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d Cohomology of Complex Lie
Groups

By

Hideaki Kazama* and Takashi UMENO**

Introduction

Let H be a toroidal group of complex dimension n, that is, H is a connected
complex Lie group without non constant global holomorphic functions (such a
Lie group is called also an (H, C)-group([7, 8])). Let o be the real Lie algebra
of a maximal compact real Lie subgroup of H. Put g:==dim; 4" n,/ — 14"
Let Op be the structure sheaf of H. By the result of the previous paper [3], H
satisfies either of the following statements 1 and 2.

1. HP(H, Op) is finite dimensional for any p.

2. HP(H, Og) is a non-Hausdorff locally convex space for 1 <p <gq.
We say that H is of finite type if H satisfies the above property 1 and of non-
Hausdorff type if H satisfies the above property 2, respectively.

The purpose of this paper is to investigate the cohomology groups
H?(G, 0) (p > 1) of a complex Lie group G by the theory of d-cohomology. We
shall show the cohomology groups H?(G, 0) (p > 1) are completely determined
by the type of the maximal toroidal subgroup

GO:= {x|f(x) = f(e) for every holomorphic function f on G}

of G, where e is the unit element of G. By the result of [7] G° is a connected
abelian complex Lie subgroup of G.
We shall prove the following theorems.

Theorem L. Let G be a connected complex Lie group of complex dimension
n+1 and G° = C"/I" the maximal toroidal subgroup of G of complex dimension
n. Then the following statements (1), (2), (3) and (4) are equivalent.
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(1) G° is of finite type.
2) H?G, 0)=

H°(G/G®, 0) @ C{dz"* A ... N dZ?|1 <i; < - <1, < g}
for 1<p<g
0 for p>q+1

(3) HP(G, 0) has a Hausdorff topology for any p.
@) GHG, &°7~1) is a closed subspace of the Fréchet space H°(G, £°7) for
p > 1, where & denotes the sheaf of germs of C® (r, s)-forms on G.

Theorem 1 gives a characterization of a complex Lie group G whose
cohomology groups H?(G, 0) have Hausdorff topology.

Theorem IL. Let G be a connected complex Lie group and G° the maximal
toroidal subgroup of G. Then
(1) dimHYG, 0) = 0<>G is a Stein group.
(2) 0<dimHG, 0) < co<G = G° is a toroidal group of finite type.
() dimHG, 0)= o and H(G, O) has Hausdorff topology<>0 < dim G® <
dim G and G° is of finite type. In this case

H?(G, 0) = H%(G/G®, 0) ® H"(G®, 0).

(4 HYG, 0) has non-Hausdorff topology<>dimG®>0 and G° is of non-
Hausdorff type.

§1. Preliminaries

Let G be a connected complex Lie group with the Lie algebra ¢, G° the
maximal toroidal subgroup of G, K a maximal compact real Lie subgroup of G
with the Lie algebra %, K¢ the complex Lie subgroup with the Lie subalgebra
He=H+/—1A of 4 and Z the connected center of K,. Then K is
closed in G ([6]). From the result of [6] G is biholomorphic onto K, x C* and
there exists a connected Stein subgroup S, of K such that, for the connected
center Z of K,

Po: Z x So3(x, y)—xye K

is a finite covering homomorphism. By the result of [7,8] G° = Z and Z ~ G°
x C* x C* for some non-negative integers r and u. Then we may assume G
=K¢x Cand Z=G% x C¥ x C*. Taking a Stein subgroup S:= C* x C*
X So x C* of Z x §y x C% we get a finite covering homomorphism

p: G° x §3(xg, Xy, X3, X3, Xg) (00 (X0, X1, X3), X3), X4) €G.
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From this homomorphism p we can assume G = G° x S/ker p. Let m,: G°
x § = G° and n,: G® x S — S be the canonical projections. Since n,(ker p) is a
finite subgroup of S, S/x,(ker p) is a Stein group. We obtain a homomorphism

n: G° x S/ker p3(a, b)ker p—bn,(ker p)eS/n,(ker p)

for aeG% beS. From this projection 1 G = G° x S/ker p is regarded as a
fiber bundle over the Stein group S/z,(ker p) whose fiber is isomorphic onto G°
and whose structure group is the finite subgroup =,(ker p) of G° Then
S/m,(ker p) is isomorphic onto G/G°. Since G° is abelian, we obtain =, (ker p)
c K° where K° is a maximal compact subgroup of G°. We put n:
= dim¢G°, I'= dim¢S. Then dim¢G =n + . Let {U,} be a Stein covering of S
such that U,:= U,(n,(ker p) is biholomorphic onto U, and % := {ﬁa} is a Stein
covering of S/zm,(ker p) with a biholomorphic mapping

(1.1) h,: n~Y(U,)3(a, b)ker pr—(b,, a)e U, x G°

for each a, where a,€ G° and b, e U, satisfying (a, b)ker p = (a,, b,)ker p and b,
= b,(n,(ker p)). Then

(12) hahﬁ_l(Eﬂa OCﬁ) = (Ew aa) = (Eaﬂ faﬂaﬁ)'

Since m(ker p) is a finite subgroup, the holomorphic mapping f,,: U’an U s
— m,(ker p) is locally constant. Taking a refinement Stein covering of %, we
may assume % is locally finite.

Throughout this paper we assume G° = C"/I", where I is a discrete lattice
of C" generated by R-linearly independent vectors {ey, e,,..., €, U,
= (V115 -vv5 Vil V2 = U215 .05 Vap)yovns Vg = Vg1, ..., Uge)} OVer Z and e; denotes
the i-th wunit vector of C" We take Ry, Iv;eR" with v, =Ry,
+/ — 13v;. Since ey, e,,...,e, v;,0,,...,v, are R-linearly independent,
Jvy, Jvy, ..., Iv, are R-linearly independent. Then without loss of generality
we may assume det[Jv;;; 1 <i,j<q] #0 from now on. We set

Kpi= Y vym;—m,,; and K,=max{|K,;|;1<i<q}
=1

for m=(my, my,...,m,,)eZ"*% Since G° is toroidal, K, >0 for any
me Z"*9\{0} ([5], [8]). We have the following theorem ([3]).

Theorem 1.1. Let G°= C"/I" be a toroidal group. Then the following
statements (1) and (2) are equivalent.
(1) There exists a > 0 such that

sup exp(— a|m*||)/K,, < o0,
m#0

where |m*| = max{|m,|; 1 <i<n}.
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q!

a—pipr T IEPE
?) dim H?(G°, 0) = P
0 ifp>q-
We denote by =, the projection C"s(z',..., z")—(z',..., 29 C% Since

n,(e), m,(v;) (1 < i < q) are R-linearly independent n, induces the C*"~?-principal
bundle

M. C' 2z 4+ T —my(z) + [*eTé:=CIT*

over the complex g dimensional torus T'¢, where I'*:= n,(I')([9]). We put

_[R; (1<i<g, 1<j<n
%WTl0 @+l<i<nl<j<n)

Jv; (1<i<g, 1<j<n)
Bij:=

0; @+1<i<n 1<j<n

s 1<i,j<n]=[f;;1<ij<n]™' and v;:=./—1le¢ for g+1<i<n
Since {ey, ..., e,, vy,..., v,} are R-linearly independent, we have an isomorphism

¢: C"a(z%, ..., 2") —(t',...; t?)eR™

as a real Lie group, where (z', ..., 2") = Y /_,(t'e; + t"*'v,). Then we obtain the
relations

(1.3) tt=x/— Y yryuo; and "t =3 yiy
k=1 i=1

for 1<j<n, where z'=x'+./—1y. We put t=(t,t"),t' =(t,..., t""9
eR"™ and t"=(""1"1,...,t>eR""1. ¢ induces the isomorphism
¢: C"/I'=T"*%x R"1 as a real Lie group, where T"*9 is a real (n+ q)
dimensional real torus. It follows from (1.3) that

0 — n 0
(14) az—l = [atl + { Z kak!atj + Z yl] atn+]}]

jk=1

Then for g + 1 <i<n we have

0 1[0 0

Let (wl,..., w!) be a coordinate system in U,. For any gen *(U,), we put
hy(g) = We(g), ..., we(9), za(g)s.. ,2M9)eU, x C"/I, and K,(9) = (z}(g), ...,
ZMg)eC/I' and K,(g) = ¢°Ka(g) = t,(9) = (t2(9), ..., t2"(g)) e T"*9 x R"74.
Since f,zemn;(ker p) = C"/I, (f,p)°e I, where s:= #(ker p). We put ¢(f,p) =
(faps s fap) Then  @((fop)) = (faps ..., sfe)€Z"" 4 x {0}. Thus ¢(f,y) =
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(fl..., 259, 0...,0)eR?™ From (1.2) for gen ' (U,nU,), t(g) = t,g) +
¢(faﬁ) Puttmg ty = (to tg ah t = (ta’ R t;+q)a tZ = (t;+q+17 sees tazzn)a and f;zﬁ =

(faﬂa .. fn+q
(1.6) t,=ty+ fi; and tl =t}

Since zi=tL+ Y- it v,

(1.7) zh=12p + flg+ Z fagiv; and then dzi = dz.

§2. The Cohomology Groups H?(U x G°, )

We consider the cohomology groups HP(U x G° () of the product
manifold of an open polydisc U in C' and G° = C"/I. As in §1, we have the
isomorphism ¢: C"/I'a(z!,..., 2"+ '— (!, ..., t*") + ¢(INeT"** x R" 1 and
the projection m,: C*/I's(z',...,z") + I'—(z},..., 29 + I'*eT¢. We put U
={w, ..., W)eC'||w|<d, i=1,...,1}. We have a diffeomorphism ¢: U
x C"/Taw,...,whz+ D)W, .., waz+1I), &,.., & 99U x TE x
C*"74, where & =expQn./ — 177" + ./ — 1t"*7"%)) and z = (z%,..., z"). Let
& = &y be the sheaf of germs of C* functions on a complex manifold X and ™*
= &% the sheaf of germs of C* (r, s)-forms on X. We define the sheaf & on U
x G° and the sheaf 4 on U x T% x C* 7 as follows:

af of
¥ = ol = = y j = 5 eens
F={febyx¢ 'aw‘ o =0,i=1,..,L,j=q+1 n} and
dg .
{gEéDUquxc*n ql _l_o aﬁk 0 l=l,...,l, k= 1,...,n_q}.

o*: HO(W, y)agHg°q§6H°(¢‘1(W), &) is an isomorphism for any open
subset W of U x T¢ x C*¥~4 Then ¢* induces an isomorphism H?(U
x G F) = HY(U x Tt x C* 719, ) for any p.

Lemma 2.1. H?(U x G° %) =0 for p> 1.

Proof. 1t is equivalent to prove H?(U x T% x C*"7%, ) =0. We put X
=UxTE{x C*¥ % Let fbe a C® function in a neighborhood of xe X.
We put

¢ is also defined for C® (r, s)-forms in a neighborhood of xe X. We have an
exact sequence on X,

0_,@ __)éB0,0 __,@@0,1 ... _)éao,n+l—q__)0‘
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Then

{peH(X, &%7)|0' ¢ = 0}
0'HO(X, %P~ 1)

HP X, %) =

. 11 ;
We put X,:={(w, n(z +I), {)e X ||w'| <d — < |&/| <n}. In case I=gq
=1, for any C*-function f(w, n,(z + I'), {) in X, we put
flu, my(z + 1), &)

1
w, z+F,£:=———Jf —24 = > du A\ di and
gl( q( ) ) 271:\/—_——1 lul<d_i U—w

fw, m(z + 1), {)

gZ(W’ ﬂq(Z + F)a é) \/—— J:[_<m<" g 5 dC A dC

Then in X, we have

991

99,
aw'f and A =f.

Using this fact and the standard argument for the Dolbeault lemma ([1, 4]), we
can complete the proof of this lemma.

Let 7,: U x G°3(w, z + N> (w, m(z + N)eU x TE, where w=(w,...,
w) and z=(z',..., z"). We put F":= F Q 7y 65
As an immediate consequence of Lemma 2.1, we have the following

Lemma 2.2. The sequence

0—>0—>F"° -F0! ... 701 50

is exact on U x G° and

{peH(U x G° F°P)|6¢p = 0}
OHO(U x G°, 07~ 1)

HP(U x GO, 0) =

for p>1.

Let pe HO(U x G° #°?). Since G = C"/T has global 1-forms dz!, ..., dz",
dz',..., dz" for the coordinate system z = (z},..., z")e C", we can write

P=— Y @i, d7 A NdEv,

where ¢;, ; e H°(U x G° #) and skew-symmetric in all indices. We expand
¢;,..;, on U x G°:

2.1 PiriyW, )= ) alt i, (W, t")exp(2ny/ — 1{m, t')),

meZn+a
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where (m,t')>=)"*¢mt; and (w, t")eC®U x R"™9). We put

1. .ip

on. i, ) =df (W, t")exp2r,/—1{m, t'}) and o™ = Fleil ..... ip<q Pir...ip

dz" A ... Ndz'*. Then ¢ =) pezn+a@™ It follows from (1.4), (1.5) and (2.1)
that

a(p;r:...ip (Wa t) —

2.2) -

Y f 1 VK @80, (W, 1) (I<i<gq)

t”
J - 1<7rm ar  (w, t") + laaua;(x )> expn/ —1<{m, t'))

(@g+1<i<n).

Since ¢;, ;,€H°(U x G% #), ¢, ; are holomorphic in w',...,w and
LARE

»..., 2" Therefore from (2.1) and (2.2), we have
(2.3)

on )= Y . Wexp(=2r Y mi™)expRny/—1{m t'),

meZnta i=q+1

where cf; ; (w) are holomorphic functins in U. Let meZ"*%\{0} and s(m):=
min{s | |Ky = Kn 1 <s<gq}. We put

11 ip- = Z ﬂs: Ciiy . dp-1"*

m,s(m)
Since K,, >0 for me Z""9\{0}, we can put df; ; = %u and
m,s(m)
1 n .
24 M= m o _(wWexp(—2n m;t"t!
( ) lp (p _ 1)' 15i1,..§p_1<q 1.e:lp— 1( ) p( ; ;_1 )

xexp ./ — 1{m, t'>)dz"* A ... \ dz'*-!
From the similar argument to the previous paper [3,5] we have the following

Lemma 23. Let ¢ =Y zna@™€H(U x G% F°P) be a 0-closed
form. Take the (0, p — 1)-form Y™ defined by (2.4) for me Z"*9\{0}, then

p=— Y ¢ ,wd AL ANdEr+ Y Gy,
p- 1<iy,..,ip-1=q meZn+4a\ {0}
where c{,_; (W) are holomorphic in U. In particular, ¢° = le” ip—15q Cononiy

(w)dz'* A ... A dZ?e JHO(U x G° F P~ 1Y) if and only if <p =0.
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Proposition 2.1. If G° is of finite type, then
HP(U x G°, 0) = HU, 0) ® C{dZ" A ... NdZ»|1 < i, < - <i, < q}
for 1 <p<qand H (U x G° 0)=0 for p>q + 1.

Proof. As an immediate consequence of Lemma 2.2 we have H?
(UxG%0)=0forp>qg+1. Let 9 =) pezn-a@™€H(U x G° F*?) be a 0

I1yueey

1 .
-closed form, where (Pm:=ﬁxlsi1 ,,,,, ipsa Cip (W) exp(— 21y f- vy mit" ) exp

Rr/—1{m,t'>)dz" A ... A dz'». Similarly to [4, Lemma 7], for any com-
pact subset K of U, any R >0 and any k >0, we get
Ck(k, R):= sup {|cf; ;)| |m'[|F R"™" |meZ""1} < + o0
wekK
where [|m'| = max{|my|, [m,,;| |1 <i<q} and [m"| = max{|mllg+1<j<
n}. Since G° is of finite type, the statement (1) of Theorem 1.1 in §1 holds. By
Lemma 2.3 we have (0, p — 1)-form y™ defined by (2.4) such that ¢™ = dy™ for

me Z"*%\{0}. Using a similar argument to [4] and the statement (1) of
Theorem 1.1 we obtain

a5 i, W) lm’ | R"™ " < o0.

i1...ip-1

This means that ), zn+q o, Y™ converges to a (0, p — 1)-form YyeH°U
_ 1

x G% #%?71). Then ¢=¢°+0dy, where ¢°= I_)?leil,...,i,,sq c?;...ip(W)

dz'* A ... Adz' and ¢ ; are holomorphic in U. This completes the proof.

In Proposition 2.1 we get a kind of Kiinneth formula by the d-cohomology
theory. This can be also obtained by a result of Kaup[2]. Kaup[2] shows
this formula for Fréchet sheaves using the Céch cohomology theory.

We have two isomorphisms

{pe H(U x G°, £°7)|3¢p = 0}

I: Hp(U X GO, (9) = éHO(U % GO’ (gO,p—l)

{pe H(U x G° #°7)|dp = 0}

J: H?(U x G% 0) = SHO(U x GO, %71

Combining Lemma 2.3 with the existence of the isomorphisms I and J, we
get the following

Lemma 24. For any 0-closed form @eHO(U x G°, &%P), there exist a
1 . .
holomorphic (0, p)-form h = p—,Zui; ,,,,, i< Cipi;W)dZ0 A A dZ?, YeH°
(U x G° &%P~1) and §me HO(U x G, F°P~1) such that
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o=h+ Y  W"+oy.

meZn~ 9\ {0}

§3. The Cohomology Groups H?(G, 0)

In this section we shall prove Theorem I and Theorem II. As in §1, let G
be a connected complex Lie group of complex dimension (n + I), G° = C"/I" the
toroidal subgroup of complex dimension n, % = {ﬁala =0,1,2,...} a Stein
covering of S/n,(ker p) = G/G° and =n: G — S/, (ker p) the projection. We put
& = &%°% and & = £%’. We use coordinate systems wl, ..., wh, zL, ..., 2% ti,.
2" in n~}(U)~ U, x G° as in §1. Put

“ey

_ of L of . 1= . .
?.—{feé’lawi—O,az_i—Omn Uy, i=1,...,Lj=q+1,..,n}.

From (1.7) the sheaf & is well-defined on G and then #"™* is also defined on
G. To calculate the cohomology groups HP?(G, 0), we use the Dolbeault
isomorphism I in §2. Let oeH°G, £°?) be a d-closed form. We put
Q= <p|n“1(17,). Then ¢, is a d-closed form on n'l(ﬁa) = [7“ x G° We write

1

P! 1si,. Shosi4n

P = qoa.il...ip di:zl AN d&zp’

where (i=wi(i=1,..,0), {(=z(j=1,...,n and q’a.il.l.iPGHo(n_l(ﬁa),
éﬂ) Put Pe = Zmezﬂ"q oy,
1 _ _
@5 = Y, ol dli ANl

p! 1<iy,..ipsl+n

and (pa,il...ip = ZmeZ"“q q):til...ip = anl"*‘l a::il;.ip(wa’ talz’) X exp (271:\/ - 1 <m:
t,>). From (1.6) and (1.7), in =~ (U)n="'(U))

(3.1 0y = @f

for all meZ"*% By Lemma 24 we have a holomorphic (0, p)-form h, =

1 . . ~
p_'ZISil,...,ipsq ha,il...ip(w) dZ;zl /\ A dz';p’ Xa = Zmel"*“i X?eHo(n_l(Ua)’ éao,p—l)

and YTe H(n Y (U,), #%7~ 1) for each me Z"*9\{0} such that

(3.2) Gu=hy+ Y YT+ Oy,

meZn¥a\ {0}
We put y™:= " + 3™ for meZ"* 9\ {0} and yQ:= x2, then we have
(3.3) @3 =h,+ 0y and of = oYy
for me Z"*9\{0}. From (3.1) we obtain
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(3.4) hy+ Y2 =hy+ 3y and dyr=oyy.
Then, by Lemma 2.3 h, — hy; = 0(y3 — ¢ =0. Thus
(3.5) h, = hy.

We put &™:=0y"eH'G, £°?) and O™!=46({y"}) = {Yy—yrte
Z'({n~1(0,)}, 36°7~2). 1In case m # 0, by (3.2) we have ¥™'eC'({n~1(U,)},
€%P~2) such that &™!=9%™!. Continuing the above argument we get
omreZ?({n~Y(U,)}, 0). Since I([®™P])=[P™] and H?({n"}(U))}, 0) =
H"({ffa}, 0) =0, we have Y"e H(G, £°7~1) such that

(3.6) @™ = JP™,

In case m=0, by (3.2) we have @%'eC'({n YUy}, 0> ') and ¥*le
Cl({n~Y(T,)}, €%P~2), satisfying ®*! = ¢! + §¥°!, where ¢° is the sheaf of
germs of holomorphic (0, r)-forms on G. Then 0=5§0%! =3§d%! + 7
o%%!, By Lemma 2.3 and Lemma 2.4 6&%! = 0. Therefore #%'eZ'({n !
(T}, 0P~ Y = Z'({U,}, 0>P~"). Then we have H*®eC°({x~Y(U,)}, 0?7 ")
such that &%!=G6H®°. Replace y° by y°— H®® and put ®%!:=5(y?
— H%%, then ®%!=P%! Continuing the similar argument we get
®°rez?({n"1(Uy}, 0). Thus we have ¥°eHO(G, £°?~') such that

(3.7 ®° = PO,
By (3.2), (3.5), (3.6) and (3.7) we have the following

Proposition 3.1. Let o H(G, %) be a 0-closed form. Then we have a
holomorphic (0, p)-form h = I%leil,....ipsez Pais..i,(W) dZ A ... A dZi on G and
C® (0, p — 1)-forms ¥™ on G for each me Z"*4 satisfying @ = h + Y mezn+a 0P™.

Now we start proving Theorem I. Assume (1) holds. We have the
isomorphism I. Let o H%(G, £%?) be a d-closed form. We put ¢,:= ¢|n !
(U,). By (3.2) we can write @, = h, + Y nezn+ay (o) OV + Oy, Where h, and §7
and y, are the same as in (3.2). In case 1 <p <gq, by Proposition 2.1, z/;a
= mezn+a\(0) Y™ converges in Ho(n~1(U,), #°2~1) for each o. We have ¢,
= hy+ Oy + Ogpe We put Yi= x and Y} = Y pegneayj0) (U3 + 12). Then o,
=h, +0y0 + 0yl Put &':=20dyieHG, 6% 1) (i=0,1). Then similarly
to getting (3.6) and (3.7) we have P'e H(G, £%7~ 1) satisfying ¢ = h + 0¥°
+ 0%, where h|n~*(U,) = h,. In case p> g, by (3.2) ¢, = 0y,. Then we can
get yeHO(G, £%7~ 1) satisfying ¢ = dy similarly to the case 1 <p<gq. It is
obvious that (2)=(3)=(4). Finally we prove (4)=(1). Suppose G° is not of
finite type. Then the statement (1) in Theorem 1.1 in § 1 doesn’t hold. Namely
there exists ¢ >0 such that we can choose a sequence {m,|u > 1}eZ"*4\{0}
satisfying exp(— el|m, || — [|m;|)/K,,, > u for any p > 1 ([3, Lemma 4.2]). Put
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P exp{ —elm,| — [m,|)/K,, m=m, for some u>1
o0 otherwise

For each o, we put

n

yr={Y expQn./—1<mf),>)} 6™exp(—2n Y, mts*?)

i=q+1

xexpr/—1<m,t,>)

in 773(U,). From (1.6), in n Y U)nn '(U)yr=y% Then we have
Yy™e HO(G, £>°) such that Y™z~ (U, = y7. By the same argument of [3,4]
Y mezn+a (o) OY™ converges to a form @eH(G, §%'). By the choice of the
sequence {m,}, the formal series ) Y™ cannot converge to any function in
H°(G, &). Suppose ¢ = 04 for some 2 =Y, A" Then we can see A" = y™ for
m # 0. It is a contradiction. Then ¢ = limN_,w(52||m||< ~¥™ belongs not to
OHO(G, £°°), but to the closure of dH(G, £°°). This contradicts the statement
@).

Finally we prove Theorem II.
(1) Suppose HY(G, ®) =0. By Theorem I
HY(G, 0) ~ H(G/G°, 0) ® C{dZ'|1 <i<gq}.

If G° # {e}, then ¢ > 1. This contradics our assumption. Then we have G°
= {e}. This means G = G/G° is a Stein group.

(2) Since 1 <dim HY(G, 0) < oo, HY(G, 0) has a Hausdorfl topology.
Then by Theorem I,

HY(G, 0) ~ H(G/G®, 0) @ C{dZ|1 <i<q}.

If dim G/G® > 1, then G/G° is a Stein group and H°(G/G° 0) is of infinite
dimensional. It contradicts our assumption. Then G = G°.

(3) Suppose dim H!(G, 0) = oo and H(G, ) has a Hausdorff topology.
By Theorem I, G° is of finite type and H(G, 0) = H°(G/G° 0)®
C{dZ'|1 <i<gq}. Since dim H!(G, 0) = o0, 0 < dim G° < dim G.

(4) Suppose H'(G, 0) has a non-Hausdorff topology, by Theorem I, G° is
of non-Hausdorff type. The converse is clear.
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