

Lemma 2.7. There exist some constants $C_4 > 0$ and $R_1 \ge R_0$ such that for any $r \ge R_1$ and any $w \in H^2_{loc}(\Omega)$ we have

$$G_1(x; w) \ge C_4 \sigma(r) \{ |\langle ADw, \hat{x} \rangle|^2 + r^{2\beta - 2} |w|^2 \}.$$

Proof. In the sequel $\varepsilon_i(r)(i = 1, 2, ...)$ means a positive function for $r > R_0$ which tends to 0 as $r \to \infty$. Choose a constant a'_1 satisfying $1 < a'_1 < a_1$. Using

$$\begin{split} |\langle A(x)\xi,\eta\rangle| &\leq \langle A(x)\xi,\xi\rangle^{1/2} \langle A(x)\eta,\bar{\eta}\rangle^{1/2} \\ \text{for any } x \in \Omega \text{ and any } \xi,\eta \in \mathbb{C}^n, \\ \langle A\{Dw - \hat{x}\langle A\hat{x},\hat{x}\rangle^{-1}\langle ADw,\hat{x}\rangle\}, \{\overline{Dw} - \hat{x}\langle A\hat{x},\hat{x}\rangle^{-1}\langle A\overline{Dw},\hat{x}\rangle\}\rangle \end{split}$$

$$= \langle ADw, \overline{Dw} \rangle - \langle A\hat{x}, \hat{x} \rangle^{-1} |\langle ADw, \hat{x} \rangle|^2$$

for any $x \in \Omega$ and any $w \in H^2_{loc}(\Omega)$, and noting Lemma 2.6, conditions (A3), (F7) and (F8), we have the following:

$$2r\operatorname{Re}[\langle ADw, \nabla(\langle A\hat{x}, \hat{x} \rangle^{-1}) \rangle \langle ADw, \hat{x} \rangle] \geq -\varepsilon_{1}(r)\sigma(r) \langle ADw, \overline{Dw} \rangle,$$

$$2\{\langle A\hat{x}, \hat{x} \rangle^{-1} | ADw |^{2} - \langle ADw, \overline{Dw} \rangle\} = 2 \langle A\hat{x}, \hat{x} \rangle^{-1} \langle ADw, (A - E)\overline{Dw} \rangle$$

$$+ 2(\langle A\hat{x}, \hat{x} \rangle^{-1} - 1) \langle ADw, \overline{Dw} \rangle \geq -\varepsilon_{2}(r)\sigma(r) \langle ADw, \overline{Dw} \rangle,$$

$$\begin{aligned} 2r\langle A\hat{x}, \hat{x} \rangle^{-1} \operatorname{Re}[\langle (\langle ADw, V \rangle A)Dw, \hat{x} \rangle] &\geq -\varepsilon_{3}(r)\sigma(r)\langle ADw, Dw \rangle, \\ -r\langle A\hat{x}, \hat{x} \rangle^{-1} \operatorname{Re}[\langle (\langle \hat{x}, AV \rangle A)Dw, \overline{Dw} \rangle] &\geq -\varepsilon_{4}(r)\sigma(r)\langle ADw, \overline{Dw} \rangle, \\ -2\langle A\hat{x}, \hat{x} \rangle^{-1} \operatorname{Re}[\sqrt{-1}\langle ABAx, (Dw - \hat{x}\langle A\hat{x}, \hat{x} \rangle^{-1}\langle ADw, \hat{x} \rangle)\rangle\overline{w}] \\ &\geq -2\langle A\hat{x}, \hat{x} \rangle^{-1} \{\langle ABAx, BAx \rangle\}^{1/2} |w| \\ \cdot \{\langle ADw, \overline{Dw} \rangle - \langle A\hat{x}, \hat{x} \rangle^{-1} |\langle ADw, \hat{x} \rangle|^{2}\}^{1/2} \\ &\geq -(2 - \gamma_{1} - \eta)a_{2}^{-1}\{\langle ADw, \overline{Dw} \rangle - \langle A\hat{x}, \hat{x} \rangle^{-1} |\langle ADw, \hat{x} \rangle|^{2}\} \\ -(2 - \gamma_{1} - \eta)a_{2}^{-1}\{\langle ADw, \overline{Dw} \rangle - \langle A\hat{x}, \hat{x} \rangle^{-1} |\langle ADw, \hat{x} \rangle|^{2}\} \\ -(2 - \gamma_{1} - \eta)^{-1}a_{2}\langle A\hat{x}, \hat{x} \rangle^{-2}\langle ABAx, BAx \rangle |w|^{2}, \\ 2r\langle A\hat{x}, \hat{x} \rangle^{-1} \operatorname{Re}[\langle ADw, \hat{x} \rangle\overline{q_{2}w}] \\ &\geq -a_{1}^{\prime-1}\sigma(r)\langle A\hat{x}, \hat{x} \rangle^{-1} |\langle ADw, \hat{x} \rangle|^{2} \\ -a_{1}^{\prime}\sigma(r)^{-1}\langle A\hat{x}, \hat{x} \rangle^{-1} |rq_{2}|^{2}|w|^{2}, \\ \operatorname{Re}[\langle ADw, \nabla h_{1} \rangle \overline{w}] &\geq -\varepsilon_{5}(r)\sigma(r)\{\langle ADw, \overline{Dw} \rangle + r^{2\beta-2}|w|^{2}\}, \\ (2r)^{-1}h_{1}\{\eta(r) + \sigma(r) + \gamma_{1} - 2\} \operatorname{Re}[\langle ADw, \hat{x} \rangle \overline{w}] \\ &\geq -2^{-1}(1 - a_{1}^{\prime-1})\sigma(r)\langle A\hat{x}, \hat{x} \rangle^{-1} |\langle ADw, \hat{x} \rangle|^{2} \\ -8^{-1}h_{1}^{2}(1 - a_{1}^{\prime-1})^{-1}\langle A\hat{x}, \hat{x} \rangle r^{-2}\sigma(r)^{-1}(\eta + \sigma + \gamma_{1} - 2)^{2}|w|^{2}, \\ h_{1}\operatorname{Re}[q_{2}] &\geq -(a_{1} - a_{1}^{\prime})^{-1}\sigma(r)h_{1}^{2}\langle A\hat{x}, \hat{x} \rangle r^{-2}. \end{aligned}$$

Noting Definition 2.4 and

$$\langle ADw, \overline{Dw} \rangle = \{\langle ADw, \overline{Dw} \rangle - \langle A\hat{x}, \hat{x} \rangle^{-1} | \langle ADw, \hat{x} \rangle |^2 \} + \langle A\hat{x}, \hat{x} \rangle^{-1} | \langle ADw, \hat{x} \rangle |^2,$$

we have

$$\begin{split} G_{1}(x;w) &\geq \sigma(r) \{ 2^{-1}(1-a_{1}^{\prime-1}) - \sum_{i=1}^{5} \varepsilon_{i}(r) \} \langle A\hat{x}, \hat{x} \rangle^{-1} | \langle ADw, \hat{x} \rangle |^{2} \\ &+ \{ (2-\gamma_{1}-\eta(r))(1-a_{2}^{-1}) - \sigma(r) \sum_{i=1}^{5} \varepsilon_{i}(r) \} \\ &\cdot \{ \langle ADw, \overline{Dw} \rangle - \langle A\hat{x}, \hat{x} \rangle^{-1} | \langle ADw, \hat{x} \rangle |^{2} \} \\ &- \{ r \langle A\hat{x}, \hat{x} \rangle^{-1} \langle A\nabla q_{1}, \hat{x} \rangle + (\gamma_{1}+\eta(r))q_{1} + a_{1}\sigma(r)^{-1} \\ &\cdot \langle A\hat{x}, \hat{x} \rangle^{-1} | rq_{2} |^{2} \\ &+ a_{2}(2-\gamma_{1}-\eta(r))^{-1} \langle A\hat{x}, \hat{x} \rangle^{-2} \langle ABAx, BAx \rangle \} |w|^{2} \\ &- \{ \varepsilon_{5}(r)\sigma(r)r^{2\beta-2} + 8^{-1}h_{1}^{2}(1-a_{1}^{\prime-1})^{-1} \\ &\cdot \langle A\hat{x}, \hat{x} \rangle (\eta + \sigma + \gamma_{1} - 2)^{2}\sigma(r)^{-1}r^{-2} \end{split}$$

+ 4⁻¹
$$(a_1 - a_1')^{-1}h_1^2 \langle A\hat{x}, \hat{x} \rangle \sigma(r)r^{-2} \} |w|^2.$$

We note that we have by (F1) and (F3)

$$\lim_{r\to\infty}r^{\beta}\sigma(r)=+\infty.$$

Therefore by (A3), (F1), (F2), (F5) and Lemma 2.6 there exist some constants $C_4 > 0$ and $R_1 \ge R_0$ such that for any $r \ge R_1$ we have

$$\begin{split} &\{2^{-1}(1-a_{1}^{\prime-1})-\sum_{i=1}^{5}\varepsilon_{i}(r)\}\langle A\hat{x},\,\hat{x}\,\rangle^{-1}\geq C_{4},\\ &(2-\gamma_{1}-\eta(r))(1-a_{2}^{-1})-\sigma(r)\sum_{i=1}^{5}\varepsilon_{i}(r)\geq 0,\\ &-\{r\langle A\hat{x},\,\hat{x}\,\rangle^{-1}\langle A\nabla q_{1},\,\hat{x}\,\rangle+(\gamma_{1}+\eta(r))q_{1}+a_{1}\sigma(r)^{-1}\langle A\hat{x},\,\hat{x}\,\rangle^{-1}|rq_{2}|^{2}\\ &+a_{2}(2-\gamma_{1}-\eta(r))^{-1}\langle A\hat{x},\,\hat{x}\,\rangle^{-2}\langle ABAx,\,BAx\,\rangle\}\\ &\geq 2C_{4}r^{2\beta-2}\sigma(r),\\ &-\{\varepsilon_{5}(r)r^{2\beta-2}\sigma(r)+8^{-1}h_{1}^{2}(1-a_{1}^{\prime-1})^{-1}\langle A\hat{x},\,\hat{x}\,\rangle(\eta+\sigma+\gamma_{1}-2)^{2}r^{-2}\sigma(r)^{-1}\\ &+4^{-1}(a_{1}-a_{1}^{\prime})^{-1}h_{1}^{2}\langle A\hat{x},\,\hat{x}\,\rangle r^{-2}\sigma(r)\}\\ &\geq -C_{4}r^{2\beta-2}\sigma(r). \end{split}$$

So using

$$\langle ADw, Dw \rangle - \langle A\hat{x}, \hat{x} \rangle^{-1} |\langle ADw, \hat{x} \rangle|^2 \ge 0,$$

we have the assertion.

Lemma 2.8. There exist some constants $C_5 > 0$, $C_6 > 0$ and $R_2 \ge R_0$ such that for any $r \ge R_2$ and $w \in H^2_{loc}(\Omega)$ we have

$$G_2(x; w) \ge C_5 r^{2\beta - 2} \sigma(r) |w|^2 - C_6 |\langle ADw, \hat{x} \rangle|^2.$$

Proof. We use the same estimates as given in the proof of Lemma 2.7 except for the following: Choose a constant a'_3 to satisfy $0 < a'_3 < a_3$, and we have

$$-2\langle A\hat{x}, \hat{x} \rangle^{-1} \operatorname{Re}[\sqrt{-1}\langle ABAx, (Dw - \hat{x}\langle A\hat{x}, \hat{x} \rangle^{-1}\langle ADw, \hat{x} \rangle)\rangle \bar{w}]$$

$$\geq -a_{4}^{-1}(2 - \gamma_{2} - \eta(r))\{\langle ADw, \overline{Dw} \rangle - \langle A\hat{x}, \hat{x} \rangle^{-1}|\langle ADw, \hat{x} \rangle|^{2}\}$$

$$-a_{4}(2 - \gamma_{2} - \eta(r))^{-1}\langle A\hat{x}, \hat{x} \rangle^{-2}\langle ABAx, BAx \rangle |w|^{2},$$

$$2r\langle A\hat{x}, \hat{x} \rangle^{-1} \operatorname{Re}[\langle ADw, \hat{x} \rangle \overline{q_{2}w}]$$

$$\geq -a_{3}^{\prime-1}\sigma(r)\langle A\hat{x}, \hat{x} \rangle^{-1}|\langle ADw, \hat{x} \rangle|^{2} - a_{3}^{\prime}\sigma(r)^{-1}\langle A\hat{x}, \hat{x} \rangle^{-1}|rq_{2}|^{2}|w|^{2},$$

$$(2r)^{-1}h_{2}(\eta + \sigma + \gamma_{2} - 2)\operatorname{Re}[\langle ADw, \hat{x} \rangle \overline{w}]$$

$$\geq -2^{-1}\sigma(r) \langle A\hat{x}, \hat{x} \rangle^{-1} | \langle ADw, \hat{x} \rangle |^{2} -8^{-1}h_{2}^{2} \langle A\hat{x}, \hat{x} \rangle (\eta + \sigma + \gamma_{2} - 2)^{2}r^{-2}\sigma(r)^{-1} |w|^{2}, h_{2}\operatorname{Re}[q_{2}] \geq -(a_{3} - a_{3}') \langle A\hat{x}, \hat{x} \rangle^{-1}\sigma(r)^{-1} |rq_{2}|^{2} -4^{-1}(a_{3} - a_{3}')^{-1} \langle A\hat{x}, \hat{x} \rangle h_{2}^{2}r^{-2}\sigma(r).$$

Combine the above estimates with the remaining ones given in the proof of Lemma 2.7, and we have by Definition 2.4

$$\begin{split} G_{2}(x;w) &\geq \sigma(r) \{2^{-1} - \sum_{i=1}^{5} \varepsilon_{i}(r) - a_{3}^{i-1}\} \langle A\hat{x}, \hat{x} \rangle^{-1} |\langle ADw, \hat{x} \rangle|^{2} \\ &+ \{(2 - \gamma_{2} - \eta)(1 - a_{4}^{-1}) - \sigma(r) \sum_{i=1}^{5} \varepsilon_{i}(r)\} \{\langle ADw, \overline{Dw} \rangle \\ &- \langle A\hat{x}, \hat{x} \rangle^{-1} |\langle ADw, \hat{x} \rangle|^{2} \} \\ &- \{r \langle A\hat{x}, \hat{x} \rangle^{-1} \langle A\nabla q_{1}, \hat{x} \rangle + (\gamma_{2} + \eta(r))q_{1} + a_{3}\sigma(r)^{-1} \langle A\hat{x}, \hat{x} \rangle^{-1} |rq_{2}|^{2} \\ &+ a_{4}(2 - \gamma_{2} - \eta(r))^{-1} \langle A\hat{x}, \hat{x} \rangle^{-2} \langle ABAx, BAx \rangle \} |w|^{2} \\ &- \{\varepsilon_{5}(r)r^{2\beta-2}\sigma(r) + 8^{-1}h_{2}^{2} \langle A\hat{x}, \hat{x} \rangle (\eta + \sigma + \gamma_{2} - 2)^{2}r^{-2}\sigma(r)^{-1} \\ &+ 4^{-1}(a_{3} - a_{3}')^{-1} \langle A\hat{x}, \hat{x} \rangle h_{2}^{2}r^{-2}\sigma(r) \} |w|^{2}. \end{split}$$

By (F1), (F2), (F6), Lemma 2.6 and $\lim_{r\to\infty} r^{\beta}\sigma(r) = +\infty$, there exist some constants $C_5 > 0$, $C_6 > 0$ and $R_2 \ge R_0$ such that for any $r \ge R_2$ we have

$$\begin{split} &\sigma(r)\{2^{-1} - \sum_{i=1}^{5} \varepsilon_{i}(r) - a_{3}^{'-1}\} \langle A\hat{x}, \hat{x} \rangle^{-1} \geq -C_{6}, \\ &(2 - \gamma_{2} - \eta(r))(1 - a_{4}^{-1}) - \sigma(r) \sum_{i=1}^{5} \varepsilon_{i}(r) \geq 0, \\ &- \{r \langle A\hat{x}, \hat{x} \rangle^{-1} \langle A\nabla q_{1}, \hat{x} \rangle + (\gamma_{2} + \eta(r))q_{1} + a_{3} \langle A\hat{x}, \hat{x} \rangle^{-1} \sigma(r)^{-1} | rq_{2} |^{2} \\ &+ a_{4}(2 - \gamma_{2} - \eta(r))^{-1} \langle A\hat{x}, \hat{x} \rangle^{-2} \langle ABAx, BAx \rangle \} \\ &\geq 2C_{5}r^{2\beta - 2}\sigma(r), \\ &- \{\varepsilon_{5}(r)r^{2\beta - 2}\sigma(r) + 8^{-1}h_{2}^{2} \langle A\hat{x}, \hat{x} \rangle (\eta + \sigma + \gamma_{2} - 2)^{2}r^{-2}\sigma(r)^{-1} \\ &+ 4^{-1}(a_{3} - a_{3}')^{-1} \langle A\hat{x}, \hat{x} \rangle h_{2}^{2}r^{-2}\sigma(r) \} \\ &\geq -C_{5}r^{2\beta - 2}\sigma(r). \end{split}$$

So we have the assertion.

Lemma 2.9. There exists some constant $R_3 \ge R_2$ such that for any constant $m \ge 1$ and any t, s satisfying $t \ge s \ge R_3$ we have

$$F(t; mr^{\alpha}, f_2, g_2) \ge F(s; mr^{\alpha}, f_2, g_2).$$

Proof. In Lemma 2.5 let i = 2 and $\rho(r) = mr^{\alpha}$. Then we have

$$\begin{aligned} 4r\rho' \langle A\hat{x}, \, \hat{x} \rangle^{-1} | \langle ADv, \, \hat{x} \rangle |^{2} &= 4m\alpha r^{\alpha} \langle A\hat{x}, \, \hat{x} \rangle^{-1} | \langle ADv, \, \hat{x} \rangle |^{2}, \\ 2 \{r\rho'' + r\rho' \langle A\hat{x}, \, \hat{x} \rangle^{-1} \operatorname{div}(A\hat{x}) + h_{2}\rho' \} \operatorname{Re}[\langle ADv, \, \hat{x} \rangle \tilde{v}] \\ &= 2m\alpha r^{\alpha-1} \{\alpha - 1 + r \langle A\hat{x}, \, \hat{x} \rangle^{-1} \operatorname{div}(A\hat{x}) + h_{2} \} \operatorname{Re}[\langle ADv, \, \hat{x} \rangle \tilde{v}] \\ &\geq -m\alpha r^{\alpha} \langle A\hat{x}, \, \hat{x} \rangle^{-1} | \langle ADv, \, \hat{x} \rangle |^{2} \\ &- m\alpha r^{\alpha-2} \{\alpha - 1 + r \langle A\hat{x}, \, \hat{x} \rangle^{-1} \operatorname{div}(A\hat{x}) + h_{2} \}^{2} \langle A\hat{x}, \, \hat{x} \rangle |v|^{2}, \\ (\gamma_{2} + \eta(r))\rho'^{2} + 2r\rho'\rho'' - r\rho'^{2} \langle A\nabla(\langle A\hat{x}, \, \hat{x} \rangle^{-1}), \, \hat{x} \rangle \\ &+ h_{2}\rho'' + h_{2}\rho' \langle Ax, \, x \rangle^{-1} \operatorname{div}(A\hat{x}) \\ &= m^{2}\alpha^{2}r^{2\alpha-2} \{\gamma_{2} + \eta(r) + 2\alpha - 2 - r \langle A\nabla(\langle A\hat{x}, \, \hat{x} \rangle^{-1}), \, \hat{x} \rangle \} \\ &+ h_{2}m\alpha r^{\alpha-2} \{\alpha - 1 + r \langle A\hat{x}, \, \hat{x} \rangle^{-1} \operatorname{div}(A\hat{x}) \}. \end{aligned}$$

By Lemma 2.8 we have for any $r \ge R_2$

$$\begin{split} G_{2}(x; v) &+ 4r\rho' \langle A\hat{x}, \hat{x} \rangle^{-1} |\langle ADv, \hat{x} \rangle|^{2} \\ &+ 2\{r\rho'' + r\rho' \langle A\hat{x}, \hat{x} \rangle^{-1} \operatorname{div}(A\hat{x}) + h_{2}\rho'\} \operatorname{Re}[\langle ADv, \hat{x} \rangle \bar{v}] \\ &+ \langle A\hat{x}, \hat{x} \rangle \{(\gamma_{2} + \eta(r))\rho'^{2} + 2r\rho'\rho'' - r\rho'^{2} \langle A\overline{V}(\langle A\hat{x}, \hat{x} \rangle^{-1}), \hat{x} \rangle \\ &+ h_{2}\rho'' + h_{2}\rho' \langle A\hat{x}, \hat{x} \rangle^{-1} \operatorname{div}(A\hat{x})\} |v|^{2} \\ &\geq C_{5}r^{2\beta-2}\sigma(r)|v|^{2} - C_{6}|\langle ADv, \hat{x} \rangle|^{2} + 3m\alpha r^{\alpha} \langle A\hat{x}, \hat{x} \rangle^{-1}|\langle ADv, \hat{x} \rangle|^{2} \\ &+ m\alpha r^{\alpha-2}[\{\gamma_{2} + \eta(r) + 2\alpha - 2 - r \langle A\overline{V}(\langle A\hat{x}, \hat{x} \rangle^{-1}), \hat{x} \rangle\} m\alpha r^{\alpha} \\ &+ h_{2}\{\alpha - 1 + r \langle A\hat{x}, \hat{x} \rangle^{-1} \operatorname{div}(A\hat{x}) + h_{2}\}^{2} \langle A\hat{x}, \hat{x} \rangle] |v|^{2}. \end{split}$$

Noting Lemma 2.6 and (F2), there exists some constant $R_3 \ge R_2$ such that for any $r \ge R_3$ and any constant $m \ge 1$ we have

$$\begin{aligned} 3m\alpha r^{\alpha} \langle A\hat{x}, \hat{x} \rangle^{-1} - C_{6} &\geq 0, \\ \{\gamma_{2} + \eta(r) + 2\alpha - 2 - r \langle A\nabla(\langle A\hat{x}, \hat{x} \rangle^{-1}), \hat{x} \rangle \}m\alpha r^{\alpha} \\ &+ h_{2}\{\alpha - 1 + r \langle A\hat{x}, \hat{x} \rangle^{-1} \operatorname{div}(A\hat{x})\} - \{\alpha - 1 + r \langle A\hat{x}, \hat{x} \rangle^{-1} \operatorname{div}(A\hat{x}) \\ &+ h_{2}\}^{2} \langle A\hat{x}, \hat{x} \rangle \end{aligned}$$

 $\geq 0.$

So we have the assertion.

We intend to prove Theorem 1.1(1) by reduction to a contradiction.

Lemma 2.10. If

$$\liminf_{R\to\infty} R^{(\gamma_1/2)} \Phi(R) \int_{|x|=R} [|\langle ADu, \hat{x} \rangle|^2 + \{r^{-2} + (q_1)_{-}\} |u|^2] dS = 0,$$

then we have for any m = 0, 1, 2, ...

$$\int_{|x|>R_0} r^{m\alpha+(\gamma_1/2)-1} \Phi(r) \sigma(r) \{ |\langle ADu, \, \hat{x} \rangle|^2 + r^{2\beta-2} |u|^2 \} dx < \infty.$$

Proof. By Lemma 2.2 and Lemma 2.6, there exist some constants $C_7 > 0$ and $R_4 \ge R_0$ such that for any $t \ge R_4$ we have

$$F(t; 0, f_1, g_1) = t^{(\gamma_1/2)} \Phi(t) \int_{|\mathbf{x}|=t} [2\langle A\hat{\mathbf{x}}, \hat{\mathbf{x}} \rangle^{-1} |\langle ADu, \hat{\mathbf{x}} \rangle|^2 - \langle ADu, \overline{Du} \rangle + h_1 r^{-1} \operatorname{Re}[\langle ADu, \hat{\mathbf{x}} \rangle \overline{u}] - q_1 |u|^2] dS \leq C_7 t^{(\gamma_1/2)} \Phi(t) \int_{|\mathbf{x}|=t} [|\langle ADu, \hat{\mathbf{x}} \rangle|^2 + \{r^{-2} + (q_1)_-\} |u|^2] dS.$$

So we have

$$\liminf_{t \to \infty} F(t; 0, f_1, g_1) \le 0.$$

Letting $t \to \infty$ along the suitable subsequence in Lemma 2.5, we have, by Lemma 2.7, for any $s \ge R_1$

$$C_4 \int_{|x|>s} r^{(\gamma_1/2)-1} \Phi(r) \sigma(r) \{ |\langle ADu, \hat{x} \rangle|^2 + r^{2\beta-2} |u|^2 \} dx \le -F(s; 0, f_1, g_1),$$

which shows that the assertion holds for m = 0. By the above estimate, and by Definitions 2.1 and 2.4 and Lemma 2.3 we have

$$\begin{split} C_4 & \int_{R_1}^t s^{(m+1)\alpha-1} ds \int_{|x|>s} r^{(\gamma_1/2)-1} \Phi(r) \sigma(r) \{ |\langle ADu, \hat{x} \rangle|^2 + r^{2\beta-2} |u|^2 \} dx \\ &\leq -\int_{R_1}^t s^{(m+1)\alpha-1} F(s; 0, f_1, g_1) ds \\ &= \int_{R_1 < |x| < t} r^{(m+1)\alpha+(\gamma_1/2)-1} \Phi(r) \{ \langle ADu, \overline{Du} \rangle + q_1 |u|^2 \\ &\quad -2 \langle A\hat{x}, \hat{x} \rangle^{-1} |\langle ADu, \hat{x} \rangle|^2 - h_1 r^{-1} \operatorname{Re}[\langle ADu, \hat{x} \rangle \bar{u}] \} dx \\ &= F(t; 0, 0, r^{(m+1)\alpha+(\gamma_1/2)-1} \Phi(r)) - F(R_1; 0, 0, r^{(m+1)\alpha+(\gamma_1/2)-1} \Phi(r)) \\ &- \int_{R_1 < |x| < t} r^{(m+1)\alpha+(\gamma_1/2)-1} \Phi(r) [2 \langle A\hat{x}, \hat{x} \rangle^{-1} |\langle ADu, \hat{x} \rangle|^2 \\ &\quad + \{ (m+1)\alpha+2^{-1}(\eta(r)+\sigma(r)+\gamma_1)-1+h_1 \} r^{-1} \operatorname{Re}[\langle ADu, \hat{x} \rangle \bar{u}] \\ &+ \operatorname{Re}[q_2] |u|^2] dx. \end{split}$$

Now we assume that the statement is true for *m*. Then by (G2), (F3), $\alpha < \beta$ and Lemma 2.6 we have for any $t \ge R_1$

$$\begin{split} &- \int_{R_{1} < |x| < t} r^{(m+1)\alpha + (\gamma_{1}/2) - 1} \Phi(r) [2 \langle A\hat{x}, \hat{x} \rangle^{-1} | \langle ADu, \hat{x} \rangle |^{2} \\ &+ r^{-1} \{ (m+1)\alpha + 2^{-1} (\eta(r) + \sigma(r) + \gamma_{1}) - 1 + h_{1} \} \operatorname{Re}[\langle ADu, \hat{x} \rangle \bar{u}] \\ &+ \operatorname{Re}[q_{2}] |u|^{2}] dx \\ &\leq \int_{|x| > R_{1}} r^{m\alpha + (\gamma_{1}/2) + 2\beta - 3} \Phi(r) \sigma(r) [8^{-1} r^{\alpha - 2\beta} \sigma(r)^{-1} \{ (m+1)\alpha \\ &+ 2^{-1} (\eta + \sigma + \gamma_{1}) - 1 + h_{1} \}^{2} \langle A\hat{x}, \hat{x} \rangle + C_{3} r^{\alpha - \beta}] |u|^{2} dx \\ &< + \infty. \end{split}$$

On the other hand by Lemma 2.2 we have

$$F(t; 0, 0, r^{(m+1)\alpha + (\gamma_1/2) - 1} \Phi(r))$$

$$= \int_{|x|=t} r^{(m+1)\alpha + (\gamma_1/2) - 1} \Phi(r) \operatorname{Re}[\langle ADu, \hat{x} \rangle \bar{u}] dS$$

$$\leq 2^{-1} \int_{|x|=t} r^{m\alpha + (\gamma_1/2)} \Phi(r) \sigma(r) [|\langle ADu, \hat{x} \rangle|^2 + r^{2\beta - 2} \{r^{\beta - \alpha} \sigma(r)\}^{-2} |u|^2] dS.$$

Noting that the assertion holds for m, we have by (F3)

$$\liminf_{t\to\infty} F(t; 0, 0, r^{(m+1)\alpha+(\gamma_1/2)-1}\Phi(r)) \le 0.$$

Therefore we have

$$+ \infty > \int_{R_1}^{\infty} s^{(m+1)\alpha - 1} ds \int_{|x| > s} r^{(\gamma_1/2) - 1} \Phi(r) \sigma(r) \{ |\langle ADu, \hat{x} \rangle|^2 + r^{2\beta - 2} |u|^2 \} dx$$

$$= (m+1)^{-1} \alpha^{-1} \int_{|x| > R_1} \{ r^{(m+1)\alpha} - R_1^{(m+1)\alpha} \} r^{(\gamma_1/2) - 1} \Phi(r) \sigma(r)$$

$$\times \{ |\langle ADu, \hat{x} \rangle|^2 + r^{2\beta - 2} |u|^2 \} dx,$$

which shows that the assertion is true for m + 1.

Lemma 2.11. There exist some constants $R_5 > R_0$ and $C_8 > 0$ such that for any real-valued function $\psi(r) \in C_0^1(R_5, \infty)$ we have

$$\int_{\Omega} \psi(r)^{2} \{ |Du|^{2} + (q_{1})_{-} |u|^{2} \} dx \leq C_{8} \int_{\Omega} \{ r^{\max\{\delta_{1}, \delta_{2}\}} \psi(r)^{2} + \psi'(r)^{2} \} |u|^{2} dx.$$

Proof. See Lemma 2.3 of Uchiyama [3], where (A), (G) and $\lim_{r \to \infty} \{a_{ij}(x)\}$

 $-\delta_{ij}$ = 0 have been used.

Lemma 2.12. Let R_5 be the one given in Lemma 2.11. There exists some constant $C_9 > 0$ such that for any $R \ge R_5$ and any real-valued function $\zeta(r) \in C^1[R_5, \infty)$ satisfying

$$\int_{|x|>R_5} \left[r^{\max\{\delta_1,\delta_2\}} \zeta(r)^2 + \zeta'(r)^2 \right] |u|^2 dx < \infty,$$
$$\liminf_{t \to \infty} \int_{t < |x| < t+1} \zeta(r)^2 |u|^2 dx = 0,$$

we have

$$\begin{split} &\int_{|x|>R+1} \zeta(r)^2 \{ |Du|^2 + (q_1)_- |u|^2 \} dx \\ &\leq C_9 \int_{|x|>R} \{ r^{\max\{\delta_1,\delta_2\}} \zeta(r)^2 + \zeta'(r)^2 \} |u|^2 dx + C_9 \int_{R<|x|$$

Proof. See Lemma 2.4 of Uchiyama [3], which can be obtained from Lemma 2.11. \Box

Lemma 2.13. There exist some constants $\delta_3 > 0$, $C_{10} > 0$ and $C_{11} > 0$ such that for any $r \ge R_0$ we have

$$C_{10}r^{-\delta_3} \le \Phi(r) \le C_{11}r^{\delta_3}.$$

Proof. By (F2) there exist some constants $\delta_3 > 0$ and $R_6 \ge R_0$ such that for any $r \ge R_6$ we have

$$-2\delta_3 \le \eta(r) + \sigma(r) \le 2\delta_3.$$

Then we have for any $r \ge R_6$

$$\frac{1}{2} \int_{R_0}^{R_6} \frac{\eta(r) + \sigma(r)}{r} dr - \delta_3 \log \frac{r}{R_6} \le \frac{1}{2} \int_{R_0}^{r} \frac{\eta(r) + \sigma(r)}{r} dr \\ \le \frac{1}{2} \int_{R_0}^{R_6} \frac{\eta(r) + \sigma(r)}{r} dr + \delta_3 \log \frac{r}{R_6}.$$

Note that $\Phi(r)$ is continuous in $[R_0, \infty)$, where $R_0 \ge 1$. Then letting

$$C_{10} = \min\left\{R_6^{\delta_3} \exp\left\{\frac{1}{2}\int_{R_0}^{R_6} \frac{\eta(r) + \sigma(r)}{r}dr\right\}, \min_{R_0 \le r \le R_6} r^{\delta_3} \Phi(r)\right\} > 0,$$

$$C_{11} = \max\left\{R_6^{-\delta_3} \exp\left\{\frac{1}{2}\int_{R_0}^{R_6} \frac{\eta(r) + \sigma(r)}{r}dr\right\}, \max_{R_0 \le r \le R_6} r^{-\delta_3} \Phi(r)\right\} > 0$$

439

we have the assertion.

Lemma 2.14. If

$$\liminf_{R\to\infty} R^{(\gamma_1/2)} \Phi(R) \int_{|x|=R} [|\langle ADu, \hat{x} \rangle|^2 + \{r^{-2} + (q_1)_{-}\} |u|^2] dS = 0,$$

then we have for any constant m > 0

$$\int_{|x|>R_0} r^m [|Du|^2 + \{1 + (q_1)_-\} |u|^2] dx < \infty.$$

Proof. By Lemmas 2.10 and 2.13 and (F3) we have for any m > 0

$$\int_{|x|>R_0} r^m |u|^2 dx < \infty.$$

.

Let

$$\zeta(r)=r^{m/2}.$$

Then we have

$$\begin{split} &\int_{|x|>R_5} \{r^{\max\{\delta_1,\delta_2\}}\zeta^2 + \zeta'^2\} |u|^2 dx \\ &= \int_{|x|>R_5} r^m [r^{\max\{\delta_1,\delta_2\}} + 4^{-1}m^2r^{-2}] |u|^2 dx < \infty, \\ &\lim_{t\to\infty} \inf \int_{t<|x|$$

Therefore by Lemma 2.12 we have the assertion.

Lemma 2.15. If

$$\liminf_{R\to\infty} R^{\gamma_1/2} \Phi(R) \int_{|x|=R} [|\langle ADu, \hat{x} \rangle|^2 + \{r^{-2} + (q_1)_{-}\} |u|^2] dS = 0,$$

then for any constant m > 0 there exists some constant $R_7 \ge R_2$, where R_2 is the one given in Lemma 2.8, such that for any $t > s > R_7$ we have

$$e^{mt^{\alpha}} \int_{|x|=t} \langle A\hat{x}, \hat{x} \rangle |u|^2 dS \le e^{ms^{\alpha}} \int_{|x|=s} \langle A\hat{x}, \hat{x} \rangle |u|^2 dS$$

Proof. For fixed m > 0 let

$$a(r)=2^{-1}\{m\alpha r^{\alpha}+n\}.$$

By Lemma 2.6 and (F2) there exists some constant $R_8 \ge R_2$ such that for any $r \ge R_8$ we have

440

1	- 1

$$\langle A\hat{x}, \hat{x} \rangle^{-1} r \operatorname{div}(A\hat{x}) \leq n.$$

Then for any $t > s > R_8$ we have by integration by parts

$$\begin{split} & \left(\int_{|\mathbf{x}|=t} - \int_{|\mathbf{x}|=s} \right) e^{mr^{\alpha}} \langle A\hat{\mathbf{x}}, \, \hat{\mathbf{x}} \rangle |u|^{2} dS \\ &= \int_{s < |\mathbf{x}| < t} e^{mr^{\alpha}} [2\operatorname{Re}[\langle ADu, \, \hat{\mathbf{x}} \rangle \bar{u}] + r^{-1} \{m\alpha r^{\alpha} + \langle A\hat{\mathbf{x}}, \, \hat{\mathbf{x}} \rangle^{-1} r \operatorname{div}(A\hat{\mathbf{x}}) \} \\ & \cdot \langle A\hat{\mathbf{x}}, \, \hat{\mathbf{x}} \rangle |u|^{2}] dx \\ &\leq 2 \int_{s}^{t} e^{m\tau^{\alpha}} d\tau \int_{|\mathbf{x}|=\tau} [\operatorname{Re}[\langle ADu, \, \hat{\mathbf{x}} \rangle \bar{u}] + a(r)r^{-1} \langle A\hat{\mathbf{x}}, \, \hat{\mathbf{x}} \rangle |u|^{2}] dS. \end{split}$$

So we have only to show that there exists some constant $R_7 \ge R_8$ such that for any $\tau \ge R_7$ we have

$$\int_{|\mathbf{x}|=\tau} \left[\operatorname{Re}\left[\langle ADu, \, \hat{x} \rangle \bar{u} \right] + a(r)r^{-1} \langle A\hat{x}, \, \hat{x} \rangle |u|^2 \right] dS \leq 0.$$

Let

$$\rho(r) = a(\tau)\log r, \ g(r) = r^{-2a(\tau)}.$$

Then by Definition 2.1 and by direct calculation we have

$$e^{2\rho(r)}g(r) = 1, \ 2\rho'(r)g(r) + g'(r) = 0,$$

$$k_1(x) = -a(\tau)^2 r^{-2} \langle A\hat{x}, \hat{x} \rangle, \ k_2(x) = -a(\tau)r^{-2} \langle A\hat{x}, \hat{x} \rangle$$

$$+ a(\tau)r^{-1} \operatorname{div}(A\hat{x}).$$

Therefore by Lemmas 2.2 and 2.3 and by Definition 2.4 we have for any $t_1 > \tau > R_8$

$$\begin{split} & \left(\int_{|\mathbf{x}|=t_{1}} - \int_{|\mathbf{x}|=\tau} \right) [\operatorname{Re}[\langle ADu, \, \hat{x} \rangle \bar{u}] + a(\tau)r^{-1} \langle A\hat{x}, \, \hat{x} \rangle |u|^{2}] dS \\ &= F(t_{1}; \, a(\tau)\log r, \, 0, \, r^{-2a(\tau)}) - F(\tau; \, a(\tau)\log r, \, 0, \, r^{-2a(\tau)}) \\ &= \int_{\tau < |\mathbf{x}| < t_{1}} r^{-2a(\tau)}[\langle ADv, \, \overline{Dv} \rangle + (q_{1} + \operatorname{Re}[q_{2}])|v|^{2} \\ &+ a(\tau)r^{-2}\{r\operatorname{div}(A\hat{x}) - \langle A\hat{x}, \, \hat{x} \rangle - a(\tau) \langle A\hat{x}, \, \hat{x} \rangle\}|v|^{2}] dx \\ &= -\int_{\tau}^{t_{1}} s_{1}^{-\{2a(\tau) + (\gamma_{2}/2)\}} \varPhi(s_{1})^{-1}[F(s_{1}; \, a(\tau)\log r, f_{2}, \, g_{2}) \\ &+ 2C_{3}s_{1}^{(\gamma_{2}/2) + \beta - 2} \varPhi(s_{1})\sigma(s_{1}) \int_{|\mathbf{x}|=s_{1}} \langle A\hat{x}, \, \hat{x} \rangle |v|^{2} dS] ds_{1} \end{split}$$

$$+ \int_{\tau < |\mathbf{x}| < t_1} r^{-2a(\tau)} [2 \langle A\hat{x}, \hat{x} \rangle^{-1} | \langle ADv, \hat{x} \rangle |^2 + h_2 r^{-1} \operatorname{Re}[\langle ADv, \hat{x} \rangle \bar{v}] + \{ \operatorname{Re}[q_2] + a(\tau) r^{-2} (r \operatorname{div}(A\hat{x}) - \langle A\hat{x}, \hat{x} \rangle) + 2C_3 r^{\beta - 2} \langle A\hat{x}, \hat{x} \rangle \sigma(r) \} |v|^2] dx,$$

where C_3 is the one given in (G2) and $v = v(x; a(\tau)\log r)$. By (G2), Lemma 2.6 and $0 < \alpha < \beta$, there exist some constant $C_{12} > 0$ and $R_9 \ge R_8$ such that for any $r \ge \tau \ge R_9$ we have

$$\begin{split} & 2\langle A\hat{x}, \, \hat{x} \rangle^{-1} |\langle ADv, \, \hat{x} \rangle|^2 + h_2 r^{-1} \operatorname{Re}[\langle ADv, \, \hat{x} \rangle \bar{v}] \\ & + \{\operatorname{Re}[q_2] + a(\tau) r^{-2} (r \operatorname{div}(A\hat{x}) - \langle A\hat{x}, \, \hat{x} \rangle) + 2C_3 r^{\beta-2} \langle A\hat{x}, \, \hat{x} \rangle \sigma(r)\} |v|^2 \\ & \geq \{ -8^{-1} h_2^2 r^{-2} \langle A\hat{x}, \, \hat{x} \rangle - (\operatorname{Re}[q_2])_-(x) \\ & + a(\tau) r^{-2} (r \operatorname{div}(A\hat{x}) - \langle A\hat{x}, \, \hat{x} \rangle) + 2C_3 r^{\beta-2} \langle A\hat{x}, \, \hat{x} \rangle \sigma(r)\} |v|^2 \\ & \geq (2^{-1} C_3 r^{\beta-2} \sigma(r) - C_{12} r^{\alpha-2}) |v|^2 \\ & \geq 0. \end{split}$$

By integration by parts we have for any $t_2 \ge s_1 \ge R_8$

$$\left(\int_{|x|=t_2} - \int_{|x|=s_1} \right) r^{(\gamma_2/2)+\beta-2} \Phi(r)\sigma(r) \langle A\hat{x}, \, \hat{x} \rangle |v|^2 dS$$

$$= \int_{s_1 < |x| < t_2} r^{(\gamma_2/2)+\beta-2} \Phi(r)\sigma(r) [2\operatorname{Re}[\langle ADv, \, \hat{x} \rangle \bar{v}]$$

$$+ r^{-1} \{ r\operatorname{div}(A\hat{x}) + (2^{-1}(\eta(r) + \sigma(r) + \gamma_2)$$

$$+ \beta - 2 + r\sigma(r)^{-1}\sigma'(r)) \langle A\hat{x}, \, \hat{x} \rangle \} |v|^2] dx.$$

Using Lemma 2.5 and the above relation we have for any $t_2 \ge s_1 \ge R_8$

$$\begin{split} F(t_{2}; a(\tau)\log r, f_{2}, g_{2}) &- F(s_{1}; a(\tau)\log r, f_{2}, g_{2}) \\ &+ 2C_{3} \bigg(\int_{|x|=t_{2}} - \int_{|x|=s_{1}} \bigg) r^{(\gamma_{2}/2)+\beta-2} \varPhi(r) \sigma(r) \langle A\hat{x}, \hat{x} \rangle |v|^{2} dS \\ &= \int_{s_{1} < |x| < t_{2}} r^{(\gamma_{2}/2)-1} \varPhi(r) [G_{2}(x; v) + 4a(\tau) \langle A\hat{x}, \hat{x} \rangle^{-1} |\langle ADv, \hat{x} \rangle|^{2} \\ &+ 2a(\tau) r^{-1} \{h_{2} + r \langle A\hat{x}, \hat{x} \rangle^{-1} \operatorname{div}(A\hat{x}) - 1\} \operatorname{Re}[\langle ADv, \hat{x} \rangle \bar{v}] \\ &+ \langle A\hat{x}, \hat{x} \rangle a(\tau) r^{-2} [\{\gamma_{2} + \eta(r) - 2 - r \langle A\nabla(\langle A\hat{x}, \hat{x} \rangle^{-1}), \hat{x} \rangle\} a(\tau) \\ &+ h_{2} \{r \langle A\hat{x}, \hat{x} \rangle^{-1} \operatorname{div}(A\hat{x}) - 1\}] |v|^{2} \\ &+ 4C_{3} r^{\beta-1} \sigma(r) \operatorname{Re}[\langle ADv, \hat{x} \rangle \bar{v}] \\ &+ 2C_{3} r^{\beta-2} \langle A\hat{x}, \hat{x} \rangle \sigma(r) \{r \langle A\hat{x}, \hat{x} \rangle^{-1} \operatorname{div}(A\hat{x}) \end{split}$$

$$+ 2^{-1}(\eta(r) + \sigma(r) + \gamma_2) + \beta - 2 + r\sigma(r)^{-1}\sigma'(r) \} |v|^2] dx.$$

By $\alpha > 0$, Lemmas 2.6 and 2.8 there exist some constants $R_{10} \ge R_9 (\ge R_8 \ge R_2)$ and $C_{13} > 0$ such that for any $r \ge \tau \ge R_{10}$ we have

$$\begin{split} G_{2}(x; v) &\geq C_{5}r^{2\beta-2}\sigma(r)|v|^{2} - C_{6}|\langle ADv, \hat{x} \rangle|^{2}, \\ [2a(\tau)r^{-1}\{h_{2} + r\langle A\hat{x}, \hat{x} \rangle^{-1} \operatorname{div}(A\hat{x}) - 1\} + 4C_{3}r^{\beta-1}\sigma(r)]\operatorname{Re}[\langle ADv, \hat{x} \rangle\bar{v}] \\ &\geq -a(\tau)\langle A\hat{x}, \hat{x} \rangle^{-1}|\langle ADv, \hat{x} \rangle|^{2} - C_{13}(r^{\alpha-2} + r^{2\beta-2}\sigma(r)^{2}\tau^{-\alpha})|v|^{2}, \\ a(\tau)r^{-2}\langle A\hat{x}, \hat{x} \rangle[\{\gamma_{2} + \eta(r) - 2 - r\langle A\nabla(\langle A\hat{x}, \hat{x} \rangle^{-1}), \hat{x} \rangle\}a(\tau) \\ &\quad + h_{2}\{r\langle A\hat{x}, \hat{x} \rangle^{-1} \operatorname{div}(A\hat{x}) - 1\}] \\ &\geq -C_{13}r^{2\alpha-2}, \\ 2C_{3}r^{\beta-2}\langle A\hat{x}, \hat{x} \rangle\sigma(r)\{r\langle A\hat{x}, \hat{x} \rangle^{-1} \operatorname{div}(A\hat{x}) \\ &\quad + 2^{-1}(\eta(r) + \sigma(r) + \gamma_{2}) + \beta - 2 + r\sigma(r)^{-1}\sigma'(r)\} \\ &\geq -C_{13}(r^{\beta-2} + r^{\beta-1}|\sigma'(r)|). \end{split}$$

By (F1) ~ (F4) there exists some constant $R_7 \ge R_{10}$ such that for any $r \ge \tau \ge R_7$ we have

$$\begin{aligned} &3a(\tau) \langle A\hat{x}, \, \hat{x} \, \rangle^{-1} - C_6 \geq 0, \\ &C_5 r^{2\beta - 2} \sigma(r) - C_{13} (r^{\alpha - 2} + r^{2\beta - 2} \sigma(r)^2 \tau^{-\alpha} + r^{2\alpha - 2} + r^{\beta - 2} + r^{\beta - 1} |\sigma'(r)|) \geq 0. \end{aligned}$$

Therefore we have for any $t_2 \ge s_1 \ge \tau \ge R_7$

$$F(s_1; a(\tau)\log r, f_2, g_2) + 2C_3 s_1^{(\gamma_2/2) + \beta - 2} \Phi(s_1) \sigma(s_1) \int_{|\mathbf{x}| = s_1} \langle A\hat{x}, \hat{x} \rangle |v|^2 dS$$

$$\leq F(t_2; a(\tau)\log r, f_2, g_2) + 2C_3 t_2^{(\gamma_2/2) + \beta - 2} \Phi(t_2) \sigma(t_2) \int_{|\mathbf{x}| = t_2} \langle A\hat{x}, \hat{x} \rangle |v|^2 dS.$$

By (F2), Lemmas 2.2, 2.6, 2.13 and Definition 2.4, for any $\tau \ge R_7$ there exist some constants $R_{11} \ge \tau \ge R_7$ and $C_{14} > 0$ such that for any $t_2 \ge R_{11}$

$$F(t_{2}; a(\tau)\log r, f_{2}, g_{2}) + 2C_{3}t_{2}^{(\gamma_{2}/2)+\beta-2}\Phi(t_{2})\sigma(t_{2})\int_{|x|=t_{2}} \langle A\hat{x}, \hat{x} \rangle |v|^{2}dS$$

$$\leq C_{14}t_{2}^{2a(\tau)+(\gamma_{2}/2)+\delta_{3}}\int_{|x|=t_{2}} [|\langle ADu, \hat{x} \rangle|^{2} + \{r^{\beta-2}+(q_{1})_{-}\}|u|^{2}]dS.$$

Therefore by Lemma 2.14 we have

$$\begin{aligned} \liminf_{t_2 \to \infty} [F(t_2; a(\tau) \log r, f_2, g_2) \\ &+ 2C_3 t_2^{(\gamma_2/2) + \beta - 2} \Phi(t_2) \sigma(t_2) \int_{|\mathbf{x}| = t_2} \langle A\hat{\mathbf{x}}, \hat{\mathbf{x}} \rangle |v|^2 dS] \le 0, \end{aligned}$$

and then we have for any $s_1 \ge \tau \ge R_7$

$$F(s_1; a(\tau)\log r, f_2, g_2) + 2C_3 \int_{|\mathbf{x}|=s_1} r^{(\gamma_2/2)+\beta-2} \Phi(r)\sigma(r) \langle A\hat{\mathbf{x}}, \hat{\mathbf{x}} \rangle |v|^2 dS \le 0.$$

So at last we have for any $t_1 \ge \tau \ge R_7$

$$\int_{|x|=\tau} [\operatorname{Re}[\langle ADu, \hat{x} \rangle \bar{u}] + a(\tau)r^{-1} \langle A\hat{x}, \hat{x} \rangle |u|^2] dS$$

$$\leq \int_{|x|=\tau_1} [\operatorname{Re}[\langle ADu, \hat{x} \rangle \bar{u}] + a(\tau)r^{-1} \langle A\hat{x}, \hat{x} \rangle |u|^2] dS.$$

Letting $t_1 \to \infty$ along a suitable subsequence, we have, by Lemma 2.14, for any $\tau \geq R_7$

$$\int_{|x|=\tau} [\operatorname{Re}[\langle ADu, \hat{x} \rangle \bar{u}] + a(\tau)r^{-1} \langle A\hat{x}, \hat{x} \rangle |u|^2] dS \leq 0,$$

which is the desired result.

Lemma 2.16. If

$$\liminf_{R\to\infty} R^{\gamma_1/2} \Phi(R) \int_{|x|=R} [|\langle ADu, \hat{x} \rangle|^2 + \{r^{-2} + (q_1)_-\} |u|^2] dS = 0,$$

then for any constant m > 0 we have

$$\int_{|x|>R_0} e^{mr^{\alpha}} [|Du|^2 + \{1+(q_1)_-\}|u|^2] dx < \infty.$$

Proof. Replacing m with m + 2 in Lemma 2.15 we have for any $r \ge R_{12}$

$$\int_{|x|=r} |u|^2 dS \le C_{15} e^{-(m+2)r^{\alpha}},$$

where

$$R_{12} = \max\{R_5, R_7\},\$$

$$C_{15} = C_1 e^{(m+2)R_7^{\alpha}} \int_{|x|=R_7} \langle A\hat{x}, \hat{x} \rangle |u|^2 dS,\$$

 R_5 is the one given in Lemma 2.12 and C_1 is the one given in (A3). So we have

$$\int_{|x|>R_{12}} e^{(m+1)r^{\alpha}} |u|^2 dx \leq C_{15} \int_{R_{12}}^{\infty} e^{-r^{\alpha}} dr < \infty.$$

Let

$$\zeta(r)=e^{(m/2)r^{\alpha}}.$$

444

Then there exists some constant $C_{16} > 0$ such that we have

$$\begin{split} &\int_{|x|>R_{12}} \{r^{\max\{\delta_{1},\delta_{2}\}} \zeta(r)^{2} + \zeta'(r)^{2}\} |u|^{2} dx \leq C_{16} \int_{|x|>R_{12}} e^{(m+1)r^{\alpha}} |u|^{2} dx < \infty, \\ &0 \leq \liminf_{t \to \infty} \int_{t < |x| < t+1} \zeta(r)^{2} |u|^{2} dx \leq \liminf_{t \to \infty} e^{-t^{\alpha}} \int_{t < |x| < t+1} e^{(m+1)r^{\alpha}} |u|^{2} dx = 0. \end{split}$$

Applying Lemma 2.12 we have the assertion.

Now we can prove Theorem 1.1(1).

Proof of Theorem 1.1(1). By Lemma 2.9 we have for any $m \ge 1$ and any $t \ge s \ge R_3$

$$F(s; mr^{\alpha}, f_2, g_2) \le F(t; mr^{\alpha}, f_2, g_2).$$

By Lemma 2.2 and Lemma 2.13 for any $m \ge 1$ there exists some constant $C_{17} > 0$ such that for any $t \ge R_3$ we have

$$F(t; mr^{\alpha}, f_2, g_2) \le C_{17} e^{(2m+1)r^{\alpha}} \int_{|x|=t} [|Du|^2 + \{1 + (q_1)_-\} |u|^2] dS.$$

Now we assume that Theorem 1.1(1) is not true. By Lemma 2.16 we have

$$\liminf_{t\to\infty} F(t; mr^{\alpha}, f_2, g_2) \le 0,$$

and then for any $m \ge 1$ and any $s \ge R_3$ we have

$$F(s; mr^{\alpha}, f_2, g_2) \le 0.$$

On the other hand for a fixed $s \ge R_3$ we have the followings:

 $e^{-2ms^{\alpha}}F(s; mr^{\alpha}, f_2, g_2)$ is a quadratic in m,

the coefficient of m^2 in $e^{-2ms^{\alpha}}F(s; mr^{\alpha}, f_2, g_2)$ is

$$2\alpha^2 s^{2\alpha-2+(\gamma_2/2)} \Phi(s) \int_{|\mathbf{x}|=s} \langle A\hat{\mathbf{x}}, \hat{\mathbf{x}} \rangle |u|^2 dS.$$

Since supp[u] is not a compact set in $\overline{\Omega}$, there exist some constant $R_{13} \ge R_3$ such that we have

$$\int_{|x|=R_{13}} \langle A\hat{x}, \hat{x} \rangle |u|^2 dS > 0.$$

Then there exists some constant $m_0 \ge 1$ such that we have

$$F(R_{13}; m_0 r^{\alpha}, f_2, g_2) > 0,$$

which is a contradiction.

In order to prove Theorem 1.1(2) we prepare the following.

Lemma 2.17. Let $0 \le a < b$ be constants and v(r) be a real-valued function satisfying

$$\lim_{R \to \infty} \sup \{ |v(r) - v(R)| \ |R + a \le r \le R + b \} = 0.$$

Then for any $\varepsilon' > 0$ there exists some constant $R_{14} \ge R_0$ such that for any $R \ge R_{14}$ we have

$$(b-a-\varepsilon') \exp\{v(R)\} \leq \int_{R+a}^{R+b} \exp\{v(r)\} dr \leq (b-a+\varepsilon') \exp\{v(R)\}.$$

Proof. For any $\varepsilon' > 0$ there exists some constant $R_{14} \ge R_0$ such that for any $R \ge R_{14}$ and any r satisfying $R + a \le r \le R + b$ we have

$$|\exp\{v(r) - v(R)\} - 1| < \varepsilon'(b-a)^{-1}.$$

Then we have for any $R \ge R_{14}$

$$\left|\int_{R+a}^{R+b} [\exp\{v(r)-v(R)\}-1]dr\right| < \varepsilon',$$

which shows for any $R \ge R_{14}$

$$-\varepsilon' \leq \int_{R+a}^{R+b} \exp\{v(r) - v(R)\} dr - (b-a) \leq \varepsilon'.$$

Now we give the proof of Theorem 1.1(2).

Proof of Theorem 1.1(2). Let $\varepsilon > 0$ and let for $r \ge R_0$

$$v(r) = -\left\{2^{-1}\gamma_1 + \max\{0, \,\delta_1, \,\delta_2\}\right\} \log r - \frac{1}{2} \int_{R_0}^r \frac{\eta(r) + \sigma(r)}{r} \, dr.$$

Since for any $R \ge R_0$ we have

$$\sup \{ |\nu(r) - \nu(R)| \ |R + (\varepsilon/3) \le r \le R + (2\varepsilon/3) \}$$

$$\le \{ |(\gamma_1/2) + \max\{0, \, \delta_1, \, \delta_2\}| + 2^{-1} \sup_{r \ge R_0} |\eta(r) + \sigma(r)| \} \log \frac{R + (2\varepsilon/3)}{R},$$

$$\lim_{R \to \infty} \sup \{ |\nu(r) - \nu(R)| \ |R + (\varepsilon/3) \le r \le R + (2\varepsilon/3) \} = 0$$

holds. By Lemma 2.17 with $a = \varepsilon/3$, $b = 2\varepsilon/3$ and $\varepsilon' = \varepsilon/6$, we have for any $R \ge R_{14}$

446

LOWER BOUNDS OF EIGENFUNCTIONS

$$6^{-1}\varepsilon R^{-(\gamma_1/2)-\max\{0,\delta_1,\delta_2\}} \Phi(R)^{-1}$$

$$\leq \int_{R+(\varepsilon/3)}^{R+(2\varepsilon/3)} r^{-(\gamma_1/2)-\max\{0,\delta_1,\delta_2\}} \Phi(r)^{-1} dr$$

$$\leq 2^{-1}\varepsilon R^{-(\gamma_1/2)-\max\{0,\delta_1,\delta_2\}} \Phi(R)^{-1}.$$

By Theorem 1.1(1) there exist some constants $R_{15} > R_0$ and $C_{18} > 0$ such that for any $R \ge R_{15}$

$$C_{18}R^{-(\gamma_1/2)}\Phi(R)^{-1} \leq \int_{|x|=R} [|\langle ADu, \hat{x} \rangle|^2 + \{r^{-2} + (q_1)_-\}|u|^2]dS$$

$$\leq \int_{|x|=R} [\langle A\hat{x}, \hat{x} \rangle \langle ADu, \overline{Du} \rangle + \{r^{-2} + (q_1)_-\}|u|^2]dS$$

$$\leq C_1^2 \int_{|x|=R} [|Du|^2 + \{r^{-2} + (q_1)_-\}|u|^2]dS,$$

where $C_1 \ge 1$ is the one given in (A3). Let $\xi_R(r) \in C_0^1(R, R+\varepsilon)$ satisfy the following: $\xi_R(r) = 1$ for $R + (\varepsilon/3) \le r \le R + (2\varepsilon/3), \ 0 \le \xi_R(r) \le 1$ for $R \le r \le R + \varepsilon$ and there exists some constant $C_{19} > 0$ such that for any $R \ge R_0$ and any $r \ge R$ we have $|\xi'_R(r)| \le C_{19}$. Applying Lemma 2.11 with $\psi(r) = \xi_R(r)r^{-\frac{1}{2}\max\{0,\delta_1,\delta_2\}}$, we have for any $R \ge \max\{R_5, R_{14}, R_{15}\}$

$$\begin{split} & 6^{-1} \varepsilon C_{18} R^{-(\gamma_1/2) - \max\{0, \delta_1, \delta_2\}} \Phi(R)^{-1} \\ & \leq \int_{R+(\varepsilon/3)}^{R+(2\varepsilon/3)} C_{18} r^{-(\gamma_1/2) - \max\{0, \delta_1, \delta_2\}} \Phi(r)^{-1} dr \\ & \leq C_1^2 \int_{R<|x|< R+\varepsilon} (\xi_R(r) r^{-\frac{1}{2}\max\{0, \delta_1, \delta_2\}})^2 \{ |Du|^2 + (q_1)_- \} |u|^2 dx \\ & + C_1^2 \int_{R<|x|< R+\varepsilon} r^{-\max\{0, \delta_1, \delta_2\} - 2} |u|^2 dx \\ & \leq C_1^2 C_8 \int_{R<|x|< R+\varepsilon} [1 + 2\{\xi_R'(r)^2 + 4^{-1}(\max\{0, \delta_1, \delta_2\})^2\}] |u|^2 dx \\ & + C_1^2 \int_{R<|x|< R+\varepsilon} |u|^2 dx \\ & \leq C_{20} \int_{R<|x|< R+\varepsilon} |u|^2 dx, \end{split}$$

where

$$C_{20} = C_1^2 [C_8 \{1 + 2C_{19}^2 + 2^{-1} (\max\{0, \delta_1, \delta_2\})^2\} + 1] > 0.$$

This shows the assertion.

447

Lastly we give the proof of Theorem 1.1(3).

Proof of Theorem 1.1(3). By Theorem 1.1(2) with $\varepsilon = 1$ there exist some integer $N_0 \ge R_0$ and some constant $C_{21} > 0$ such that for any integer $N \ge N_0$ we have

$$\int_{N < |x| < N+1} |u|^2 dx \ge C_{21} N^{-(\gamma_1/2) - \max\{0, \delta_1, \delta_2\}} \Phi(N)^{-1} dx$$

Applying Lemma 2.17 with a = 0, b = 1 and $\varepsilon' = 1$, there exists some integer $N_1 \ge R_0$ such that for any integer $N \ge N_1$ we have

$$2N^{-(\gamma_1/2)-\max\{0,\delta_1,\delta_2\}}\Phi(N)^{-1} \ge \int_N^{N+1} r^{-(\gamma_1/2)-\max\{0,\delta_1,\delta_2\}}\Phi(r)^{-1}dr.$$

Let $N_2 = \max\{N_0, N_1\}$. Then for any integer M > 0 we have

$$\int_{N_2}^{N_2+M} |u|^2 dx \ge C_{21} \sum_{n=N_2}^{N_2+M-1} n^{-(\gamma_1/2)-\max\{0,\delta_1,\delta_2\}} \Phi(n)^{-1}$$
$$\ge 2^{-1} C_{21} \int_{N_2}^{N_2+M} r^{-(\gamma_1/2)-\max\{0,\delta_1,\delta_2\}} \Phi(r)^{-1} dr,$$

which shows the assertion.

§3. Proof of Theorems 1.2 and 1.3

Proof of Theorem 1.2. By Lemma 4.1 of Uchiyama [3], Lemma 2.3 is also true under our weak condition (C3)'. So we can follow the proof of Theorem 1.1.

Proof of Theorem 1.3. Lemma 2.3 also holds under our weak condition (C3)'. By Definition 2.4 we have

$$G_i(x; w) = \sigma(r)|\partial_r w|^2 + (2 - \gamma_i - \eta(r))\{|\nabla w|^2 - |\partial_r w|^2\} + 2r \operatorname{Re}[q_2 w \partial_r w] + \operatorname{Re}[\langle \nabla w, \nabla h_i \rangle \overline{w}] + (2r)^{-1} h_i \{\eta(r) + \sigma(r) - \gamma_i - 2\} \operatorname{Re}[\overline{w} \partial_r w] - \{r \partial_r q_1(x) + (\gamma_i + \eta(r))q_1(x) - h_i \operatorname{Re}[q_2]\}|w|^2,$$

where

$$h_i(x) = n - 1 + 2^{-1} \{ \sigma(r) - \eta(r) - \gamma_i \}.$$

Since h_i is a function depending only on r, we have

$$\operatorname{Re}[\langle \nabla w, \nabla h_i \rangle \bar{w}] = h'_i(r) \operatorname{Re}[\bar{w}\partial_r w].$$

So in the estimination of $G_i(x; w)$ given in Lemma 2.7 and Lemma 2.8, we need

448

not use the term $(2 - \gamma_i - \eta(r))\{|\nabla w|^2 - |\partial_r w|^2\}$, which is non-negative by our weak condition (F2)'. Therefore Lemmas 2.7 and 2.8 are also true and we can follow the proof of Theorem 1.1.

References

- [1] Agmon, S., Lower bounds for solutions of Schrödinger equations, J. Analyse Math. 23 (1970), 1-25.
- [2] Eastham, M.S.P. and Kalf, H., Schrödinger-type operators with continuous spectra, Research Notes in Mathematics 65, Pitman Advanced Publishing Program, 1982.
- [3] Uchiyama, J., Polynomial growth or decay of eigenfunctions of second-order elliptic operators, Publ. RIMS, Kyoto Univ., 23(1987), 975-1006.
- [4] Yamada, O., A note on the non-existence of eigenvalues of Schrödinger equations, Memoirs of the Research Institute of Science and Engineering, Ritsumeikan Univ., 32(1977), 1-6.