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JUN UCHIYAMA* and OSANOBU YAMADA**

§ 0. Introduction

In this paper we shall study the lower bounds of polynomial decay order as
|x |->oo of the not identically vanishing solution u(x)EH?oc(Q) of the second
order elliptic equation in Q = {xeR" x| > R0}

~ + J^bi(x)aiJ(x) + ^
ij=i\oxi J \dXj )

where the matrix (atj(x)) is uniformly positive definite, b{(x) (1 < i < n) and q^x)
are real-valued functions, and q2(x) is a complex-valued function. Our aim is to
combine the results given in Uchiyama [3], Yamada [4] and Agmon [1] in one
theorem. We shall state the main parts of the assumptions for the' case a^-(x)
= 5^ (Kronecker's delta) as follows: there exist some constants jS, yl5 y2

 and real-
valued bounded functions a(r), rj(r) such that

j3>0, y i < 2 , 2 - 2 j 3 < y 2 < 2 ,

o-(r)>0, lim?/(r) = 09

a(r)-l\rq2(x)

+ (72 + »/(r))«i(x) + (2 - ^r^Mxl2] < 0,
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q2(x) = 0(r*-2a(r)), \B(x)x\ = 0(r^lr)) as r-» oo,

where B(x) = (dibj(x) — djb^x)) is an n x n matrix. Moreover we assume that
there exist some constants 0 < a < 1, C>0, — o o < ( 5 1 < o o and 62 < ft — 2
such that

f

J/

(qi)-(x)\w(x)\2dx<a

for any w(x)€C$(Q),

)-(x)<Cr52 for |x| > R0,

where (/)_(x) = max{0, -f(x)} for a real-valued function /(x). More detailed
conditions are stated in §1. Then by Theorem 1.2 given in §1 we have

dr u(x)\2dx > 0.

Moreover if

ft (yi/ ) max{ , i, 2>exp J _ fo Wj£ = _|_ oQ5

then we have u(x)^ L2(Q).

Roughly speaking the case a(r) = SQ > 0 (sufficiently small), r\(r) = 0 and y1

= 72 corresponds to the result in Uchiyama [3], the case d(r) = rj(r) = (log r)"1

corresponds to Yamada [4] (but no detailed treatment was given), the case a(r)
= rj(r) = r~E° (e0 > 0 sufficiently small) corresponds to Agmon [1]. Yamada
[4] and Agmon [1] assumed <?i(x) < 0 for r > R0, but we do not assume this
condition in this paper. So our results also can be applied to the atomic-type
many body potential (e.g. see Remark 1.4).

We note that the smaller y1 < 2 we choose, the better estimate as lower
bound we have. In Example 1.7 we choose yl = 2 — 2/J and so we cannot, in
general, let 72 = 7i- But in case <7i(x)<0 for r > R0 and \B(x)x\
= o(rp~l^/a(r)) as r -> oo we have only to choose 72 to satisfy 2 — 2/J < y2 < 2
and y1 < y2, which is the reason that Yamada [4] and Agmon [1] did not
assume the condition depending on y2.

Example 1.7 and Remark 1.8 show the following: let

- Au(x) - (re + X)u(x) + q2(x)u(x) = 0 in Q (9 > 0, - oo < X < oo),
u(x)EH2

oc(Q),
supp[w] is not a compact set in Q.

If
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q2(x) = o(r(m)~l) as r —> oo,

then we have

Jim R(BI2)+e \u(x)\2dx = oo for any e > 0,

u(x)^ L2(Q) for 0 < 9 < 2.

If

q2(x) = ofr^-^ogr)-1) as r — > oo,

then we have

r
lim £(0/2)(log #)£ |w(x)|2dx = + oo for any a > 0,

R ~* co 1
J R<\x\<R+l

u(x)^ L2(Q) for 0 < 0 < 2.

If

q2(x) = 0(r(BI2}~l~*} as r — > oo for some e > 0,

then we have

R<\x\<R+l

u(x)^ L2(Q) for 0 < 0 < 2 ,

which is the best possible result. These results show that the more gently q2(x)
behaves at infinity, the better estimates as lower bounds we have.

Eastham-Kalf [2] has given fruitful informations and rich references on the
problem treated in this paper.

In § 1, the assumptions and main results are explained. We give the proof
of Theorem 1 in §2 and the proof of Theorems 2 and 3 in §3. The method of
proof is similar to the one used in Uchiyama [3] and Eastham-Kalf [2, Theorem
6.3.3].

§1. Assumptions and Main Results

We list up the notations used here, which are the same as given in
Uchiyama [3].

Notations :

+ O/, for £ = ({!,...,£,), l = (rii,...,
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x = x/\x\ and r = \x\ for x = (xl9...9xn)eRn',
dj = d/dXj and dr = d/dr;
DJ = dj + V^M*) and D = (D l 5 . . .?DJ;
f'(r) = (d/dr)f(r) and /"(r) = (d2 / dr2)f(r) ;

f°r a scalar-valued function /(x);
• + £„#„ for a vector- valued function g(x) = (g1(x)9...,gn(x))t,

A = A(x) = (flf/x)) is an n x w matrix;
B = B(x) = curl b(x) = (d f&/(x) — djbt(x)) is an n x n matrix;
(/)_(x) = max{05 — /(x)} > 0 for a real- valued function /(x);
supp[/] denotes the closure of (x|/(x) 7^0};
Cj(Q) denotes the class of j-times continuously differentiable functions ;
CJ

0(Q) = {/(x)eCJ'(O)|supp[/] is a compact set in Q};

L2(Q) =
Jf2

L2
loc(Q) = <f(x)\ for any compact set K c Q, |/(x)|2dx < oo >;

I Jx J
Hm(Q) denotes the class of L2-functions in Q such that all distribution
derivatives up to m belong to L2(Q)\
H™OC(Q) denotes the class of Lfoc-functions in Q such that all distribution
derivatives up to m belong to L2

loc(Q)\

({ -{ }f(x)dS = I f(x)dS - I f(x)dS.
\ J | j c |= t J\x\=s/ J\x\=t J\x\=s

Next we shall state the conditions required in the theorems.

Assumptions :

(Al) each aij(x)EC2(Q) is a real- valued function;
(A2) aij(x) = aji(x);
(A3) there exists some constant C1 > 1 such that for any xeO and any

" we have

(Bl) each 6,-(x) is a real-valued function;
(B2) for any w(x)eHloc(Q) we have fr,(x)w(x), (dibj(x))W(x)eL2

loc(^);
(Cl) ^j(x) is a real- valued function;

(C2) for any w(x)eHle(Q) we have ^^(x)! w(x)eLioc(Q);

(C3) for any w(x)e/fL(^) we have ^/\7q1(x)\w(x)eLlK(Q)->

(Dl) ^2(x) is a complex- valued function;
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(D2) for any w(x)EH}oc(Q) we have y/\q2(x)\ w(x)eLic(D);
(E) there exists some constant R0 > 1 such that Q ^ {xeRn \x\> R0}
(F) there exist some constants a, /?, yl9 y2, al9 a2, a39 a4 and some real-

valued functions rj(r), a(r)EC1(R0, oo) such that the following (Fl) ~
(F9) hold.

(Fl) 0 < a < /?, ̂  > 1, a2 > 1, a3 > 0, a4 > 1 ;
(F2) ff(r) = 0(1) as r -^ oo and a(r) > 0 for r > K0,

rj(r) = 0(1) as r -» oo,
y1 + limsup?/(r) < 2,

r-* oo

(2 - 2)8 < )2 - 2a < 72 + lim inf 77 (r) < y2 + 1™ sup ?/(r) < 2 ;
r~* oo f— * oo

(F3) limr^acr(r)= oo ;
r-* oo

(F4) Umr1" /?(j(r)-1t7f('1) = 0 and lim ̂ -^(rr^'fr) = 0;
r-* oo r-> oo

(F5) limsup^-^ffW"1 [r < /l(x)x, x >-1 < A(x) Vq^x), x >
' +"(71 + '/('•M^itx) + alff(rr1<A(x)x,xy-1\rq2(x)\2

•<A(x)B(x)A(x)x, fl(x)X(x)x>] <0;
(F6) lim^supr2-2^^)"1 [r < /l(x)x, x >-1 < ̂ (xj^^x), x

•<.A(x)B(x)A(x)x, B(x)^(x)x>] < 0;
(F7) \ima(r)~1(aij(x) — 5ij) = Q, where dtj is the kronecker's delta;

(F8) limra(r)-18kaij(x) = 0;

(F9) Iimr2- / '(7(r)-1a lk3,a,y(jc) = 0;
r~* oo J

(Gl) there exist some constants 0 < a5 < 1, — oo < <5X < oo and C2 > 0
such that for any w(x)eC^(Q) we have

(qi)-(x)\w(x)\2dx < a5 \rw(x)\2dx + C2

(G2) there exist some constants 62 < f3 — 2 and C3 > 0 such that for any
r > R0 we have

where Re[z] means the real part of ZE€.

Now we have the

Theorem 1.1. Let u(x) satisfy

- <D, ADyu(x) + {tfi(x) + q2(x)}u(x) = 0 in Q,

u(x)eH?oc(Q),

supp[w] is not a compact set in Q (closure of Q).
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Let (A) ~ (G) hold. Then we have the following :

f
(1) limMR(^/2)0(R) [\(ADu, x> | 2 + {r~2 + (q^).}\u\2~\dS > 0,

R-> oo j
J\x\=R

where

(2) for any e > 0

I
J R<\x\<

\u\2dx > 0;
R<\x\<R + e

(3) moreover if

roo
!^ = +

)Ro

then u(x)^ L2(Q).

Now we shall consider the more special case atj(x) = 6^ under the weaker
conditions.

Theorem 1.2. Let u(x) satisfy

— <D, D yu(x) + (^i(x) + q2(x)}u(x) = 0 in Q,

(**): u(x)eH2
oc(Q),

supp[if] is not a compact set in Q.

We assume (B) ~ (G) with atj(x) = Stj except for (C3). Instead of(C3) we assume
(C3)' for any w(x)eH}oc(Q) we have \drql(x)\1f2w(x)EL2

loc(Q).
Then we have the same results as given in Theorem 1(1) ~ (3), where we replace
a{j(x) with dtj.

Lastly we shall consider the most special case atj(x) = d{j and bt(x) = 0 under the
weakest conditions.

Theorem 1.3. Let u(x) satisfy

- Au(x) + {q,(x) + q2(x)}u(x) = 0 in Q,

(***): u(x)eH2
oc(Q),

supp[w] is not a compact set in Q,

where A is a Laplacian in W. We assume (C) ~ (G) with au(x) = 6tj and b^x)
= 0 except for (C3) and (F2). Instead of (C3) and (F2) we assume (C3)' and
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(F2)' cr(r) = 0(1) as r -» oo and a(r) > 0 for r > R0,
r\(r) = 0(1) as r -> oo,
7i + n(r] ^ 2 /or i=l,2 and r > R0,

(2 - 2j3 <)2 - 2a < y2 + liminff|(r).
r-» oo

Then we have the same results as given in Theorem 1(1) ~ (3), where we replace
a^x) with 5{j and bt(x) with 0.

Remark 1.4. We have the following:

(1) If r\(r) = 0 and cr(r) = v > 0 where v is a constant, then lim R~V/20(R) < oo.
R~* oo

This case is the one considered in Uchiyama [3].
(2) If n(r) = a(r) = (logr)"1, then lim (logR)~l0(R) < oo. This case almost

.R— » oo

meets with Yamada [4] . However [4] did not give its complete proof and
assumed more strict conditions such as q^(x) < 0 for r > R0.

(3) If there exists lim 0(K), the results given in Agmon [1] are almost
—JR— » oo

reproduced. However [1] assumed more strict conditions such as q^x) < 0
for r > R0.

(4) In our assumptions that q±(x) < 0 for r > RQ is not assumed. Then we can
apply our theorem to the atomic type many body potential

where x = (x(1),...,x(JV))eR3JV, x(i) = (x3i_2, x3i-l9 *3;)eR3, ^ > 0, zi and ztj

are real constants. In this case we choose y1 = y2 = 1 and 77 (r) = 0.

Remark 1.5. If we add the following conditions

g2(x) = 0(r^2(j(r)) as r ̂  oo,

\BAx\ = O(rp~l^fa^)) as r — > oo

in (F), then (F5) and (F6) can be replaced with weaker conditions

(F5)'

+ (2 - 7l - /Hr))-1 < Ax, x y2 < ABAx, BAx >] < 0;

(F6)' Iimsupr2-2 ' i(r(r)-1[r<^x, x)'1 < AVqlt Je> + (y2r~* oo

+ (2 - y2 - ?/(r))" x < Ax, x > ~2 < ABAx, BAx >] < 0.

In fact the quantity given in (F5) depends continuously on a1 and a2 under our
additional conditions. So (F5)' leads to (F5). The same happens in (F6).
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Eemark 1.6. If in (F5)

2 — 2a < y1 4- liminf rj(r) < y1 4- limsup rj(r) < 2
ir~* oo r~* oo

holds, then (F6) is automatically satisfied. In fact we have only to choose y2

= yl9 a3 = a1 and 04 = a2 in (F6).

Example L7. In (**) let n = 3 and

) as r— >oo,

b,(x) = - 2-1M2/(r), b2(x) = 2~1b0x1f(r)9 b3(x) = 0,

where

— oo < /I, bQ < oo are constants,

h(x) is a negative continuous homogeneous function of degree 9 > 0,

V(x) is a real-valued function satisfying

V(x) = o(re), drV(x) = o(re~l) as r — > oo,

f(r)eC1(R09 oo) is a real-valued function satisfying

r/'(r) + 2/(r) = o(r(0/2)~ x) as r — > oo.

In this case (B) ~ (E) are satisfied, where we replace (C3) with (C3)'. We choose
in (F) and (G)

0 = 1 + (0/2) > 0, yi = - 0(= 2 - 20), f/(r) = d(r),

Sl = 0, d2 = (9/2) -1=P-2<9 = 519

and let a, al5 a2, a3, ^4 be arbitrary constants satisfying

0 < a < 1 + (6/2) = 0, a1 > 1, a2 > 1, a3 > 0, a4 > 1.

Then we have

Noting

|Bx|2 = 4-1fc2(x2 + x2
2)\rf'(r) + 2/(r)|2,

we have

r'-'Mrr'Crd^M + (?! + f/W)^W + a^W
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+ r-9ff(r)-llrdrV(x) + (a(r) -

crvw-fl)
(j(rr

2\rq2(x)\2 + a2(2 + 9-

Now we shall consider the following three cases.

Case 1. Let

V(x) = o(re), drV(x) = o(re~l) as r — > oo,

q2(x) = o(r(e/2)-1) as r — > oo,

r/'(r) + 2/(r) = o(r(0/2)~ x) as r — > oo.

In this case we choose

d(r) = e,

where e is a constant satisfying 0 < e < 2 + 8. Noting

r~dh(x) < max{h(x)\ \x\ = 1} < 0 for any r > #0,

(F) and (G) are satisfied by any y2e(min{2 — 2a — e, — #},2 — e). Then by

Theorem 1.2 and limr~ f i<P(r) < oo, we have for M(X) satisfying (**)

lim K<'/2>+« |w(x)|2dx - + oo for any e > 0,
jR~* oo I

J R<\x\<R+l

L2(Q) for 0<0<2.

Case 2. Let

V(x) = o(re(log r)"1), drV(x) = o(re~1(log r)"1) as r —> oo,

(?2(^0 == o(r (log f") ) &s r —> oo,

r/'(r) + 2/(r) = o(r(e/2)"1(log r)~1/2) as r —> oo.

In this case we choose for any e > 0

a(r) = eflogr)'1,

and then (F) and (G) are satisfied by any y2E(2 — 2a, 2). So we have by
Theorem 1.2 and lim (log r)~E0(r) < oo

r—> oo

f

Jim #(0/2)(log£)£ |w(x)|2rfx - + oo, for any e > 0,
~*°° JR<\X\<R+I

u(x)^ L2(Q) for 0 < 0 < 2 .
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Case 3. Let for some £ > 0

V(x) = 0(r0-£), drV(x) = OCr0'1"8) as r —» oo,

q2(x) = 0(r(9/2)-1-E) as r-^ oo,

rf'(r) + 2/(r) = 0(r(ei2)~l~£) as r —> oo.

In this case we choose

where &' is a constant satisfying 0 < e' < min{e, /? — a}. Then (F) and (G) are
satisfied by any y2e(2 — 2a, 2). So we have by Theorem 1.2 and lim <p(r) < oo

_ _ _ . , \u(x)\2dx>0,

for 0 < 0 < 2 .

Remark 1.8. The result given in Example 1.7 Case 3 is best possible. In
fact we shall consider the following case in (**):

qi(x)=-re (0>0),

q2(x) = 0?

Then

,, /v^ _ r(2-n)/2 7
W 0 ^ X j - r « /n-

satisfies (**) with Q = E", where Jv(r) denotes the Bessel function of the first kind
of order v. This solution u0(x) satisfies

f
limsup £(0/2) \u0(x)\2dx < + oo,

R-* oo IJR<\X\<R + I

u0(x)eL2(Q) for 0 > 2,

since Jv(r) = O(r~1/2) as r-> oo.

§2. Proof of Theorem 1

In this section all the conditions (A) ~ (G) are assumed. And let M(X)
satisfy (*), which is given in Theorem 1.

Definition 2.1. For real-valued functions p(r)eC2(R0, ao)9f(x)eC1(Q) and
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g(x)eC1(Q), let

k1 = k1(X;p)=-{p'(r)}2(A(x)x,xy,

k2 = k2(x; p) = p"(r)(A(x)x,xy + p'(r)tof{A(x)x},

F ( t ; p , f , g ) =

Lemma 2.2. We /zare /or t > R0

F(t; p , f , g) = e2'"' j [/(x){2|<ylflu, x>| 2 -
J|x|=r

Proof. Noting Definition 2.1, we have the assertion by straight-forward
calculation. D

Lemma 2.3. For any t > s> R0 we have

F ( t ' , p , f 9 g ) - F ( s ' , p , f 9 g )

s<\x\ <t

+ {2r~V< ̂ x, x > + 0 - < ÎP/, x > -/di

•«^Dt), Du> - </lje, x>-1 |</4D«, x>|2}

+ 2Re[ < ÎD!;, (F - x3r)/> < 4^, x >]

+ 2/Re[<« ADi;,

- 2/Re [y^T < ABAx, (Dv - x < Ax , x > ~ 1 < ADu, x » > t;]

c>^«] + Re[< ADu, Fg>tT]

, x> -/div^x))^ -f<A7qlt x>

, x > |2 + 2(/fe2 + gp')Re[< AD», x > 0]

, x> -/div^x))^! -f(AVk,, x> + ̂ 2}|t>|2]
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Proof, See Lemmas 2.7 and 2.8 of Uchiyama [3]. In order to obtain the
above relation, the conditions (A) ~ (E) are fully used. D

The meaning of the following Definition 2.4 can be partly clarified by
Lemma 2.5.

Definition 2.48 For i = 1, 2 and x satisfying r = |x| > R0, let

ht(x) = 2->(r) - r,(r)

where

And for weHfoc(£2), i = 1, 2 and x satisfying r = |x| > R0, let

v ,x>| 2}

+ 2r< Ax, x>" 1

- r<Ax, x>- 1Re[<«x,

- 2< Ax, x >"1Re[v^T< ABAx, (Dw - x< Ax, x >"J

+ 2r< Ax, x>~ 1 Re[<ADw, x>^w] + Re[<ADw, Fft ;>w]

+ (2r)-1^i{'?W + *M + 7( - 2}Re[< ADw, x>w]

- {r< Ax, x)-^^^!, x> + (y, + r,(r))qi - fc,Re[?2]}|w 2

Lemma 2.5. We /zaue ?/ze following relations for i = 1, 2:

(1) /or r > K0

0, - < AP/;, x> -/fdiv(Ax) = - (y, + ̂

2< Ax, x >3r/( + 0, - < AF/;, x > -/;div(Ax)

2r< Ax, x>^« Ax, x)-1)
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= (2 - y, - r,

(2)

|x| <f

+ 2{rp" + rp'< 4x, x >~ * div(4x) + Ji^p'} Re[< ADi;, x > v\

+ <.4x, x>{(y £ + n(r))p'2 + Irp'p" - rp'

+ ^p" + hip\Ax, xy

for t > s > R0.

. Noting Definition 2.4, Lemma 2.3 and &'(r) = (2r)~1{o'(r)
, we have the assertions by direct calculation. D

We prepare an auxiliary Lemma 2.6.

Lemma 2.6. We have the following:

(1) l im(j ( r ) - 1 (<^ J x>- 1) = 0 and li
r— » cx> r— >•

(2) limr(7(r)-1F«^Jc, x» = 0 o«rf lim r(j(r)-1F«^x, x)"1) = 0,
r-* oo "-*

(3) limr2-^cr(r)-1a fc

r— >• oo

»"-* oo

(4) lim ra(rYl{di\(Ax) - (n - l)^1} = 0 and div(^x) = OCr"1) as r — > oo,
r-* oo

(5) lim r2"/?(r(r)"1F{div(Xx)} - 0,
(6) ft7(x) = O(l) as r — > oo /or i = 1, 2,

(7) lim r^Mrr^Mx) = 0 for i = 1, 2.
r-* oo

Proof. We have by direct calculations

F« Ax, x » = < (FA)x, x > + 2r~ J {(A - £)x - x < (A - E)x, x >},

x =

di\(Ax) = (n- l ) r~ x + div{(^l - E ) x } ,



432 JUN UCHIYAMA AND OSANOBU YAMADA

+ a^BiXj)},

ht(x) = n - 1 + 2-1 (ff(r) - i\(r) - 7,} + r< Ax, x >-1 (div(^x) - (n - l)r

+ (n - l)«/lde, x)-1 - 1) + K^FK^x, x)"1), x>,

3,M*) = x,.{2- >'W - n'(r)) + < AJc, x >-' div(Ax)

where E = (<5£j-) is the n x n identity matrix. So noting (¥) and

2fc^. = OCr'1) and d^^ = 0(r~2) as r — * oo,

limr^(r)= +00 (by (F3)),
r-> oo

we have the assertions. D

Lemma 2.70 There exist some constants C4 > 0 and Ri > R0 such that for
any r > R1 and any weH?oc(Q) we have

G!(X; w) > C4a(r){|<4Dw, x>| 2 + r2^2|w|2}.

Proof. In the sequel ef(r)(i = 1, 2,...) means a positive function for r > R0

which tends to 0 as r -» oo. Choose a constant a( satisfying 1 < a{
< al. Using

for any xeQ and any ^,

, Z)w> - <^x? x>-1 |<ylDw, x>|

for any xeQ and any weff£c(fl), and noting Lemma 2.6, conditions (A3), (F7)
and (F8), we have the following:

c,*)'1-
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2r< Ax, x >~ 1Re[< « ADw, V^A)Dw , x >] > - s3(r)a(r) < ADw, Dw >,

-r(Ax, x>- 1 Re[<«x, AryA)Dw, J D w > ] > - e4(r)<r(r)< ADw, Dw >,

- 2< Ax, x >~ 1 Re[ y^T< ̂ B^x, (Dw - x< 4x, x >~ * < 4£>w, x » > w]

, BAxy}l/2\w\

- (Ax, Ay^^ADw, x>|2}1/2

, x>~1Re[</lDw, x>42w]

, x>|2

Noting Definition 2.4 and

we have

- {e5(r)o-(r)r2^2 + S"1/!^! - ap1)"1

Re[</lDw, F/I!>W]> - e5(r)c

, x>w]

Dw, x>|2

- 8-^(1 - ar1)"^^, x>r-2a(r)-1( f7 + a + 7l - 2)2|w|2,

= {{ADw, ~D\vy-(Ax, x>"1 |</lDw, x>|2}

^x; w) > a(r){2-1(l - af1) - Z 6,(r)}< AJC, x>-1 |<>U)w, x> | 2

{(2-r 1 - f 7 ( r ) ) ( l - f l 2 - 1 ) - ( j ( r )Z '
i = l

, Dw > - <ylx, x>"1 |<^Z)w, x>|2}
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+ 4-Hfli ~ a'J^hKA*, x>a(r)r-2}|wi2 .

We note that we have by (Fl) and (F3)

limr^crfr) = + oo.
r-»oo '

Therefore by (A3), (Fl), (F2), (F5) and Lemma 2.6 there exist some constants
C4 > 0 and R1 > R0 such that for any r > R1 we have

x, i)-1 > C4,

(2 - 7l - ,(r))(l - a,1) - <r(r) f e,(r) > 0,

So using

<4Dw, Dw">-<^lx , x>"1 |<^Dw, x > | 2 > 0 ,

we have the assertion. D

Lemma 2.8. There exist some constants C5 > 0, C6 > 0 and R2 > R0 such
that for any r > R2 and w e H?OC(Q) we have

G2(x; w) > C5r2"-2a(r)|w|2 - C6 |<ADw, x>| 2 .

Proof. We use the same estimates as given in the proof of Lemma 2.7
except for the following : Choose a constant a'3 to satisfy 0 < a'3 < a3 , and we
have

- 2< Ax, x>-1Re[v/:^T< ABAx, (Dw - x< Ax, x > " x < ADw, x»>w]

>-a4-1(2-72

- a4(2 - y2 -
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, x> | 2

X Ax,

Combine the above estimates with the remaining ones given in the proof of
Lemma 2.7, and we have by Definition 2.4

G2(x; w) > a(r){2-1 - £ e,(r) - a'^^^Ax, xy^ADw, x> | 2

+ {(2 - 72 -

- {r(Ax, xy
l(AVqlt x>

By (Fl), (F2), (F6), Lemma 2.6 and limr^cr(r) = + oo, there exist some
r-» ao

constants C5 > 0, C6 > 0 and R2 > R0 such that for any r > R2 we have

cr(r){2 — 2^ £i(r) ~ fla }\Ax, x/ > — C6,

(2 - 72 - f(r))(l - a^1) - ff(r) t e,(r) > 0,

, BAx)}

+ 4-^03 -o^'XXx, x>/iir-2cr(r)}

So we have the assertion. D

Lemma 2.9. There exists some constant R3 > R2 such that for any constant
m > 1 and any t, s satisfying t > s > R2 we have

F ( t ; mr*J2, g2) > F(s; mr"J2, g2).

Proof. In Lemma 2.5 let i = 2 and p(r) = mr*. Then we have
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4rp\Ax, xy^^ADv, x>|2 = 4mxi*(Ax9 x)"1!^^, x>|2 ,

2{rp" + rp'(Ax, x^div^x) + fc2p'}Re[<>U>i;, x>iT]

= 2mara~1{a - 1 + r<Ax, x^div^x) + fc2}Re[<4Di;, j c > f T ]

- mara~2{a - 1 + r<

(72 + i/M)p'2 + 2rp>" - rp

+ h2p" + h2p\Ax, x)"1

= m2a2r2a~2{y2 + r](r) + 2a - 2 - r<^P«^x, x)'1), x

By Lemma 2.8 we have for any r > R2

G2(x; v) + 4rp'<^x, x>-1 |<^Di;, x>|2

+ 2{rp" + rp\Ax, x>~1div(Ax) + /*2p'}Re[<,4Di;, x>iT]

5 x>{(72 + *7(r))p'2 + 2rp>" - rp'2<^F«^x, x)'1), x>

+ h2p" + h2p'<Ax, jc>"1div(^x)}|i;|2

(r)\v\2 - C6\(ADv, x>|2 + 3mar*(Ax, xyl\(ADv, x>| 2

[{72 + f/(r) + 2a - 2 - r<^lF«^x, x >~1), x >}mara

- {a - 1 + r<^x, x>

Noting Lemma 2.6 and (F2), there exists some constant J^3 >^2 such that for
any r > R3 and any constant m > 1 we have

, ^c)'1 - C6 > 0,

f(r) + 2a - 2 - r<^F«^x, x)'1), x>}mara

/22{a- 1 +r<^x,x>"1div(^x)} - (a - 1 + r<4x, x>-1div(,4x)

So we have the assertion.

We intend to prove Theorem 1.1(1) by reduction to a contradiction.

Lemma 2.10. If

I
J|x|=U

, x>| 2 + {r~2 + taJ-Jliil2]^ = 0,
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then we have for any m = 0, 1, 2,...

f
Y™+(yiiv-i$>(r)a(r)(\(ADu, i>|2 + r2f*~2\u\2}dx < oo.

J\x\>R0

Proof. By Lemma 2.2 and Lemma 2.6, there exist some constants C7 > 0
and #4 > RQ such that for any t > R4 we have

J\x\=t
x>|2 -

\x\=

So we have

Letting t -> oo along the suitable subsequence in Lemma 2. 5, we have, by
Lemma 2.7, for any s > R^

C4 r^ /2>-10(r)(7(r){|<^Du,x>|2 + r2^-2 |M|2}dx< - F(s; 0,/ls ^),
J|x|>s

which shows that the assertion holds for m = 0. By the above estimate, and by
Definitions 2.1 and 2.4 and Lemma 2.3 we have

4

fli

r(m

JRI<|X|«

F(t j 0, 0, r ^W) — F(.RI '•> 0? ^5' m

_ r (»+D.+(71/2)-i . . - i x *^
J i i

+ {(m+ l)a + 2~1(^(r) + <r(r) + yi)— 1 +/i1}r~1Re[<^Dw, x
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Now we assume that the statement is true for m. Then by (G2), (F3), a < /? and
Lemma 2.6 we have for any t > R1

Ri<\x\<t

-V-^erW-^tw + l)a

, x > + C3ra

< + 00.

On the other hand by Lemma 2.2 we have

|x|=t

| jc|=f

Noting that the assertion holds for m, we have by (F3)

liminf F(t\ 0, 0, r(m+l)a+(^2)-^(r)) < 0.
f-*1 CX3

Therefore we have

-f oo

x

which shows that the assertion is true for m + 1. D

Lemma 2.11. There exist some constants R5 > R0 and C8 > 0 such that for
any real-valued function i/r(r)eCo(#5, oo) we have

f f
^(r)2{|Dw|2 + (qi)_\u\2}dx < C8 {f**v^$(r)2 + ^'W2}|w 2^x.

Jn Jn

Proof. See Lemma 2.3 of Uchiyama [3], where (A), (G) and lim{aij(x)



LOWER BOUNDS OF EIGENFUNCTIONS 439

— dtj} = 0 have been used. Q

Lemma 2.12. Let R5 be the one given in Lemma 2.11. There exists some
constant C9 > 0 such that for any R> R5 and any real-valued function
C(r) 6 C 1 [#5 , oo ) satisfying

+ ' " x < o o ,
\x\>R5

f
liminf C(r)2 |w|2dx - 0,

f-»oo
Jt<\x\<t+l

we have

r< C9 p***[*i.*2}£(r)2 + £(r)2}\u

J\X\>R
C9 CW2 u\2dx.

R<\X\<R+I

Proof. See Lemma 2.4 of Uchiyama [3], which can be obtained from
Lemma 2.11. D

Lemma 2.13. There exist some constants (53 > 0, C10 > 0 and C11 > 0 such
that for any r > R0 we have

Proof. By (F2) there exist some constants <53 > 0 and R6 > RQ such that
for any r > R6 we have

Then we have for any r > R6

dr — 63log— < - dr
2JR0

 r R6 2jRo r

~2jRo r r 3 °8#6

Note that <P(r) is continuous in [#0, oo), where R0 ^ 1- Then letting

f f 1 f^ 6 ^W + crW ) ;> 1C10 = mm< jRg3exp< - dr >, mm r3<P(r) > > 0,

n = m a x < K 6
U j e x p < - -^^ — r f r > , max
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we have the assertion. D

Lemma 2,14. If

f
liminf R(yi/2)0(R) [\<ADu, x> | 2 + {r~2 + (qi)-}\u\2]dS = 0,

J\x\=R

then we have for any constant m > 0

/ |x |>Ro

Proof. By Lemmas 2.10 and 2.13 and (F3) we have for any m > 0

rm\u\2dx < oo.
|x|>R0

Let

Then we have

>x\>R5

rm[rmax{5l^2} + ^nfr'^U^d^ < 00,

J|x |>K5

iminf I ^2\u\2dx < liminf r1 f rm + 1 |w|2rfx = 0.
f-» 00 I f-» CXD I

Jt<|x|<r+l Jt<| jc|<f+l

liminf
f-» 00 I

J

Therefore by Lemma 2.12 we have the assertion.

Lemma 2.15. If

liminf Ryi'2*(K) [K^Du, x>| 2 + {r~2 + (41)_}|w|2]dS = 0,
J|x|=R

then for any constant m > 0 r/zere exists some constant R1>R2, where R2 is the
one given in Lemma 2.8, such that for any t > s > R7 we have

r r
emt" (Ax,xy\u\2dS<ems* (Ax, xy\u\2dS.

J\x\=t J|x|=s

Proof. For fixed m > 0 let

a(r) = 2"1{mara + n}.

By Lemma 2.6 and (F2) there exists some constant Rs > R2 such that for any
r > R8 we have
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< Ax, x > 1 rdiv(^4x) < n.

Then for any t > s > R8 we have by integration by parts

(f -f }emr\Ax,xy\u\2dS
\J|x|=t J|x|=s/

Js<\x\<t

•<,4x, x>|w|2]dx

<2 I emT*di

So we have only to show that there exists some constant R7 > R8 such that for
any T > R7 we have

[Re[<^Z)w, x>w] + a ( r ) r ~ 1 ( A x , x y \ u \ 2 ~ ] d S < 0.
/ | x |=r

Let

p(r) = a(t)logr, g(r) = r~2f l (T).

Then by Definition 2.1 and by direct calculation we have

Therefore by Lemmas 2.2 and 2.3 and by Definition 2.4 we have for any t1 >

>£8

« f \
[Re[<ADM, x>u] + a(T)r - 1 <Ax,x> |

,x|=ti J|x|=t/

= F(t,; «(T)log r, 0, r-2a<") - F(t; a(t)log r, 0, r"2*')

= f r-2«W[<^lDt;, D^y + (q, + Re[?2])|t;|
2

Jt<|x|<ri

x, x> - a(t)<^Je, x>}|t;|2

1[F(s1; a(T)logr,/2, 02)
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v, x > l 2 + /
<ti

{Re[<?2] + fl(T)r~2(rdiv(,4x) - <Ax, x

where C3 is the one given in (G2) and v = v(x; fl(i)log r). By (G2), Lemma 2.6
and 0 < a < /?, there exist some constant C12 > 0 and #9 > R8 such that for any
r > i > R9 we have

x, x>tr(r)}|t;|2

e[«2]).(x)

< Ax, jc» + 2C3^"2<^i, x>a(r)}|i;|2

|2

By integration by parts we have for any t2 > s1 > R8

\x\=t2

- R e [ < ^ D t ; J x

a(r) + y2)

Using Lemma 2.5 and the above relation we have for any t2 > sl > RB

F(t2 ; a(T)log r,/2, g2) - F(si ; a(r)log r,f2, g2)

= I
Jsi<|x|<r

|*|=s,

, x>|2

(Ax, x>a(T)r-2[{y2 + f/(r) - 2 - r<^F«^x, Jc)'1), x

+ h2{r(Ax, xy^di^Ax)

«;, x>iT]
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ff(r) + 72) + /J - 2 + ra(r)~ V(r)}|»|2]dx.

By a > 0, Lemmas 2.6 and 2.8 there exist some constants JR10 > R9(> Rs > R2)
and C13 > 0 such that for any r > T > l^o we have

G2(x; i,) > C5r2*-2<7(r)|i;|2 - C6|<,4Di;, x > l 2 ,

-l}+4C3^-1a(r)]Re[<ADt;, x>if]

i;, x> | 2 - C13(ra-2 + r2f*-2a(r)2t-*)\ 2

r,(r) - 2 - r(AV((Ax, x)-1), x >}a(t)

- 1}]

- 2 + ra(r)- V(r)}

By (Fl) ~ (F4) there exists some constant R7 > R10 such that for any r > T >
we have

Therefore we have for any t2 > s1 > i > R-j

F(si; a(T)logr,/2, g2) + 2C35
(72/2)+^20(s1)(7(s1) < Ax, £

By (F2), Lemmas 2.2, 2.6, 2.13 and Definition 2.4, for any T > R7 there exist
some constants Rll > i > R7 and C14 > 0 such that for any t2 > RU

F(t2; a(i)logr,/2, g2) + 2C3^2/2)^-20(t2)(j(r2) < Ax, x>| t ;

[|<^lDu, x>| 2 +
= J 2

Therefore by Lemma 2.14 we have

liminf[F(t2; a(t)log r,/2, ^2)
~
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and then we have for any sl > t > R7

F(s1;fl(T)logr,/2,02) + 2C3

So at last we have for any t1>i>R1

»

|X|=T

[ ^2>+

J | X | = 5 I

*L™
Letting t± -» oo along a suitable subsequence, we have, by Lemma 2.14, for any

JW-T

which is the desired result. D

Lemma 2.16. If

lirninf Ryi/2®(R) [\<ADu, x>|2 + {r~2 + (qj_}\u\2~\dS = 0,

then for any constant m > 0 we have

Proof. Replacing m with m + 2 in Lemma 2.15 we have for any r > R12

I \u\2dS<C^e-(m + 2)rae

J\x\=r
'15

'1*1

where

0 r«av /P J? \
1x^2 — IIld.A1/vg, IV-7 J,

C1S

K5 is the one given in Lemma 2.12 and C1 is the one given in (A3). So we have

= C^(m+2)^ f <^x, x
J|x|=J?7

PCX)

e(m+V"\u\2dx < C15 e~r*dr < oo.

Let

((r) = e(m/2)r".
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Then there exists some constant C16 > 0 such that we have

f f
(rmax{5l'd2}C(r)2 + C(r)2}\u\2dx < C16 e(m+l^\u\2dx < oo,

f f
0 < liminf t(r)2\u\2dx < liminf e~tx e(m+1»°\u\2dx = 0.

f-* oo I t —* ao I

Applying Lemma 2.12 we have the assertion. D

Now we can prove Theorem 1.1(1).

Proof of Theorem 1.1(1). By Lemma 2.9 we have for any m > 1 and any
t > s > #3

F(s; mra,/2, g2) < F(f, mra,/2, g2).

By Lemma 2.2 and Lemma 2.13 for any m > 1 there exists some constant C17

> 0 such that for any t > R3 we have

F ( t ; mr*,f2, g2) < C17e
(2m + 1)r" f [|Dw|2 + {1 + (qi)_}\u\2]dS.

J|x|=f

Now we assume that Theorem 1.1(1) is not true. By Lemma 2.16 we have

and then for any m > 1 and any s > R3 we have

On the other hand for a fixed s> R3 we have the folio wings :

e~2ms<xF(si mr*,f2, g2) is a quadratic in m,

the coefficient of m2 in e~2ms*F(s; mra,/2, g2) is

|x|=s

Since supp[w] is not a compact set in Q, there exist some constant R13 >
such that we have

Then there exists some constant m0 > 1 such that we have
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which is a contradiction. D

In order to prove Theorem 1.1(2) we prepare the following.

Lemma 2.17. Let 0 < a < b be constants and v(r) be a real-valued function
satisfying

jknsup{|v(r)-v(#)| R + a <r < R + b} = 0.

Then for any &' > 0 there exists some constant R14 > R0 such that for any
R > #14 we have

fR + b
(b-a- ef) exp{v(#)} < exp{v(r)}dr < (b - a + e')exp{v(#)}.

JR+a

Proof. For any e' > 0 there exists some constant R14 > R0 such that for
any R > R14 and any r satisfying R + a <r < R + b we have

\exp{v(r)-v(R)}-l\<s'(b-a)-1.

Then we have for any R > R14

R + b

[exp{v(r) - v(R)} - l]rfr
R + a

which shows for any R > R14

-s'< r+*exp{v(r) - v(R)}dr - (b - a) < ef.
JR + a I—I

Now we give the proof of Theorem 1.1(2).

Proof of Theorem 1.1(2). Let s > 0 and let for r > R0

v(r) = - {2-^! + max{0, Sl9 62}}logr - ± /v; ' ^''dr.
2JR0

 r

Since for any R > R0 we have

sup{|v(r) - v(R)\ \R + (e/3) < r < R + (2e/3)}

4- (2e/3)
2) + max{0? (51? ^2}l + 2 1sup | iy(r) -

lim sup{|v(r) - v(R)\ \R + (e/3) < r < R 4- (2e/3)} = 0
R—* oo '

holds. By Lemma 2.17 with a = e/3, b = 2e/3 and e; = e/6, we have for any
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<2-1eK-(yi/2)"max{0 '5l 'a2}0(K)-1.

By Theorem 1.1(1) there exist some constants R15 > R0 and C18 > 0 such that
for any R > R15

[ |<^>W ,x>|2 + {r-2 + (<h)-}|fc
\x\=R

c2
1

'\x\=R

where C1 > 1 is the one given in (A3). Let £K(r)eCo(jR, R + e) satisfy the
following: <^(r) = 1 for R + (e/3) < r < R + (2e/3), 0 < £R(r) < 1 for R < r < R
+ s and there exists some constant C19 > 0 such that for any R > R0 and any
r > R we have \£'R(r)\ < C19. Applying Lemma 2.11 with \//(r)
= £R(r)r-±max(0>dl>82\ we have for any R > max{R5, R14, R15}

R(r)r-*™^>^)2{\Du\2 + (qi}_}\u\2dx
R<\x\<R + E

C2

R<\x\<R + B

r)2 + 4 ^maxlO, 5l9 ̂ 2})2}1IMI2^
R<\x\<R + E

\u\2dx
R<\x\<R + s

< C20 f \u\2dx,
J R<\x\<R + E

where

C2o = ^^[Cgll + 2Ci2
9 + 2-1(max{0, dl9 6 2 } ) 2 } + 1] > 0.

This shows the assertion.
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Lastly we give the proof of Theorem 1.1(3).

Proof of Theorem 1.1(3). By Theorem 1.1(2) with s = 1 there exist some
integer N0 > R0 and some constant C21 > 0 such that for any integer N > N0

we have

\u\2dx
JN<\X\<N+I

Applying Lemma 2.17 with a = 0, b = 1 and e' = 1, there exists some integer
N1 > R0 such that for any integer N > N1 we have

fN+l
2jyr-(yi/2)-max{0,<§i,<52}<|j/'jy-\-l > j p-(yi/2)-max{0,<5i >d2}@(r\~~ l fly

JN

Let N2 = max (A/o, JVJ. Then for any integer M > 0 we have

\U\2dx > C221

JN2

which shows the assertion. D

§1 Proof of Theorems 1.2 and 1.3

Proof of Theorem 1.2. By Lemma 4.1 of Uchiyama [3], Lemma 2.3 is also
true under our weak condition (C3)'. So we can follow the proof of Theorem
1.1. D

Proof of Theorem 1.3. Lemma 2.3 also holds under our weak condition
(C3)'. By Definition 2.4 we have

Gt(xi w) = a(r)\Brw\2 + (2 - 7i - ^

+ Re[< Fw, Ffc, >w] +

where

Since fc£ is a function depending only on r, we have

Re [ < F w, Vhi > w] = hi (r) Re [w5rw] .

So in the estimination of G,-(x; w) given in Lemma 2.7 and Lemma 2.8, we need
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not use the term (2 - yi - r\(r)){\Vw\2 - |<3rw|2}, which is non-negative by our
weak condition (F2)'. Therefore Lemmas 2.7 and 2.8 are also true and we can
follow the proof of Theorem 1.1. Q
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