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§ 0. Introduction

This article attempts to set some further groundwork for the study of
codimension-one cycles of purely inseparable coverings of varieties in
characteristic p. Thus it represents, hopefully, a preliminary effort. The
simplest type of purely inseparable cover of a variety X with coordinate ring A

in characteristic p ^ 0 is obtained by taking Y = Spec(^[p^/g]) for some
geA. Efforts to relate the codimension one cycles of X and F([8], [2]) led to
the ring-theoretic question,

I. If A is a UFD of characteristic p ^ 0, for what geA is A\_pjg~\ a UFD?

A natural place to begin to investigate (I) is with A a polynomial ring
defined over a field fc of characteristic p > 0. When k is perfect (I) can be
restated,

II. For what geA = k[xl9..., xj is Ap[g] a UFD?

This paper investigates (I) in Section 5 when A is the coordinate ring of a
surface X defined as a complete intersection and extends (II) in Section 3 to
study the divisor classes of rings of the form fc[xf,..., xj, gl9..., 0n_i].

After a few brief preliminaries in Section 1, some tools for calculating Cl (A)
are developed in Section 2, that generalize ([8], (2.6)) and ([5], 11(1.3)), which
played an important role in showing that for a general choice of geA
= fc[xl5..., xn] Ap[g] is factorial (See [5], 11(2.6)). In Section 4 some examples
are considered. The reader is also referred to two excellent references for the
subject of divisor classes of Krull rings, Samuel's 1964 Tata notes [11] and
Possum's "The Divisor Class Group of a Krull Domain" [4],
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§1. Notation and Preliminaries

(0.1) fe-an algebraically closed field of characteristic p ^ 0.
(0.2) A = fe[xl5..., xj-a polynomial ring in n-indeterminates over fe.
(0.3) Given f1 ,...,/„ e A9 J (/x,...,/„) is the determinant of the matrix

CA(/;)]3 1 < i, J < ^ where D, = —.

(0.4) Given he A, let degXi(h) denote the degree of h in xi9 degXitXj(h) denote the
degree of h in xt and xj9 etc...., let deg(h) denote the total degree of h.
(0.5) Al denotes the affine n-space over fe.
(0.6) /15 ...,/„-16A are said to satisfy condition (*) if the variety F^ Al

defined by the n — I by n — 1 minors of the matrix

has dimension less than n — 2.
(0.7) If R is a Krull ring denote by Cl(R) the divisor class group of R ([11],
page 18)(cf. (0.2)).
(0.8) If IT is a noetherian integral separated scheme which is regular in
codimension one, denote by Cl(X) the group of Weil divisors of X(\l~\9 page
130).
(0.9) If R is a noetherian integrally closed domain, then R is a Krull ring and
X = Spec(.R) will be regular in codimension one, and Cl(R) and Cl(X) defined
above are isomorphic.
(OolO) Given 0,/l5... , /n_2e^, let P be the ideal in A generated by/ l 3 . . . , /n_2

and B = A/P. For feA9 denote its image in B by /. Then we say that 0,
/!,...,/„-2 satisfies condition (**) if all three of the following conditions are
satisfied.

(i) P is a height n — 2 prime ideal in A.
f\\\ n ft Rp — kVvp Y*nu1 ; yy= ° — K - L - * ! j • • • » Xnj

(iii) The ring A[coi}/((Dp — g, /19... ,/n_2) is regular in codimension one.
Note that the ring in (iii) is a domain by (i) and (ii) and it is regular in
codimension one if and only if it is normal ([7], pg. 186, Proposition 8.23).
(0.11) For a prime number p, we will let Fp denote the finite field of order p
and the set of integers {0, 1,..., p — 1}. It will be clear from the context which
is meant.

1.1. Theorem, Let A a B be Krull rings. Suppose that either B is integral over
A or that B is aflat A-algebra. Then there is a well defined group homomorphism
cp: C/(A)-

Let B be a Krull ring of characteristic p > 0. Let A be a derivation of L,
the quotient field of B, such that A(B)<^B. Let K = ker(^i) and A



EXTENSIONS OF UNIQUE FACTORIZATION DOMAINS 455

= B(]K. Then A is a Krull ring with B integral over A. By (1.1) we have a
map <p: Cl(A) -» C/(£)(see [11] pp. 19-20). Set & = {r1 AteB\tEL} and 3"
= {u~1Au\u is a unit in B}. Then <£ is an additive group with subgroup £?'.

1.2. Theorem, (a) There exists a canonical monomorphism q>: ker (p
-» ££!££'. (b) If [L: K] = p and A(B) is not contained in any height one prime
of B, then cp is an isomorphism ([11], p. 62).

1.3. Theorem, (a) If [L: K] = p, then there exists aeA such that Ap = aA, (b)
teL is equal to u~~lAu for some ueL if and only if Ap~1t — at + tp

= 0 ([11], pp. 63-64).

§2. Computational Tools

Let k be an algebraically closed field of characteristic p > 0. Let A
= fe[x1,...,xj be a polynomial ring in n-inde terminates over k. Let
f!,...,fn-iEA. Define a derivation D on L = k(xl9..., xn) by D(h)
= J(h,fi, . . . ,/n-i) where J represents the determinant of the Jacobian
matrix. That is,

D,(h) D2(h) •- Da(h)

where D, = -—.

We have the following generalization of ([8], page 395, (2.6)). We let A'
= /C l_X i , . . . , Xn , J i , • • • j / n - 1 J •

2.1. Proposition. Assume D ^ 0. T/z^ (i) r/zere ^xw/5 a 6^4 5wc/z rto D(a) = 0

= aD, (ii) a w gfroe/i by a = (-l)""X ^ ft-ft-
j=l rj = 0

^L, 1)^4 - at = (- I)"'1 "f *£ /V -
7=1 0=0

V = (D^1 ••• Dp-1).

Proof (i) For each i = 1, ..., n - 1, f i $ k ( x p
l 9 ..., ^,/1? ... ,/^i) (where

we let /0 = 0) since D ^ 0. It then follows that

2.1.1. [L: L'] = p and L' = D"1^), where L is the quotient field of A'.

By (1.3) there exists aeAftL' such that Dp = aD.

(ii) Will follow from (iii) by letting t = 1.

(iii) Case(I): The ft contain no monomials that are p-th powers and the ft
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satisfy condition (*).

For each i = 1, ... , n — 1, let A{ be the derivation on L defined by

Since D / 0, we may assume after a permutation of the xt that ^-(/i) / 0 for
each i. Now for each 1 < i < n - 1, let Ei = (l/Ai(fi))'Ai and E

2.1.2. Claim : £(DP" x t - at) = Vt, for all t e L.
n-l

Proof of (2.1.2). If re A, <fegr(Dr) < M + deg t - n, where M = £

It then follows that deg(a) < (p — 1)(M — n) and

2.13. deg(Dp~1 1 - at) < deg(t) + (p - 1)(M - n), for all t e A.

Given /IE .4', there is a unique j8Fe,45 for each FeF^"1, such that Iz

= I>?/F (where for r = (r l5 ..., r^JeF^1, /F = /y -. /?_-;). We have that
r

for each i= 1,..., w - 1, Ei(h) = ̂ ri^ fp, where F = (rl5 ... , rf - 1,..., rn_!).

Then Et(h)EA' and deg(Et(h)) < deg(h) - deg(fi\ Given te^l, Dp-lt-at<=Af

by (3.2) below, the proof of which is independent of this section, since Dp = aD
and Da = 0. By (2.1.3) we have for all IE A,

t-at) = Q, or

2.1.4 deg(E(Dp~1 1 - at)) < deg t - (p - l)n.

Any differential operator on k(xl9 ... , xn) can be written uniquely as a linear
combination of D^-'D?, 0 < s£ < p - 1, with coefficients in L. Thus there
exists unique areL, for each feF£ such that

2.1.5. ^(IF-1 - a/) = X aF5
F, where for f = (rl3 ... , rj, dF = D^ Dr

2
2---Dr

n\
r

Proceed by induction on £/, to show a F =0 for r ^ (p - 1, ... , p — 1). By
(2.1.4), E(Dp- ;(1) - o(l)) = 0. By (2.1.5) a(0 ..... 0) = 0. Assume ar= 0 for all f
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with £ r i<k < w(P - I)- Let r* = (r?,..., r*) be such that £rf = k. Substitute
t = Xj* ••• xj» into (2.1.5) and use (2.1.4) to obtain rf! ••• r*! ocp* = 0 which implies
ar* = 0. Therefore

2.1.6. E(DP~1 - al) = aF, for some aeL.

Apply both sides of (2.1.6) to (x{ • • •x j p ~ 1 and use (2.1.4) to see that ocefc.
To compute a, we first note that a in (2.1.6) is invariant under a linear

change of variables. This may be checked by one coordinate change at a
time. If x1 say, is replaced by QLIXI + ••• + anxn + an + 1 (a^efc) then 1^ becomes
O^D! and F becomes a?~1F. By the chain rule D becomes a! D, £. remains
unchanged and a becomes af"1 a so that E(DP~1 — al) becomes ap

1~
1E(Dp~1

-a/).

B
By (*) there is a point Qekn where the matrix

is row independent over k.
Since a is invariant under a change in coordinates we may assume Q

= (0,..., 0). Furthermore since a is clearly unaffected by the constant terms of
the fi9 we may assume that fi(Q)= ••• =fn(Q) = 0- We then have that the
degree one forms of the ft are fe-independent. Therefore, after another linear
change we may assume that the lowest degree form of ft is xt (1 < i < n
— 1). Again apply both sides of (2.1.6) to (xx •••xj1'"1 and compare the 0-
degree terms. On the right we get (— l)"a and on the left we get (— 1)". Hence
a = 1 in (2.1.6).

Now let teL. Since Dp~1t - ateL, there are unique /?FeL such that

Dp~11 - at = ]T $f. Fix s = (s1?..., sn_ Je ¥n
p~

1. Then on the one hand we
F

know by (2.1.6) with < x = l that E(D*~\f*t) - af*t) = V(f% On the other
hand, we have E(Dp~l(ft) - aft) = E(f(Dp~lt- at)) = (- l)n~l^Q where f0

= (p — 1 — sl9..., p — 1 — sn_1), from which (iii) follows,

Case (II). The ft contain no monomials that are pth powers.

Assume the coefficients of the/,- are algebraically independent over k. Then
(*) is satisfied and hence the formula in (iii) holds. Therefore it will hold after
any specialization of the coefficients, since with respect to the differential
operators D and V they are constants. Finally observe that if the/£ are replaced
by ht, 1 < i < n — 1, such that fi — hi€B = /c[xf,..., x£], then D and hence a
(such that Dp = aD) remain unchanged. The next lemma shows that the right
side of the equality in (2.1 iii) also remains unchanged by such a
substitution. Case II showed that the desired formula holds whenever the f{

contain no p-th powers. Thus the general case now follows from the above
observations.
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2.2. Lemma. Assume fl9 .m.,fn_l9hvEA with/! — h^eB = fe[xf, ..., x£]. Then
for all teL,

— V JlSl P2 ... /"S»-l l7(hP~Sl~1 f P ~ s 2 - l ... f p - S n - 1 - 1
~ 2^ n± 72 Jn-l r\nl J2 Jn-l

Proof. h1=f1+oL, for some aeB. Let teL and t0 = f p
2 ~ S 2 ~ l •••

i-1'1^ Then z*ii/22-/;"-iii7(Arsi"1-/rri"1o= I /S
2

a-
Si (S2, . . . ,Sn- l)

!^ M1^?"81"1^)- So il; is enough to show that *£ hs¥(hp-s-lf)
si=0 s = 0

h-f=cteB.

We have ^
s = 0

-1 s «

- I Z ( 'o-' E
j=o \ 7

-1 s p-l-s

P-1 P-1 /n _ 1 _ e\

Z«~^( /^)Z( '-1-j=o s = o \ 7

= I *-' .
j=o s = o \ 7

P-1 P-1 /n — 1 — i\j' ^ - i a p ~ 1 " - ' " s
j=o

p _ l
and I . = ( - 1)J, etc.

j t) = PZ fs v(ff-1 ~st).
j=0 s=0

The next proposition generalizes ([3], page 74, Theorem (3.4)). In the two
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variable case it was used to prove that a generic Zariski surface has 0-divisor
class group ([9]).

Let S = S(f1,...,fn.1) = {Qekn:mnktDi(fjK(Q)<n-l}. Let C be the
matrix

C= /M/,-2) ... DB_1(/n_2) A,(/n-2

0 - 1 0

0 ••• 0 1

and C* = (C~1)t(= the transpose of C"1). Let [0 ls..., 0J and [/i l5..., fcj be
32

the n — 1 — st and n-ih rows of C*, respectively. Let E\ = £ 0;0/^ — z — , £2
1 ,1=1 OXiOXj

n d2 n d2

= £ hihj- — - — , and E1E2= £ 0 i^ /^ — ̂ ~~ • Let M{ be the cofactor of
ij=l OXiOXj i ,j=i OXiOXj

Ai-i(/i) in tne matrix

Let H = "

23. Proposition. For all geS, a(Q) = (H(Q))(p-1}/2, where a is as in (2.1).

Proof. It is a straightforward linear algebra to check that for all
gt(Q) and /i£(Q) are independent of the order of/ l5 ...,/„_! up to a change of the
same sign. It follows that H(Q) is independent of the order of /15 .. .,/„_!•

Let QeS be a point where the rank [DiC/^CQ)] = n — 2. After a change of
coordinates, which will not alter D (hence a) or H, we may assume Q
= (0,...,0). By the above remark, we may assume Mn,^(Q}^^. Then

2.3.1 fl^CAHQ) + - + aH.2Dt(fn.2)(Q) = ̂ (/n-i)(6), 1 < i < ", where

ar=-Mr(Q)/Mn-l(Q), l<r<n-2.

Replacing /j by/j — fj(Q), 1 < j < n — 1 also does not change D (and hence a) or
If so that we may assume //0 = 0, I <j <n — 1.

n-2

Temporarily, we replace fn_l by /„_! — £ «///• Then D and a remain
7=1

unchanged, and after this substitution we have that
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2.3.2 fj(Q) = A-(/n-i)(0 = 0, 1 <j < n - 1, 1 < i < n.

Now make the change in coordinates

Then Q remains (0,..., 0) and (2.3.2) still holds. By the chain rule we have

for all /ieL,

2.3.4 Dt(h) = J Dt(fj)(Q) • hXj for 1 < i < n - 2.

n-2

and Di(h) = £ Di(fj)(Q)' h^ + h^. for n — 1 < i < n.

Then D =

det
n-2 n-2

' (fn-2)Sj.

" *

L j=i j=i

det

(/„-!)*

0 1 0

0 0 1



EXTENSIONS OF UNIQUE FACTORIZATION DOMAINS 461

= MB_1(Q)[J( ,/i,... ,/n-i)], where J is the determinant of the jacobian
matrix with respect to x , - - - , x n .

Let D = J( ,A, ...,/„-1) and a be such that Dp = aD (see (2.1)).
Then a = (Mn_l(Q)Y~ld. Then a(Q) = (M^M))^1 a(Q). We have by

(2.1) and (2.3.2) that a(Q) = (- l)nV((fi -fn)p~l)(Q) where V
gn(n-l)

= 1 _ p _ 1 . Also by the change in coordinates (2.3.3) we have
U Xi '•• O Xn

2.3.5. ft = xt + /7~, 1 < i < n — 2, where /f
+ = ft — (leading form of ft) and

fn-l=\ £ (/n-l)x-x-J(G)^J.+/w
+_1 if P > 2 ,

Thus the initial form of (f1 •••fn-1)
p l is

2.3.6. (X1 •"Xn-2)P~1((fn-l)x x (Q)Xn~l + (fn-l)x x (Q) — + (fn- l)x - x

(Q)mxn-1x^)p~1 + g, where g is homogeneous of degree n(p — 1), with

degSn_^n(g) < 2(p - 1), if p > 2.

If p = 2, the expression (/„- i)xn_ lxn_ 1 (Q) V * + (//i-i)jcnjcn(2)"~^ is deleted from

(2.3.6).
It then follows that if p > 2,

2.3.7. a(Q\ = (-lY ^_*1_,.

(0

(2.4) below. If p = 2, a(Q) = (fn-i)
px~-\xn(Q)- Therefore a(Q) =

We have that

" *i "

_ *« _

- jq -

X« -
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Therefore

We then obtain

a
3xj

d
_ 8xn_

= c*(0

d
dxi

d
_ dxn _

n-2 ]fl (Q\

Now back substitute to replace / n _ L b y / n _ x + £ - r
 /xv,/r to obtain

r=l Mn

Now if Q were a point such that rank [Di(fj)(Q)'] < n — 2 then we could
have assumed that the first n — 2 rows of iDi(fj)(Q)~] are dependent as
well. Then clearly Mn_1(Q) = 0 and by an argument similar to that used above,
we obtain a(Q) = 0. Thus we obtain a(Q) = (H(0)(p~1)/2, for all QeS.

2.4 Lemma- Let k be a ring of characteristics p > 0. Let A, B and Cek and

F = Ax2 + By2 + Cxyeklx, yl Then g p-ig p-i

Proof. The coefficient of xp~lyp~l in Fp~l if p > 2 is

(p-D/2 /„ _ i\ /2/\ (p-D/2 /7I ( P
0 . )( ic'-1-2^^^ i (-i

i = o \ 2i J\iJ i=0

(p- 1)12 /7j\ (P-D/2 /2i* - 1 - 2 ' ) ^ v

(P-D/2 /(n _
= Z (i = o \ i

= (C2 - 4^15)(p"1)/2. If p = 2, the lemma is clearly true.

§3. The Fixed Subring of a Polynomial Ring

Let fc, v4, X', L, L', and D = J( ,/i, ... , /n_i) be as in Section 2. Let JSP be
the additive group of logarithmic derivatives of D in A, ^ = [h~lDheA: he
L}. Assume (*) holds. Let f=f1-fn-1. For / = (iV--, i.-.JelFJ-1, let /'
— fii...fin-i
— J 1 n-1 •

3.1. Lemma,, Let F c .42.""1 6e r/ze variety defined by the equations wf
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= /i(xi> ••• 5 XH)J 1 < i < w — 1. 77ze« £/ze coordinate ring of F is isomorphic to A'.

Proof. LQI A = fc[xl9 ... , xn, wl5 ... , wn_1]. Let (j):A-+Af be the ring
homomorphism that sends x£ to xf, w;- to /,- and a to ap for all 1 < £ < n,
! < 7 < w — 1, aefc. (Note 0 is not a fc-homomorphism.) Then wj
— /,-eker 0. Let Q ^ A be the ideal generated by wj — //, 1 <j < n
— 1. Then Q is a prime ideal in A of height n — 1. Therefore ker ^ = 2 by
([7] page 6, ISA).

3.2. Lemma. D ~ l (0) n A = A '.

Proof. Let B = D ~ x(0) n A. Then fc[x;, . . . , x£] c A' £ 5 c A B is in-
tegral over A. For each i, /£ + 1 ̂ fc(xf, ..., x£,/l5 ...,/,) by (*). Thus
[L': fc(x?,..., xj)] =pn~l. Also by (*), DXi / 0 for some L Therefore the
quotient field of B is not Land A' and B have the same quotient field. Since A'
is normal, A' = B.

3.3. Lemma. Cl(A') ^ &.

Proof. By (*) the image of D is not contained in any height one prime of
A. By (1.2) and (3.2), Cl(A') ~ ££ since the units of A are the nonzero elements
of fc.

n-l

3.4. Lemma. Let tE<£. Then deg(t) <M — n, where M = ]T deg(ft).

Proof. IE& implies there exists a ^eLsuch that g~1Dg = t. Multiplying
g by an element of Ap, if necessary, we may assume geA. deg(Dg) < (deg g

n-l

- 1) + £ <fe0(/f -l} = degg + M -n. Therefore deg(t) < M - n.

3.5. Lemma. Lef ^ = {t e X : F(/p" x 0 = ( - 1)V}, where f = f 1 - - - f n - 1 and V
= D?"1 "-Dp

n~
l. Then $ is a p-group of type (p, . . . ,p) of order pN with

rN <
n

Proof. Let t e <$. V(fp~l t} = (- l)ntp implies p deg t < (p - 1) deg(f)

+ <fe0(t) - n(p - 1). Thus deg(t) < M - n. Write t = £ a,*-7 where for J

= ( f l 5 . . . , in)e(Z+)", xj = xi1 '-xln and |J |= £ f^.. Comparing coefficients on

both sides of the quality V(fp~lt) = (- l)ntp we obtain for each J0 with
\JG < M — n an equation of the form LJo = a$0, where LJo is a linear expression
in the a/ with coefficients in k.

There are a total of ( 1 = ( 1 such equations. The ring R
V n \n
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= ^[aj]|j|<M-n with the relations Lj = aj is a finite dimensional fc-vector spaced
spanned by all monomials in the ocj of degree less than or equal to (p — 1)

M
Thus R has a finite number of maximal ideals ([10], p. 89).

n

Thus the ( I equations Lj = aj intersect at a finite number of

points. There is no solution to these equations at infinity. By Bezout's
Theorem this number is at most p(«)([6]? P- 670). 'Therefore ^ is of order at
most p(n\ ^ is a p-group of type (p,..., p) since ^ c A.

3.6. Proposition. Let F c Aln~l be the variety defined by wf =fi(x1,..., xn),
1 < i < n — 1. Then Cl(F) is a finite p-group of type (p,..., p) of order pN where

N:

Proof. By (1.2), (3.1), (3.2), and (3.3), Cl(F) ^ &. By (1.3b) an element
is in Jg? if and only if Dp~lt - at = - tp. By (2.1) re JSP if and only if

3.6.L V(f*~ 1t) = (- l)ntp and V(fjt) = 0

for all JeF^'1 with J * (p - 1, ... , p - 1).

Thus JSP c #. Now use (3.5).

3o7o Lemma. Let feA be such that s~lDseA. Assume s = grh, where geA is
irreducible, r / 0(mod p) is a positive integer and he A is relatively prime to
g. Then g~1DgeA.

Proof. Let t = s~1Ds. Then st = Ds = rgr~lhDg + grD(h). Then g di-
vides rhDg and hence g divides Dg,

§4. Examples

4.1. Remark,, From the proof of (3.6) we see that the calculation of Cl(X) is
equivalent to determining the number of solutions to a corresponding system of
equations of the form

4.1.1. Lj = aj, Lj, = 0 where the J, J ' e F£~ 1 and the Lj and Lr are linear
expressions in the aj.

[1] provides an algorithm for finding the number of solutions to such a p-
linear system of equations and a computer program for determining this number
when the coefficients of the ft belong to a finite field, so that the computation of
Cl(F) in this case is a programmable process.

4.2. Remark. Let hi9 1 < i < n — 1, be homogeneous elements of A of degree st
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with st 7^ 0(mod p). If the ht satisfy (*), then for each pair (i, j) with i ^ j, ht and
hj have no common factors in A and each ht has no multiple factors in A. Let
X c Aln~l be defined by the equations wf = fe^, ..., xj 1 < i < n - 1. The
next example studies

4.3. Example. By (4.2) each ht = Hn ••• HiFi, where the Htj are distinct
irreducible homogeneous elements of A. Let D = J( , hl9 • • • , ^-^ and & the
group of logarithmic derivatives of D in A. Let h = hl"-hn.l and M
= deg h. Let £e J^. By (3.6.1)

4.3.1. V(hp~lt) = (-l)ntp.

Assume that the lowest degree form of t is of degree s and the highest degree
form of t is of degree m. Compare the lowest and highest degree forms on both
sides of the equality in (4.3.1) we obtain ps > (p — 1)M + s — n(p — 1) and
pm < (p — 1)M + m — n(p — 1). Then m < M — n < s and hence t is homog-
eneous of degree M — n. Repeat the same argument used in the proof of (3.5) to

obtain \Cl(X)\ = ps with s<
n- 1

Now assume that the h{ satisfy the additional condition that the variety
Y^ Al defined by h1 = • •• = hn_1 = 0 has a finite number of
singularities. (When n = 2, this condition is implied by (*).) For each pair (ij),
1 < i < n - 1, 1 < j < ri9 let ttj = H^D(H^. By (3.7), tyGJS? for each (i,j).

4.3.2. Claim. The ttj are F ̂ -independent.

Assume dtje Fp and ̂  d^ = 0. Let H = f] HfjJ. Then D^ = 0. Noting that
D/ZJ = 0(1 < i < n — 1), we may assume that d1r1 = ... = dn-i r

n-i = 0- By
Euler's formula the determinant of the matrix

D,(H) - D^^H) 5H

s.h,

column j --- '

is 0 for each j = 1, ... , n, where s = deg(H).
This shows that either s = 0(mod p) or Y has an infinite number of

singularities satisfying the equation Hlri = ••• = f f n _ l r n _ 1 = 0. Thus s = 0
(mod p).

If some dij =£ 0 we may assume without loss of generality that dli ^ 0. Let
H0 = hl~d"H. Let H' be obtained from JFf0 by factoring out all p-th
powers. Then deg(H') = s^p — dn) ^ 0 (mod p) and the factors f f l l 5
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H2r29...9 Hn-lfn_l do not appear in H'. Repeat the above argument to obtain
dtj = 0 for all 2 < i < n — 1 and that the exponent of Hln in H' must also be
0. But this implies that p — dil = 0. Contradiction!

Thus if we let m be the number of factors in h = /it • • • /zn_ t we have that the

( A/f 1 N

4.4. Remark. When n = 2, (4.3) implies that r = m — 1, which was first proved
in [8].

4.5. Example. Let/,(*„), ^(xn)efc[xj, 1 < i < n - L Let/fo) =/I(XB) -/--i
(xn). Assume/(xn) has r distinct roots, 0 l 9 . . . , 0r. For each z, let Ff = Xf/^xJ
+ xBgfj(xJ. Assume the F£ satisfy (*). Let D = J( , F l 5 . . . , F^.J and J£? be the
group of logarithmic derivatives of D in A. We will show that & is of order pr

generated by the logarithmic derivatives, D(xn — 0/)/(xB - 0y), 1 < j < r in
X. Thus the group of Weil divisors of the variety defined by the equations, wf
= Fi9 1 < i < n - 1, will be a direct sum of r copies of ¥p.

Let t eJSf. Given he A, degXi(Dh) < degXi(h), 1 < i < n - 1. Therefore
degXi(t) = 0 for 1 < i < w — 1. Thus te/c[xj. Let zf be the ^-derivation on
k(xi,...9 xn) defined by A = t~lD. By Hochschild's formula ([11], pg. 64, (3.2)),
Ap = A. Hence (A - (p - 1)1) ••• (A - 2I}(A - I)A = Ap - A = 0, where / is the
identity mapping of Ic(x l 3 . . . , xj into /c(x l 5 . . . , xj. Clearly ^(xw) / 0. Set ji
= ^(xn), y2 = (A- I ) y l 9 ...,yp = (A-(p- l)I)yp-1 (= 0). First we observe
that if x ek(x n ) then A(x)6 k(xn). Hence yl9..., yp_ 16fc(xn). Next we have that
for some I = 2,..., p — 1, yl_1 ^ 0 and jz = (A — (I — 1)1) yl-1 = 0. Therefore
A ( y l _ l ) = (l — 1)^-1, which implies that D(yi-i)/yl^1 = (I — l)t. Let q be the
inverse of / — 1 modulo p. Let y = yf_lm Then D(y)/y = t. Thus we've shown
that there exists y e k(xn) such that Dy /y = t. Multiplying y by an element of
fc[x£], if necessary, we may assume yefc[xj.

Factor y into a product of linear factors, y = (xn — o^)51 ••• (xn — am)Sm where
a l 5 . . . , a m efc are pairwise distinct. If st > p for some si9 then (xn — at-)~py will
yield the same logarithmic derivative as y, so we may assume that 1 < st < p — 1
for each st. By (3.7), D(xn — at-)/xn — a,-e J^7 for each i = 1,..., m. But for each
z, D(xn - af) = D(xM) = (- 1)W + 1/W- Therefore xn - af is a factor of/(xj in
lc[xj. We conclude that a,e{01?..., 0r} for each z = 1, . . . ,m. Thus t

m

= D(y)/y = Y, si(®(xn ~ a;)/(xw ~ ai)) belongs to the Fp-space spanned by {D
i= 1

(xn — 0i)/(xn — 0/): 1 < i < r}. These polynomials are easily seen to be Fp-
independent. Thus 3? has order pr.
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§5. Purely Inseparable Covers of Dimension Two Factorial Domains

Let g, /!, . . . , /n_2e^4 = fc[xl5..., xj, where fc is algebraically closed of
characteristic p ^ 0. Let D = J( ,0,/i, ...,/„-2)- Assume that the ideal P
= (/i5 • •• 5/n-i) i§ a height n — 2 prime ideal in A. Let 5 = A/P. For /e4,
denote its image in B by /. Then B = k[xl9..., xj. Let C = J3P[#]
= fc[x?,..., xj, 0]. Denote by L and K the quotient field of B and C,
respectively. D will induce a fe-derivation, D, on L. Throughout this section
assume (**) (See (0.10).). Let W^. A%+1 be the variety defined by the equations

f l = ' - = f n - 2 = W P - 9 = V-

5.1. Lemma, (i) D~l(Q)ftB = C, (ii) C is isomorphic to the coordinate ring of
W, (in) [L: K] = p, (iv) D(B) w wo? contained in any height one prime of B.

Proof. Consider the surjection 0: A[w] -> C given by xt -> xf, 1 < i < n, w
->^, and a-^ap, for all aefc. Then the ideal / c ^4[w] generated by

/15 . . . ,/„_2 , wp — g is contained in ker </> and is a prime ideal of height n — 1
since g ^ hp for any /zeJ5 by assumption. Since the dimension of C is 2, the
height of ker 0 is ft — 1. Thus A[w]/I = C, which proves (ii).

We have Bp c C c 5" r(0) n B c B and [K: D7] = p. By lemma
(5.2)(below), [L: Lp] = p2. Therefore C and 5~1(0)nB have the same quotient
field. By (ii) C is normal, which gives C = D~1(Q)nB. Also [L: K] = [I: Lp]
/ [K:L^]=p. Hence (iii).

(iv) is immediate from the assumption on W.

5.2. Lemma. Let k be a perfect field of characteristic p ^ 0. Let A be a
finitely generated k-integral domain of dimension 2. Let B = Ap. Then the
degree of A over B is p2.

Proof. A = k[ul9..., wj for some ut e A. Then B = k[u?,..., uj]. By
Noether's normalization theorem there exists yl5 y^A such that A is separably
algebraic over fc[yl9 y2] and y1? j;2 are algebraically independent over k. We
then have the diagram of inclusions
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Let L, L be the quotient fields of A, B, respectively. Clearly [L: k(yl9 y2)]
= [L : k(yp

l9 yp
2 )] and the result follows.

5.3. Corollary. Let C be as in (5.1). C/(C) ^ JSf/JST, where &
&' = {u~lD(u)\ u is a unit in B}.

Proof. Use (5.1) and (1.2).

Throughout the remainder of this section assume that each ft is
homogeneous of degree si9 1 < i < n — 2 and g is homogeneous of degree s / 0

n-2

(mod p). Let M = s + £ sf.

5.4 Lemma. LetwE^P. Then there exists homogeneous te A of degree M — n
such that t = w.

Proof. Let w 6 4 be a representative of w of minimal degree. Let deg(w)
d

= d. Then w = £ w7-? where w^-eX is homogeneous of degree j. Note wd / 0
j=o

by minimality. Let aeA be such that Dp = aD. Then Dp = aD. By (1.3)
_ d

IF'^w) - aw + wp = 0. Then £ (Dp~l(Wj) - aWj + wJ)eP. P being homog-
7 = 0

eneous implies that wdeP or Dp~1(v^j) — aWj + wJeF for some j = 0? 1, ... , d
with deg(Dp~1wj — aw7-) = deg^). (Note if /i is homogeneous of degree r, then
Dp~1h — ah is homogeneous of degree (p — 1)(M — n) + r or Dp~lh — ah
= 0.) Since wd / 0, it must be that pd = (p - 1)(M - n) + j for some j
= 0, 1, ... , d. Then pd < (p - 1)(M — n) + d, which implies that d < M — n.

5.4.1. The two sets, {j: Dp~l w;- — aw,- ^ 0} and { j i W j ^ Q } , have the same
d _

number of elements since £ ^p~1 Wy — aw7- + wj = 0 and P is homogeneous.
j = o

This shows that Dp ~ 1 wd - awd / 0. (Note vv7- = 0 => Dp ~ l w,- - aWj = 0.)
Therefore Dp~1wd — awd and wj have the same degree and Dp~1wd — dwd + wj

_ d-l _

= 0. Thus wdeJzf by (1.3). Then w— wd= £ WjeJS?. Repeat the same

argument beginning with (5.4.1) to obtain WjeJSf, j' = 1, ..., rf. If w7- / 0 then
this implies that Dp~1wj — aw7- and wj have the same degree, but this is only
possible if j = M — n. Thus it must be that d = M — n, Wy = 0 for j < M — n
and w = wd.

5.5. Lemma. Let weS*. Then there exists homogeneous ye A such that y + 0
and y~1D(y) = w.

Proof. By (5.4) we may assume w is homogeneous of degree M — n. A
= w~1D. By (**), D(xr)=£Q for some r = l , . . . , w . Let yl = A(xr). For
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2 <; < p - 1, let yj = A(y^^ - (j - l)^. Then for some j, yjlD(y$ = (j
— l)w by ([11], pg 64), proof of (3.2)). Note also that j^- is of the form v~lu
where w, veA are homogeneous with deg(u) = deg(v) + 1. Multiply y^ by vp to
obtain a homogeneous he A such that h~lD(h) = (j — l)w. Choose meF p such
that m(j — 1) = 1. Then y = hm has the desired property.

5.6. Remark. Assume that B is a unique factorization domain and that y e B is
irreducible homogeneous such that w = y ~ l D ( y ) e J & and w ^ 0. Then

det

D2(L-2) - A,

ey D2(y)

= det ^ ^2^

by Euler's formula, where e = deg(y).
Therefore x^y = ey M11 + sgM2i, where Mn and M21 are the cofactors

of ey and s^ in the matrix. Thus y divides g or M21 (recall s ^ 0). Similarly, if
y does not divide g, then j? divides M2j-, 1 <j <n.

Let ^.(1 <j<n) be the derivation on 5 defined by Aj =

det

Then Q ^"HOJnB = Bp since ^^ H ^j r l(0)nB by (5.1). Also

for 1 <j<n. At this point, in order to arrive at a definitive
description of Cl(W) analogous to ([1], page 398, (3.2)), a condition must be
added to (**) to exclude the possibility that y'1 Aj(y)$B (1 <j < n). Hence

5.7. Theorem. Suppose B is a unique factorization domain and that g factors in
B into a product of q + 1 distinct prime elements. Assume that either
(i) for each i = 1, ... , n, XI$BP and the variety defined by the equations wp — xt

= f1 = •" =fn_2 = 0 in Al + 1 defines a unique factorization domain, or
(ii) Endc(B) = £[G], where B[G] denotes the C-subalgebra of Endc[5]

generated by B and G = ( d l f ... , zfn).
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Then the divisor class group of W is a direct sum of q copies of Z/pZ.

Some preliminary lemmas are required.

5.8. Lemma. Assume that B is a unique factorization domain and that g factors
in B into a product of q + 1 distinct prime elements. Then there exists
homogeneous polynomials gl9 ..., gq+1 eA such that the decomposition of g in B
into prime elements is given by g = g± -• gq + 1.

Proof. Suppose g = w^2 f°r some wl3 w2e£. We'll show that we may
choose the representatives w1? w2 so that they are homogeneous in A. Let Wj
= u0 + ••• + ud9 w2 = VQ + ••• + 14 where ut, vt denote the forms of w1? w2 of
degree i and j, respectively. Then g — w1w26P. Let r = deg(g). Then

J] UiVjEP for all 0 < e < d + d' with e ^ r. Let z'0 be minimal such that
i+j = e

uio$P and j0 be minimal such that vjo$P. Let f0 + j0 = m. Then £ utVj
i+j = m

= uiovjo + 0, which shows that m = r and g = uiovjo.

5 Jo Lemma. y = 0.

Proof. Let WE&'. By (5.5), there exists a homogeneous element he A
such that h ^ 0 and h~1D(h) = w in B. Also by definition of j?" there is a unit
u in B such that u~lD(u) = w. Let t; = w'1. Then D(vh) = 0. Thus by (5.1),

P-I P-I
^ = Z ^gj(ttj£d)- Let ye ̂ 4 be a preimage of v. Then i;/z — ^ a?gjeP.

j=o j=o
r

Write t; = V v t with v t the form of v of degree f. i; being a unit implies
i = 0

v o 7^ 0. Since h and 0 are homogeneous and P is a homogeneous ideal and
P-I

deg(g) ^ 0(mod p\ we see by comparing lowest degree forms of vh and ]T aj^fj

j = 0

that for some /? e A and 7 = ,..., p — 1, f 0/i - fipgj e P. Therefore
v0hEC. Since i;0(hence u0)e^ ^e^ and w = h~1D(h) = 0 by (5.1).

Proof of theorem (5.7): Continuing with (5.6), we have y ~~ 1 A j(y) e B for
1 < j < n. Since D(jO ^ 0, zi/j;) / 0 for some j. If we assume (i), then either
the divisor class group of the variety defined by the equations wp — Xj = /\ = • • •
= fn-2 is not trivial or j; is a unit in B by (1.2), which contradicts the
irreducibility of y in B. If we assume (ii) then either Cl(Bp) ^ 0 or y is a unit in
B by theorem ([4], page 93? (17.4)). Thus in either case, j; is a factor of g.

Let g = ji "• gq+1 be a decomposition of g in B into prime elements. Then
by (3.7) and the above argument we have that the logarithmic derivatives

_ _ _ s + 1Dfa-) Da
g^lD(gt)EB (and hence J?) and they generate X. Note ^ -^ = -^

» = i ^i S'
= 0. Therefore {^" x D(^) : 1 < i < q} generate J? over Fp. We will now show
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that they are Fp-independent.

Suppose e£eFp, 1 < i < q are such that £ ^i9il #(0i) = 0. By (5.8) we may
i= 1

assume that the representative gteA of gteB is homogeneous (1 < i <jj
+ 1). Let H = g l l ~ - g e

q « . Then D(H) = 0, which implies by (5.1) that Z>
c Z> (H) c: Z>(0). If H e Lp then ^ = 0(mod p), 1 < i < q and we're
done. Otherwise LP(H) = Lp(g) which implies there exists ^eA (0 < i < g) such

P-I
that a£H = £ af #'. Since H, # are homogeneous elements and P a

i = 0

homogeneous ideal we may assume that the a7- are homogeneous polynomials as
well. Since deg(^gl) = i(deg(g))(mod p) and deg(g) ^ 0(mod p), it follows ap

pH
= a?gl for some i = 0,..., p - 1. This implies that if i ^ 0 gq+ieBp, which
contradicts (5.1). Thus i = 0 and HeLp.
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