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Purely Inseparable Extensions of Unique
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Jeffery LanGg*

§0. Introduction

This article attempts to set some further groundwork for the study of
codimension-one cycles of purely inseparable coverings of varieties in
characteristic p. Thus it represents, hopefully, a preliminary effort. The
simplest type of purely inseparable cover of a variety X with coordinate ring 4

in characteristic p # 0 is obtained by taking Y = Spec(4 ["\/5]) for some
ge A. Efforts to relate the codimension one cycles of X and Y ([8], [2]) led to
the ring-theoretic question,

I. If A is a UFD of characteristic p # 0, for what ge 4 is A[P\/Ej a UFD?

A natural place to begin to investigate (I) is with 4 a polynomial ring
defined over a field k of characteristic p > 0. When k is perfect (I) can be
restated,

II. For what ge A = k[x,,..., x,] is A?[g] a UFD?

This paper investigates (I) in Section 5 when A is the coordinate ring of a
surface X defined as a complete intersection and extends (II) in Section 3 to
study the divisor classes of rings of the form k[x%,..., xZ, gys..., Gn—1]-

After a few brief preliminaries in Section 1, some tools for calculating CI(A)
are developed in Section 2, that generalize ([8], (2.6)) and ([5], 1I(1.3)), which
played an important role in showing that for a general choice of geA
= k[x4,..., x,] AP[g] is factorial (See [5], I1(2.6)). In Section 4 some examples
are considered. The reader is also referred to two excellent references for the
subject of divisor classes of Krull rings, Samuel’'s 1964 Tata notes [11] and
Fossum’s “The Divisor Class Group of a Krull Domain” [4].
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§1. Notation and Preliminaries

(0.1) k-an algebraically closed field of characteristic p # 0.

©0.2) A=k[x,,..., x,]-a polynomial ring in n-indeterminates over k.

©0.3) Given fq,....f,€A4,J(f1,...,f,) is the determinant of the matrix

[Di(fp], 1 <i, j<n, where D; = %

(0.4) Given he 4, let deg, (h) denote the degree of h in x;, deg,, . (h) denote the

degree of h in x; and x;, etc. ..., let deg(h) denote the total degree of h.

(0.5) Aj denotes the affine n-space over k.

©6) fi,....fn—1€A are said to satisfy condition (*) if the variety V< A}
Dy(f) - DJf1)

defined by the n — 1 by n — 1 minors of the matrix : :

Di(fa-1) ++ Dulfu-1)

has dimension less than n — 2.

(0.7) If R is a Krull ring denote by CI(R) the divisor class group of R ([11],

page 18) (cf. (0.2)).

(0.8) If X is a noetherian integral separated scheme which is regular in

codimension one, denote by CI(X) the group of Weil divisors of X([7], page

130).

(0.9) If R is a noetherian integrally closed domain, then R is a Krull ring and

X = Spec(R) will be regular in codimension one, and CI(R) and CI(X) defined

above are isomorphic.

0.10) Given g, f4,...,f,_2€A, let P be the ideal in A generated by f4,..., f,_>

and B = A/P. For feA, denote its image in B by f. Then we say that g,

f1s... fnu_, satisfies condition (**) if all three of the following conditions are

satisfied.

(i) P is a height n — 2 prime ideal in A.

(i) g¢B?f =k[x%,..., x2]

(iii) The ring A[w]/(w? — g, f1,...,fn->») is regular in codimension one.

Note that the ring in (iii) is a domain by (i) and (ii) and it is regular in

codimension one if and only if it is normal ([7], pg. 186, Proposition 8.23).

(0.11) For a prime number p, we will let F, denote the finite field of order p

and the set of integers {0, 1,..., p — 1}. It will be clear from the context which

is meant.

1.1. Theorem. Let A = B be Krull rings. Suppose that either B is integral over
A or that B is a flat A-algebra. Then there is a well defined group homomorphism
¢: CI(A) - CI(B).

Let B be a Krull ring of characteristic p > 0. Let 4 be a derivation of L,
the quotient field of B, such that A(B)= B. Let K =ker(d) and 4
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=BnK. Then A4 is a Krull ring with B integral over A. By (1.1) we have a
map ¢: Cl(4) - CI(B) (see [11] pp. 19-20). Set ¥ = {¢t~! 4dteB|teL} and &’
= {u"'Aulu is a unit in B}. Then & is an additive group with subgroup &£".

1.2. Theorem. (a) There exists a canonical monomorphism @ : ker @
->%/¥'. (b) If [L: K]=p and A(B) is not contained in any height one prime
of B, then ¢ is an isomorphism ([11], p. 62).

1.3. Theorem. (a) If [L: K] = p, then there exists a€ A such that A = a4, (b)

teL is equal to u~'Au for some ueL if and only if A" 't —at+t*
— 0([11], pp. 63-64).

§2. Computational Tools

Let k be an algebraically closed field of characteristic p>0. Let 4
= k[x;,..., x,] be a polynomial ring in n-indeterminates over k. Let
fireesfu_1€A. Define a derivation D on L=k(x,...,x,) by D(h)
=JMh,f1,...,fn-1) where J represents the determinant of the Jacobian

matrix. That is,
Dy(h) Dy(h) -+ Dy(h)

Dl(fl) DZ(fl) Dn(fl) 0
Jh, f1y..., fnoq) = det . . _ _ where Df:%‘

: : : J
Dy(fu-1) Dalfu-1) -+ Dulfa-1)
We have the following generalization of ([8], page 395, (2.6)). We let A’

= k[xﬁ,,---a xg:fly---afn—lj'
2.1. Proposition. Assume D # 0. Then (i) there exists a€ A such that D(a) =0

n—1p—1

and D =aD, (i) a is given by a=(—1"Y Y fy-frciv(fi 1.
j=1r;=0
n—1p—1

fromemh), (iii) For all te L, DP ™'t —at = (— 1"t Y Y frefropp(fr ot
j=1r;=0
v fPIn T g where Vo= (D271 .-- DETY),

Proof (i) For each i=1,...,n—1, f;¢k(x},..., x5, f1,...,fi—1) (Where
we let f, =0) since D # 0. It then follows that

211, [L:L]=p and L' =D '(0), where L' is the quotient field of A4'.
By (1.3) there exists ae ANL' such that D = aD.
(i) Will follow from (iii) by letting t = 1.

(i) Case(I): The f; contain no monomials that are p-th powers and the f;
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satisfy condition (*).

For each i=1,...,n— 1, let 4; be the derivation on L defined by
r Dyh) - Dy_q(h)
D1(f1) Dn—1(f1)

A4,(h) = det Di(fi-1) -+ Du-1lfi-1)
Di(fiv)) =+ Dui(fivn)

L Di(fuet) - Duoi(fay) ]

Since D # 0, we may assume after a permutation of the x; that 4,(f;) # 0 for
each i Now for each 1<i<n-—1, let E;=(1/4(f))-4; and E
= Er-l...EpCl,

2.1.2. Claim: E(D? 't—at)="Vt, for all teL.

n—1
Proof of (2.1.2). If te A, deg(Dt) < M + deg t — n, where M = Z deg f ;.
It then follows that deg(a) < (p — 1)(M — n) and !

2.1.3. deg(DP 't — at) < deg(t) + (p — 1)(M — n), for all te A.

Given heA’, there is a unique f;ed, for each FeF,”!, such that h
=Zﬁé’f"(where for F=(ry,..., r,_)eF L, fT=f1-fio}). We have that
forreach i=1,...,n—1, E{h)= Zri BE fT, where ¥ = (r,..., 1, — 1,..., rp_1).

Then Ejh)e A’ and deg(E,(h)) < c;eg(h) —deg(f;). Given teA, D? 't —ate A’
by (3.2) below, the proof of which is independent of this section, since D? = aD
and Da=0. By (2.1.3) we have for all te 4,

E(DP 't —at)=0, or
214 deg(E(D? "'t —at)) < degt — (p — Dn.
Any differential operator on k(x,, ..., x,) can be written uniquely as a linear

combination of D' ---Dj», 0 <s;<p— 1, with coefficients in L. Thus there
exists unique a-€ L, for each 7eF, such that

2.1.5. E(DP"' —al) =) o0, where for 7 =(ry,..., r,), & = D} D7 --- Di.

Proceed by induction on ) r; to show a-=0 for 7#(p—1,...,p—1). By

.....
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with ), .. <n(p —1). Let 7 = (r},..., r¥) be such that ) rf = k. Substitute
t = x1-.-x'7 into (2.1.5) and use (2.1.4) to obtain r¥!---r*! o~ = 0 which implies
o+ = 0. Therefore

2.1.6. E(DP~! —al) = oF, for some aeL.

Apply both sides of (2.1.6) to (x; ---x,)? ' and use (2.1.4) to see that aek.

To compute a, we first note that o in (2.1.6) is invariant under a linear
change of variables. This may be checked by one coordinate change at a
time. If x, say, is replaced by a;x; + -+ + a,X, + &,+, (;€k) then D; becomes
a;D, and ¥V becomes af~'V. By the chain rule D becomes «; D, E. remains
unchanged and a becomes af~! a so that E(D?~! — al) becomes of~ *E(D?P~!
—al).

D,(f)(@Q) - DJ(f)(Q

By (*) there is a point Q € k" where the matrix :
Dy(fa-1(Q) -+ Du(f0-1)(Q)
is row independent over k.

Since o is invariant under a change in coordinates we may assume Q
=(0,...,0). Furthermore since a is clearly unaffected by the constant terms of
the f;, we may assume that f,(Q) = --- = f,(Q) =0. We then have that the
degree one forms of the f; are k-independent. Therefore, after another linear
change we may assume that the lowest degree form of f; is x; (1 <i<n
—1). Again apply both sides of (2.1.6) to (x;---x,)’~! and compare the O-
degree terms. On the right we get (— 1)"x and on the left we get (— 1)”. Hence
a=1 in (2.1.6).

Now let teL. Since D? 't —ateL', there are unique BreL such that

Dp_lt—at=z_ﬂé’f'_. Fix §=(sy,..., 8,-;)€ ;"% Then on the one hand we

know by (2.1.6) with o =1 that E(D?~}(ft) — af"t) = V(f*t). On the other
hand, we have E(D”~'(f*t) — af*t) = E(f(D? "'t — at)) = (— 1"~ B2 where 7,
=p—1-—s5s4...,p—1—5,_,), from which (iii) follows,

Case (II). The f; contain no monomials that are p™ powers.

Assume the coefficients of the f; are algebraically independent over k. Then
(*) is satisfied and hence the formula in (iii) holds. Therefore it will hold after
any specialization of the coefficients, since with respect to the differential
operators D and F they are constants. Finally observe that if the f; are replaced
by h;, 1 <i<n-—1, such that f; — h;e B=k[x},..., xZ], then D and hence a
(such that D? = aD) remain unchanged. The next lemma shows that the right
side of the equality in (2.1 iii)) also remains unchanged by such a
substitution. Case II showed that the desired formula holds whenever the f;
contain no p-th powers. Thus the general case now follows from the above
observations.
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2.2. Lemma. Assumef,...,f,_1, hi€A withf; —h,e B=k[x%,..., xE]. Then
for all teL,

TSt S VY ) =
___Zhsleszz.. sn ’V(hp s1— lfp s2—1 fﬁ:in—l—lt)
Proof. hy=f;+a, for some aeB. Let teL and t,=f5"%"1...

f” sn-1=1¢  Then Zhsffszz" sn IV(h" s1—1, fﬁ:in—l_lt)z Z fszz

(52,...5Sn— 1)

p—1 p—
fi=t Y h$P(hE™"'ty). So it is enough to show that ) h*F(hP~*"'1)
s=0

51=0

p—1
=Y fV(f"*"'t), when h— f =aeB.
s=0

—1
We have 'Y KP(h?=5"11)
s=0
-1l s . i —1-— . .
_ p Z (j)flas_l z (p ; >ap—1—s—”7(f1t)
i j

S.) (” - S)ffap-l—f-fV(ffr)
i j

_ J <S'>fi(xs—i
Zo \i

Il
™M
R
d
A
P
~
<
N2
i1
TN TN
=
I |
—_
w
N——
X
1]
™M

=Y vy
0 =0
z (= DP(fe) i <p—sl _j>(— a2~ 1775 (f 4 o
<Note that <p_1—s><l"1>=<p—1—j)<p—1>
J s s i
and (P - 1> — (=1, etc_>
J
= 120(_ D@ (f ) — (f + a)p =2

=Y R =L R,

The next proposition generalizes ([3], page 74, Theorem (3.4)). In the two
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variable case it was used to prove that a generic Zariski surface has 0O-divisor
class group ([9]).

Let S=S(f1,....fn—1) = {Qek": rank[D,(f;)1(Q) <n—1}. Let C be the
matrix

Di(f1) - Dp-i(f0) Dy(f1) ]

C= Dl(fn—z) Dn—l(fn—z) Dn(fn—z)

L 0 0 1
and C* = (C 'Y (= the transpose of C~1). Let [g4,..., g,] and [hy,..., h,] be

52
the n — 1 — st and n-th rows of C*, respectively. Let E? = Z 9:9;—— E3
0= 0x; 0x;
n o2 n
= Z hi hjm, and E1E2 z=

Lj=1 i,j

2

gi h; p (3 Let M; be the cofactor of
1

D,_;(f;) in the matrix

Di(fy) - Du-i(fy)

,1<i<n—1.

Dl(fn—l) Dn—l(fn—l)

Let H = [Z M;E Es(f))] —[ZMEZ(f,][ZME (f)].

2.3. Proposition. For all QeS, a(Q) = (H(Q)®~ Y2, where a is as in (2.1).

Proof. 1t is a straightforward linear algebra to check that for all Qe€S§,
g:(Q) and h;(Q) are independent of the order of f,, ..., f,_; up to a change of the
same sign. It follows that H(Q) is independent of the order of f,,..., f,—1.

Let Q€S be a point where the rank [D,(f;)(Q)] =n — 2. After a change of
coordinates, which will not alter D (hence a) or H, we may assume Q
=(0,...,0). By the above remark, we may assume M,_,(Q) #0. Then

231 a,D(f)@Q) + -+ + a2 Di(fn-2)(Q) = Di( fn-1)(Q), 1 <i<n, where
a, = — Mr(Q)/Mn—l(Q)a I<r<n-2

Replacing f; by f; — f(Q), 1 <j < n — 1 also does not change D (and hence a) or
H so that we may assume f(Q)=0,1<j<n-—1
n—2
Temporarily, we replace f,_, by f,—; — Y, a;f;. Then D and a remain
ji=1
unchanged, and after this substitution we have that
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232 fi@ =D(fn-)Q =0, 1<j<n—1,1<i<n.

Now make the change in coordinates

Dl(fi)(Q)'xb lslsn—25 xn—l =Xp-1> 'in = Xy-

M=

233 %, =

l

1

Then Q remains (0,..., 0) and (2.3.2) still holds. By the chain rule we have

for all helL,

234 D(W="Y D{f)Q hs for 1<i<n—2.
=1
and Dt ="Y. DAfYQ@-he,+ by, for n—1<i<n.
Then D =
n—2 a n—
TON@ g 3 Dy )@ o+ o
n—-2 n—2
det j; Di(f)Q) (fu-2)z, o+ j;l Dy 1 (f Q) (fa-2z + (fa-2)s,
n—2 n—2
i ,;1 Di(f)@Q)(fu-1s5 ;1 Dy (f)Q) (fa-1s + (fu-1s, |
o 9 9 1
(f 1):71 (f 1):?2 (f 1):?,,
det
L (fn—l)fl (fn—l)fz (fn—l)f,. ]
[ Dy(f)@ - Dya(fD)@Q D (f)Q) D)@ ]
Di(f(Q) -+ D y(f)Q  Dui(f)Q  Du(f)Q)

Di(fu-2(@) - Du-z(fa-2)(@) Du-1(f4-2)@Q) Du(fr-2)(Q)

0 - 0 1 0

L0 o 0 0 1 a
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=M,_ (@ [J(,f1,....fn1)], where J is the determinant of the jacobian
matrix with respect to X,---, X,,.
Let D=J(,f1,...,fs—1) and @ be such that D? = aD (see (2.1)).
Then a=(M,_,(Q))’ " 'a. Then a(Q) = (M,-,(Q))’"*a(Q). We have by
(21) and (23.2) that a@) =(—1P(fy---f)’ )@ where 7
one—1)

= R s Also by the change in coordinates (2.3.3) we have

235 fi=x+fi, 1<i<n-—2, where f;' = f; — (leading form of f;) and

So-1= 'il(fn—l)f.fJ(Q)xixj'i'f:—l if p>2,

N —

Sn-1= Z.(fn—ﬂf.vfj(Q)’Ei’zj +fa-) if p=2

Thus the initial form of (f; ---f,—;)? ! is

o Xa- X
2.3.6. (X1 X,_ )P ! ((fn—1)f,._1x',._1(Q)Tl + (fn—-l)f,.f,.(Q)? + (fo- 5015
(Q)- %X,_1%)" "' + g, where g is homogeneous of degree n(p — 1), with
degsz,_.%,(9) <2(p—1), if p>2.
22
If p = 2, the expression (f,_ 1)z, _,z._,(Q) "2'1

(2.3.6).
It then follows that if p > 2,

=2
+ (fa- ez, (Q)% is deleted from

_ 92P—1)
Xn-1

2

=2 p—1
[(fn_l)f,,_lfn_l(@ + o Desn @5 + (f,,-l)fn_lg,,(g)xn_lfn]

(p—1)/2
= |:(fn— 1)%,.- vxn = Fa—0 s, (fam 1)£"fn:| (Q) by

(2.4) below. If p=2, Q) = (fn-1)%, '5.(Q). Therefore a(Q) = [(M,_;(fs-1)
fom) — My (fa s i ) M= 1 (fa- D550 17 2(Q).
We have that
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0

%, dx,
Therefore L =C*Q) :
0 0

0%, 0x,

We then obtain
a(Q) = [(M, 1 E{Ex(fn- 1))2 — (M, 1E§(fn— DM,y E%(fn— 1))](1" 1)/Z(Q)

, 'SOM(Q)
Now back substitute to replace f,_; by fr—1 + Y, ———
r=1 Mn— I(Q)

a(Q) = (H(Q))*~ V"2

Now if Q were a point such that rank [D,(f;)(Q)] <n — 2 then we could
have assumed that the first n—2 rows of [D,(f;)(Q)] are dependent as
well. Then clearly M,_,(Q) = 0 and by an argument similar to that used above,
we obtain @(Q) =0. Thus we obtain a(Q) = (H(Q))?~ V2, for all QeS.

f, to obtain

24, Lemma. Let k be a ring of characteristics p > 0. Let A, B and Cek and
6217—2(1.711—1)

F = Ax* + By* + Cxyek[x, y]. Then axr1gyrt

= (C2 — 44B)®P~ 12,

Proof. The coefficient of x?"'y?~! in FP~ 1 if p>2 is

o3 (pz—l 1><2i">cp—x—2"(AB)" =y (- 1)2i<2i>cv-1—2f(AB)‘

i=0 i=0 i
P J2 (2 -1-2i I L 2 AT i
= '_zo S)c (AB)' = 'ZO ;)€ (4B)
(p—1)/2

_ Z (— l)i <(P “.1)/2> 22i(C2)[(p—1)/2]—i(AB)i
i

i=0

=012 ((p — 1)/2
_os <(p /

1

)(CZ)(p-l)/Z—i( _ 4AB)1

i=0

= (C? —44B)*~ V2 If p =2, the lemma is clearly true.

§3. The Fixed Subring of a Polynomial Ring

Letk, A, A, L,L,and D=J( ,f;,...,f,—1) be as in Section 2. Let ¥ be
the additive group of logarithmic derivatives of D in 4, & = {h™'DheA: he
L}. Assume (*) holds. Let f=f,---f,_y. For I=(y,-,i,—;)eF3™ 1, let f*

= fit..fin-1
“fl fnn—l'

31. Lemma. Let Fc A?""! be the variety defined by the equations wP
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= filx1,..., %), 1 i <n—1. Then the coordinate ring of F is isomorphic to A'.

Proof. Let A =k[Xy,..., Xp Wi,..., Wy,_;]. Let ¢: A— A’ be the ring
homomorphism that sends x; to xf, w; to f; and « to of for all 1 <i<mn,
l1<j<n—1, aeck. (Note ¢ is not a k-homomorphism) Then w?
—fjeker ¢. Let Q< A be the ideal generated by wh—f., 1<j<n

— 1. Then Q is a prime ideal in A of height n — 1. Therefore ker ¢ = Q by
([7] page 6,18A).

32. Lemma. D !(0)nA=4"

Proof. Let B=D"'(0)nA. Then k[xf,...,xX)]cA'<B< A B is in-
tegral over A'. For each i, f, ,¢k(x%,..., x5 f1,....f) by (*). Thus
[L':k(x%,...,xB)]=p"~ ' Also by (*), D, #0 for some i Therefore the

quotient field of B is not Land A’ and B have the same quotient field. Since A’
is normal, A’ = B.

33. Lemma. Cl(4")~ %.

Proof. By (*) the image of D is not contained in any height one prime of
A. By (1.2) and (3.2), Cl(A") ~ & since the units of 4 are the nonzero elements
of k.

n—1
34. Lemma. Let te¥. Then deg(t)< M —n, where M = Y. deg(f)).
i=1

Proof. te. implies there exists a ge Lsuch that g~ 'Dg = t. Multiplying
g by an element of A”, if necessary, we may assume ge A. deg(Dg) < (deg g

n—1
-1+ 'ZE deg(f; — 1) =degg + M —n. Therefore deg(t) <M — n.

35. Lemma. Let 4= {tecA:V(fP *t)=(— 1)"t*}, where f=f-f,_, and V
=D?'...DP"  Then % is a p-group of type (p,...,p) of order p¥ with

)

Proof. Let te%. V(fP 't)=(— 1"t implies p degt < (p — 1)deg(f)
+ deg(t) —n(p — 1). Thus deg(t)y <M —n. Write t= )  o,x’ where for J

|J|sM—n

=

n
=(iys.r i)€Z"), x* =xi---xir and |J| = ) i;. Comparing coefficients on
j=1

both sides of the quality V(f?~'t) =(— 1)"t? we obtain for each J, with
|Jol £ M — n an equation of the form L, = af , where L,  is a linear expression
in the o; with coefficients in k.

M — M . .
There are a total of (n +(n n)) = < n> such equations. The ring R
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= k[o;]|5y<m—n With the relations L; = af is a finite dimensional k-vector spaced
spanned by all monomials in the «; of degree less than or equal to (p — 1)

(A:> Thus R has a finite number of maximal ideals ([10], p. 89).

Thus the < ) equations L; = af intersect at a finite number of
n

points. There is no solution to At{hese equations at infinity. By Bezout’s
Theore% this number is at most p(n)([6], p. 670). ' Therefore ¢ is of order at
most p(n). % is a p-group of type (p,..., p) since ¥ < A.

3.6. Proposition. Let F — A"~ be the variety defined by w¥ = fi(x4,..., X,),
1<i<n—1. Then CI(F) is a finite p-group of type (p, ..., p) of order p~ where

N < (M )
n
Proof. By (1.2), (3.1), (3.2), and (3.3), CI(F)~ %. By (1.3b) an element
teA is in % if and only if D?" 't —at = —t?. By (2.1) te % if and only if
36.1 P(fP~11) = (— 1y'® and P(f’t) = 0
for all JeF,"' with J #(p—1,...,p—1).
Thus ¥ <« 9%. Now use (3.5).

3.7. Lemma. LetfeA be such that s"*Dse A. Assume s = g'h, where ge A is
irreducible, r # O(mod p) is a positive integer and he A is relatively prime to
g. Then g~ 'DgeA.

Proof. Let t=s"'Ds. Then st=Ds=rg" *hDg + g'D(h). Then g di-
vides rhDg and hence g divides Dg,

§4. Examples

4.1. Remark. From the proof of (3.6) we see that the calculation of CI(X) is
equivalent to determining the number of solutions to a corresponding system of
equations of the form

411. L;=daf, L;, =0 where the J, J'eF; ! and the L; and L, are linear
expressions in the aj.

[1] provides an algorithm for finding the number of solutions to such a p-
linear system of equations and a computer program for determining this number
when the coefficients of the f; belong to a finite field, so that the computation of
CI(F) in this case is a programmable process.

4.2. Remark. Let h;, 1 <i<n— 1, be homogeneous elements of 4 of degree s;
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with s; # O(mod p). If the h; satisfy (*), then for each pair (i, j) with i # j, h; and
h; have no common factors in 4 and each h; has no multiple factors in 4. Let
X < A" ! be defined by the equations w? = hy(x,,...,x,) 1 <i<n—1. The
next example studies CI(X).

4.3. Example. By (4.2) each h;=H,; ---H,, where the H; are distinct
irreducible homogeneous elements of A. Let D=J( ,hy, -, h,_,) and & the
group of logarithmic derivatives of D in 4. Let h=h,---h,_, and M
=deg h. Let te¥. By (3.6.1)

43.1. P(h?= 1) = (— 1P

Assume that the lowest degree form of t is of degree s and the highest degree
form of ¢t is of degree m. Compare the lowest and highest degree forms on both
sides of the equality in (4.3.1) we obtain ps>(p —~ 1)M +s —n(p — 1) and
pm<(p—1)M+m—n(p—1). Then m< M —n <s and hence t is homog-
eneous of degree M — n. Repeat the same argument used in the proof of (3.5) to

obtain |CI(X)| = p* with s < (M B 1).

n—1
Now assume that the h; satisfy the additional condition that the variety
Yc A} defined by h;=--=h,_;,=0 has a finite number of

singularities. (When n = 2, this condition is implied by (¥).) For each pair (i, ),
l<i<n—1,1<j<r,let t;=H;'DH;). By (3.7), t;€ < for each (i, j).

432. Claim. The t;; are F,-independent.

Assume d;;eF, and ) d;;t; =0. Let H=]][H#. Then DH =0. Noting that
Dh;=0(1<i<n-—1), we may assume that d,r,=..=d,_,r,-,=0. By
Euler’s formula the determinant of the matrix

D,(H) - Dj-(H) sH Dj.1(H) -+ D,(H)
Dy(hy) -+ Dj_y(hy) sihy  Djia(hy) - Dy(hy)

Dl(hn—l) Dj—l(hn—l) Sn—lhn——l Dj+1(hn—1) Dn(hn—l)

column j —— )

is O for each j=1,..., n, where s = deg(H).

This shows that either s =0(mod p) or Y has an infinite number of
singularities satisfying the equation H,,, =--=H,_;, ,=0. Thus s=0
(mod p).

If some d;; # 0 we may assume without loss of generality that d;; # 0. Let
Hy,=ht""H. Let H' be obtained from H, by factoring out all p-th
powers. Then deg(H')=s,(p —d;;)#0 (modp) and the factors H,,,
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H,,,...,H,_, , do not appear in H'. Repeat the above argument to obtain
d;j=0 for all 2<i<n—1 and that the exponent of H,, in H' must also be
0. But this implies that p —d;; = 0. Contradiction!

Thus if we let m be the number of factors in h = h, --- h,_,; we have that the

. . M—1
order of CI(X) is p" for some r with m——n+1§rs<n 1).

44. Remark. When n = 2, (4.3) implies that r = m — 1, which was first proved
in [8].

4.5. Example. Let fi(x,), gi(x,)ek[x,], 1 <i<n—1. Letf(x,) =f1(x,)fa-1
(x,). Assume f(x,) has r distinct roots, 6,,..., 6,. For each i, let F; = x;f;(x,)
+ x,9:(x,). Assume the F; satisfy (*). LetD=J(, Fy,..., F,_,) and £ be the
group of logarithmic derivatives of D in A. We will show that % is of order p”
generated by the logarithmic derivatives, D(x, —0)/(x, —0;), 1<j<r in
A. Thus the group of Weil divisors of the variety defined by the equations, w?
=F, 1<i<n—1, will be a direct sum of r copies of F,.

Let teX. Given heA, deg,(Dh) <deg,(h), 1<i<n—1. Therefore
deg,(t) =0 for 1<i<n—1. Thus tek[x,]. Let 4 be the k-derivation on
k(xy,..., x,) defined by 4 = t~'D. By Hochschild’s formula ([11], pg. 64, (3.2)),
A?=A. Hence (4 —(p — DI)---(4 — 2I)(4 — I)4 = A? — A = 0, where [ is the
identity mapping of k(x,,..., x,) into k(x,..., x,). Clearly 4(x,) #0. Set y,
=4(x,), y2=UA—=Dyi,..., =4~ (@ — D)y, (=0). First we observe
that if x ek(x,) then 4(x)ek(x,). Hence y,,..., y,—;€k(x,). Next we have that
for some I=2,...,p—1,y,_; #0and y,=(4 — (1 — 1)I) y,_, =0. Therefore
A(y,—y) = (1 - 1)y,_,, which implies that D(y,_,)/y,—; =( — 1)t. Let g be the
inverse of | — 1 modulo p. Let y=y? ;. Then D(y)/y =t. Thus we’ve shown
that there exists yek(x,) such that Dy/y =t. Multiplying y by an element of
k[x?], if necessary, we may assume yek[x,].

Factor y into a product of linear factors, y = (x, — o;)* --- (x, — &,,)°" where
0y,..., &, €k are pairwise distinct. If s; > p for some s;, then (x, — ;)% will
yield the same logarithmic derivative as y, so we may assume that 1 <s; <p—1
for each s;. By (3.7), D(x, — a;)/x, — ;€ & for each i = 1,..., m. But for each
i, D(x, — ;)= D(x,) =(— 1"*! f(x,). Therefore x, — «; is a factor of f(x,) in
k[x,]. We conclude that «;e{f,,...,0,} for each i=1,...,m. Thus ¢

=D(y)/y = 3 s(D(x, — a;)/(x, — ;) belongs to the F,-space spanned by {D
i=1
(x, — 0)/(x,— 0): 1 <i<r}. These polynomials are easily seen to be [,

independent. Thus % has order p".
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§5. Purely Inseparable Covers of Dimension Two Factorial Domains

Let g, fy,..., fu—2€A =k[X4,..., x,], where k is algebraically closed of
characteristic p #0. Let D=J(,g,f1,...,fn—2)- Assume that the ideal P
=(f15...,fu2) is @ height n — 2 prime ideal in A. Let B= A/P. For feA,
denote its image in B by f. Then B=k[X,,...,X,]. Let C = B?[]]
= k[x?,..., %%, g]. Denote by L and K the quotient field of B and C,
respectively. D will induce a k-derivation, D, on L. Throughout this section
assume (**) (See (0.10).). Let W< Ar*?! be the variety defined by the equations
fi==faa=Ww —g=0.

51. Lemma. (i) D *0)nB=C, (ii) C is isomorphic to the coordinate ring of
W, (iii) [L: K]=p, (iv) D(B) is not contained in any height one prime of B.

Proof. Consider the surjection ¢p: A[w] > C given by x; > X/, 1 <i<nw
—g, and a—af, for all aek. Then the ideal I < A[w] generated by
fis.esfn_2, WP — g is contained in ker ¢ and is a prime ideal of height n — 1
since § # h? for any heB by assumption. Since the dimension of C is 2, the
height of ker ¢ is n — 1. Thus A[w]/I =~ C, which proves (ii).

We have B?cCc<D '(OnB<B and [K:IP]=p. By lemma
(5.2)(below), [L: L*] = p%. Therefore C and D~ !(0)n B have the same quotient
field. By (i) C is normal, which gives C = D™'(0)nB. Also [L: K] = [L: L]
J[K: L’]=p. Hence (iii).

(iv) is immediate from the assumption on W.

52. Lemma. Let k be a perfect field of characteristic p#0. Let A be a
finitely generated k-integral domain of dimension 2. Let B = AP. Then the
degree of A over B is p2.

Proof. A =k[uy,...,u,] for some u;eA. Then B =k[u},...,ul]. By
Noether’s normalization theorem there exists y;, y, € A such that A is separably

algebraic over k[y,, y,] and y,, y, are algebraically independent over k. We
then have the diagram of inclusions

A\
kLy1s y21 B

N/

kLy%, y21
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Let L, L' be the quotient fields of A, B, respectively. Clearly [L: k(y,, y,)]
= [L": k(y%, y3)] and the result follows.

53. Corollary. Let C be as in (5.1). CC)xZ/P', where P
= {f'D(f)eB}, Z' = {a"'D(@): @ is a unit in B}.

Proof. Use (5.1) and (1.2).

Throughout the remainder of this section assume that each f; is
homogeneous of degree s;, 1 <i<n — 2 and g is homogeneous of degree s # 0

n—2
(mod p). Let M=s+ ) s,
i=1

54. Lemma. Let weP. Then there exists homogeneous te A of degree M — n
such that t = w.

Proof. Let we 4 be a representative of w of minimal degree. Let deg(w)
d
=d. Then w= ) w;, where w;e 4 is homogeneous of degree j. Note w, # 0
i=0

by minimality. Let aeA be such that D? =aD. Then D? =aD. By (1.3)
d
DP~*(w)—aw + wP =0. Then ) (D? *(w;) —aw;+ wf)eP. P being homog-
j=0
eneous implies that w,e P or D?~!(w;) — aw; + wjeP for some j=0,1,...,d
with deg(D?~'w; — aw;) = deg(w}). (Note if h is homogeneous of degree r, then
DP~'h —ah is homogeneous of degree (p— 1)(M —n)+r or D’ 'h—ah
=0) Since w,#0, it must be that pd=(p — 1)(M —n)+j for some j
=0,1,...,d Then pd <(p — 1)(M — n) + d, which implies that d < M — n.

54.1. The two sets, {j: D?"'w; —aw; # 0} and {j: w; # 0}, have the same
d

number of elements since ) pr-1 w; —aw; + wf = 0 and P is homogeneous.
j=0

This shows that D?~'w,—aw, #0. (Note W;_o=D?"'w;—aw;=0)
Therefore D?~'w, — aw, and w? have the same degree and D?~'w, — aw, + w2
=0. Thus w,e# by (1.3). Then w—w,= ) w;eZ. Repeat the same

ji=1

argument beginning with (5.4.1) to obtain w;e &, j=1,...,d. If w; # 0 then
this implies that D?~'w; — aw; and w? have the same degree, but this is only
possible if j = M —n. Thus it must be that d =M —n, w; =0 for j <M —n
and w = w,.

55. Lemma. Let we%. Then there exists homogeneous y€ A such that j # 0
and y~*D(j) = w.

Proof. By (5.4) we may assume w is homogeneous of degree M —n. 4
=w!'D. By (*¥), D(x,)#0 for some r=1,...,n Let j, = 4(%,). For
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2<j<p-—1,let j;=A4(j;-y) — (j — 1)y;—1. Then for some j, j; 'D(y;) = (j
— 1w by ([11], pg 64), proof of (3.2)). Note also that j; is of the form 7 'a
where u, ve A are homogeneous with deg(u) = deg(v) + 1. Multiply y; by o to
obtain a homogeneous he A4 such that A2 D(h) = (j — 1)w. Choose me F, such
that m(j — 1) = 1. Then y = k™ has the desired property.

5.6. Remark. Assume that B is a unique factorization domain and that je B is
irreducible homogeneous such that w = " !D(j)e £ and w # 0. Then X, Wy =

X, D4(3) Dy(5) -+ Du(3)
det i1D_1(§7) 52(9_) D—n(g)

£101(Fa—2) Dalfaes) = Dulf-2)
o DG - D)

_ det g Dig) - D@

Su-2Sn-2 Da(fu-2) =+ Du(fn-2)
by Euler’s formula, where e = deg(y).

Therefore x,wy = ey M, + sgM,,, where M,; and M,, are the cofactors
of ey and sg in the matrix. Thus j divides § or M,, (recall s # 0). Similarly, if
y does not divide g, then y divides M,;, 1 <j<n.

Let 4;(1 <j<n) be the derivation on B defined by 4; =

D, Dy Dj+1 D,
det D1.(f1) Dj—l.(fl) Dj+1(f1) Dn('fl)

Dl(fn—Z) Dj—l(fn—Z) Dj+1(fn—2) Dn(fn—z)

Then () 4;'©)nB=B" since g¢ () 4;'O0)nB by (51). Also
j=1 ji=1

y~'44y)eB for 1 <j<n. At this point, in order to arrive at a definitive
description of CI(W) analogous to ([1], page 398, (3.2)), a condition must be
added to (**) to exclude the possibility that ' 4,(j)¢B (1 <j <n). Hence

5.7. Theorem. Suppose B is a unique factorization domain and that g factors in

B into a product of q + 1 distinct prime elements. Assume that either

(i) for eachi=1,...,n, x;¢BP and the variety defined by the equations wP — x;
=f1 = =fnp=0in A" defines a unique factorization domain, or

(i) Endg(B) = B[G], where B[G] denotes the C-subalgebra of End.[B]
generated by B and G =<{4,,..., 4,).
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Then the divisor class group of W is a direct sum of q copies of Z/pZ.
Some preliminary lemmas are required.

58. Lemma. Assume that B is a unique factorization domain and that g factors
in B into a product of q+ 1 distinct prime elements. Then there exists
homogeneous polynomials g, ..., §,+, €A such that the decomposition of g in B
into prime elements is given by g =g, - §y+1-

Proof. Suppose g = w;w, for some w,, w,€B. We'll show that we may
choose the representatives w;, w, so that they are homogeneous in 4. Let w,
=uy+ - + uy, wy, =0y + -+ + v, where u;, v; denote the forms of w;, w, of
degree i and j, respectively. Then g — w,w,eP. Let r=deg(g). Then

Y uv;jeP for all 0<e<d+d with e#r. Let i, be minimal such that
itj=e
u;,,¢ P and j, be minimal such that v; ¢P. Let iy +j,=m. Then Y &i;
i+tj=m

= i, 0;, # 0, which shows that m =r and g = u; 7},

59. Lemma. ¥ =0.

Proof. Let we 2’ By (5.5), there exists a homogeneous element he A
such that 7 # 0 and A~ 'D(h) = w in B. Also by definition of .2’ there is a unit
# in B such that 4 'D(@@) =w. Let #=a"'. Then D(@h)=0. Thus by (5.1),

_ opz1 =1
th= ) alg/(a;eA). Let veA be a preimage of 5. Then vh— ) afg’eP.

j=o j=o
Write v= ) v; with v; the form of v of degree i. 7 being a unit implies
i=0
vy #0. Since h and g are homogeneous and P is a homogeneous ideal and
p—1 X
deg(g) # O(mod p), we see by comparing lowest degree forms of vh and ) a?g’
=0

that for some ped and j=,..,p—1, uvoh— BPg°eP. Therefore
ohe C. Since vy(hence i,)ek, heC and w=h~"'D(h) =0 by (5.1).

Proof of theorem (5.7): Continuing with (5.6), we have y~'4,(y)eB for
1<j<n Since D(j)#0, 4 #(7) # 0 for some j. If we assume (i), then either
the divisor class group of the variety defined by the equations w? — x; = f; = ---
= f,—, is not trivial or y is a unit in B by (1.2), which contradicts the
irreducibility of y in B. If we assume (ii) then either CI(B?) # 0 or j is a unit in
B by theorem ([4], page 93, (17.4)). Thus in either case, y is a factor of g.

Let g = g, -~ g,+, be a decomposition of 7 in B into prime elements. Then
by (3.7) and the above argument we have that the logarithmic derivatives

_ _ _ s+1 D 7. D 1
g *D(g)eB (and hence £) and they generate #. Note Y ;_g,) = ?g
i=1 i

=0. Therefore {g; ' D(§)): 1 <i< q} generate & over F,. We will now show
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that they are F,-independent.
g _
Suppose e;eF,, 1 <i < q are such that Y egi ' D(g) = 0. By (5.8) we may
i=1

assume that the representative g;e A of §;eB is homogeneous (1 <i<gq
+1). Let H=g g Then D(H)=0, which implies by (5.1) that L?
cI?H)cI?@. If HeI” then ¢=0(modp), 1<i<qg and weTe
done. Otherwise L?(H) = L?(g) which implies there exists ;€ 4 (0 < i < g) such

I k| S
that aPH = _Zo aPgi. Since H, g are homogeneous elements and P a
=

homogeneous ideal we may assume that the a; are homogeneous polynomials as
well. Since deg(afg') = i(deg(g))(mod p) and deg(g) # 0(mod p), it follows o‘cgﬁ
= aPg' for some i=0,...,p— 1. This implies that if i #0 g,,,€B?, which
contradicts (5.1). Thus i =0 and HeL”.
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