∂ Cohomology of Complex Lie Groups

By

Hideaki KAZAMA* and Takashi UMENO**

Introduction

Let *H* be a toroidal group of complex dimension *n*, that is, *H* is a connected complex Lie group without non constant global holomorphic functions (such a Lie group is called also an (H, C)-group ([7, 8])). Let \mathscr{K} be the real Lie algebra of a maximal compact real Lie subgroup of *H*. Put $q := \dim_{\mathbb{C}} \mathscr{K} \cap \sqrt{-1} \mathscr{K}$. Let \mathscr{O}_{H} be the structure sheaf of *H*. By the result of the previous paper [3], *H* satisfies either of the following statements 1 and 2.

1. $H^{p}(H, \mathcal{O}_{H})$ is finite dimensional for any p.

2. $H^{p}(H, \mathcal{O}_{H})$ is a non-Hausdorff locally convex space for $1 \leq p \leq q$.

We say that H is of finite type if H satisfies the above property 1 and of non-Hausdorff type if H satisfies the above property 2, respectively.

The purpose of this paper is to investigate the cohomology groups $H^p(G, \mathcal{O})$ $(p \ge 1)$ of a complex Lie group G by the theory of $\overline{\partial}$ -cohomology. We shall show the cohomology groups $H^p(G, \mathcal{O})$ $(p \ge 1)$ are completely determined by the type of the maximal toroidal subgroup

 $G^0 := \{x | f(x) = f(e) \text{ for every holomorphic function } f \text{ on } G\}$

of G, where e is the unit element of G. By the result of [7] G^0 is a connected abelian complex Lie subgroup of G.

We shall prove the following theorems.

Theorem I. Let G be a connected complex Lie group of complex dimension n + l and $G^0 = \mathbb{C}^n / \Gamma$ the maximal toroidal subgroup of G of complex dimension n. Then the following statements (1), (2), (3) and (4) are equivalent.

Communicated by M. Kashiwara, May 24, 1989. Revised October 9, 1989.

^{*} Department of Mathematics, College of General Education, Kyushu University, Ropponmatsu, Chuô-ku, Fukuoka, 810 Japan.

^{**} Department of Mathematics, Kyushu Sangyo University, Matsukadai, Higashi-ku, Fukuoka, 813 Japan.

^{*} The first author was partially supported by Grant-in-Aid for Scientific Research (No. 02640137), Ministry of Education, Science and Culture.

- (1) G^{0} is of finite type. (2) $H^{p}(G, \mathcal{O}) \cong$ $\begin{cases}
 H^{0}(G/G^{0}, \mathcal{O}) \otimes \mathbb{C}\{d\bar{z}^{i_{1}} \wedge \dots \wedge d\bar{z}^{i_{p}} | 1 \leq i_{1} < \dots < i_{p} \leq q\} \\
 \text{for } 1 \leq p \leq q \\
 0 & \text{for } p \geq q + 1
 \end{cases}$
- (3) $H^{p}(G, \mathcal{O})$ has a Hausdorff topology for any p.
- (4) $\overline{\partial}H^0(G, \mathscr{E}^{0,p-1})$ is a closed subspace of the Fréchet space $H^0(G, \mathscr{E}^{0,p})$ for $p \ge 1$, where $\mathscr{E}^{r,s}$ denotes the sheaf of germs of $C^{\infty}(r, s)$ -forms on G.

Theorem I gives a characterization of a complex Lie group G whose cohomology groups $H^{p}(G, \mathcal{O})$ have Hausdorff topology.

Theorem II. Let G be a connected complex Lie group and G^0 the maximal toroidal subgroup of G. Then

- (1) dim $H^1(G, \mathcal{O}) = 0 \Leftrightarrow G$ is a Stein group.
- (2) $0 < \dim H^1(G, \mathcal{O}) < \infty \Leftrightarrow G = G^0$ is a toroidal group of finite type.
- (3) dim $H^1(G, \mathcal{O}) = \infty$ and $H^1(G, \mathcal{O})$ has Hausdorff topology $\Leftrightarrow 0 < \dim G^0 < \dim G$ and G^0 is of finite type. In this case

 $H^{p}(G, \mathcal{O}) \cong H^{0}(G/G^{0}, \mathcal{O}) \otimes H^{p}(G^{0}, \mathcal{O}).$

(4) $H^1(G, \mathcal{O})$ has non-Hausdorff topology $\Leftrightarrow \dim G^0 > 0$ and G^0 is of non-Hausdorff type.

§1. Preliminaries

Let G be a connected complex Lie group with the Lie algebra \mathscr{G} , G^0 the maximal toroidal subgroup of G, K a maximal compact real Lie subgroup of G with the Lie algebra \mathscr{K} , K_c the complex Lie subgroup with the Lie subalgebra $\mathscr{K}_c := \mathscr{K} + \sqrt{-1} \mathscr{K}$ of \mathscr{G} and Z the connected center of K_c . Then K_c is closed in G ([6]). From the result of [6] G is biholomorphic onto $K_c \times \mathbb{C}^a$ and there exists a connected Stein subgroup S_0 of K_c such that, for the connected center Z of K_c ,

$$\rho_0: Z \times S_0 \ni (x, y) \longmapsto xy \in K_c$$

is a finite covering homomorphism. By the result of [7, 8] $G^0 \subset Z$ and $Z \cong G^0 \times \mathbb{C}^{*^r} \times \mathbb{C}^u$ for some non-negative integers r and u. Then we may assume $G = K_c \times \mathbb{C}^a$ and $Z = G^0 \times \mathbb{C}^{*^r} \times \mathbb{C}^u$. Taking a Stein subgroup $S := \mathbb{C}^{*^r} \times \mathbb{C}^u \times S_0 \times \mathbb{C}^a$ of $Z \times S_0 \times \mathbb{C}^a$, we get a finite covering homomorphism

$$\rho: G^0 \times S \ni (x_0, x_1, x_2, x_3, x_4) \longmapsto (\rho_0((x_0, x_1, x_2), x_3), x_4) \in G.$$

From this homomorphism ρ we can assume $G = G^0 \times S/\ker \rho$. Let $\pi_1: G^0 \times S \to G^0$ and $\pi_2: G^0 \times S \to S$ be the canonical projections. Since $\pi_2(\ker \rho)$ is a finite subgroup of $S, S/\pi_2(\ker \rho)$ is a Stein group. We obtain a homomorphism

$$\pi: G^0 \times S/\ker \rho \ni (a, b) \ker \rho \longmapsto b\pi_2(\ker \rho) \in S/\pi_2(\ker \rho)$$

for $a \in G^0$, $b \in S$. From this projection π $G = G^0 \times S/\ker \rho$ is regarded as a fiber bundle over the Stein group $S/\pi_2(\ker \rho)$ whose fiber is isomorphic onto G^0 and whose structure group is the finite subgroup $\pi_1(\ker \rho)$ of G^0 . Then $S/\pi_2(\ker \rho)$ is isomorphic onto G/G^0 . Since G^0 is abelian, we obtain $\pi_1(\ker \rho) \subset K^0$, where K^0 is a maximal compact subgroup of G^0 . We put $n: = \dim_c G^0$, $l:= \dim_c S$. Then $\dim_c G = n + l$. Let $\{U_\alpha\}$ be a Stein covering of S such that $\tilde{U}_{\alpha}:= U_{\alpha}(\pi_2(\ker \rho))$ is biholomorphic onto U_{α} and $\mathscr{U}:= \{\tilde{U}_{\alpha}\}$ is a Stein covering of $S/\pi_2(\ker \rho)$ with a biholomorphic mapping

(1.1)
$$h_{\alpha} \colon \pi^{-1}(\tilde{U}_{\alpha}) \ni (a, b) \ker \rho \longmapsto (\tilde{b}_{\alpha}, a_{\alpha}) \in \tilde{U}_{\alpha} \times G^{0}$$

for each α , where $a_{\alpha} \in G^0$ and $b_{\alpha} \in U_{\alpha}$ satisfying $(a, b) \ker \rho = (a_{\alpha}, b_{\alpha}) \ker \rho$ and $\tilde{b}_{\alpha} = b_{\alpha}(\pi_2(\ker \rho))$. Then

(1.2)
$$h_{\alpha}h_{\beta}^{-1}(\tilde{b}_{\beta}, \alpha_{\beta}) = (\tilde{b}_{\alpha}, a_{\alpha}) = (\tilde{b}_{\alpha}, f_{\alpha\beta}a_{\beta}).$$

Since $\pi_1(\ker \rho)$ is a finite subgroup, the holomorphic mapping $f_{\alpha\beta} \colon \tilde{U}_{\alpha} \cap \tilde{U}_{\beta} \to \pi_1(\ker \rho)$ is locally constant. Taking a refinement Stein covering of \mathscr{U} , we may assume \mathscr{U} is locally finite.

Throughout this paper we assume $G^0 = \mathbb{C}^n/\Gamma$, where Γ is a discrete lattice of \mathbb{C}^n generated by **R**-linearly independent vectors $\{e_1, e_2, \ldots, e_n, v_1 = (v_{11}, \ldots, v_{1n}), v_2 = (v_{21}, \ldots, v_{2n}), \ldots, v_q = (v_{q1}, \ldots, v_{qn})\}$ over \mathbb{Z} and e_i denotes the *i*-th unit vector of \mathbb{C}^n . We take $\Re v_i$, $\Im v_i \in \mathbb{R}^n$ with $v_i = \Re v_i$ $+\sqrt{-1}\Im v_i$. Since $e_1, e_2, \ldots, e_n, v_1, v_2, \ldots, v_q$ are **R**-linearly independent, $\Im v_1, \Im v_2, \ldots, \Im v_q$ are **R**-linearly independent. Then without loss of generality we may assume det $[\Im v_{ij}; 1 \le i, j \le q] \ne 0$ from now on. We set

$$K_{m,i} := \sum_{j=1}^{n} v_{ij} m_j - m_{n+i}$$
 and $K_m := \max\{|K_{m,i}|; 1 \le i \le q\}$

for $m = (m_1, m_2, ..., m_{n+q}) \in \mathbb{Z}^{n+q}$. Since G^0 is toroidal, $K_m > 0$ for any $m \in \mathbb{Z}^{n+q} \setminus \{0\}$ ([5], [8]). We have the following theorem ([3]).

Theorem 1.1. Let $G^0 = C^n/\Gamma$ be a toroidal group. Then the following statements (1) and (2) are equivalent.

(1) There exists a > 0 such that

$$\sup_{m\neq 0} \exp(-a \|m^*\|)/K_m < \infty,$$

where $||m^*|| = \max\{|m_i|; 1 \le i \le n\}.$

HIDEAKI KAZAMA AND TAKASHI UMENO

(2)
$$\dim H^p(G^0, \mathcal{O}) = \begin{cases} \frac{q!}{(q-p)!p!} & \text{if } 1 \le p \le q\\ 0 & \text{if } p > q. \end{cases}$$

We denote by π_q the projection $\mathbb{C}^n \ni (z^1, \ldots, z^n) \mapsto (z^1, \ldots, z^q) \in \mathbb{C}^q$. Since $\pi_q(e_i), \pi_q(v_i) \ (1 \le i \le q)$ are \mathbb{R} -linearly independent π_q induces the \mathbb{C}^{*n^-q} -principal bundle

$$\pi_q \colon \mathbb{C}^n / \Gamma \ni z + \Gamma \longrightarrow \pi_q(z) + \Gamma^* \in T^q_{\mathcal{C}} \coloneqq \mathbb{C}^q / \Gamma^*$$

over the complex q dimensional torus T_c^q , where $\Gamma^* := \pi_q(\Gamma)([9])$. We put

$$\begin{split} \alpha_{ij} &:= \begin{cases} \Re v_{ij} & (1 \le i \le q, \ 1 \le j \le n) \\ 0 & (q+1 \le i \le n, \ 1 \le j \le n) \end{cases} \\ \beta_{ij} &:= \begin{cases} \Im v_{ij} & (1 \le i \le q, \ 1 \le j \le n) \\ \delta_{ii} & (q+1 \le i \le n, \ 1 \le j \le n) \end{cases} \end{split}$$

 $[\gamma_{ij}; 1 \le i, j \le n] := [\beta_{ij}; 1 \le i, j \le n]^{-1}$ and $v_i := \sqrt{-1}e_i$ for $q+1 \le i \le n$. Since $\{e_1, \ldots, e_n, v_1, \ldots, v_n\}$ are *R*-linearly independent, we have an isomorphism

$$\phi: \mathbb{C}^n \ni (z^1, \ldots, z^n) \longrightarrow (t^1, \ldots, t^{2n}) \in \mathbb{R}^{2n}$$

as a real Lie group, where $(z^1, ..., z^n) = \sum_{i=1}^n (t^i e_i + t^{n+i} v_i)$. Then we obtain the relations

(1.3)
$$t^{i} = x^{j} - \sum_{i,k=1}^{n} y^{k} \gamma_{ki} \alpha_{ij} \quad \text{and} \quad t^{n+j} = \sum_{i=1}^{n} y^{i} \gamma_{ij}$$

for $1 \le j \le n$, where $z^i = x^i + \sqrt{-1}y^i$. We put $t = (t', t''), t' = (t^1, ..., t^{n+q}) \in \mathbb{R}^{n+q}$ and $t'' = (t^{n+q+1}, ..., t^{2n}) \in \mathbb{R}^{n+q}$. ϕ induces the isomorphism $\phi: \mathbb{C}^n/\Gamma \cong \mathbb{T}^{n+q} \times \mathbb{R}^{n-q}$ as a real Lie group, where \mathbb{T}^{n+q} is a real (n+q) dimensional real torus. It follows from (1.3) that

(1.4)
$$\frac{\partial}{\partial \bar{z}^{i}} = \frac{1}{2} \left[\frac{\partial}{\partial t^{i}} + \sqrt{-1} \left\{ -\sum_{j,k=1}^{n} \gamma_{ik} \alpha_{kj} \frac{\partial}{\partial t^{j}} + \sum_{j=1}^{n} \gamma_{ij} \frac{\partial}{\partial t^{n+j}} \right\} \right].$$

Then for $q + 1 \le i \le n$ we have

(1.5)
$$\frac{\partial}{\partial \bar{z}^i} = \frac{1}{2} \left(\frac{\partial}{\partial t^i} + \sqrt{-1} \frac{\partial}{\partial t^{n+i}} \right).$$

Let $(w_{\alpha}^{1}, \ldots, w_{\alpha}^{l})$ be a coordinate system in \tilde{U}_{α} . For any $g \in \pi^{-1}(\tilde{U}_{\alpha})$, we put $h_{\alpha}(g) = (w_{\alpha}^{1}(g), \ldots, w_{\alpha}^{l}(g), z_{\alpha}^{1}(g), \ldots, z_{\alpha}^{n}(g)) \in \tilde{U}_{\alpha} \times \mathbb{C}^{n}/\Gamma$, and $K_{\alpha}(g) = (z_{\alpha}^{1}(g), \ldots, z_{\alpha}^{n}(g)) \in \mathbb{C}^{n}/\Gamma$ and $\hat{K}_{\alpha}(g) = \phi \circ K_{\alpha}(g) = t_{\alpha}(g) = (t_{\alpha}^{1}(g), \ldots, t_{\alpha}^{2n}(g)) \in \mathbb{T}^{n+q} \times \mathbb{R}^{n-q}$. Since $f_{\alpha\beta} \in \pi_{1}(\ker \rho) \subset \mathbb{C}^{n}/\Gamma$, $(f_{\alpha\beta})^{s} \in \Gamma$, where $s := \#(\ker \rho)$. We put $\phi(f_{\alpha\beta}) = (f_{\alpha\beta}^{1}, \ldots, f_{\alpha\beta}^{2n})$. Then $\phi((f_{\alpha\beta})^{s}) = (sf_{\alpha\beta}^{1}, \ldots, sf_{\alpha\beta}^{2n}) \in \mathbb{Z}^{n+q} \times \{0\}$. Thus $\phi(f_{\alpha\beta}) = (f_{\alpha\beta}^{1}, \ldots, sf_{\alpha\beta}^{2n}) \in \mathbb{Z}^{n+q} \times \{0\}$.

 $(f_{\alpha\beta}^1,\ldots,f_{\alpha\beta}^{n+q},0\ldots,0) \in \mathbb{R}^{2n}. \text{ From (1.2) for } g \in \pi^{-1}(\tilde{U}_{\alpha} \cap \tilde{U}_{\beta}), t_{\alpha}(g) = t_{\beta}(g) + \phi(f_{\alpha\beta}). \text{ Putting } t_{\alpha} = (t'_{\alpha},t''_{\alpha}), t'_{\alpha} = (t^1_{\alpha},\ldots,t^{n+q}_{\alpha}), t''_{\alpha} = (t^{n+q+1}_{\alpha},\ldots,t^{2n}_{\alpha}), \text{ and } f'_{\alpha\beta} = (f^{1}_{\alpha\beta},\ldots,f^{n+q}_{\alpha\beta})$

(1.6)
$$t'_{\alpha} = t'_{\beta} + f'_{\alpha\beta} \quad \text{and} \quad t''_{\alpha} = t''_{\beta}.$$

Since $z_{\alpha}^{i} = t_{\alpha}^{i} + \sum_{j=1}^{n} t_{\alpha}^{n+j} v_{ji}$,

(1.7)
$$z_{\alpha}^{i} = z_{\beta}^{i} + f_{\alpha\beta}^{i} + \sum_{j=1}^{q} f_{\alpha\beta}^{n+j} v_{ji} \text{ and then } d\bar{z}_{\alpha}^{i} = d\bar{z}_{\beta}^{i}.$$

§2. The Cohomology Groups $H^p(U \times G^0, \mathcal{O})$

We consider the cohomology groups $H^p(U \times G^0, \mathcal{O})$ of the product manifold of an open polydisc U in \mathbb{C}^l and $G^0 = \mathbb{C}^n/\Gamma$. As in §1, we have the isomorphism $\phi: \mathbb{C}^n/\Gamma \ni (z^1, \ldots, z^n) + \Gamma \mapsto (t^1, \ldots, t^{2n}) + \phi(\Gamma) \in T^{n+q} \times \mathbb{R}^{n-q}$ and the projection $\pi_q: \mathbb{C}^n/\Gamma \ni (z^1, \ldots, z^n) + \Gamma \mapsto (z^1, \ldots, z^q) + \Gamma^* \in T_{\mathbb{C}}^q$. We put U $= \{(w^1, \ldots, w^l) \in \mathbb{C}^l \mid |w^i| < d, i = 1, \ldots, l\}$. We have a diffeomorphism $\tilde{\phi}: U$ $\times \mathbb{C}^n/\Gamma \ni (w^1, \ldots, w^l, z + \Gamma) \mapsto (w^1, \ldots, w^l, \pi_q(z + \Gamma), \xi^1, \ldots, \xi^{n-q}) \in U \times T_{\mathbb{C}}^q \times \mathbb{C}^{*n-q}$, where $\xi^i = \exp(2\pi\sqrt{-1}(t^{q+i} + \sqrt{-1}t^{n+q+i}))$ and $z = (z^1, \ldots, z^n)$. Let $\mathscr{E} = \mathscr{E}_X^n$ be the sheaf of germs of \mathbb{C}^∞ functions on a complex manifold X and $\mathscr{E}^{r,s}$ $= \mathscr{E}_X^{r,s}$ the sheaf of germs of $\mathbb{C}^\infty(r, s)$ -forms on X. We define the sheaf \mathscr{F} on $U \times G^0$ and the sheaf \mathscr{G} on $U \times T_{\mathbb{C}}^q \times \mathbb{C}^{*n-q}$ as follows:

$$\mathcal{F} := \{ f \in \mathscr{E}_{U \times G^0} | \frac{\partial f}{\partial \bar{w}^i} = 0, \ \frac{\partial f}{\partial \bar{z}^j} = 0, \ i = 1, \dots, l, \ j = q + 1, \dots, n \} \text{ and}$$
$$\mathcal{G} := \{ g \in \mathscr{E}_{U \times T^q_C \times C^{*n-q}} | \frac{\partial g}{\partial \bar{w}^i} = 0, \ \frac{\partial g}{\partial \bar{\xi}^k} = 0, \ i = 1, \dots, l, \ k = 1, \dots, n-q \}.$$

 ϕ^* : $H^0(W, g) \ni g \mapsto g \circ \tilde{\phi} \in H^0(\phi^{-1}(W), \mathscr{F})$ is an isomorphism for any open subset W of $U \times T_c^q \times C^{*n-q}$. Then ϕ^* induces an isomorphism $H^p(U \times G^0, \mathscr{F}) \cong H^p(U \times T_c^q \times C^{*n-q}, \mathscr{G})$ for any p.

Lemma 2.1. $H^p(U \times G^0, \mathscr{F}) = 0$ for $p \ge 1$.

Proof. It is equivalent to prove $H^p(U \times T^q_C \times C^{*n-q}, g) = 0$. We put $X := U \times T^q_C \times C^{*n-q}$. Let f be a C^{∞} function in a neighborhood of $x \in X$. We put

$$\overline{\partial}' f := \sum_{i=1}^{l} \frac{\partial f}{\partial \overline{w}^{i}} d\overline{w}_{i} + \sum_{k=1}^{n-q} \frac{\partial f}{\partial \overline{\xi}^{j}} d\overline{\xi}_{j}.$$

 $\overline{\partial}'$ is also defined for $C^{\infty}(r, s)$ -forms in a neighborhood of $x \in X$. We have an exact sequence on X,

$$0 \longrightarrow \mathscr{G} \longrightarrow \mathscr{E}^{0,0} \longrightarrow \mathscr{E}^{0,1} \longrightarrow \cdots \longrightarrow \mathscr{E}^{0,n+l-q} \longrightarrow 0.$$

Then

$$H^{p}(X, \mathscr{G}) = \frac{\{\varphi \in H^{0}(X, \mathscr{E}^{0,p}) | \overline{\partial}' \varphi = 0\}}{\overline{\partial}' H^{0}(X, \mathscr{E}^{0,p-1})}$$

We put $X_n := \{(w, \pi_q(z + \Gamma), \xi) \in X \mid |w^i| < d - \frac{1}{n}, \frac{1}{n} < |\xi^j| < n\}$. In case l = q= 1, for any C^{∞} -function $f(w, \pi_q(z + \Gamma), \xi)$ in X, we put

$$g_{1}(w, \pi_{q}(z + \Gamma), \xi) \coloneqq \frac{1}{2\pi\sqrt{-1}} \iint_{|u| < d - \frac{1}{n}} \frac{f(u, \pi_{q}(z + \Gamma), \xi)}{u - w} \, du \wedge d\bar{u} \text{ and}$$
$$g_{2}(w, \pi_{q}(z + \Gamma), \xi) \coloneqq \frac{1}{2\pi\sqrt{-1}} \iint_{\frac{1}{n} < |\zeta| < n} \frac{f(w, \pi_{q}(z + \Gamma), \zeta)}{\zeta - \xi} \, d\zeta \wedge d\bar{\zeta}.$$

Then in X_n we have

$$\frac{\partial g_1}{\partial \bar{w}} = f$$
 and $\frac{\partial g_2}{\partial \bar{\xi}} = f$.

Using this fact and the standard argument for the Dolbeault lemma ([1, 4]), we can complete the proof of this lemma.

Let $\hat{\pi}_q: U \times G^0 \ni (w, z + \Gamma) \mapsto (w, \pi_q(z + \Gamma)) \in U \times T^q_{\mathcal{C}}$, where $w = (w^1, \dots, w^l)$ and $z = (z^1, \dots, z^n)$. We put $\mathscr{F}^{r,s} := \mathscr{F} \otimes \hat{\pi}^*_q \mathscr{E}^{r,s}_{T^q_{\mathcal{C}}}$.

As an immediate consequence of Lemma 2.1, we have the following

Lemma 2.2. The sequence

$$0 \longrightarrow \mathcal{O} \longrightarrow \mathcal{F}^{0,0} \longrightarrow \mathcal{F}^{0,1} \longrightarrow \cdots \longrightarrow \mathcal{F}^{0,q} \longrightarrow 0$$

is exact on $U \times G^0$ and

$$H^{p}(U \times G^{0}, \mathcal{O}) = \frac{\{\varphi \in H^{0}(U \times G^{0}, \mathscr{F}^{0,p}) | \overline{\partial}\varphi = 0\}}{\overline{\partial}H^{0}(U \times G^{0}, \mathscr{F}^{0,p-1})}$$

for $p \ge 1$.

Let $\varphi \in H^0(U \times G^0, \mathscr{F}^{0,p})$. Since $G = \mathbb{C}^n/\Gamma$ has global 1-forms dz^1, \ldots, dz^n , $d\overline{z}^1, \ldots, d\overline{z}^n$ for the coordinate system $z = (z^1, \ldots, z^n) \in \mathbb{C}^n$, we can write

$$\varphi = \frac{1}{p!} \sum_{1 \leq i_1, \dots, i_p \leq q} \varphi_{i_1 \dots i_p} d\bar{z}^{i_1} \wedge \dots \wedge d\bar{z}^{i_p},$$

where $\varphi_{i_1...i_p} \in H^0(U \times G^0, \mathscr{F})$ and skew-symmetric in all indices. We expand $\varphi_{i_1...i_p}$ on $U \times G^0$:

(2.1)
$$\varphi_{i_1...i_p}(w, t) = \sum_{m \in \mathbb{Z}^{n+q}} a^m_{i_1...i_p}(w, t'') \exp(2\pi \sqrt{-1} \langle m, t' \rangle),$$

where $\langle m, t' \rangle = \sum_{i=1}^{n+q} m_i t_i$ and $a_{i_1...i_p}^m(w, t'') \in C^{\infty}(U \times \mathbb{R}^{n-q})$. We put $\varphi_{i_1...i_p}^m(w, t) = a_{i_1...i_p}^m(w, t'') \exp(2\pi \sqrt{-1} \langle m, t' \rangle)$ and $\varphi^m = \frac{1}{p!} \sum_{1 \le i_1,...,i_p \le q} \varphi_{i_1...i_p}^m$ $d\bar{z}^{i_1} \wedge \ldots \wedge d\bar{z}^{i_p}$. Then $\varphi = \sum_{m \in \mathbb{Z}^{n+q}} \varphi^m$. It follows from (1.4), (1.5) and (2.1) that

$$(2.2) \qquad \frac{\partial \varphi_{i_1...i_p}^m(w, t)}{\partial \bar{z}^i} = \left\{ \begin{array}{l} \pi \sum_{k=1}^q \gamma_{ik} K_{m,k} \varphi_{i_1...i_p}^m(w, t) & (1 \le i \le q) \\ \sqrt{-1} \left(\pi m_i a_{i_1...i_p}^m(w, t'') + \frac{1}{2} \frac{\partial a_{i_1...i_p}^m(w, t'')}{\partial t^{n+i}} \right) \exp(2\pi \sqrt{-1} \langle m, t' \rangle) \\ (q+1 \le i \le n). \end{array} \right.$$

Since $\varphi_{i_1...i_p} \in H^0(U \times G^0, \mathscr{F})$, $\varphi_{i_1...i_p}$ are holomorphic in $w^1, ..., w^l$ and $z^{q+1}, ..., z^n$. Therefore from (2.1) and (2.2), we have

(2.3)

$$\varphi_{i_1...i_p}^m(w, t) = \sum_{m \in \mathbb{Z}^{n+q}} c_{i_1...i_p}^m(w) \exp\left(-2\pi \sum_{i=q+1}^n m_i t^{n+i}\right) \exp\left(2\pi \sqrt{-1} \langle m, t' \rangle\right),$$

where $c_{i_1...i_p}^m(w)$ are holomorphic functing in U. Let $m \in \mathbb{Z}^{n+q} \setminus \{0\}$ and $s(m) := \min\{s \mid |K_{m,s}| = K_m, 1 \le s \le q\}$. We put

$$c_{i_1\ldots i_{p-1}}^{\mathsf{m},\mathsf{s}}\coloneqq \sum_{i=1}^n \beta_{si} c_{ii_1\ldots i_{p-1}}^{\mathsf{m}}.$$

Since $K_m > 0$ for $m \in \mathbb{Z}^{n+q} \setminus \{0\}$, we can put $d_{i_1...i_{p-1}}^m \coloneqq \frac{c_{i_1...i_{p-1}}^{m,s(m)}}{\pi K_{m,s(m)}}$ and

(2.4)
$$\psi^{m} \coloneqq \frac{1}{(p-1)!} \sum_{1 \le i_{1}, \dots, i_{p-1} \le q} d^{m}_{i_{1} \dots i_{p-1}}(w) \exp\left(-2\pi \sum_{i=q+1}^{n} m_{i} t^{n+i}\right) \\ \times \exp\left(2\pi \sqrt{-1} \langle m, t' \rangle\right) d\bar{z}^{i_{1}} \wedge \dots \wedge d\bar{z}^{i_{p-1}}.$$

From the similar argument to the previous paper [3,5] we have the following

Lemma 2.3. Let $\varphi = \sum_{m \in \mathbb{Z}^{n+q}} \varphi^m \in H^0(U \times G^0, \mathscr{F}^{0,p})$ be a $\overline{\partial}$ -closed form. Take the (0, p-1)-form ψ^m defined by (2.4) for $m \in \mathbb{Z}^{n+q} \setminus \{0\}$, then

$$\varphi = \frac{1}{p!} \sum_{1 \leq i_1, \dots, i_{p-1} \leq q} c^0_{i_1 \dots i_p}(w) d\bar{z}^{i_1} \wedge \dots \wedge d\bar{z}^{i_p} + \sum_{m \in \mathbb{Z}^{n+q} \setminus \{0\}} \bar{\partial} \psi^m,$$

where $c_{i_1...i_p}^0(w)$ are holomorphic in U. In particular, $\varphi^0 = \frac{1}{p!} \sum_{1 \le i_1,...,i_{p-1} \le q} c_{i_1...i_p}^0$ (w) $d\bar{z}^{i_1} \land ... \land d\bar{z}^{i_p} \in \overline{\partial} H^0(U \times G^0, \mathscr{F}^{0,p-1})$ if and only if $\varphi^0 = 0$. **Proposition 2.1.** If G^0 is of finite type, then

$$H^{p}(U \times G^{0}, \mathcal{O}) \cong H^{0}(U, \mathcal{O}) \otimes \mathbb{C} \{ d\bar{z}^{i_{1}} \wedge \dots \wedge d\bar{z}^{i_{p}} | 1 \leq i_{1} < \dots < i_{p} \leq q \}$$

for $1 \leq p \leq q$ and $H^{p}(U \times G^{0}, \mathcal{O}) = 0$ for $p \geq q + 1$.

Proof. As an immediate consequence of Lemma 2.2 we have H^p $(U \times G^0, \mathcal{O}) = 0$ for $p \ge q + 1$. Let $\varphi = \sum_{m \in \mathbb{Z}^{n+q}} \varphi^m \in H^0(U \times G^0, \mathscr{F}^{0,p})$ be a $\overline{\partial}$ -closed form, where $\varphi^m := \frac{1}{p!} \sum_{1 \le i_1, \dots, i_p \le q} c^m_{i_1, \dots, i_p}(w) \exp(-2\pi \sum_{i=q+1}^n m_i t^{n+i}) \exp(2\pi \sqrt{-1} \langle m, t' \rangle) d\overline{z}^{i_1} \wedge \dots \wedge d\overline{z}^{i_p}$. Similarly to [4, Lemma 7], for any compact subset K of U, any R > 0 and any k > 0, we get

$$C_{K}(k, R) := \sup_{w \in K} \left\{ |c_{i_{1}...i_{p}}^{m}(w)| \|m'\|^{k} R^{\|m''\|} | m \in \mathbb{Z}^{n+q} \right\} < +\infty$$

where $||m'|| = \max\{|m_i|, |m_{n+i}| | 1 \le i \le q\}$ and $||m''|| = \max\{|m_j| | q + 1 \le j \le n\}$. Since G^0 is of finite type, the statement (1) of Theorem 1.1 in §1 holds. By Lemma 2.3 we have (0, p - 1)-form ψ^m defined by (2.4) such that $\varphi^m = \overline{\partial} \psi^m$ for $m \in \mathbb{Z}^{n+q} \setminus \{0\}$. Using a similar argument to [4] and the statement (1) of Theorem 1.1 we obtain

$$|d_{i_1...i_{n-1}}^m(w)| \|m'\|^k R^{\|m''\|} < \infty.$$

This means that $\sum_{m \in \mathbb{Z}^{n+q} \setminus \{0\}} \psi^m$ converges to a (0, p-1)-form $\psi \in H^0(U \times G^0, \mathscr{F}^{0,p-1})$. Then $\phi = \phi^0 + \overline{\partial}\psi$, where $\phi^0 = \frac{1}{p!} \sum_{1 \le i_1, \dots, i_p \le q} c^0_{i_1 \dots i_p}(w) d\overline{z}^{i_1} \wedge \dots \wedge d\overline{z}^{i_p}$ and $c^0_{i_1 \dots i_p}$ are holomorphic in U. This completes the proof.

In Proposition 2.1 we get a kind of Künneth formula by the $\bar{\partial}$ -cohomology theory. This can be also obtained by a result of Kaup[2]. Kaup[2] shows this formula for Fréchet sheaves using the Cěch cohomology theory.

We have two isomorphisms

$$I: H^{p}(U \times G^{0}, \mathcal{O}) \cong \frac{\{\varphi \in H^{0}(U \times G^{0}, \mathscr{E}^{0,p}) | \overline{\partial}\varphi = 0\}}{\overline{\partial}H^{0}(U \times G^{0}, \mathscr{E}^{0,p-1})}$$
$$J: H^{p}(U \times G^{0}, \mathcal{O}) \cong \frac{\{\varphi \in H^{0}(U \times G^{0}, \mathscr{F}^{0,p}) | \overline{\partial}\varphi = 0\}}{\overline{\partial}H^{0}(U \times G^{0}, \mathscr{F}^{0,p-1})}.$$

Combining Lemma 2.3 with the existence of the isomorphisms I and J, we get the following

Lemma 2.4. For any $\overline{\partial}$ -closed form $\varphi \in H^0(U \times G^0, \mathscr{E}^{0,p})$, there exist a holomorphic (0, p)-form $h = \frac{1}{p!} \sum_{1 \le i_1, \dots, i_p \le q} c_{i_1 \dots i_p}(w) d\overline{z}^{i_1} \wedge \dots \wedge d\overline{z}^{i_p}, \quad \psi \in H^0$ $(U \times G^0, \mathscr{E}^{0,p-1})$ and $\hat{\psi}^m \in H^0(U \times G^0, \mathscr{F}^{0,p-1})$ such that

$$\varphi = h + \sum_{m \in \mathbb{Z}^{n-q} \setminus \{0\}} \overline{\partial} \hat{\psi}^m + \overline{\partial} \psi.$$

§3. The Cohomology Groups $H^{p}(G, \mathcal{O})$

In this section we shall prove Theorem I and Theorem II. As in §1, let G be a connected complex Lie group of complex dimension (n + l), $G^0 = \mathbb{C}^n/\Gamma$ the toroidal subgroup of complex dimension n, $\mathscr{U} = \{\tilde{U}_{\alpha} | \alpha = 0, 1, 2, ...\}$ a Stein covering of $S/\pi_2(\ker \rho) \cong G/G^0$ and $\pi: G \to S/\pi_2(\ker \rho)$ the projection. We put $\mathscr{E} = \mathscr{E}_G^{0,0}$ and $\mathscr{E}^{r,s} = \mathscr{E}_G^{r,s}$. We use coordinate systems $w_{\alpha}^1, \ldots, w_{\alpha}^l, z_{\alpha}^1, \ldots, z_{\alpha}^n, t_{\alpha}^1, \ldots, t_{\alpha}^{2n}$ in $\pi^{-1}(\tilde{U}_{\alpha}) \cong \tilde{U}_{\alpha} \times G^0$ as in §1. Put

$$\mathscr{F} := \{ f \in \mathscr{E} | \frac{\partial f}{\partial \bar{w}_{\alpha}^{i}} = 0, \frac{\partial f}{\partial \bar{z}_{\alpha}^{j}} = 0 \text{ in } \pi^{-1}(\tilde{U}_{\alpha}), i = 1, \dots, l, j = q + 1, \dots, n \}.$$

From (1.7) the sheaf \mathscr{F} is well-defined on G and then $\mathscr{F}^{r,s}$ is also defined on G. To calculate the cohomology groups $H^p(G, \mathcal{O})$, we use the Dolbeault isomorphism I in §2. Let $\varphi \in H^0(G, \mathscr{E}^{0,p})$ be a $\overline{\partial}$ -closed form. We put $\varphi_{\alpha} := \varphi | \pi^{-1}(\widetilde{U}_{\alpha})$. Then φ_{α} is a $\overline{\partial}$ -closed form on $\pi^{-1}(\widetilde{U}_{\alpha}) \cong \widetilde{U}_{\alpha} \times G^0$. We write

$$\varphi_{\alpha} = \frac{1}{p!} \sum_{1 \leq i_1, \dots, i_p \leq l+n} \varphi_{\alpha, i_1 \dots i_p} \, d\bar{\zeta}_{\alpha}^{i_1} \wedge \dots \wedge d\bar{\zeta}_{\alpha}^{i_p},$$

where $\zeta_{\alpha}^{i} = w_{\alpha}^{i} (i = 1, ..., l), \quad \zeta_{\alpha}^{l+j} = z_{\alpha}^{j} (j = 1, ..., n) \text{ and } \varphi_{\alpha, i_{1}...i_{p}} \in H^{0}(\pi^{-1}(\widetilde{U}_{\alpha}), \mathscr{E}).$ \mathscr{E} . Put $\varphi_{\alpha} = \sum_{m \in \mathbb{Z}^{n+q}} \varphi_{\alpha}^{m},$

$$\varphi_{\alpha}^{m} = \frac{1}{p!} \sum_{1 \le i_{1}, \dots, i_{p} \le l+n} \varphi_{\alpha, i_{1} \dots i_{p}}^{m} d\bar{\zeta}_{\alpha}^{i_{1}} \land \dots \land d\bar{\zeta}_{\alpha}^{i_{p}}$$

and $\varphi_{\alpha,i_1...i_p} = \sum_{m \in \mathbb{Z}^{n+q}} \varphi_{\alpha,i_1...i_p}^m = \sum_{m \in \mathbb{Z}^{n+q}} a_{\alpha,i_1...i_p}^m (w_a, t''_{\alpha}) \times \exp(2\pi \sqrt{-1} \langle m, t'_{\alpha} \rangle)$. From (1.6) and (1.7), in $\pi^{-1}(\widetilde{U}_{\alpha}) \cap \pi^{-1}(\widetilde{U}_{\beta})$

(3.1)
$$\varphi^m_{\alpha} = \varphi^m_{\beta}$$

for all $m \in \mathbb{Z}^{n+q}$. By Lemma 2.4 we have a holomorphic (0, p)-form $h_{\alpha} = \frac{1}{p!} \sum_{1 \le i_1, \dots, i_p \le q} h_{\alpha, i_1 \dots i_p}(w) d\bar{z}_{\alpha}^{i_1} \wedge \dots \wedge d\bar{z}_{\alpha}^{i_p}, \chi_{\alpha} = \sum_{m \in \mathbb{Z}^{n+q}} \chi_{\alpha}^m \in H^0(\pi^{-1}(\tilde{U}_{\alpha}), \mathscr{E}^{0, p-1})$ and $\hat{\psi}_{\alpha}^m \in H^0(\pi^{-1}(\tilde{U}_{\alpha}), \mathscr{F}^{0, p-1})$ for each $m \in \mathbb{Z}^{n+q} \setminus \{0\}$ such that

(3.2)
$$\varphi_{\alpha} = h_{\alpha} + \sum_{m \in \mathbb{Z}^{n+q} \setminus \{0\}} \overline{\partial} \hat{\psi}_{\alpha}^{m} + \overline{\partial} \chi_{\alpha}$$

We put $\psi_{\alpha}^{m} := \hat{\psi}_{\alpha}^{m} + \chi_{\alpha}^{m}$ for $m \in \mathbb{Z}^{n+q} \setminus \{0\}$ and $\psi_{\alpha}^{0} := \chi_{\alpha}^{0}$, then we have

(3.3)
$$\varphi^0_{\alpha} = h_{\alpha} + \bar{\partial} \psi^0_{\alpha} \text{ and } \varphi^m_{\alpha} = \bar{\partial} \psi^m_{\alpha}$$

for $m \in \mathbb{Z}^{n+q} \setminus \{0\}$. From (3.1) we obtain

(3.4)
$$h_{\alpha} + \overline{\partial} \psi_{\alpha}^{0} = h_{\beta} + \overline{\partial} \psi_{\beta}^{0} \text{ and } \overline{\partial} \psi_{\alpha}^{m} = \overline{\partial} \psi_{\beta}^{m}$$

Then, by Lemma 2.3 $h_{\alpha} - h_{\beta} = \overline{\partial}(\psi_{\beta}^{0} - \psi_{\alpha}^{0}) = 0$. Thus

$$h_{\alpha} = h_{\beta}$$

We put $\Phi^m := \overline{\partial} \psi^m_{\alpha} \in H^0(G, \mathscr{E}^{0,p})$ and $\Phi^{m,1} = \delta(\{\psi^m_{\alpha}\}) = \{\psi^m_{\beta} - \psi^m_{\alpha}\} \in Z^1(\{\pi^{-1}(\tilde{U}_{\alpha})\}, \overline{\partial} \mathscr{E}^{0,p-2})$. In case $m \neq 0$, by (3.2) we have $\Psi^{m,1} \in C^1(\{\pi^{-1}(\tilde{U}_{\alpha})\}, \mathscr{E}^{0,p-2})$ such that $\Phi^{m,1} = \overline{\partial} \Psi^{m,1}$. Continuing the above argument we get $\Phi^{m,p} \in Z^p(\{\pi^{-1}(\tilde{U}_{\alpha})\}, \mathscr{O})$. Since $I([\Phi^{m,p}]) = [\Phi^m]$ and $H^p(\{\pi^{-1}(\tilde{U}_{\alpha})\}, \mathscr{O}) \cong H^p(\{\tilde{U}_{\alpha}\}, \mathscr{O}) = 0$, we have $\Psi^m \in H^0(G, \mathscr{E}^{0,p-1})$ such that

In case m = 0, by (3.2) we have $\hat{\Phi}^{0,1} \in C^1(\{\pi^{-1}(\tilde{U}_{\alpha})\}, \mathcal{O}^{0,p-1})$ and $\Psi^{0,1} \in C^1(\{\pi^{-1}(\tilde{U}_{\alpha})\}, \mathcal{O}^{0,p-2})$, satisfying $\Phi^{0,1} = \hat{\Phi}^{0,1} + \bar{\partial}\Psi^{0,1}$, where $\mathcal{O}^{0,r}$ is the sheaf of germs of holomorphic (0, r)-forms on G. Then $0 = \delta\Phi^{0,1} = \delta\hat{\Phi}^{0,1} + \bar{\partial}\delta\Psi^{0,1}$. By Lemma 2.3 and Lemma 2.4 $\delta\hat{\Phi}^{0,1} = 0$. Therefore $\hat{\Phi}^{0,1} \in Z^1(\{\pi^{-1}(\tilde{U}_{\alpha})\}, \mathcal{O}^{0,p-1}) \cong Z^1(\{\tilde{U}_{\alpha}\}, \mathcal{O}^{0,p-1})$. Then we have $H^{0,0} \in C^0(\{\pi^{-1}(\tilde{U}_{\alpha})\}, \mathcal{O}^{0,p-1})$ such that $\hat{\Phi}^{0,1} = \delta H^{0,0}$. Replace ψ^0_{α} by $\psi^0_{\alpha} - H^{0,0}$ and put $\Phi^{0,1} \coloneqq \delta(\psi^0_{\alpha} - H^{0,0})$, then $\Phi^{0,1} \equiv \bar{\partial}\Psi^{0,1}$. Continuing the similar argument we get $\Phi^{0,p} \in Z^p(\{\pi^{-1}(\tilde{U}_{\alpha})\}, \mathcal{O})$. Thus we have $\Psi^0 \in H^0(G, \mathcal{E}^{0,p-1})$ such that

$$\Phi^{0} = \overline{\partial} \Psi^{0}$$

By (3.2), (3.5), (3.6) and (3.7) we have the following

Proposition 3.1. Let $\varphi \in H^0(G, \mathscr{E}^{0,p})$ be a $\overline{\partial}$ -closed form. Then we have a holomorphic (0, p)-form $h = \frac{1}{p!} \sum_{1 \le i_1, \dots, i_p \le q} h_{\alpha, i_1 \dots i_p}(w_\alpha) d\overline{z}_{\alpha}^{i_1} \wedge \dots \wedge d\overline{z}_{\alpha}^{i_p}$ on G and $C^{\infty}(0, p-1)$ -forms Ψ^m on G for each $m \in \mathbb{Z}^{n+q}$ satisfying $\varphi = h + \sum_{m \in \mathbb{Z}^{n+q}} \overline{\partial} \Psi^m$.

Now we start proving Theorem I. Assume (1) holds. We have the isomorphism I. Let $\varphi \in H^0(G, \mathscr{E}^{0,p})$ be a $\overline{\partial}$ -closed form. We put $\varphi_{\alpha} := \varphi | \pi^{-1}$ (\tilde{U}_{α}) . By (3.2) we can write $\varphi_{\alpha} = h_{\alpha} + \sum_{m \in \mathbb{Z}^{n+q} \setminus \{0\}} \overline{\partial} \psi_{\alpha}^m + \overline{\partial} \chi_{\alpha}$, where h_{α} and ψ_{α}^m and χ_{α} are the same as in (3.2). In case $1 \le p \le q$, by Proposition 2.1, $\psi_{\alpha} = \sum_{m \in \mathbb{Z}^{n+q} \setminus \{0\}} \psi_{\alpha}^m$ converges in $H^0(\pi^{-1}(\tilde{U}_{\alpha}), \mathscr{F}^{0,p-1})$ for each α . We have $\varphi_{\alpha} = h_{\alpha} + \overline{\partial} \psi_{\alpha} + \overline{\partial} \chi_{\alpha}$. We put $\psi_{\alpha}^0 := \chi_{\alpha}^0$ and $\psi_{\alpha}^1 = \sum_{m \in \mathbb{Z}^{n+q} \setminus \{0\}} (\psi_{\alpha}^m + \chi_{\alpha}^m)$. Then $\varphi_{\alpha} = h_{\alpha} + \overline{\partial} \psi_{\alpha}^0 + \overline{\partial} \psi_{\alpha}^1$. Put $\Phi^i := \overline{\partial} \psi_{\alpha}^i \in H^0(G, \overline{\partial} \mathscr{E}^{0,p-1})$ (i = 0, 1). Then similarly to getting (3.6) and (3.7) we have $\Psi^i \in H^0(G, \mathscr{E}^{0,p-1})$ satisfying $\varphi = h + \overline{\partial} \Psi^0 + \overline{\partial} \Psi^1$, where $h | \pi^{-1}(\tilde{U}_{\alpha}) = h_{\alpha}$. In case p > q, by (3.2) $\varphi_{\alpha} = \overline{\partial} \chi_{\alpha}$. Then we can get $\chi \in H^0(G, \mathscr{E}^{0,p-1})$ satisfying $\varphi = \overline{\partial} \chi$ similarly to the case $1 \le p \le q$. It is obvious that $(2) \Rightarrow (3) \Rightarrow (4)$. Finally we prove $(4) \Rightarrow (1)$. Suppose G^0 is not of finite type. Then the statement (1) in Theorem 1.1 in §1 doesn't hold. Namely there exists $\varepsilon > 0$ such that we can choose a sequence $\{m_{\mu} | \mu \ge 1\} \in \mathbb{Z}^{n+q} \setminus \{0\}$ satisfying $\exp(-\varepsilon ||m'_{\mu}|| - ||m''_{\mu}||)/K_{m_{\mu}} > \mu$ for any $\mu \ge 1$ ([3, Lemma 4.2]). Put

$$\delta^{m} := \begin{cases} \exp\{-\varepsilon \| m'_{\mu} \| - \| m''_{\mu} \|) / K_{m_{\mu}} & m = m_{\mu} \text{ for some } \mu \ge 1 \\ 0 & \text{otherwise} \end{cases}$$

For each α , we put

$$\psi_{\alpha}^{m} \coloneqq \left\{ \sum_{\gamma} \exp(2\pi\sqrt{-1} < m, f_{\gamma\alpha}' >) \right\} \delta^{m} \exp(-2\pi \sum_{i=q+1}^{n} m_{i} t_{\alpha}^{n+i}) \\ \times \exp(2\pi\sqrt{-1} < m, t_{\alpha}' >)$$

in $\pi^{-1}(\tilde{U}_{\alpha})$. From (1.6), in $\pi^{-1}(\tilde{U}_{\alpha}) \cap \pi^{-1}(\tilde{U}_{\beta}) \psi_{\alpha}^{m} = \psi_{\beta}^{m}$. Then we have $\psi^{m} \in H^{0}(G, \mathscr{E}^{0,0})$ such that $\psi^{m} | \pi^{-1}(\tilde{U}_{\alpha}) = \psi_{\alpha}^{m}$. By the same argument of [3,4] $\sum_{m \in \mathbb{Z}^{n+q} \setminus \{0\}} \bar{\partial} \psi^{m}$ converges to a form $\varphi \in H^{0}(G, \mathscr{E}^{0,1})$. By the choice of the sequence $\{m_{\mu}\}$, the formal series $\sum_{m} \psi^{m}$ cannot converge to any function in $H^{0}(G, \mathscr{E})$. Suppose $\varphi = \bar{\partial}\lambda$ for some $\lambda = \sum_{m} \lambda^{m}$. Then we can see $\lambda^{m} = \psi^{m}$ for $m \neq 0$. It is a contradiction. Then $\varphi = \lim_{N \to \infty} (\bar{\partial} \sum_{\|m\| \le N} \psi^{m})$ belongs not to $\bar{\partial} H^{0}(G, \mathscr{E}^{0,0})$, but to the closure of $\bar{\partial} H^{0}(G, \mathscr{E}^{0,0})$. This contradicts the statement (4).

Finally we prove Theorem II.

(1) Suppose $H^1(G, \mathcal{O}) = 0$. By Theorem I

 $H^1(G, \mathcal{O}) \cong H^0(G/G^0, \mathcal{O}) \otimes \mathbb{C}\{d\bar{z}^i | 1 \le i \le q\}.$

If $G^0 \neq \{e\}$, then $q \ge 1$. This contradics our assumption. Then we have $G^0 = \{e\}$. This means $G = G/G^0$ is a Stein group.

(2) Since $1 \le \dim H^1(G, \mathcal{O}) < \infty$, $H^1(G, \mathcal{O})$ has a Hausdorff topology. Then by Theorem I,

$$H^1(G, \mathcal{O}) \cong H^0(G/G^0, \mathcal{O}) \otimes \mathbb{C}\{d\bar{z}^i | 1 \le i < q\}.$$

If dim $G/G^0 \ge 1$, then G/G^0 is a Stein group and $H^0(G/G^0, \mathcal{O})$ is of infinite dimensional. It contradicts our assumption. Then $G = G^0$.

(3) Suppose dim $H^1(G, \mathcal{O}) = \infty$ and $H^1(G, \mathcal{O})$ has a Hausdorff topology. By Theorem I, G^0 is of finite type and $H^1(G, \mathcal{O}) \cong H^0(G/G^0, \mathcal{O}) \otimes C\{d\bar{z}^i | 1 \le i \le q\}$. Since dim $H^1(G, \mathcal{O}) = \infty$, $0 < \dim G^0 < \dim G$.

(4) Suppose $H^1(G, \mathcal{O})$ has a non-Hausdorff topology, by Theorem I, G^0 is of non-Hausdorff type. The converse is clear.

References

- Gunning, R. C. and Rossi, H., Analytic functions of several complex variables, Prentice Hall, Inc., Englewood Cliffs, N. J., 1965.
- [2] Kaup, L., Eine Künnethformel für Fréchetgarben, Math. Z., 97 (1967), 158-168.
- [3] Kazama, H., *ā*-Cohomology of (H, C)-groups, Publ. RIMS, Kyoto Univ., 20 (1984), 297-317.
- [4] Kazama, H. and Shon, K. H., Characterizations of the $\bar{\partial}$ -cohomology groups for a family of

weakly pseudoconvex manifolds, J. Math. Soc. Japan, 39 (1987), 686-700.

- [5] Kazama, H. and Umeno, T., Complex abelian Lie groups with finite-dimensional cohomology groups, J. Math. Soc. Japan, 36 (1984), 91–106.
- [6] Matsushima, Y., Espaces homogènes de Stein des groupes de Lie complexes, Nagoya Math. J., 16 (1960), 205-218.
- [7] Morimoto, A., Non-compact complex Lie groups without non-constant holomorphic functions, Proc. Conf. on Complex Analysis, Minneapolis 1964, 256-272, Springer 1965.
- [8] _____, On the classification of non-compact complex abelian Lie groups, Trans. Amer. Math. Soc., 123 (1966), 200–228.
- [9] Takeuchi, S., On completeness of holomorphic principal bundles, Nagoya Math. J., 57 (1974), 121–138.