Publ. RIMS, Kyoto Univ. **26** (1990), 473-484

$\overline{\partial}$ Cohomology of Complex Lie Groups

By

Hideaki KAZAMA* and Takashi UMENO**

Introduction

Let H be a toroidal group of complex dimension n , that is, H is a connected complex Lie group without non constant global holomorphic functions (such a Lie group is called also an (H, C) -group $([7, 8])$. Let $\mathcal K$ be the real Lie algebra of a maximal compact real Lie subgroup of *H*. Put $q := \dim_{\mathbb{C}} \mathcal{K} \cap \sqrt{-1 \mathcal{K}}$. Let \mathcal{O}_H be the structure sheaf of *H*. By the result of the previous paper [3], *H* satisfies either of the following statements 1 and 2.

1. $H^p(H, \mathcal{O}_H)$ is finite dimensional for any *p*.

2. $H^p(H, \mathcal{O}_H)$ is a non-Hausdorff locally convex space for $1 \le p \le q$.

We say that *H* is *of finite type* if *H* satisfies the above property 1 and *of non-Hausdorff type* if *H* satisfies the above property 2, respectively.

The purpose of this paper is to investigate the cohomology groups $H^p(G, \mathcal{O})$ ($p \ge 1$) of a complex Lie group G by the theory of $\overline{\partial}$ -cohomology. We shall show the cohomology groups $H^p(G, \mathcal{O})$ ($p \geq 1$) are completely determined by the type of the maximal toroidal subgroup

 $G^0 := \{x \mid f(x) = f(e) \text{ for every holomorphic function } f \text{ on } G\}$

of G, where *e* is the unit element of G. By the result of [7] G° is a connected abelian complex Lie subgroup of G.

We shall prove the following theorems.

Theorem *I. Let G be a connected complex Lie group of complex dimension* $n + l$ and $G^0 = C^n / \Gamma$ the maximal toroidal subgroup of G of complex dimension *n. Then the following statements* (1), (2), (3) *and* (4) *are equivalent.*

Communicated by M. Kashiwara, May 24, 1989. Revised October 9, 1989.

^{*} Department of Mathematics, College of General Education, Kyushu University, Ropponmatsu, Chuo-ku, Fukuoka, 810 Japan.

^{**} Department of Mathematics, Kyushu Sangyo University, Matsukadai, Higashi-ku, Fukuoka, 813 Japan.

^{*}The first author was partially supported by Grant-in-Aid for Scientific Research (No. 02640137), Ministry of Education, Science and Culture.

(1)
$$
G^0
$$
 is of finite type.
\n(2) $H^p(G, \mathcal{O}) \cong$
\n
$$
\downarrow^{\{1\}}(G/G^0, \mathcal{O}) \otimes C\{d\bar{z}^{i_1} \wedge \dots \wedge d\bar{z}^{i_p} | 1 \leq i_1 < \dots < i_p \leq q\}
$$
\nfor $1 \leq p \leq q$
\nfor $p \geq q + 1$

- (3) *H^P (G, 0) has a Hausdorff topology for any p.*
- (4) $\bar{\partial}H^0(G, \mathscr{E}^{0,p-1})$ is a closed subspace of the Fréchet space $H^0(G, \mathscr{E}^{0,p})$ for $p \geq 1$, where $\mathscr{E}^{r,s}$ denotes the sheaf of germs of C^{∞} (r, s)-forms on G.

Theorem I gives a characterization of a complex Lie group G whose cohomology groups $H^p(G, \mathcal{O})$ have Hausdorff topology.

Theorem II. *Let G be a connected complex Lie group and* G° *the maximal toroidal subgroup of* G. *Then*

- (1) dim $H^1(G, \mathcal{O}) = 0 \Leftrightarrow G$ is a Stein group.
- (2) $0 < \dim H^1(G, \mathcal{O}) < \infty \Leftrightarrow G = G^0$ is a toroidal group of finite type.
- (3) dim $H^1(G, \mathcal{O}) = \infty$ and $H^1(G, \mathcal{O})$ has Hausdorff topology $\Leftrightarrow 0 < \dim G^0$ dimG *and* G° *is of finite type. In this case*

 $H^p(G, \mathcal{O}) \cong H^0(G/G^0, \mathcal{O}) \otimes H^p(G^0, \mathcal{O}).$

(4) $H^1(G, \mathbb{O})$ has non-Hausdorff topology \Leftrightarrow dim $G^0 > 0$ and G^0 is of non-*Hausdorff type.*

§ 1. Preliminaries

Let G be a connected complex Lie group with the Lie algebra \mathscr{G}, G^0 the maximal toroidal subgroup of G, *K* a maximal compact real Lie subgroup of G with the Lie algebra \mathcal{K}, K_c the complex Lie subgroup with the Lie subalgebra $\mathcal{K}_c:=\mathcal{K}+\sqrt{-1}\mathcal{K}$ of $\mathcal G$ and Z the connected center of K_c . Then K_c is closed in G ([6]). From the result of [6] G is biholomorphic onto $K_c \times \mathbb{C}^a$ and there exists a connected Stein subgroup S_0 of K_c such that, for the connected center Z of *Kc,*

$$
\rho_0: Z \times S_0 \ni (x, y) \longmapsto xy \in K_c
$$

is a finite covering homomorphism. By the result of [7, 8] $G^0 \subset Z$ and $Z \cong G^0$ $\times C^{*r} \times C^{u}$ for some non-negative integers r and u. Then we may assume G $= K_c \times C^a$ and $Z = G^0 \times C^{*r} \times C^u$. Taking a Stein subgroup $S = C^{*r} \times C^u$ \times S₀ \times C^{*a*}</sup> of Z \times S₀ \times C^{*a*}, we get a finite covering homomorphism

$$
\rho: G^0 \times S \ni (x_0, x_1, x_2, x_3, x_4) \longmapsto (\rho_0((x_0, x_1, x_2), x_3), x_4) \in G.
$$

From this homomorphism ρ we can assume $G = G^0 \times S/\text{ker } \rho$. Let $\pi_1: G^0$ \times *S* \rightarrow *G*⁰ and π ₂: *G*⁰ \times *S* \rightarrow *S* be the canonical projections. Since π ₂(ker ρ) is a finite subgroup of S, S/π_2 (ker ρ) is a Stein group. We obtain a homomorphism

$$
\pi: G^0 \times S/\text{ker } \rho \ni (a, b) \text{ker } \rho \longmapsto b\pi_2(\text{ker } \rho) \in S/\pi_2(\text{ker } \rho)
$$

for $a \in G^0$, $b \in S$. From this projection π $G = G^0 \times S/\text{ker } \rho$ is regarded as a fiber bundle over the Stein group S/π ₂(ker ρ) whose fiber is isomorphic onto G^o and whose structure group is the finite subgroup $\pi_1(\ker \rho)$ of G^0 . Then S/π_2 (ker ρ) is isomorphic onto G/G^0 . Since G^0 is abelian, we obtain π_1 (ker ρ) $\subset K^0$, where K^0 is a maximal compact subgroup of G^0 . We put *n*: $=\dim_{\mathbb{C}} G^0$, $l:=\dim_{\mathbb{C}} S$. Then $\dim_{\mathbb{C}} G = n + l$. Let $\{U_{\alpha}\}\$ be a Stein covering of *S* such that $\tilde{U}_\alpha := U_\alpha(\pi_2(\ker \rho))$ is biholomorphic onto U_α and $\mathscr{U} := {\{\tilde{U}_\alpha\}}$ is a Stein covering of S/π ₂(ker ρ) with a biholomorphic mapping

(1.1)
$$
h_{\alpha}: \pi^{-1}(\widetilde{U}_{\alpha}) \ni (a, b) \text{ker } \rho \longmapsto (\widetilde{b}_{\alpha}, a_{\alpha}) \in \widetilde{U}_{\alpha} \times G^{0}
$$

for each α , where $a_{\alpha} \in G^0$ and $b_{\alpha} \in U_{\alpha}$ satisfying (a, b) ker $\rho = (a_{\alpha}, b_{\alpha})$ ker ρ and \tilde{b}_{α} $= b_{\alpha}(\pi_2(\ker \rho))$. Then

(1.2)
$$
h_{\alpha}h_{\beta}^{-1}(\tilde{b}_{\beta},\alpha_{\beta})=(\tilde{b}_{\alpha},a_{\alpha})=(\tilde{b}_{\alpha},f_{\alpha\beta}a_{\beta}).
$$

Since $\pi_1(\ker \rho)$ is a finite subgroup, the holomorphic mapping $f_{\alpha\beta}$: $\tilde{U}_{\alpha} \cap \tilde{U}_{\beta}$ $\rightarrow \pi_1(ker \rho)$ is locally constant. Taking a refinement Stein covering of \mathcal{U} , we may assume *°U* is locally finite.

Throughout this paper we assume $G^0 = C^n / \Gamma$, where Γ is a discrete lattice of C^n generated by **R**-linearly independent vectors $\{e_1, e_2, \ldots, e_n, v_1\}$ $=(v_{11},..., v_{1n}), v_2 = (v_{21},..., v_{2n}),..., v_q = (v_{q1},..., v_{qn})\}$ over **Z** and e_i denotes the *i*-th unit vector of C^n . We take $\Re v_i$, $\Im v_i \in \mathbb{R}^n$ with $v_i = \Re v_i$ $+\sqrt{-13v_i}$. Since $e_1, e_2, \ldots, e_n, v_1, v_2, \ldots, v_q$ are *R*-linearly independent, $\mathfrak{I}v_1, \mathfrak{I}v_2, \ldots, \mathfrak{I}v_a$ are *R*-linearly independent. Then without loss of generality we may assume det $[\Im v_{ij}; 1 \le i, j \le q] \ne 0$ from now on. We set

$$
K_{m,i} := \sum_{j=1}^{n} v_{ij} m_j - m_{n+i} \text{ and } K_m := \max\{|K_{m,i}|; 1 \le i \le q\}
$$

for $m = (m_1, m_2, \dots, m_{n+q}) \in \mathbb{Z}^{n+q}$. Since G^0 is toroidal, $K_m > 0$ for any $m \in \mathbb{Z}^{n+q} \setminus \{0\}$ ([5], [8]). We have the following theorem ([3]).

Theorem 1.1. Let $G^0 = C^n / \Gamma$ be a toroidal group. Then the following *statements* (1) *and* (2) *are equivalent.*

(1) There exists $a > 0$ such that

$$
\sup_{m\neq 0}\exp(-a||m^*||)/K_m<\infty,
$$

where $\|m^*\| = \max\{|m_i|; 1 \le i \le n\}.$

476 HIDEAKI KAZAMA AND TAKASHI UMENO

(2)
$$
\dim H^{p}(G^{0}, \mathcal{O}) = \begin{cases} \frac{q!}{(q-p)!p!} & \text{if } 1 \leq p \leq q \\ 0 & \text{if } p > q. \end{cases}
$$

We denote by π_q the projection $C^n \ni (z^1, \ldots, z^n) \mapsto (z^1, \ldots, z^q) \in C^q$. Since $\pi_q(e_i)$, $\pi_q(v_i)$ ($1 \le i \le q$) are *R*-linearly independent π_q induces the C^{*n-q}-principal bundle

$$
\pi_q\colon C^n/\Gamma\ni z+\Gamma\longrightarrow \pi_q(z)+\Gamma^*\in T^q\mathcal{C}^q/\Gamma^*
$$

over the complex q dimensional torus T_c^q , where $\Gamma^* := \pi_q(\Gamma)([9])$. We put

$$
\alpha_{ij} := \begin{cases} \Re v_{ij} & (1 \le i \le q, \ 1 \le j \le n) \\ 0 & (q+1 \le i \le n, \ 1 \le j \le n) \end{cases}
$$
\n
$$
\beta_{ij} := \begin{cases} \Im v_{ij} & (1 \le i \le q, \ 1 \le j \le n) \\ \delta_{ij} & (q+1 \le i \le n, \ 1 \le j \le n) \end{cases}
$$

 $[y_{ij}; 1 \le i, j \le n] := [\beta_{ij}; 1 \le i, j \le n]^{-1}$ and $v_i = \sqrt{-1} e_i$ for $q + 1 \le i \le n$. Since $\{e_1, \ldots, e_n, v_1, \ldots, v_n\}$ are *R*-linearly independent, we have an isomorphism

$$
\phi: C^n \ni (z^1, \ldots, z^n) \longrightarrow (t^1, \ldots, t^{2n}) \in R^{2n}
$$

as a real Lie group, where $(z^1, ..., z^n) = \sum_{i=1}^n (t^i e_i + t^{n+i} v_i)$. Then we obtain the relations

(1.3)
$$
t^{i} = x^{j} - \sum_{i,k=1}^{n} y^{k} \gamma_{ki} \alpha_{ij} \text{ and } t^{n+j} = \sum_{i=1}^{n} y^{i} \gamma_{ij}
$$

for $1 \le j \le n$, where $z^i = x^i + \sqrt{-1}y^i$. We put $t = (t', t'')$, $t' = (t^1, \ldots, t^{n+q})$ $\in \mathbb{R}^{n+q}$ and $t'' = (t^{n+q+1}, \ldots, t^{2n}) \in \mathbb{R}^{n+q}$ ϕ induces the isomorphism $\phi: C^n/\Gamma \cong T^{n+q} \times R^{n-q}$ as a real Lie group, where T^{n+q} is a real $(n + q)$ dimensional real torus. It follows from (1.3) that

$$
(1.4) \qquad \frac{\partial}{\partial \bar{z}^i} = \frac{1}{2} \bigg[\frac{\partial}{\partial t^i} + \sqrt{-1} \bigg\{ - \sum_{j,k=1}^n \gamma_{ik} \alpha_{kj} \frac{\partial}{\partial t^j} + \sum_{j=1}^n \gamma_{ij} \frac{\partial}{\partial t^{n+j}} \bigg\} \bigg].
$$

Then for $q + 1 \le i \le n$ we have

(1.5)
$$
\frac{\partial}{\partial \bar{z}^i} = \frac{1}{2} \left(\frac{\partial}{\partial t^i} + \sqrt{-1} \frac{\partial}{\partial t^{n+i}} \right).
$$

Let $(w^1_\alpha, \ldots, w^l_\alpha)$ be a coordinate system in \tilde{U}_α . For any $g \in \pi^{-1}(\tilde{U}_\alpha)$, we put $Z_{\alpha}^{n}(g)) \in \mathbb{C}^{n}/\Gamma$ and $\hat{K}_{\alpha}(g) = \phi \circ K_{\alpha}(g) = t_{\alpha}(g) = (t_{\alpha}^{1}(g), \ldots, t_{\alpha}^{2n}(g)) \in T^{n+q} \times R^{n-q}.$ Since $f_{\alpha\beta} \in \pi_1(\ker \rho) \subset C^n/\Gamma$, $(f_{\alpha\beta})^s \in \Gamma$, where $s := \#(\ker \rho)$. We put $\phi(f_{\alpha\beta}) =$ $y = (s f_{\alpha\beta}^1, \ldots, s f_{\alpha\beta}^{2n}) \in \mathbb{Z}^{n+q} \times \{0\}.$ Thus

 $(f_{\alpha\beta}^1, ..., f_{\alpha\beta}^{n+q}, 0, ..., 0) \in \mathbb{R}^{2n}$. From (1.2) for $\phi(f_{\alpha\beta})$. Putting $t_{\alpha} = (t'_{\alpha}, t''_{\alpha}), t'_{\alpha} = (t^{1}_{\alpha}, ..., t^{n+4}_{\alpha})$, $t''_{\alpha} = (t^{n+4+1}_{\alpha}, ..., t^{2n}_{\alpha})$, and $f'_{\alpha\beta} =$ $(f_{\alpha\beta}^1,\ldots,f_{\alpha\beta}^{n+q})$

(1.6)
$$
t'_{\alpha} = t'_{\beta} + f'_{\alpha\beta} \quad \text{and} \quad t''_{\alpha} = t''_{\beta}.
$$

Since $z_{\alpha}^{i} = t_{\alpha}^{i} + \sum_{i=1}^{n} t_{\alpha}^{n+j} v_{ii}$

(1.7)
$$
z_{\alpha}^{i} = z_{\beta}^{i} + f_{\alpha\beta}^{i} + \sum_{j=1}^{q} f_{\alpha\beta}^{n+j} v_{ji} \text{ and then } d\bar{z}_{\alpha}^{i} = d\bar{z}_{\beta}^{i}.
$$

§ 2. The Cohomology Groups $H^p(U\times G^0, \mathcal{O})$

We consider the cohomology groups $H^p(U \times G^0, \mathcal{O})$ of the product manifold of an open polydisc U in C^l and $G^0 = C^n / T$. As in §1, we have the isomorphism $\phi: C^n/\Gamma \ni (z^1, ..., z^n) + \Gamma \mapsto (t^1, ..., t^{2n}) + \phi(\Gamma) \in T^{n+q} \times R^{n-q}$ and the projection $\pi_q: C^n/\Gamma \ni (z^1, ..., z^n) + \Gamma \mapsto (z^1, ..., z^q) + \Gamma^* \in T_c^q$. We put U $=\{(w^1, \ldots, w^i) \in C^1 \mid |w^i| < d, \ i = 1, \ldots, l\}.$ We have a diffeomorphism $\tilde{\phi}$: *U* $\times \tilde{C}^n/\Gamma \ni (w^1, \ldots, w^l, z + \Gamma) \mapsto (w^1, \ldots, w^l, \pi_q(z + \Gamma), \xi^1, \ldots, \xi^{n-q}) \in U \times T_{\mathcal{C}}^q \times$ C^{*n-q} , where $\xi^i = \exp(2\pi \sqrt{-1}(t^{q+i} + \sqrt{-1}t^{n+q+i}))$ and $z = (z^1, ..., z^n)$. Let $\mathscr{E} = \mathscr{E}_X$ be the sheaf of germs of C^∞ functions on a complex manifold X and $\mathscr{E}^{r,s}$ $= \mathscr{E}_X^{r,s}$ the sheaf of germs of $C^{\infty}(r, s)$ -forms on X. We define the sheaf \mathscr{F} on U \times *G*⁰ and the sheaf $\mathscr G$ on $U \times T^q$ \times *C***n*^{-*q*} as follows:

$$
\mathcal{F} := \{ f \in \mathscr{E}_{U \times G^0} | \frac{\partial f}{\partial \bar{w}^i} = 0, \frac{\partial f}{\partial \bar{z}^j} = 0, i = 1, ..., l, j = q + 1, ..., n \} \text{ and}
$$

$$
\mathcal{G} := \{ g \in \mathscr{E}_{U \times T_c^q \times C^{*n-q}} | \frac{\partial g}{\partial \bar{w}^i} = 0, \frac{\partial g}{\partial \bar{\xi}^k} = 0, i = 1, ..., l, k = 1, ..., n - q \}.
$$

 $\phi^*: H^0(W, \mathscr{D}) \ni \mathscr{G} \mapsto \mathscr{G} \circ \tilde{\phi} \in H^0(\phi^{-1}(W), \mathscr{F})$ is an isomorphism for any open subset *W* of $U \times T_c^q \times C^{*n-q}$. Then ϕ^* induces an isomorphism $\times G^0$, $\mathscr{F}) \cong H^p(U \times T^q_{\mathbb{C}} \times \mathbb{C}^{*^{n-q}}, \mathscr{G})$ for any p.

Lemma 2.1. $H^p(U \times G^0, \mathcal{F}) = 0$ for $p \ge 1$.

Proof. It is equivalent to prove $H^p(U \times T_c^q \times C^{*^{n-q}}, \mathfrak{g}) = 0$. We put $x = U \times T_c^q \times C^{*n-q}$. Let f be a C^{∞} function in a neighborhood of $x \in X$. We put

$$
\overline{\partial}^{\prime} f := \sum_{i=1}^{l} \frac{\partial f}{\partial \overline{w}^i} d\overline{w}_i + \sum_{k=1}^{n-q} \frac{\partial f}{\partial \overline{\xi}^j} d\overline{\xi}_j.
$$

 $\overline{\partial}$ ' is also defined for C^{∞} (r, s)-forms in a neighborhood of $x \in X$. We have an exact sequence on *X,*

$$
0 \longrightarrow \mathscr{G} \longrightarrow \mathscr{E}^{0,0} \longrightarrow \mathscr{E}^{0,1} \longrightarrow \cdots \longrightarrow \mathscr{E}^{0,n+l-q} \longrightarrow 0.
$$

Then

$$
H^p(X, \mathcal{G}) = \frac{\{\varphi \in H^0(X, \mathcal{E}^{0,p}) | \overline{\partial}' \varphi = 0\}}{\overline{\partial}' H^0(X, \mathcal{E}^{0,p-1})}.
$$

We put $X_n := \{(w, \pi_q(z + \Gamma), \xi) \in X \mid |w^i| < d - \frac{1}{n}, \frac{1}{n} < |\xi^j| < n\}.$ In case $l = q$ *n n* = 1, for any C^{∞} -function $f(w, \pi_q(z + \Gamma), \xi)$ in *X*, we put

$$
g_1(w, \pi_q(z+\Gamma), \xi) := \frac{1}{2\pi \sqrt{-1}} \iint_{|u| < d-\frac{1}{n}} \frac{f(u, \pi_q(z+\Gamma), \xi)}{u - w} du \wedge d\bar{u} \text{ and}
$$
\n
$$
g_2(w, \pi_q(z+\Gamma), \xi) := \frac{1}{2\pi \sqrt{-1}} \iint_{\frac{1}{n} < |\xi| < n} \frac{f(w, \pi_q(z+\Gamma), \xi)}{\zeta - \xi} d\zeta \wedge d\bar{\zeta}.
$$

Then in X_n we have

$$
\frac{\partial g_1}{\partial \bar{w}} = f \quad \text{and} \quad \frac{\partial g_2}{\partial \bar{\xi}} = f.
$$

Using this fact and the standard argument for the Dolbeault lemma $([1, 4])$, we can complete the proof of this lemma.

Let $\hat{\pi}_q: U \times G^0 \ni (w, z + \Gamma) \mapsto (w, \pi_q(z + \Gamma)) \in U \times T_g^q$, where $w = (w^1, \dots, w^q)$ *w*¹) and $z = (z^1, \ldots, z^n)$. We put $\mathscr{F}^{r,s} := \mathscr{F} \otimes \hat{\pi}_q^* \mathscr{E}_{T_p^s}^{r,s}$.

As an immediate consequence of Lemma 2.1, we have the following

Lemma 2.2. *The sequence*

$$
0 \longrightarrow \mathcal{O} \longrightarrow \mathcal{F}^{0,0} \longrightarrow \mathcal{F}^{0,1} \longrightarrow \cdots \longrightarrow \mathcal{F}^{0,q} \longrightarrow 0
$$

is exact on $U \times G^0$ and

$$
H^{p}(U \times G^{0}, \mathcal{O}) = \frac{\{\varphi \in H^{0}(U \times G^{0}, \mathcal{F}^{0, p}) | \bar{\partial}\varphi = 0\}}{\bar{\partial}H^{0}(U \times G^{0}, \mathcal{F}^{0, p-1})}
$$

for $p \geq 1$.

Let $\varphi \in H^0(U \times G^0, \mathcal{F}^{0,p})$. Since $G = C^n / \Gamma$ has global 1-forms dz^1, \ldots, dz^n , $d\bar{z}^1, \ldots, d\bar{z}^n$ for the coordinate system $z = (z^1, \ldots, z^n) \in \mathbb{C}^n$, we can write

$$
\varphi = \frac{1}{p!} \sum_{1 \leq i_1, \dots, i_p \leq q} \varphi_{i_1 \dots i_p} d\bar{z}^{i_1} \wedge \dots \wedge d\bar{z}^{i_p},
$$

where $\varphi_{i_1...i_n} \in H^0(U \times G^0, \mathcal{F})$ and skew-symmetric in all indices. We expand $\varphi_{i_1...i_n}$ on $\overline{U} \times G^0$:

(2.1)
$$
\varphi_{i_1...i_p}(w, t) = \sum_{m \in \mathbb{Z}^{n+q}} a_{i_1...i_p}^m(w, t'') \exp(2\pi \sqrt{-1} \langle m, t' \rangle),
$$

where $\langle m, t' \rangle = \sum_{i=1}^{n+q} m_i t_i$ and $a_{i_1...i_p}^m(w, t'') \in C^\infty(U \times R^{n-q})$. We put $\varphi_{i_1...i_p}^m(w, t) = a_{i_1...i_p}^m(w, t'') \exp\left(2\pi \sqrt{-1} \langle m, t' \rangle\right)$ and $\varphi^m = \frac{1}{n!} \sum_{1 \le i_1,...,i_p \le q} \varphi_{i_1...i_p}^m$ $d\bar{z}^{i_1} \wedge ... \wedge d\bar{z}^{i_p}$. Then $\varphi = \sum_{m \in \mathbb{Z}^{n+q}} \varphi^m$. It follows from (1.4), (1.5) and (2.1) that

$$
(2.2) \frac{\partial \varphi_{i_1...i_p}^m(w, t)}{\partial \bar{z}^i} =
$$
\n
$$
\begin{cases}\n\pi \sum_{k=1}^{q} \gamma_{ik} K_{m,k} \varphi_{i_1...i_p}^m(w, t) \\
\sqrt{-1} \left(\pi m_i a_{i_1...i_p}^m(w, t'') + \frac{1}{2} \frac{\partial a_{i_1...i_p}^m(w, t'')}{\partial t^{n+i}} \right) \exp(2\pi \sqrt{-1} \langle m, t' \rangle) \\
(q + 1 \le i \le n).\n\end{cases}
$$

Since $\varphi_{i_1...i_p} \in H^0(U \times G^0, \mathscr{F})$, $\varphi_{i_1...i_p}$ are holomorphic in w^1, \ldots, w^l and z^{q+1}, \ldots, z^n . Therefore from (2.1) and (2.2), we have

(2.3)

$$
\varphi_{i_1...i_p}^m(w, t) = \sum_{m \in \mathbb{Z}^{n+q}} c_{i_1...i_p}^m(w) \exp(-2\pi \sum_{i=q+1}^n m_i t^{n+i}) \exp(2\pi \sqrt{-1} \langle m, t' \rangle),
$$

where $c^m_{i_1...i_p}(w)$ are holomorphic functins in U. Let $m \in \mathbb{Z}^{n+q} \setminus \{0\}$ and $s(m)$: $||K_{m,s}| = K_m$, $1 \leq s \leq q$. We put

$$
c_{i_1...i_{p-1}}^{m,s} := \sum_{i=1}^n \beta_{si} c_{ii_1...i_{p-1}}^{m}.
$$

Since $K_m > 0$ for $m \in \mathbb{Z}^{n+q} \setminus \{0\}$, we can put $d^m_{i_1...i_{p-1}} := \frac{c_{i_1...i_{p-1}}}{\pi K_{m,s(m)}}$ and

$$
(2.4) \qquad \psi^{m} := \frac{1}{(p-1)!} \sum_{1 \le i_1, \dots, i_{p-1} \le q} d^{m}_{i_1 \dots i_{p-1}}(w) \exp\left(-2\pi \sum_{i=q+1}^{n} m_{i} t^{n+i}\right)
$$

$$
\times \exp\left(2\pi \sqrt{-1} \langle m, t' \rangle\right) d\bar{z}^{i_1} \wedge \dots \wedge d\bar{z}^{i_{p-1}}.
$$

From the similar argument to the previous paper [3,5] we have the following

Lemma 2.3. Let $\varphi = \sum_{m \in \mathbb{Z}^{n+q}} \varphi^m \in H^0(U \times G^0, \mathcal{F}^{0,p})$ be a $\overline{\partial}$ -closed *form.* Take the $(0, p - 1)$ -form ψ^m defined by (2.4) for $m \in \mathbb{Z}^{n+q} \setminus \{0\}$, then

$$
\varphi=\frac{1}{p!}\sum_{1\leq i_1,\ldots,i_{p-1}\leq q}c^0_{i_1\ldots i_p}(w)\,d\bar{z}^{i_1}\wedge\ldots\wedge d\bar{z}^{i_p}+\sum_{m\in\mathbb{Z}^{n+q}\setminus\{0\}}\bar{\partial}\psi^m,
$$

where $c_{i_1...i_p}^0(w)$ are holomorphic in U. In particular, $\varphi^0 = \frac{1}{p!} \sum_{1 \le i_1,...,i_{p-1} \le q} c_{i_1...i_p}^0$ $e^{i_1} \wedge ... \wedge d\bar{z}^{i_p} \in \overline{\partial} H^0(U \times G^0, \mathscr{F}^{0,p-1})$ if and only if $\varphi^0 = 0$.

Proposition **2.1.** *If G° is of finite type, then*

$$
H^p(U \times G^0, \mathcal{O}) \cong H^0(U, \mathcal{O}) \otimes C\{d\bar{z}^{i_1} \wedge \dots \wedge d\bar{z}^{i_p} | 1 \le i_1 < \dots < i_p \le q\}
$$
\nfor $1 \le p \le q$ and $H^p(U \times G^0, \mathcal{O}) = 0$ for $p \ge q + 1$.

Proof. As an immediate consequence of Lemma 2.2 we have *H^p* $(U \times G^0, \mathcal{O}) = 0$ for $p \ge q + 1$. Let $\varphi = \sum_{m \in \mathbb{Z}^{n+q}} \varphi^m \in H^0(U \times G^0, \mathcal{F}^{0,p})$ be a \bar{c} -closed form, where $\varphi^m := \frac{1}{n!} \sum_{1 \le i_1, ..., i_p \le q} c_{i_1, ..., i_p}^m(w) \exp(-2\pi \sum_{i=q+1}^n m_i t^{n+i}) \exp(-2\pi \sum_{i=1}^n m_i t^{n+i})$ $(2\pi \sqrt{-1} \langle m, t' \rangle) d\bar{z}^{i_1} \wedge ... \wedge d\bar{z}^{i_p}$. Similarly to [4, Lemma 7], for any compact subset *K* of *U*, any $R > 0$ and any $k > 0$, we get

$$
C_K(k, R) := \sup_{w \in K} \left\{ |c_{i_1...i_p}^m(w)| \, \|m'\|^k \, R^{\|m''\|} \, |m \in \mathbb{Z}^{n+q} \right\} < +\infty
$$

where $||m'|| = \max\{|m_i|, |m_{n+i}| \mid 1 \le i \le q\}$ and $||m''|| = \max\{|m_i| | q + 1 \le j \le n\}$ *n*}. Since G^0 is of finite type, the statement (1) of Theorem 1.1 in § 1 holds. By Lemma 2.3 we have $(0, p - 1)$ -form ψ^m defined by (2.4) such that $\varphi^m = \overline{\partial} \psi^m$ for $m \in \mathbb{Z}^{n+q} \setminus \{0\}$. Using a similar argument to [4] and the statement (1) of Theorem 1.1 we obtain

$$
d_{i_1...i_{p-1}}^m(w) \vert \, \Vert m' \Vert^k \, R^{\Vert m'' \Vert} < \infty.
$$

This means that $\sum_{m\in\mathbb{Z}^{n+q}\setminus\{0\}}\psi^m$ converges to a $(0, p-1)$ -form $\psi \in H^0(U)$ $\times G^{0}, \mathscr{F}^{0,p-1}$). Then $\phi = \phi^{0} + \overline{\partial}\psi$, where $\phi^{0} = \frac{1}{n!} \sum_{1 \leq i_1,...,i_p \leq q} c^{0}_{i_1...i_p}(w)$ $d\bar{z}^{i_1} \wedge \dots \wedge d\bar{z}^{i_p}$ and $c^0_{i_1 \dots i_p}$ are holomorphic in U. This completes the proof.

In Proposition 2.1 we get a kind of Künneth formula by the ∂ -cohomology theory. This can be also obtained by a result of Kaup [2]. Kaup [2] shows this formula for Fréchet sheaves using the Cěch cohomology theory.

We have two isomorphisms

$$
I: H^p(U \times G^0, \mathcal{O}) \cong \frac{\{ \varphi \in H^0(U \times G^0, \mathcal{E}^{0,p}) | \bar{\partial} \varphi = 0 \}}{\bar{\partial} H^0(U \times G^0, \mathcal{E}^{0,p-1})}
$$

$$
J: H^p(U \times G^0, \mathcal{O}) \cong \frac{\{ \varphi \in H^0(U \times G^0, \mathcal{F}^{0,p}) | \bar{\partial} \varphi = 0 \}}{\bar{\partial} H^0(U \times G^0, \mathcal{F}^{0,p-1})}.
$$

Combining Lemma 2.3 with the existence of the isomorphisms I and J , we get the following

Lemma 2.4. For any $\overline{\partial}$ -closed form $\varphi \in H^0(U \times G^0, \mathcal{E}^{0,p})$, there exist a *holomorphic* $(0, p)$ -form $h = \frac{1}{n!} \sum_{1 \le i_1, ..., i_p \le q} c_{i_1...i_p}(w) d\bar{z}^{i_1} \wedge ... \wedge d\bar{z}^{i_p},$ $(U \times G^0, \mathscr{E}^{0,p-1})$ and $\hat{\psi}^m \in H^0(U \times G^0, \mathscr{F}^{0,p-1})$ such that

$$
\varphi = h + \sum_{m \in \mathbb{Z}^{n-q} \setminus \{0\}} \overline{\partial} \hat{\psi}^m + \overline{\partial} \psi.
$$

§3. The Cohomology Groups $H^p(G, \mathcal{O})$

In this section we shall prove Theorem I and Theorem II. As in § 1, let *G* be a connected complex Lie group of complex dimension $(n + l)$, $G^0 = C^n / T$ the toroidal subgroup of complex dimension *n*, $\mathscr{U} = {\tilde{U}_\alpha | \alpha = 0, 1, 2, ...}$ a Stein covering of $S/\pi_2(\text{ker } \rho) \cong G/G^0$ and $\pi: G \to S/\pi_2(\text{ker } \rho)$ the projection. We put $\mathscr{E} = \mathscr{E}_G^{0,0}$ and $\mathscr{E}^{r,s} = \mathscr{E}_G^{r,s}$. We use coordinate systems $w^1_\alpha, \ldots, w^l_\alpha, z^1_\alpha, \ldots, z^n_\alpha, t^1_\alpha, \ldots$ t_{α}^{2n} in $\pi^{-1}(\widetilde{U}_{\alpha}) \cong \widetilde{U}_{\alpha} \times G^0$ as in §1. Put

$$
\mathscr{F} := \{ f \in \mathscr{E} \mid \frac{\partial f}{\partial \bar{w}_{\alpha}^i} = 0, \frac{\partial f}{\partial \bar{z}_{\alpha}^j} = 0 \text{ in } \pi^{-1}(\tilde{U}_{\alpha}), \ i = 1, \dots, l, j = q + 1, \dots, n \}.
$$

From (1.7) the sheaf $\mathcal F$ is well-defined on G and then $\mathcal F^{r,s}$ is also defined on G. To calculate the cohomology groups $H^p(G, \mathcal{O})$, we use the Dolbeault isomorphism *I* in §2. Let $\varphi \in H^0(G, \mathscr{E}^{0,p})$ be a $\overline{\partial}$ -closed form. We put $\varphi_{\alpha} := \varphi |\pi^{-1}(\tilde{U}_{\alpha})$. Then φ_{α} is a $\bar{\partial}$ -closed form on $\pi^{-1}(\tilde{U}_{\alpha}) \cong \tilde{U}_{\alpha} \times G^0$. We write

$$
\varphi_{\alpha} = \frac{1}{p!} \sum_{1 \leq i_1, \dots, i_p \leq l+n} \varphi_{\alpha, i_1 \dots i_p} d\bar{\zeta}_{\alpha}^{i_1} \wedge \dots \wedge d\bar{\zeta}_{\alpha}^{i_p},
$$

where $\zeta_{\alpha}^{i} = w_{\alpha}^{i}$ $(i = 1, ..., l), \quad \zeta_{\alpha}^{l+j} = z_{\alpha}^{j}$ $(j = 1, ..., n)$ and $\varphi_{\alpha, i_1...i_p} \in H^0(\pi^{-1}(\tilde{U}_{\alpha}),$ \mathscr{E}). Put $\varphi_{\alpha} = \sum_{m \in \mathbb{Z}^{n+q}} \varphi_{\alpha}^{m}$.

$$
\varphi_{\alpha}^{m} = \frac{1}{p!} \sum_{1 \leq i_1, \ldots, i_p \leq l+n} \varphi_{\alpha, i_1 \ldots i_p}^{m} d \bar{\zeta}_{\alpha}^{i_1} \wedge \ldots \wedge d \bar{\zeta}_{\alpha}^{i_p}
$$

+ a $a^m_{\alpha,i_1...i_p}(w_a, t''_a) \times \exp(2\pi \sqrt{-1} \langle m,$ t'_α >). From (1.6) and (1.7), in $\pi^{-1}(\tilde{U}_\alpha) \cap \pi^{-1}(\tilde{U}_\beta)$

$$
\varphi_{\alpha}^{m} = \varphi_{\beta}^{m}
$$

for all $m \in \mathbb{Z}^{n+q}$. By Lemma 2.4 we have a holomorphic $(0, p)$ -form $h_{\alpha} =$ $\frac{1}{n!}\sum_{1\leq i_1,\ldots,i_p\leq q} h_{\alpha,i_1\ldots i_p}(w) d\bar{z}_{\alpha}^{i_1}\wedge \ldots \wedge d\bar{z}_{\alpha}^{i_p}, \chi_{\alpha} = \sum_{m\in\mathbb{Z}^{n+q}} \chi_{\alpha}^m \in H^0(\pi^{-1}(\tilde{U}_{\alpha}), \mathscr{E}^{0,p-1})$ and $\hat{\psi}_\alpha^m \in H^0(\pi^{-1}(\tilde{U}_\alpha), \mathscr{F}^{0,p-1})$ for each $m \in \mathbb{Z}^{n+q} \setminus \{0\}$ such that

(3.2)
$$
\varphi_{\alpha} = h_{\alpha} + \sum_{m \in \mathbb{Z}^{n+q} \setminus \{0\}} \overline{\partial} \hat{\psi}_{\alpha}^{m} + \overline{\partial} \chi_{\alpha}.
$$

We put $\psi^m_\alpha:=\hat{\psi}^m_\alpha+\chi^m_\alpha$ for $m\in\mathbb{Z}^{n+q}\backslash\{0\}$ and $\psi^0_\alpha:=\chi^0_\alpha$, then we have

(3.3)
$$
\varphi_{\alpha}^{0} = h_{\alpha} + \overline{\partial} \psi_{\alpha}^{0} \text{ and } \varphi_{\alpha}^{m} = \overline{\partial} \psi_{\alpha}^{m}
$$

for $m \in \mathbb{Z}^{n+q} \setminus \{0\}$. From (3.1) we obtain

(3.4)
$$
h_{\alpha} + \overline{\partial}\psi_{\alpha}^{0} = h_{\beta} + \overline{\partial}\psi_{\beta}^{0} \text{ and } \overline{\partial}\psi_{\alpha}^{m} = \overline{\partial}\psi_{\beta}^{m}.
$$

Then, by Lemma 2.3 $h_{\alpha} - h_{\beta} = \overline{\partial}(\psi_{\beta}^{0} - \psi_{\alpha}^{0}) = 0$. Thus

$$
h_{\alpha} = h_{\beta}.
$$

We put $\Phi^m := \overline{\partial} \psi^m_\alpha \in H^0(G, \ \mathscr{E}^{0,p})$ and $\Phi^{m,1} = \delta(\{\psi^m_\alpha\}) = \{\psi^m_\beta - \psi^m_\alpha\} \in$ $Z^1(\{\pi^{-1}(\tilde{U}_\alpha)\}, \tilde{\partial} \mathcal{E}^{0,p-2})$. In case $m \neq 0$, by (3.2) we have $\mathcal{Y}^{m,1} \in C^1(\{\pi^{-1}(\tilde{U}_\alpha)\},\)$ $\mathscr{E}^{0,p-2}$) such that $\Phi^{m,1} = \overline{\partial} \Psi^{m,1}$. Continuing the above argument we get $\Phi^{m,p} \in Z^p(\{\pi^{-1}(\tilde{U}_\alpha)\}, \emptyset)$. Since $I([\Phi^{m,p}]) = [\Phi^m]$ and $H^p(\{\pi^{-1}(\tilde{U}_\alpha)\}, \emptyset) \cong$ $H^p(\lbrace \tilde{U}_\alpha \rbrace, \emptyset) = 0$, we have $\Psi^m \in H^0(G, \mathscr{E}^{0, p-1})$ such that

$$
\Phi^m = \overline{\partial} \Psi^m.
$$

In case $m = 0$, by (3.2) we have $\hat{\Phi}^{0,1} \in C^1(\{\pi^{-1}(\tilde{U}_a)\}, {\mathcal{O}}^{0,p-1})$ and $\Psi^{0,1} \in$ $C^{1}(\{\pi^{-1}(\tilde{U}_{\alpha})\}, \mathscr{E}^{0,p-2})$, satisfying $\Phi^{0,1} = \hat{\Phi}^{0,1} + \overline{\partial} \Psi^{0,1}$, where $\mathscr{O}^{0,r}$ is the sheaf of germs of holomorphic $(0, r)$ -forms on G. Then $0 = \delta \Phi^{0,1} = \delta \hat{\Phi}^{0,1} + \tilde{\delta}$ $\delta \Psi^{0,1}$. By Lemma 2.3 and Lemma 2.4 $\delta \hat{\Phi}^{0,1} = 0$. Therefore $\hat{\Phi}$ (\tilde{U}_α) , $\mathcal{O}^{0,p-1}$ $\cong Z^1(\{\tilde{U}_\alpha\}, \mathcal{O}^{0,p-1})$. Then we have $H^{0,0} \in C^0(\{\pi^{-1},\pi^{-1}\})$ such that $\hat{\Phi}^{0,1} = \delta H^{0,0}$. Replace ψ_{α}^{0} by $\psi_{\alpha}^{0} - H^{0,0}$ and put $\Phi^{0,1} := \delta(\psi_{\alpha}^{0}$ $-H^{0,0}$), then $\Phi^{0,1} = \overline{\partial} \Psi^{0,1}$. Continuing the similar argument we get). Thus we have $\Psi^0 \in H^0(G, \mathscr{E}^{0,p-1})$ such that

$$
\Phi^0 = \overline{\partial} \Psi^0.
$$

By (3.2), (3.5), (3.6) and (3.7) we have the following

Proposition 3.1. Let $\varphi \in H^0(G, \mathcal{E}^{0,p})$ be a $\overline{\partial}$ -closed form. Then we have a *holomorphic* $(0, p)$ -form $h = \frac{1}{p!} \sum_{1 \leq i_1, \dots, i_p \leq q} h_{\alpha, i_1 \dots i_p}(w_\alpha) d\bar{z}^{i_1}_{\alpha} \wedge \dots \wedge d\bar{z}^{i_p}_{\alpha}$ on G and C^{∞} (0, p - 1)-forms Ψ^{m} on G for each $m \in \mathbb{Z}^{n+q}$ satisfying $\varphi = h + \sum_{m \in \mathbb{Z}^{n+q}} \overline{\partial} \Psi^{m}$.

Now we start proving Theorem I. Assume (1) holds. We have the isomorphism *I*. Let $\varphi \in H^0(G, \mathcal{E}^{0,p})$ be a $\overline{\partial}$ -closed form. We put $\varphi_{\alpha} := \varphi \mid \pi^{-1}$ (\tilde{U}_α) . By (3.2) we can write $\varphi_\alpha = h_\alpha + \sum_{m \in \mathbb{Z}^{n+q} \setminus \{0\}} \bar{\partial} \hat{\psi}_\alpha^m + \bar{\partial} \chi_\alpha$, where h_α and $\hat{\psi}_\alpha^m$ and χ_{α} are the same as in (3.2). In case $1 \le p \le q$, by Proposition 2.1, $\hat{\psi}_{\alpha}$ $= \sum_{m\in \mathbb{Z}^{n+q}\setminus\{0\}} \hat{\psi}_\alpha^m$ converges in $H^0(\pi^{-1}(\tilde{U}_\alpha), \mathscr{F}^{0,p-1})$ for each α . We have φ_α $= h_{\alpha} + \partial \hat{\psi}_{\alpha} + \partial \chi_{\alpha}$. We put $\psi_{\alpha}^0 := \chi_{\alpha}^0$ and $\psi_{\alpha}^1 = \sum_{m \in \mathbb{Z}^{n+q} \setminus \{0\}} (\hat{\psi}_{\alpha}^m + \chi_{\alpha}^m)$. Then φ_{α} $= h_{\alpha} + \overline{\partial}\psi_{\alpha}^{0} + \overline{\partial}\psi_{\alpha}^{1}$. Put $\Phi^{i} := \overline{\partial}\psi_{\alpha}^{i} \in H^{0}(G, \overline{\partial}\mathcal{E}^{\overline{0,p-1}})$ (*i* = 0, 1). Then similarly to getting (3.6) and (3.7) we have $\Psi^i \in H^0(G, \mathscr{E}^{0,p-1})$ satisfying $\varphi = h + \overline{\partial} \Psi^0$ $+\overline{\partial} \Psi^1$, where $h|\pi^{-1}(\tilde{U}_\alpha) = h_\alpha$. In case $p > q$, by (3.2) $\varphi_\alpha = \overline{\partial} \chi_\alpha$. Then we can get $\chi \in H^0(G, \mathscr{E}^{0,p-1})$ satisfying $\varphi = \overline{\partial}\chi$ similarly to the case $1 \le p \le q$. It is obvious that $(2) \Rightarrow (3) \Rightarrow (4)$. Finally we prove $(4) \Rightarrow (1)$. Suppose G^0 is not of finite type. Then the statement (1) in Theorem 1.1 in $\S 1$ doesn't hold. Namely there exists $\varepsilon > 0$ such that we can choose a sequence ${m_u | \mu \ge 1} \in \mathbb{Z}^{n+q} \setminus \{0\}$ satisfying $\exp(-\varepsilon ||m'_\mu|| - ||m''_\mu||)/K_{m_\mu} > \mu$ for any $\mu \ge 1$ ([3, Lemma 4.2]). Put

$$
\delta^m := \begin{cases} \exp\{-\varepsilon \|m_\mu'\| - \|m_\mu''\| / K_{m_\mu} m = m_\mu \text{ for some } \mu \ge 1\\ 0 & \text{otherwise} \end{cases}
$$

For each α , we put

$$
\psi_{\alpha}^{m} := \left\{ \sum_{\gamma} \exp(2\pi \sqrt{-1} < m, f_{\gamma\alpha}^{\prime} >) \right\} \, \delta^{m} \exp(-2\pi \sum_{i=q+1}^{n} m_{i} t_{\alpha}^{n+i}) \times \exp(2\pi \sqrt{-1} < m, t_{\alpha}^{\prime} >)
$$

in $\pi^{-1}(\tilde{U}_\alpha)$. From (1.6), in $\pi^{-1}(\tilde{U}_\alpha) \cap \pi^{-1}(\tilde{U}_\beta) \psi_\alpha^m = \psi_\beta^m$. Then we have ${}^{0}(G, \mathscr{E}^{0,0})$ such that $\psi^{m} | \pi^{-1}(\tilde{U}_{\alpha}) = \psi_{\alpha}^{m}$. By the same argument of [3,4] $\overline{\partial}_{\psi}$ $\overline{\partial}_{\psi}$ converges to a form $\varphi \in H^0(G, \mathscr{E}^{0,1})$. By the choice of the sequence $\{m_\mu\}$, the formal series $\sum_m \psi^m$ cannot converge to any function in $H^0(G, \mathscr{E})$. Suppose $\varphi = \overline{\partial} \lambda$ for some $\lambda = \sum_m \lambda^m$. Then we can see $\lambda^m = \psi^m$ for $m \neq 0$. It is a contradiction. Then $\varphi = \lim_{N \to \infty} (\overline{\partial} \sum_{\|m\| \le N} \psi^m)$ belongs not to $\partial H^0(G, \mathscr{E}^{0,0})$, but to the closure of $\partial H^0(G, \mathscr{E}^{0,0})$. This contradicts the statement (4).

Finally we prove Theorem II.

(1) Suppose $H^1(G, \mathcal{O}) = 0$. By Theorem I

 $H^1(G, \mathcal{O}) \cong H^0(G/G^0, \mathcal{O}) \otimes \mathbb{C}\{d\bar{z}^i | 1 \leq i \leq q\}.$

If $G^0 \neq \{e\}$, then $q \geq 1$. This contradics our assumption. Then we have G^0 $= \{e\}.$ This means $G = G/G^0$ is a Stein group.

(2) Since $1 \le \dim H^1(G, \mathcal{O}) < \infty$, $H^1(G, \mathcal{O})$ has a Hausdorff topology. Then by Theorem I,

$$
H^1(G, \mathcal{O}) \cong H^0(G/G^0, \mathcal{O}) \otimes \mathbf{C} \{ d\bar{z}^i | 1 \leq i < q \}.
$$

If dim $G/G^0 \ge 1$, then G/G^0 is a Stein group and $H^0(G/G^0, \mathcal{O})$ is of infinite dimensional. It contradicts our assumption. Then $G = G^0$.

(3) Suppose dim $H^1(G, \mathcal{O}) = \infty$ and $H^1(G, \mathcal{O})$ has a Hausdorff topology. By Theorem I, G^0 is of finite type and $H^1(G, \mathcal{O}) \cong H^0(G/G^0, \mathcal{O}) \otimes$ $C\{d\bar{z}^i | 1 \le i \le q\}$. Since dim $H^1(G, \mathcal{O}) = \infty$, $0 < \dim \tilde{G}^0 < \dim G$.

(4) Suppose $H^1(G, \mathcal{O})$ has a non-Hausdorff topology, by Theorem I, G^0 is of non-Hausdorff type. The converse is clear.

References

- [1] Gunning, R. C. and Rossi, H., *Analytic functions of several complex variables,* Prentice Hall, Inc., Englewood Cliffs, N. J., 1965.
- [2] Kaup, L., Eine Kunnethformel fur Frechetgarben, *Math. Z.,* 97 (1967), 158-168.
- [3] Kazama, H., 5-Cohomology of *(H,* C)-groups, *Publ RIMS, Kyoto Univ.,* **20** (1984), 297-317.
- [4] Kazama, H. and Shon, K. H., Characterizations of the $\overline{\partial}$ -cohomology groups for a family of

weakly pseudoconvex manifolds, /. *Math. Soc. Japan,* 39 (1987), 686-700.

- [5] Kazama, H. and Umeno, T., Complex abelian Lie groups with finite-dimensional cohomology groups, *J. Math. Soc. Japan, 36* (1984), 91-106.
- [6] Matsushima, Y., Espaces homogenes de Stein des groupes de Lie complexes, *Nagoya Math. J.,* 16 (1960), 205-218.
- [7] Morimoto, A., Non-compact complex Lie groups without non-constant holomorphic functions, *Proc. Conf. on Complex Analysis, Minneapolis* 1964, 256-272, Springer 1965.
- [8] \longrightarrow , On the classification of non-compact complex abelian Lie groups, *Trans. Amer. Math. Soc.,* 123 (1966), 200-228.
- [9] Takeuchi, S., On completeness of holomorphic principal bundles, *Nagoya Math. J.,* 57 (1974), 121-138.