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Abstract

We define graph Temperley-Lieb algebras, which are certain generalisations of Temperley-Lieb
algebras including those appropriate for building the transfer matrices for lattice models in arbitrary
dimensions. We construct various representations for these algebras, which are parameterised by a
scalar Q. In particular we give the generically irreducible representations associated with statistical
mechanical models. These representations are well defined for all Q, whereas the representations
coming directly from physical models are typically only defined for certain values of Q. We also
give representations with bases derived from the partitions of n distinguishable objects (n is the
number of nodes in the graph). We show how to compute the dimensions of these representations
by a diagrammatic technique.

§ 1. Introduction

There has been much diverse interest recently in Temperley-Lieb (TL)
algebras, Tn(Q) [1, 2, 3,4], which may be defined as follows. Associate a
generator Ut with each node i of an An graph (Figure 1). The generators have
relations

UiUjUi = Ui ••• if nodes i and j are connected by a bond, (1)

UiUj=UjUi ••• otherwise.

O - O - ® - O - 9 - 0 - ©

Figure 1 : The An graph for n = 1

The physical motivation for the study of these algebras comes from the algebraic
formulation of the transfer matrix for certain 2d statistical mechanical models
including the Q -state Potts model (see, for example, [2]).

In the present paper we consider the effect of generalising the graph
associated with the defining relations (1) to any graph constructed as
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follows. Form a 'pregraph' from a collection of nodes or 'sites' somehow
connected by bonds, the graph is obtained by decorating the middle of every
bond with a further site1. The algebras associated with the relations (1) in such
cases will be called graph Temperley-Lieb (GTL) algebras. The algebra
associated with a given pregraph G will be denoted GT(g)(so T2n-i(Q) becomes
AnT(Q) and so on). We examine the representation theory for these new
algebras. The immediate application of this work is in the 3d Potts spin and
lattice gauge models, for which the algebra generators for an appropriate graph
build the 2d layer transfer matrix. The identification of the irreducible
representation associated with the free energy in these models vastly simplifies
the computation of the free energy on the finite lattice. The breakdown of the
g-generic structure of the algebra should signal a 3d series of critical field theory
limits analogous to the central charge c < 1 conformal series (Q = 4cos2(?r/r);
reZ, r 7^0) in 2d.

In the next section we give the representations of graph Temperley-Lieb
algebras (with Q positive integer) associated with Potts models, and describe the
quotient relations obeyed by these representations (a proof of this result is
outlined in appendix Al, while the irreducible content of these representations is
discussed in A2). In section 3 we give representations (with Q an indeterminate)
associated with the set of partitions of n distinguishable objects (the order of this
set is given in appendix A3). We identify generically irreducible subspaces and
determine the corresponding quotient relations. In section 4 we discuss the
physical consequences of these results.

§2. The Potts Representation

2.1 Construction

For definiteness, then, let us start by considering the algebras appropriate
for the 3d Potts models. The pregraphs here are square lattices, so the graphs
are edge centred square lattices. The 3d Potts /. m-site layer transfer matrix may
be written

n (i + »G-1 /2E/y) mlayer sites i. layer bonds ij \^)

where v = (exp(jS) — 1) and /? is the coupling parameter, as in the 2d case
[2]. The layer site label (£.) may be regarded as a vector specifying a site
position in the layer i. = (z l 5 i2) (i1el,...9l',i2el,...9m); and the bond label (ij)
as a pair of vectors specifying adjacent (ie. bond connected) sites in the layer.

1 There are many further generalisations possible, involving directed bonds, multiple bonds and so
on. Our choice is motivated by physical considerations (see later) given which such further
complications are as yet superfluous.
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For more general pregraphs the site label is not naturally specified as a 2d
vector. We will, however, retain the distinction of indexing pregraph sites with
a dotted letter, and bonds with the associated pair of sites. This pregraph
notation seems to be more convenient in general than labelling generators with a
node of the derived graph (as is done in the relations (1)). Henceforward we will
always specify algebras by their pregraph, and the relations (1) (which apply to
the graph) should be interpretted accordingly.

The matrices UL and Utj are given as follows:

UL, I7yeEnd( (x) F,)
ii = l , . . . , Z ; i 2 = l m W

where VL is the Q dimensional vector space with basis the possible Potts spin
variable values on site (i.), say SLE{!,..., Q}. Then:

UL acts trivially on Vjf unless i. = j.(ie. ii = j± and i2 =7*2)5
UL on VL is Q~1 /2M, where M is the Q-by-Q matrix with all entries unity.

Meanwhile:

Utj acts trivially on Vkm unless i. = k. or j. = k.;
I7y on Vim ® Vj. is diagonal (Ql'2d(su s,,)).

Note that the generalisation of this definition to arbitrary graphs is
automatic.

2.2. The Potts quotient algebra

We may think of these matrices as defining a finite dimensional 'Potts'
algebra for each integer Q (the dimension of such an algebra is < Qlm) or we may
think of them as giving a representation of the abstract algebra associated with
the original graph. The quotient relations describing the place of the Potts
algebra in the abstract algebra are not obvious, but note, for instance, that the
Potts representation is real and symmetric, while representations need not be
unitarisable in general. The abstract algebra can be finite dimensional only if
the pregraph has no closed loops and no nodes with coordination number
greater than 3. We will give a further discussion of this result elsewhere.

In any case the Potts representation must obey at least one set of quotient
relation on physical grounds, if they are not already a consequence of the
relations (1). That is, the transfer matrix T(0) should be a primitive idempotent
(at least up to normalisation). For the AnT(Q) algebras this is already a
consequence of the original relations, but in other cases it simply amounts to the
statement that at high temperatures the Potts model is disordered. The explicit
relations may be determined by reference to inhomogeneous Potts model
partition functions with free boundary conditions in the layering direction.

By similar arguments a minimal list of sets of quotient relations appropriate
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for such physical models (and all of which are trivial in the An case) is indicated
as follows. For W any word of length O(W) in the generators {C7 f j, Utj} and

UJQ112) (4)

where b(N} is any N element subset of nodes in the pregraph, so 0 < N < n, and,
for example,

all pregraph nodes i. l~v

then:

(mod. Rb(M, V b(M) c b(N)) (6)

where &,(iv)(WK) i§ a scalar, and in particular, generically ^bw(W) = 0(0(W)
> 0). The proof is outlined in the appendix Al.

This means that we may, in principle, associate not necessarily distinct
irreducible representations with the left ideals generated from each
Rb(N) (mod.

§3. Partition Representations

3.1. The

Note that for Q = 0 the Potts representation is undefined, and for Q = 1 it
is 1 dimensional (Ut. = Utj = 1 V i, j). Otherwise the representations grow
rapidly with /, m and it is possible to show directly that they are reducible (see
appendix A2). Furthermore, it is not obvious how to generalise to non-integer
g, although the defining relations make no obvious distinction. Let us proceed
by constructing 2 further types of representation from a different (although
related) source. One of these types is generically irreducible and both are
defined for all Q. The idea for these representations comes from the Whitney
polynomial [2] for certain non-planar graphs which we will describe
later. However, the basis is most naturally described in a more general
framework.

Consider the set of partitions of n distinguishable objects. For example
with n= 1,2,3 we have {(!)}, {(1)(2), (12)}, {(1)(2)(3), (12) (3), (13) (2), (23) (1),
(123)}. Another useful notation here is to replace the list of all partitions in
each case with just the list of all partition shapes (as in Young diagrams [9])
preceded by their corresponding multiplicities (if other than unity). In this
scheme the n = 3 set becomes {(I3), 3. (21), (3)}. We will define ^n to be the
number of partitions in each case. Then for n = 1,2,3,4,5,6,7,8 we have ^n

= 1,2,5,15,52,203,877,4140, and so on. We will show how to compute these
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numbers in the appendix A3.
If 2 objects (a, b say) are clustered together in a partition we say that they

are connected, and write a ~ b. Of course a ~ b and b ~ c implies a ~ c.
Now associate to each partition the set of possible partitions of its

connected clusters into 2 'teams' (including the possibility of empty teams). If a
partition has c clusters then the set has 2C elements. For example the set for
(13)(2) is {((13)(2), 0), ((13), (2)), ((2), (13)), (0, (13) (2))}. Here ((13)(2), 0) means
the element in which the clusters (13) and (2) are in the first team, and the second
team is empty. The union of such sets over the partitions then provides a basis
for a representation of any GTL algebra with an n node pregraph, as we will see
shortly.

It is convenient to partially order the union by putting all the elements with
i cluster '2nd teams' before all those with j cluster 2nd teams if i < j; and within
this ordering by putting all elements with d clusters in total before those with e
clusters in total if d > e. The number of elements in the union with i cluster 2nd

teams, &*n(i)9 is computed in the appendix. Note that we have put the (1")
partitions first in each fixed i subset.

3.2. Representation type 1

Assign one distinguishable object (from n) to each site of the pregraph. Then
numbering elements in the union from 1,..., £fn(Q), £fn(0) + 1,..., «^B(0)
+ &*n(l\..., Xi^»(0 ^e representation is given by

(Ut)ki = Q8kl/2 ... if completely disconnecting the object
at site i. of the pregraph and putting it in
the 1st team takes element k to /,

= 0 ... otherwise;
(?)

(Utj)kl = Qdkl/2 ••• if connecting the objects
at sites i. and j. of the pregraph, and putting
the resultant cluster in the 2nd team if i and or
j is in the second team, takes element k to /,

= 0 ... otherwise.

To see that this defines a representation note (cf. the defining relations):
i) that the repeated application of Uim or Utj simply results in the

appearance of a factor of Q1/2;
ii) that the order of application of any 2 operators is unimportant if they

are not of the form Uim and Ujk with either i. = j. or i. = k.;
iii) that disconnecting an object, connecting it and then disconnecting it

again is equivalent to disconnecting it;
and iv) that connecting 2 objects, disconnecting one and then reconnecting

it is equivalent to connecting the 2 objects. QED.
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Note that no operation increases the number of clusters in the second team,
so we have a sequence of invariant subspaces filtered by this number. Quo-
tienting by elements with second team occupancy < i we get representations for
each fixed L We call the fixed i basis the 'full' partition basis for each L

Note that all these bases depend on the pregraph only in as much as they
depend on n.

3.3 Representation type 2

The above representations are not, in general, irreducible. Fixing i, there is
an invariant subspace associated with the sub-basis of elements with the
property that they can be realised as 'boundary states' of walks on an extended
pregraph (e. p. graph) constructed as follows (see also Figure 2).

Step 1

Step 2

Figure 2: Constructing the e. p. graph for the pregraph D(
5
1}
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Step (1): To each node of the pregraph associate an infinite tower of nodes
connected by a linear chain of bonds. The original node is the top level node of
the tower (call it level 0).

Step (2): Considering the original pregraph, join the nodes at each given
level in the resultant set of towers in the same way as the original nodes at level
0 are joined to construct the pregraph.

Now consider again the set of partitions of n distinguishable objects into
clusters, with i clusters in the second team. The subset of elements we want for
an invariant subspace is that set for which it is possible to construct non-
intersecting paths along bonds of the extended pregraph such that each set of
connected nodes in the partition at level 0 is joined by a path, and that each
cluster in the second team is joined by a path to a level with all nodes otherwise
pathless.

To see this note from the definition (7) and the subsequent quotienting
procedure that each UL or Utj has at most one non-zero entry per
column. Thus starting from any basis state corresponding to all nodes
disconnected, and acting with some UL or Uij9 the effect is just to take us to
another (or possibly the same) basis state. The new state is obtained from the
old one by either connecting 2 nodes (acting with UtJ) or disconnecting one
(l/J. Any word in the (7-operators (W, say) takes us from the original basis
state to another by a sequence of moves corresponding to connecting nodes or
disconnecting a node. Writing the disconnected basis state as |0 > we can
express the effect of the sequence of moves by

W\0> = kw\w>,

where |w > is the basis state reached by the action of P^and kw is some scalar
function of g1/2(see below). Note that we have distinguished between the labels
W and w since, in general, more than one word W will produce a given state
|w >.

Now each of the moves in turn may be represented diagramatically by
adding a 'layer' (consisting of new level 0 pregraph and bonds connecting each
node to the corresponding node in the next level) to the top of the
e. p. graph. The layer must contain appropriate sections of paths, or 'steps', on
some bonds. If a path is present between two nodes then they are connected,
otherwise they are disconnected. Thus the required layer for a Uim contains
steps on every bond between levels except at node i, and no paths between nodes
within a level; while the layer for a Utj contains steps on every bond between
levels and a step between nodes i and j within a level. The effect of a UL or U^
on the present state depends only on the resultant connectivity of nodes at level
0 (although in general this connectivity will be achieved by paths passing
through other levels in the e. p. graph), so any paths or parts of paths irrelevant
to this connectivity, such as cul-de-sacs, may be ignored. This is why we have
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Figure 3: Realisation of the basis state ((14)(25)(3), (6)) for the pregraph D$\ Note that node 6 at

level 0 is connected to the corresponding node in the bottom level shown, which is otherwise totally

disconnected.

described this realisation of basis states as 'boundary states' of walks on the
e. p. graph.

We note immediately that, for an arbitrary pregraph, not all connectivities
can be realised in this way, thus not all basis states are in the invariant
subspace. We can determine the invariant subspace by carrying out a
programme of adding layers with steps to the e.p.graph with no paths (i.e. acting
with Uim and Utj on some totally disconnected basis state) and noting the
accessible connectivities, until the set of connectivities so produced becomes
fixed.

For example, in the case shown in figure 2 (i.e. for n = 6 with the pregraph
D^), the basis state ((14)(25)(36), 0) is not accessible, since any connection
between 1 and 4 leaves room for only one non-intersecting path from 2,3 to 5,6,
while we require two. By the same measure ((14)(25)(3)(6),0) is possible.
Similarly, in the case i = 1 the state ((14)(25)(6), (3)) is not accessible, while the
state ((14) (25) (3), (6)) is accessible. An appropriate arrangement of paths in this
case is shown by the thick lines in Figure 3 (note that since we need only keep
information about the connectivity of the top level it is often possible, and
convenient, to compose the effects of several layers as defined above into one
layer, which may then isolate or connect several nodes at once).

Carrying out the programme indicated above for the D(
5
1) pregraph shown

here we find that 198 out of 203 i = 0 basis states are accessible. In fact we
have computed the i = 0 accessible subspace for many pregraphs by this
straightforward procedure. But the results show no simple patterns as yet to
suggest a more sophisticated algorithm in general. We will discuss this problem
further elsewhere.

For another example, if the pregraph is A4 then the extended pregraph is a
4 site wide square lattice. Numbering the nodes of the pregraph (at level 0 on
the e. p. graph) from one end to the other we see that we have excluded the basis
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state ((13)(24), 0) from the subspace, since there is no path on the extended
pregraph from 1 to 3 which does not cross any path from 2 to 4. Similarly
((13)(4), (2)) is excluded, since any path from 1 to 3 isolates 2 from all pathless
levels.

In general the invariant subspaces correspond to the left ideals generated
from Rbw(mod Rb(J) b(j} c b(i)) in the quotient algebra in which jRb(J)(Vfo0); j
= 0,..., i) is a primitive idempotent, as follows. The basis element with all sites
isolated, and nodes in b(i) in the second team, corresponds to Rb(l). Multiplying
(on the left) by any pre-graph bond U^ which does not change the second team
occupancy gives the partition with the appropriate pair of sites connected, and
so on. This process just corresponds to reproducing the abovementioned paths
at the operator level. An example of an excluded element, at second team
occupancy i = 2 in the A4 case, is U12 ^3 U4, since U1 U3 U4 = 0 (mod Rbw9 fo

(1)

- {i. = 2}) implies U^U^U^U^U^ = 0.
For completeness we note that, up to overall factors of g1/2, the element of

the left ideal generated from U1U2U3U4U5 represented in figure 3 may be
written

173 l/23 U2 U12 U24(U1)U2 U4 U23 U24U45(U, U2 U3 U4U5)U, U2 U3 U4U5.

This product, taken from left to right, can be extracted from the figure by
reading from top to bottom. The bracketed factors each reduce to Q1/2 on
application of the defining relations (from eqn(l)).

In general if we replace every factor of the form UL by (ULQ1/2) and every
factor of the form Utj by (UtjQ~112) in a word PTthen the factor M61/2) in PF|0 >
= kw(Q1/2)\w > becomes just Qc. Here C is the number of isolated paths,
including single nodes, in the interior of the e.p.graph (i.e. those which do not
affect the level 0 connectivity). In our example, for instance, the above
renormalisation changes each of the bracketed factors to Q, corresponding to the
presence of the isolated node in position 1 at level 3 (that is the fourth level
down) and the isolated nodes in positions 1,2, 3,4 and 5 at level 4 (the bottom
level shown). We will prove the general result in section 3.6.

In the corresponding representations Tk(v) is, up to similarity transfor-
mations, the transfer matrix for the dichromatic polynomial [2] (Q is the other
parameter) associated with an extended pregraph of just k levels. This is,
perhaps, a strange object to consider. Nonetheless, it provided the stimulation
for these ideas! The extended pregraph of k levels is a useful notion for later
on. We will adopt the notation Gk for such an extension of the graph G.

3.4 The fixed n pregraph dependence of type 2 bases

Note, from the generalised version of the definition (1), that if an algebra has
a pregraph G, and another algebra has a pregraph H, then GT(Q) is a subalgebra
of HT(Q) if H contains G as a subgraph. The 'maximal' pregraph with n nodes



494 PAUL P. MARTIN

is the one in which every site is connected to every other by a bond. We
sometimes call this the infinite dimensional case, in reference to the associated
physical models. At the other extreme, a graph with more than one connected
component has an algebra corresponding to the direct product of commuting
algebras associated with each connected component.

In the case i = 0, note that the algebras for the pregraphs in which at least
one site is connected by a bond to every other have an irreducible representation
given by the full partition basis (i = 0), since in these cases every partition may
be realised from the (ln) partition by some sequence of moves in which sites are
connected along bonds or sites are isolated. The instances in which such
pregraphs are also tree graphs are unique for each n (up to permutations of
sites), having one coordination number (n — 1) site and (n — 1) coordination
number one sites. These cases are called 'daisy' graphs.

For general i only the algebra for the maximal pregraph always has an
irreducible representation associated with the full fixed i basis.

As bonds are removed from the maximal pregraph, then, the subspaces
accessed from (r)(ie. the (ln) elements in any fixed i basis) in the way described
above occasionally shrink. One possible limit of this procedure is the case in
which all site coordination numbers are 2 (exgept for a pair of coordination
number 1 sites at the ends of the chain of bonds). We sometimes call this An

case the 'linear9 pregraph. This case is the original TL algebra for which such a
sub-basis was discussed in Martin 1986 [6]. Here the number of accessible
partitions is Cn= 1,2,5,14,42,132,... with

lim Cn+1/Cn = 4
n->oo ioj

[7]2. Of course the linear pregraph is not the unique connected endpoint of
such a bond dissolution process (but that's another story). The assymptotic
growth rate above tells us that every positive integer Q value below 4 has an
exceptional (ie. non-generic) TL algebra associated for large enough n, as we will
see shortly.

i 2

Figure 4: The maximal (A^) and daisy/linear (^3) pregraphs for n = 3

2 The number of accessible basis elements for linear pregraphs and general i is, by continuity [8],
the dimension of the irreducible representation of the symmetric group S2n corresponding to the 2

row tableau shape (n + i, n — i).
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3.5 Generic irreducibility of type 2 representations

First let us show that Rb(» is, at least up to quotients, a primitive
idempotent, and hence that (provided the algebra is semi-simple) the represen-
tation associated with the left ideal is irreducible (otherwise it is merely
indecomposable).

For given n, consider the tree of pregraphs related by bond dissolutions
starting from the maximal case and ending with tree graphs (which become
disconnected if any further bonds are dissolved). For n = 1, 2 the endpoints
coincide. For n = 3 we have just 2 possible connected graphs, Figure 4. In
both cases the i = 0 irreducible subspace coincides with the original 5
dimensional space, but for A(^ we must impose the non-trivial quotient relation

U0U1U2U01U12U20U0U1U2 = y(QV2)U0U1U2 (9)

(where y is known - see later) on the abstract algebra (1) before Rb(0) = Q~3/2 U0

U! U2 becomes primitive.
For n = 5 the daisy graph endpoint is shown in Figure 5. For the

corresponding algebra Rb(J) is a primitive idempotent modulo quotient relations
of the form

<

® d

{

4

0

)

3

Figure 5: The daisy pregraph (D^) for n = 5

KM') f 01 ̂ 03I/o. ̂ 02 U04 l/o. l/oi £/03 l/o. U021/04^(0 = x(Ql/2)RbW (10)

To determine the list of such relations in general is difficult and, in fact,
unnecessary.

To see that RbW is primitive (modulo such relations) in general, ie. for any
graph, note that all the Ujm are lower triangular in any representation with fixed
second team occupancy i, so that (Rbd))kk is zero unless all the (Uj)kk(j.$b(i)) are
non-zero. Each (Uj)kk is non-zero only if disconnecting a site leaves the basis
element fe alone, so for any partition other than of (1") type some such matrix
element must be zero. Similarly, for (1") type elements of the form ((m1)(m2)...
(mn_ f), (m n _j + 1 ) . . . (mn)) where any mp > n_ I-^b ( 0 , the action of Rb(l) is to reduce the
number of second team clusters. Conversely for the unique (1") type element of
the form ((m1)(m2)...(m l l_ i), (mn_ i + 1) . . . (mj) where b(i} = {mn_ i + 1 , . . . , mn} (num-
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bered k = 1, say), no (Uj)ll (j.$b(i)) is zero. QED. Alternatively, note that the
action of Rb(l) on any element of the fixed second team occupancy i subset is
either to take it to "zero" (ie. an element of occupancy < i) or to take it to the
element k = 1 above, since ^^disconnects and puts into the first team all nodes
$b(i\ Thus either the result has less than i clusters in the second team or it is
precisely k = 1.

This argument also allows a straightforward determination of the required
quotient relations in each case, eg. the form of x(Q1/2) in equation (10).

The representations on the accessible subspaces for any pregraph are thus
irreducible provided the algebra is semi-simple.

3.6 Quotient relations for type 2 representations

It follows from the treatment of the Potts representation in appendix Al,
and in particular the e. p. graph representation of words W(Q\ together with the
discussion in section 3.3, that the quotient relations generically coincide (when
QeZ+, and formally regarding Q as an indeterminate integer in Al).

To see this note the following. Forming the word W'(Q) (where W
= Rb(M) WRb(M)) in the e. p. graph, it describes some connectivity from one end of
the e. p. graph to the other, and some connectivity of nodes at each end of the
e. p. graph, together with some isolated clusters. From the definition of type 2
representations we will show that here, as in the Potts case, either the number of
distinct lines passing through the diagram decreases or ib(M)(W) (defined by
analogy with eqn(6)) just picks up a factor of Q for each isolated cluster.

Specifically, note that all the UL matrices in eqn(7) may be arranged to be
lower triangular ; and the Utj matrices upper triangular. There is, therefore, an
equivalent representation (for 2^0) with the non-vanishing matrix elements in
eqn(7) replaced by

Recall that the quotient relations are basis independent. Then note that:

(i) introducing U^Q'1'2 into W(Q) cannot change the number of isolated
clusters if it does not change the connectivity ; but if it does change the
connectivity then it must do so by connecting 2 isolated clusters, and so reduce
the number of isolated clusters by 1. Meanwhile, in our equivalent represen-
tation, the appropriate matrix element is such as to introduce a factor of
precisely 1 in the former situation and g"1 in the latter.

(ii) On the other hand, ULQl/2 increases the number of isolated clusters by
1 whether or not it changes the connectivity (since either way it isolates a
node). But from the definition of the equivalent representation the matrix
element of ULQl/2 is precisely Q in either situation.



REPRESENTATIONS OF GRAPH TEMPERLEY-LIEB ALGEBRAS 497

This result implies that the Potts representation is, generically, just a direct
sum of type 2 representations. We have not determined the multiplicities in
general.

§4. Physical Consequences

We can show that the type 2 representation associated with R0 is the
representation associated with the free energy in statistical mechanical
models. To see this note that the free energy is the largest magnitude
eigenvalue of the transfer matrix when the coupling is real. In this case the
transfer matrix is positive, ie. all the elements are positive, and by Perron's
theorem it has a unique largest magnitude eigenvalue, which is positive and has
a 'positivisable' (ie. positive up to an overall phase) eigenvector. From the
definition it is easy to see that RQ is the matrix with all entries 1 (up to an
overall factor) in the Potts representation. Since it is a primitive idempotent
this implies that the Potts representation contains the irreducible representation
discussed above exactly once as an irreducible component (and also as an
indecomposable module). Again from the Potts representation it is easy to see
that R0 is not orthogonal to the positivisable eigenvector associated with the free
energy in this basis. Therefore the irreducible representation associated with the
primitive idempotent R0 is the one responsible for the part of the transfer matrix
spectrum containing the free energy.

Note that the Potts representation has asymptotic growth rate of dimension
dn (n sites) of

limdn + 1/dn = Q
n-*oo

This is independent of the graph. If we take linear pregraphs then the
irreducible from R0, contained in the Potts representation, has generic
asymptotic growth rate 4 (see above). This means that for large enough n and
Q < 4 the generic 'irreducible' representation contained in the Potts represent-
ation has dimension greater than the Potts representation. In such cases the
true irreducible must be smaller than the generic irreducible, ie. the left ideal
generated from the primitive idempotent is no longer the basis for an irreducible
representation. This means that the abstract algebra is no longer semi-
simple. In other words the TL algebra has an exceptional structure for Q
= 0,1,2, 3 (with Q = 4 a limiting case of the generic structure). This observa-
tion has been the subject of much interest in 2d physics in the last couple of
years or so [5].

Asymptotic growth rates for arbitrary sequences of pregraphs are not
known at present. The most interesting question for physics is perhaps the
asymptotic growth rate for pregraphs associated with 3d models. The rate for
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coordination number n pregraphs (ie. essentially infinite dimensional models) is
infinite. This means that here all integer Q values are exceptional for large
enough n. The proof is given in the appendix. Work is in progress to
determine the 3d asymptotics.

I would like to thank the RIMS team for many stimulating discussions.
The recollection of past discussions with H N V Temperley and B W Westbury
has made my job much easier, and I would also like to thank my colleagues at
the University of Birmingham for granting me study leave so that I might
develop these ideas in Kyoto.

Appendix

A.1 Quotient relations for the Potts representation

We outline a demonstration that the Potts representation obeys the quo-
tient relations (6).

(AT = 0) In the Potts representation (R0)y = Q~nVi'J. QED.
(N = 1) Rb(i) takes the form Mn_! (x) 1Q where M w _ x is R0 for a graph with

the node fo(1) deleted and 1Q is the Q dimensional unit matrix. But the Potts
generators are all invariant under a global redefinition of site variables so, with
Etj a Q dimensional elementary matrix,

Rb(l)WRb(l) = X Cw(i,j}Mn_l <g) JEy (12)
U=1,...,Q

where Cw(i, i) is independent of i and Gw(i, j) i / j is independent of i and
j. Now quotient by R0 from the (N = 0) case above. QED.

(N > 1) It is useful to define an inhomogeneous transfer matrix, generalising
equation (2), by

T({vu vtj}) = (13)

ripregraphnodesi.fe. + Q1/2VL)/(1 + I>£.)) Opregraph bonds tj ((1 + V.jQ-^U^l + I7y))

Clearly any word W can then be written as a product of such transfer
matrices, since any generator can. The physical picture is of a Potts system
with some couplings at zero temperature (/? = 00,1;= oo) so that the connected
spins are frozen together; and some couplings at high temperature (/f = 0, v = 0)
so that the connected spins are effectively decoupled. We see from the transfer
matrix that whether or not a generator is included in each case depends on
whether it is associated with a node or a bond. From the definition of the Potts
generators we confirm that the presence of a bond generator freezes the relevant
spins together, while a node generator decouples them. It is then helpful to
write out W on Gk 3(/c as large as necessary to contain W9 ie. k < 0(W)\ The
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nodes of Gk can be thought of as the sites of a Potts lattice. The transfer matrix
transfers attention from one level to the next. If a bond is frozen in the transfer
matrix then it is marked in the e. p. graph.

For example, a marked e. p. graph for

W=U1U3U5U6U12U23(U56)U54U5U4U54

(14)

U56 1/5. E/6. U56 1/3. I/!. C/34 t/21 l/2. I/4. I/34 t/21 I/!. t/3. t/5. t/6.

in A6 T(g) is shown in Figure 6. The construction is precisely analogous to that
described for the e.p.graph path realisation of basis states for partition
representations in section 3.3, with path 'steps' replaced by marked bonds.
Note, however, that the e.p.graph in figure 6 has been drawn on its side,
compared to figure 2. In figure 6, in analogy to figure 3, we have, where
possible, accounted for more than one factor in a layer - in general any number
of successive factors of the form Uim followed by any number of successive factors
of the form Utj may clearly be incorporated in the same layer. In the diagram
each UL(IQ. unmarked horizontal bond) should be read as Q1/2UL and each
Utj (marked vertical bond) as g~1/2L^-(from equation (13)). We will denote by
W(Q) the product obtained from W by making these replacements.

"1

5j

4j

3̂*^f

2j

H
iJ

D

f

' J2

• Jl

Figure 6: A word from A6T(Q) drawn on (A6)
11-

Any Wean be represented this way, and any such diagram corresponds to
some W. In general the word may be reducible (ie. WccW with 0(W)
> O(W)) by the relations (1). In our example W(Q) = QW'(Q) where W
= £/i.£/3.£/s.£/6.- The factor of Q comes from the relations (1), but physically it
corresponds to the fact that the isolated cluster in the top right of the diagram
may take any of Q possible values for its spins (which are frozen together). The
remaining spins are determined by the boundary conditions. For general
pregraphs the word will not necessarily reduce using the relations in this way,
but isolated clusters will clearly still give rise to factors of g, from the physical

3The extended pregraph (e.p.graph) Gk is defined in section 3.3.
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picture, in the Potts representation.

Now Rb(N) takes the form Mn_N(x) 1QN, so

Rb(N, WRb(N} = X cw(h>in "•, iNJN)Mn-N (X) Eilth (§) ... (x) EiNtJN
ii,ji,...,iN,JN=l,...,Q

This corresponds to imposing free boundary conditions at the 'external9 points
iaJa$b(N} (in the pregraphs at levels 0 and (k - 1) of the e.p.graph, respectively)
and then specifying completely the boundary states of ia,jaeb(N) to obtain a
matrix element Cw. By writing the whole of the left hand side as a word (for
example, in the figure we have Rb(2) W'Rb(2) where b(2) = {2, 4}) we see that, for
large enough g, Cw just depends, up to overall factors, on the connectivity of the
'external' nodes ia and ja (za, ja e b(N}) of Gk. If the boundary conditions are
consistent with the connectivity (ie. if ia ~ jb then the spins ia = jb; if ia ~ ib then
ia = ib; and if ja ~ jb then ja = jb) the result is just Qc where c is the number of
isolated connected clusters. Otherwise it is zero. We thus see that, up to
overall factors, any Rb(N)WRb(N) diagram may be contracted to its 'basic9

connections before computing Cw. Because of the Rb(N) factors at each end, the
only case not covered by the quotienting is ia ~ jb if and only if a = b. All other
connectivities involve fewer distinct (non-interconnected) lines passing through
the diagram, and can thus be represented by elements of ideals already
quotiented out (recall equation (6)).

To see this in an example, consider the case in which W from eqn(14) is
replaced by the same thing but with the bracketed factor (U56) missing. Call
this word X. Then only one line passes through the diagram, and i2 ^J2- In
this case the relations simplify the word to Q(n~1)/2Rbd) with fe(1) = {2}. Spec-
ifically, X(Q) = QQ^'^ Rbd). Again the frozen bond picture ensures that such a
simplification occurs on physical grounds in the Pottts representation, even if the
relations (1) do not imply it.

In general, if i distinct lines cross the diagram, then the corresponding word
is in the double sided ideal generated from some RbM (since adding generators to
a word never increases the number of distinct lines across its diagram). Note
that all cases in which ia = ja are covered by the quotient relations or by Rb(N),
and all cases in which ia + ja for some ia e b(N) are covered by the quotient
relations. That is, such boundary conditions imply a maximum amount of
connectedness across the diagram.

We have shown that the left hand side of eqn(15) can be replaced by the left
hand side of eqn(6).

For example, with N = 2, if all 4 external nodes are disconnected then the
LHS of eqn(15) is in the double sided ideal generated from R0. If all 4 are
connected then it is in the ideal generated from Rbw, and so on.

Finally, note that for sufficiently small Q there are more connectivities



REPRESENTATIONS OF GRAPH TEMPERLEY-LIEB ALGEBRAS 501

possible than states of the boundary nodes, so the connectivities cannot be
treated independently. We will discuss the consequences of this limitation
elsewhere, but basically it is a signal of the breakdown of the generic structure of
the algebra.

A.2 Reductibility of the Potts representation

To see that the Potts representation for Q = 2, 3, 4, . . . is reducible consider
the similarity transformation by the matrix S defined by

1 - 0) "-]>i
S a - !=- l (16)

Stj = 0 ... otherwise.

on every space Vkm. The site operators then become diagonal (Q1/2, 0, 0, ... ) and
the bond operators do not mix between states with odd and even numbers of
spins in state skm = Q. We will discuss the further reducibility of the Potts
representation for Q > 2 elsewhere.

We know from the An case that the decomposition described here for Q = 2
is complete. This is a remarkable result. It means that the Q = 2 An Potts
algebra is isomorphic to every other Q = 2 rc-node pregraph Potts algebra. In
other words the operators for building arbitrary dimensional interactions may be
built from just one local operator and a set of spatially translating and rotating
conjugations, all of which already exist in the An (ie. 2d Potts model) algebra.

For Q = 3 we have shown that the Potts representation contains at least 2
irreducible components. On the other hand we know from the An case that
there are at most 3. We also know on physical grounds that the multiplicities
of the first 2 irreducibles are 1 and 2 respectively. The lower bounds for their
dimensions (and that of the third, if it exists) from the An case, together with the
total dimension of the Potts representation and the dimensions of the blocks we
exhibited above, are given in the following table for enough cases to show the
pattern :

n dl d2 d3 dPotts bl b2
1 1 1 0 3 2 1
2 2 3 1 9 5 4
3 5 9 4 2 7 1 4 1 3
4 14 27 13 81 41 40

We see that the only possibility is that, here also, the An Potts algebra is
isomorphic to every other n-node pregraph algebra. The same remarkable
consequences also pertain.

In fact the same is trivially true for Q = 0, 1. On the other hand it is not
true for Q large enough. We will discuss these results further elsewhere.
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A3 Computation of £fn(i)

To compute ^n(0) note that it is the sum of entries in the nth row of the
following diagram:

1
1 1
1 3 1
1 7 6 1
1 15 25 10 1

where the number in the j th column of the nth row is the sum of the number in
the (j — l)th column of the (n — l)th row and; times the number in the jth column
of the (n — l)th row. To see this note that ^M(0) is also the number of sequences
of length n, p = {pl5 p 2 > - - - > Pn}> w*th the property that

l<Pt< ((max PjVl<j<i) + l). (17)

Proof. Associate pt with node i and say nodes i, j are connected if pt = PJ
(ie. label the relevant cluster by pt). Then the cluster containing node 1 is
always cluster no. 1, that containing node 2 is cluster no. 2 unless it is in cluster
no. 1, and so on. It is easy to see that this is a unique representation of
partitions.

On the other hand the possibilities for p may be enumerated diagrammati-
cally as follows:

PI: 1
P2: 1 2
P3: 1 2 1 2 3
P 4 : 1 2 | 1 2 3 | 1 2 3 | 1 2 3 | 1 2 3 4

and so on. The claimed result follows almost immediately.
Note also from this construction that the j th number in the nth row in the

original diagram gives the number of partitions into exactly j non-empty
clusters. Note that the maximal such contribution to any row comes from
further to the right as n increases, so the asymptotic ratio is

lim y+^ = oo.
H-+OO

To compute £fn(i) note that the number of ways of choosing i clusters from j
to go into the second team is (;)!/(; - i)\(i)lj > i and zero otherwise. Thus the
corresponding diagram for arbitrary i is obtained by multiplying each entry in
the diagram above by the appropriate factor. For example for i = 1, 2, 3 we
have:
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1

1 2

1 6 3

1 14 18 4
1 30 75 40 5

0
0 1
0 3 3
0 7 18 6
0 15 75 60 10

0
0 0
0 0 1
0 0 6 4
0 0 25 40 10
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