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Introduction

In this article we establish a formula which gives quantized contact
transformations of pseudodifferential operators in terms of symbols. As an
application of the formula, we define the characteristic sets by using symbols for
pseudodifferential operators of infinite order and show that the sets are invariant
under quantized contact transformations.

The notion of quantization for contact transformations was introduced by
Sato, Kawai and Kashiwara [14]. They had been inspired by Egorov [6],
Hormander [7] and Maslov [13]. Roughly speaking, a quantization of a given
contact transformation 0 is an extension of 0 to a ring isomorphism ^ between
the rings of pseudodifferential operators. We denote by A the Lagrangean
submanifold associated with 0. Let s be a non-degenerate section of a simple
holonomic system with support A. Then the relation

P(x, Dx)s = sQ(x', Dx.) (= Q*(x', Dx,)s)

between two operators P, Q gives a quantization 0^ by setting Q
= 4>x(P). Such a 0^ was first constructed in [14] for the sheaves $ and <f °° of
microdifferential operators of finite order and of infinite order, respectively. (In
[14], the letter & was used instead of <?.) Kashiwara and Schapira [9] have
established <p^ for the sheaf SR of pseudodifferential operators in a more general
setting. Our first purpose is to write down the symbol of Q = (/>%(P) in terms of
the symbol of P.

Quantized contact transformations play an important role in the study of
partial differential equations. The importance is based on the invariance of the
characteristic varieties under quantized contact transformations. For a
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microdifferential operator P of finite order the characteristic variety Ch(P) of P
is defined to be the set of zero points of the principal symbol of P. We know
the following two important properties of Ch(P) after [14] :

(i) The operator P is invertible (as a microdifferential operator) outside
Ch(P).

(ii) If (j)^ is a quantization of a contact transformation 0, we have

Ch(^,(P)) = 0(Ch(P)).

The second subject of this paper is to extend the definition of Ch(P) for
pseudodifferential operators P of infinite order (i.e., Pt$R) so that (i) and (ii)
hold. For such operators the principal symbols do not make sense in
general. By using "total" symbols, however, we can define Ch(P) in this case as
follows. Let P be an operator in & R and P(x, £) the symbol (in the sense of
Aoki [2]) of P. We say that a cotangent vector x* is non-characteristic with
respect to P if for each e > 0 there exists CE > 0 such that

holds in a conic neighborhood of x* at infinity. We write Ch(P) the
complement of the set of all non-characteristic elements. Then (i) is a result of
[3], Moreover, we can see (ii) by using the symbol expression of 0*(P). There
is another way of defining characteristic sets by using the notion of micro-
supports [9]. Their definition has many good invariant properties. It is not
easy, however, to determine their characteristic set for an arbitrary operator in
$R. In many interesting cases, we can write down Ch(P) exactly and, in
general, we see that Ch(P) contains the characteristic set of P in the sense of [9].

§1. Quantized Contact Transformations in Terms of Symbols

1.1. Let X be an open set in C". We denote by T*X the cotangent vector
bundle of X. Let co = ][j=i £/^xj ^e the holomorphic canonical 1-form on
T*X. Here (x, £) = (x l 5 . . . , xn, £ 1 5 . . . , £„) denote local coordinates on
T*X. Let 0 be a holomorphic contact (= homogeneous symplectic) transforma-
tion from Ul to 1/2, where U1 and U2 are conic open sets in T*X. If we set
(x', £') = 0(x, £), we have co = Xj=i %'jdx'j by definition. We denote by A0 the
graph of 0, i.e.,

A0 = {(x, {, x', £')ET*X x T*X\(x, QeUl9 0(x, f) = (x', ?)}.

Now we set

A = {(x, x', I, ?)eT*(X x X)\(x, £, x', - ?)eA0}.

Then A is a Lagrangean submanifold in T*(X x X) with the canonical 1-form
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coXxx = lj=i ZjdXj + TJ=I Zjdx'j- We denote respectively by cp1 and (p2 the first
and the second projections T*(XxX)^>T*X. We have cp1(A)=U1 and
<p2C4) = £/2> where a denotes the anti-podal map and Ua

2 = a(U2). Let M be a
simple holonomic system with support ^ and s a non-degenerate section of
Ji. We set

(For the definition of &R, see [2], [9].) Then JfR has a structure of
($*\Vl, (ff|t/2)-bi-module by using the following identifications:

where * denotes the anti-isomorphism obtained by taking formal adjoint.

Theorem 1.1. The relation Fs = sQ( = 2*s) between two operators Pe<ff> p*
and 6 e (f ̂ )P* (p f E Ul9 p* = <l>(p 1)^^/2) induces a ring sheaf isomorphism

(1-1) ^f^-^'Vf *2)

Z?j 5^rri>igf ^(P) = Q. Here 6*e(ff}fl(p*} denotes the formal adjoint operator of Q
(with respect to the volume element dx\ dx'2 . . . dx'n).

We call (fix a quantization of 0. This theorem is a special case of
[9, Theorem 11.1.1]. In our case, the restrictions of fa to ffx\ui and to &$ It / i
give the following isomorphisms respectively:

These isomorphisms were constructed by [14] and called quantized contact
transformations.

1.2. Now we assume that 0 is very close to the identity. We will write down
the symbol of fa(P) for a special choice of Ji.

Under the assumption for 0, there are a conic open set L/0 in the (x, £')-
space and a holomorphic function Q(x, £') homogeneous of order 1 with respect
to £' such that d?Q(x, f) and dx&(x, £')/!£' I are very small in l/0 and

^0 = {(x, {, x', ^)lfe «')e I/o, x' = x + dt,Q(x, ? ), § = {' -f axO(x5 f)}.

We choose the following system as ^:
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with

J = .1 *x*x(DXj + Dx, + dXjQ(x, Dx,))

Here DXj = B/dxp D^ = d/dx'j(j = 1, ... , n) and dXjQ(x, Dx.) and d^.JQ(x, Dx.)
(j = 1, ... , n) denote the microdifferential operator of order 1 and 0 with (total)
symbols dXj.Q(x9 {') and d^.Q(x9 %\ respectively. Notice that we distinguish the
notation dX9 dn, . . . , etc., from Dx, D^, . . . , etc. For example, we use this notation
as [DXj,f\ = Dx.f-fDx. = dXjf to express the relation

for each gf.
Let s be the residue class of !XxX in ^. Intuitively, we are treating

Theorem 1.2. T/z^ relation Ps = sQ (Pe^fjp*, Qerf?,p*; p* 6 [7l3 p| =
f)el/2) w equivalent to the following relation of symbols:

(1.2) ^» P(x, », + {' + 0(x, x + * ^))ly=, = o

= e8"^Q(x + w +fl(x, {', f + A), OL = A = o-

/fer^ P(x, c^), 2(x', ^') denote symbols of P, Q, respectively and 9, S are defined by

Q(x + y, O - Q(x9 £) = y-0(x, x + y, ?),

and

Q(x, ? + X)- Q(x, {') = A- 9(x, ?, ? + X).

See [2] for the definition of symbols for operators in $R. Precisely
speaking, the formal sum in the left-hand side of (1.2), for example, reads the
formal symbol

e*8^ P(x, n + {' + 8(x, x + y, ?))\y=ri=0

in the sense of [2] and the equality holds modulo null-formal symbols.
Now we set
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for 7 = 1, ... , n. Of course we have

for 7, fc=l,...,H. Let p* = (x0, x'0, f0, f'o) be

= 9i(P*l P* = fl°92(P*) and p*fl = (x0, *'o> £0, - f'o)- We denote by SXxX,p*
the algebra of symbols of fxxx.p- Let SXxX,p* be the quotient of SXxXtp* by the

ideal of null symbols. There is a linear isomorphism w: S x*x,P* -* $XXX,P* so

that w(Xj) = xp ro(xj) = x'j9 w(£j) = DXJ, m(^) = Dx, (j = 1, ... , n). We often iden-

tify ^xxx^* with SXxX>p* through this isomorphism. Let M be the space of all

(equivalence classes of) symbols FeSXxXip*a such that [F, xj = 0(; = 1, ... , n) in

(i-e, 5F/3^ = 0 ( j = 1, . . . , n) in S Mil^.). If we write / = /(x, x', Q for

, /=/(x, x', -^') is an element of S^^^a. We set fl = fi(x, x', Q
= fl(x, C) + C-(* - ^')- ^e following lemma is due to Malgrange ([12],
Proposition 4.3).

Lemma 1.3. Let F = F(x, x', Dx, Dx>) be a differential operator defined in a
neighborhood of (x0, x'0) and f = f(x, x', Q on element in M. Then we have

(1.3) e-sF(e**f) = e8*'8« + d™'d* F(x, x', C + n + 0(x, x + y, Q, A - Q x

Proof. We may write

e~°F(e°f) = e- &(**'& eWn+*»>**F(x, x', 17, /I) x

efl(,+,.*' + w.0/(x + y, x>

By using the following sublemma, we have (1.3).

Sublemma. Let Q(y, r\) be the (total) symbol of a differential operator
Q(y,Dy). Let A(y, rj) = (A^y, rj),..., An(y, n.)) be an n-tuple of holomorphic
functions. Then we have

(1.4) e'»'>*



510 TAKASHI AOKI

(1.5) ee^

x Oil

Proof of Sublemma. There are formal differential operators of infinite order
Bj = Bj(y, Dn, if) (; = 1, . . . , n) so that

eDy^(eyA _£±_D.A^ = e0*-*^ (yj - DJBfy, Dn, r,).

The right-hand side of this vanishes at y = 0, for we know the following
commutation relations:

(7 = !,...,«).

Thus we have (1.4). A similar calculation shows (1.5).

Remark. (1.4) and (1.5) are valid not only for symbols of differential
operators but also for general symbols so far as the right-hand sides make sense.

We denote by LF(f) the right-hand side of (1.3):

Lp(f) = e'*''-*0"'0* F(x, x', C + *? + 6(x, x + y, CU - 0 x

Then it is easy to see LF(f) makes sense for every F in S\ xx,p* as an element of
M. Moreover, after some tedious calculation, we have

LFl(LF2(f)) = LFlF2(f)

for every Fl9 F2£$xxx,P*- Thus we get a structure of <ffxx>p*-module on
M. Let N be the set of all elemetns of the form

(1.6)
j=

for some 0,-eM (j = 1, ... , n).

Lemma 1.4. N is an $*xXtp*-submodule of M.

Proof. Let /be an element in N of the form (1.6). If we set aj = a/x, x',

- £') then aj is a symbol in SXxxtp' So we may regard aj as an operator in
$XXX,P*- Then we have

^..WD-/-

Let F be an operator in $xxx,P*' Then
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By using the division theorem for SR [5, Theorem 2.1], we write

F"i= Z Fj,k®k + b}
k = 0

in <^f xx,p*> where bj = ^-(x, x', D^) commutes with xfc for each ;, fe. Since
\0k, S,] = 0 and L^(l) = 0 (j, k = 1, ... , n), we have

where ^ = ^.(x, x'9 - 0- Hence LF(f)eN.

Now we are interested in the quotient module M/N.

Lemma 1.5. The linear homomorphism

induces an isomorphism J?R -^ M/N as an $\ ^x ^-module.

Proof. Each FE$XXX,P* can be uniquely written in the form

F= tFj®j + F>
j = i

where F = F(x, xr, Dx>) commutes with each Xj(j = 1, ... , n). Then LF(1)

= Lf(l) = F(x, x', - Q. If LF(1) belongs to JV, there are F'j(j = 1, ... , n) such
that

LF(l) = Ls«_ iF,Sj(l).

Hence there exist Fj(j = 1, ..., n) so that

^-Z^^ = Z^'^-j j

Thus F is in ,/. Converse is trivial.

Proof of Theorem 1.2. By Lemma 1.5, the relation Ps = Q*s is equivalent
to LP(1) = LQ*(1) (mod N). By definition, we have

LP(1) = ^'^ P (x, C + ij + 9(x, x + y, 0)|y=,=0
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and

LQ,(l) = G*(x', - Q.

It remains to show

Q*(x', - Q = e*"'°*Q(x + w + 5(x, f, C + A), 0|W=A

in M/N. In this quotient space, we can write

\,j = 0 (mod AT)

for 7 = 1, ..., n; k = 0, 1, 2, ... Therefore, using (1.5), we have

= ^'^ Q(x + w + 5(x, f, C + A), 0|W = A = 0 .

This completes the proof of Theorem 1.2.

Let '$xxx,P*a be the set of all operators A in <?f x*,p*« which satisfy

lxj9A] = lDx.9A] = 09 ; = !,...,«.

By using the division theorem for SR, JiR ~ M/N can be identified with
'^xxx.p*- F°r Pe^xrf and 2e^f jp*, we can regard LF(1) and LQ*(1) as

operators in '^fxx,p*-

Definition 1.6. We define two linear maps

by

*2(6) = (^(1))*-

If we write <t>j in terms of symbols we have two linear maps from SXip. to
'SXxX,p">(J = 1. 2), where Sx?p, and 'SXxXipt, denote the spaces of symbols of Sx <p»
and '^xxx,p*° respectively (cf. [2]). We use the same letters $,- for these
maps. By the preceding arguments, we have

(1.7)
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(1.8) #2(e)(*. £') = e^'°*Q(x + w + 9(x, ?, f + A), ^)L = A = o-

By Theorems 1.1 and 1.2, the relation ^(P) = ^2(G) gives 0^ by setting 0#(P)
= 6-

1.3. Heuristically ^2(6) *s obtained by calculating e~fl(efl°(2), where ° means
the composition of symbols by the Leibniz-Hormander rule. So if we take the
composition of the reversed symbol of e~n and ea02(Q\ we recover Q up to an
elliptic factor ([7], Kajitani and Wakabayashi [8], Kumano-go [11]). The
following construction of (PJ is based on this fact.

Let us consider the series

- m

(1-9) B(z, f , 17) =
p!

Here 9 was defined in Theorem 1.2. The series converges near (z, (5 »y)
= (x, ^', ^) for every (x, ^')eU"0, for 5 is very small there, and defines a
holomorphic function B homogeneous of order 0 in (£, 77). Let d = cr(x', £', f/) be
a holomorphic function satisfying

(1-10) <r(x', f , fy) + $(*' + ff(x', {', fj), {', tj) = 0.

Such a cr uniquely exists near (x7, ̂ ', f/) = (x', ^', ^') for each (x', <f) e [72
 an(l ^ i§

homogeneous of order 0 in (£', ̂ ).

Definition 1.7. For every symbol F(x, ^') in 'SXxXjp*a, we set

Clearly, ^f(^) i§ a symbol in SXtp^ and we have a linear map

^2 : '$XxX,p*a - > SX,P$-

The following proposition shows that this map gives an "almost" inverse of

*2-

Proposition 1.8. For every symbol Q(x', £') in Sx^, we have

A(x', ?) = e»>-»

is an elliptic microdifferential symbol of order 0 and A°Q denotes the composite
symbol of A and Q :
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A°Q(x', {') = eM*A(*9 ? + A)S(x' + w, ̂ )L = A = o-

Remark. By the hypothesis for 0, we can assume that A is defined near pf.

To prove the proposition, we need the following lemma which gives the
relation among B, a and A

Lemma 1.9. Let \j/(t)9 Uj(t)(j = 1,..., n) be holomorphic functions of t
= (ti9..., tn) defined in a neighborhood of t = 0. Suppose that u = (ui9..., un) is
very small in \t\ < s (e > 0) so that if \t\ < s then t + u(t) belongs to the
neighborhood. Let b(t) be a holomorphic function defined by

Let v(t) = (v^t), ... , vn(t)) be an n-tuple of holomorphic functions determined by

v(t) + u(t + v(t)) = 0.

Then we have

(i.io) £ ( - - d f

/or eac/z sufficiently small t.

Proof. To prove (1.10), it suffices to show the following relation of formal
differential operators of infinite order :

(1.11) Z(-Dfu(tr = b(

Let us consider a formal differential operator of infinite order

T -YM(0VT'-\~^\Dt

which assigns {//(t) to \j/(t + w(£)). It is invertible by the assumption and the
inverse is the operator \l/(t)\-+\l/(t + v(t))9 that is,

for we have t + v(t) + u(t + v(t)) = t and t + u(t) + i?(t + u(t)) = t by the
definition of v. This equals to the right-hand side of (1.11) up to b. The left-
hand side of (1.11) is the formal adjoint T* of Tu. Let us compute the symbol
of the composite operator T*TU. We denote by T = (tl5 ..., TB) the dual
variables of t. The symbol of T* is
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Hence the symbol of T* Tu is

= W-
This implies T*TU is a multiplying operator by b. Thus we have

Proof of Proposition 1.8. By definition we have

(i.i2) *5(<p2(e))(*/, £')
= e5^ + a-^ B(x' + y, ?, % + r,)Q(x' + y + w + Z, ^')ir=T=°o

with

Z = ff(x' + y, ?,? + n) + $(*' + y + <r(x' + y, ?, % + r,), ?, ? + X).

We set y + w = z and r\ — X = £. Then we can rewrite (1.12) as

+ z + Z', f)|j;i-°0

with

Z' = 9(x' + y + ff(x' + y, f, «' + C + A), <f, ̂ ' + A)

- 5(x' + y + a(x' + y, {', £' + C + A), £', f + C + A).

Here we have used the definition of a. We put

a' = a(x' + y, ?, £,' + C + A),

9, = S(X' + y, £, % + X),

&2 = 9(X' + y, £, ^' + C + A).

Then we may write

Q(x' + z + Z', ft = ̂ —^rd*(e^-™'a*Q(x' + z, ft).
a & •

Applying Lemma 1.9 (or (1.11)) to the operator
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and using the commutation relations

we get

z,

= __ Zj

Since

- C-<9 2 + A -to - <92) = Q(x' + 3;, f + A) - Q(x' + y, % + C + A),

we conclude that

Corollary 1.10. For every symbol F(x9 £') in 'SXxXtp*a, we have

Here A " x denotes the microdifferential symbol of order 0 such that A ~ 1 ° A
= y lo^-l = 1.

Proof. It is sufficient to notice that ^f i§ injective. This can be proved by
direct calculation of <D2(0%(F)) in the same way as in the proof of the
proposition.

1.4. Suppose that

(1.13)

for PeSXip^ and QeS^. If we let cP| operate on the both members of (1.13),
we have

(1-14) AoQ(x'^f) = 0^2(01(P))(xf^f)

by Proposition 1.8. Conversely if we have (1.14), we recover (1.13) by Corollary
1.10. Thus we get

Theorem 1.11. Under the assumption of Section 1.2, the image </>#(P) of
,PI by the quantization <p* of 0 has a symbol A'1 °cPf (^1(F))(x/, £')•
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If we write down the symbol &%(&i(P))(x', £') explicitly, we get

**(*i(^))(x', f) = ed''8«+d»'d*B(x? + z, £', f + 0 x

P(x' + z + dl5 ?/ + £' + 0(x' + z + <715 x' + y + z + <J1? f ) ) IJ=?=o

with ffl = a(x' + z, £', f ' + 0-

Remarks. (1) By definition, the principal part of >4(x', £') is equal to
£(*', {', {')•
(2) Since 0(x, x, f) = ^(x, f) and ,9(x, {', {') = d^Q(x9 f), we have

where we set a0(x', f) -a(xUU').

§2. Characteristic Sets for Pseudodifferential Operators

2.1. Let [7 be a conic neighborhood of a point xg in T*X. Let P be a
pseudodifferential operator defined in U, i.e., Pe^f(t/). We fix a coordinate
system (x, f) in

Definition 2.1. Let x* be an element of U and P(x, <!;) a symbol of P
defined in a conic neighborhood of xg. The element x* is said to be non-
characteristic with respect to P if for each h > 0 there exists Ch > 0 such that

holds in Fn{(x, ^)||^| > r} for some conic neighborhood V of x* and some
constant r > 0 which are independent of h. We denote by Ch(P) the
complement in T* X of the set of all non-characteristic elements. We call Ch(P)
the characteristic set of P.

Clearly, Ch(P) is a closed conic subset in U and independent of the choice
of the symbol P(x, £)• Note that, in general, Ch(P) is not invariant under the
action of C* on T*Z. If x*<^Ch(P), l/P(x, f) is a symbol (i.e., of infra-
exponential type in £) near x*. Hence it follows immediately from
[3, Theorem 5.1] that

Theorem 2.2. ^Tx*^Ch(P) then P is invertible in <f£x*.

If l/P(x, f) is a symbol, we may assume P has a symbol of the form

(2.1) P(x, f) = ep(x>®

near x*. Here p(x, £) is a symbol of order 1 - 0 in the sense of [2]. For the
characteristic set of the formal adjoint P* of P, we have



518 TAKASHI AOKI

Theorem 2.3. Ch(P*) = a(Ch(P)), where a denotes the anti-podal map.

In fact, if P has a symbol of the form (2.1), the formal adjoint P* also has an
exponential symbol

with some symbol p*(x, <J) of order 1—0 defined near a(x*) (see [1, Theorem
3.3]). Hence we have a(x*)<^Ch(P*).

2.2. Let 0, Ul9 U2, 0* be as in Section 1. As we have remarked, if a point x*
in U does not belong to Ch(P), we may assume that P has a symbol of the form
(2.1) near x*. Combining Theorem 1.11 and the discussion of [1, Sections 3 and
5], we see that

*}(*!(**)) (*',?)

can be written in the form

with a symbol q(x', £') of order 1—0 defined near </>(x*). (See the second
remark after Theorem 1.11.) This implies 0(x*)^Ch(0H?(P)) (recall that A is
elliptic). Hence we have Ch^JP)) = 0(Ch(P)).

We know that we can never canonically specify the quantized contact
transformation for a given contact transformation (cf. [14]). But it is
determined up to inner automorphisms by elliptic microdifferential
operators. Such ambiguity does not affect the definition of non-characteristic
elements. Therefore if we choose another quantization 0'^ of 0, we have

Moreover, any contact transformation can be obtained by successive application
of such transformations as in Section 1.2. Thus we have

Theorem 2.4. Let $ be an arbitrary contact transformation and 0^ a
quantization. Then we have Ch(0+(-)) = 0(Ch(-)).

In particular, Ch(-) does not depend on the choice of the coordinate system
in X. Of course, if P is a microdifferential operator of finite order, Ch(P)
coincides with the set of all zeros of the principal symbol of P. In this case
Ch(P) is C*-invariant. When P is a differential operator of infinite order, our
definition of Ch(P) is equivalent to that in [4]. Moreover if P is with constant
coefficients, our characteristic set of P is the same as F(P) in Kawai [10].

By Theorem 2.2, Ch(P) contains supp(^f /<£ f P) which is called the
characteristic variety of g\ -module rff /rff P in [9].
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