Publ. RIMS, Kyoto Univ. 26 (1990), 521-527

Some Inequalities for Generalized Commutators

By

Khristo N. BOYADZHIEV*

Abstract

Let *A*, *B* be linear operators on a Banach space \mathcal{H} with spectra in the set $S = \mathbb{C} \setminus (-\infty, 0)$, for which

 $||t(A + t)^{-1}|| \leq M, ||t(B + t)^{-1}|| \leq N$ $(t > 0).$

Then for a certain class of holomorphic functions f preserving *S* and $f(0) = \lim_{\epsilon \to 0+} f(s) = 0$, one has

$$
||f(A)X - Xf(B)|| \le af(b||AX - XB||) \qquad \text{for all } X \in B(\mathcal{H}), ||X|| \le 1,
$$

where $a = 2(M + N)$, $b = MN/(M + N)$.

At that, if $\alpha \in \mathbb{C}$, $0 < \text{Re}\alpha \leq 1$, then for all $X \in B(\mathcal{H})$

$$
\|A^{\alpha}X-XB^{\alpha}\|\leq C(M,N,\alpha)\|X\|^{1-\text{Re}\alpha}\|AX-XB\|^{\text{Re}\alpha}
$$

where

$$
C(M, N, \alpha) = \frac{|\sin \alpha \pi| (MN)^{\text{Re}\alpha} (M+N)^{1-\text{Re}\alpha}}{\pi \text{Re}\alpha (1-\text{Re}\alpha)}
$$

Also

$$
\|\exp(-tA^{1/2})X-X\exp(-tB^{1/2})\|\leq C(M,N)t^{2/3}\|X\|^{2/3}\|AX-XB\|^{1/3},
$$

where

$$
C(M, N) = 3\pi^{-1} (MN)^{1/3} (M + N)^{2/3}, t \ge 0, X \in B(\mathcal{H})
$$

§ 1. Introduction

Recently F. Kittaneh and H. Kosaki [4] obtained the interesting inequalities:

Let A, B be two positive operators on a Hilbert space \mathcal{H} and f -an operator monotone function on $(0, \infty)$. Then

(1.1) If $\lim_{s \to \infty} f(s) = 0$, one has $\|f(A)-f(B)\|\leq f(\|A-B\|),$

Communicated by H.Araki, August 8, 1989.

^{*} Institute of Mathematics, Bulgarian Acad. Sci., 1090 Sofia, P.O.Box 373, Bulgaria Current address: Department of Mathematics, Ohio Northern University, Ada, Ohio 45810, U.S.A.

522 KHRISTO N. BOYADZHIEV

(1.2) If
$$
A \ge a \ge 0
$$
 and $B \ge b \ge 0$, one has for all $X \in B(\mathcal{H})$

$$
||f(A)X - Xf(B)||_p \le C(a, b) ||AX - XB||_p, 1 \le p \le \infty,
$$

where

$$
C(a, b) = \begin{cases} \frac{f(a) - f(b)}{a - b} & a \neq b \\ f'(a) & a = b \end{cases}
$$

In particular, when $f(s) = s^{\alpha}$, $0 < \alpha \leq 1$, and $A \geq c > 0$, $B \geq c > 0$, (1.2) turns into

(1.3) ||4fljr - JTB«||p g **c«-^l \\AX - XB\\p (XEB(JP))-*

Unfortunately, when $c = 0$, or $a = b = 0$ and $f'(a) = \infty$ in (1.2), it is impossible to estimate $\|f(A)X - Xf(B)\|_p$ in terms of $\|AX - XB\|_p$ there even for $p = \infty$.

Such an estimate is sometimes important. For instance, in another development-for use in C^* -algebra theory, W. Arveson proved the following result (see [1], the Lemma on p. 332)

(1.4) Let $\mathcal U$ be a C^{*}-algebra, f -a continuous function on [0, 1] (if $\mathcal U$ has no unit, one assumes $f(0) = 0$ and let $\varepsilon > 0$. There exists $\delta > 0$ such that any time when a, x are in the unit ball of $\mathscr U$ and $a \geq 0$, one has

$$
\|ax - xa\| < \delta \qquad \text{implies} \quad \|f(a)x - xf(a)\| < \varepsilon.
$$

For $f(s) = s^{\alpha}$, $0 < \alpha < 1$, a more precise estimate was found in the paper [7] (Lemma 2.1):

(1.5) If a, x are elements in a C^* -algebra and $a \ge 0$, then for any α , $0 < \alpha < 1$ one has

$$
||a^{\alpha}x - xa^{\alpha}|| \leq (1 - \alpha)^{\alpha - 1} ||x||^{1 - \alpha} ||ax - xa||^{\alpha}.
$$

As mentioned in the remarks on p. 4 of [7], U. Haagerup has reduced the constant $(1 - \alpha)^{\alpha - 1}$ in (1.5) to $\sin \alpha \pi (\pi \alpha (1 - \alpha))^{-1}$. We have come to this result independently and we present the refined inequality here in a general setting-see below (2.6).

The aim of these notes is to describe a method of obtaining inequalities for generalized commutators and to illustrate it by some examples, thus complementing the results of Kittaneh-Kosaki. The inequalities here are stated for Banach space operators, although Banach algebra elements could be used also. The operator framework keeps in line with the notations in Kittaneh-Kosaki's paper and makes it possible to consider unbounded operators as well.

§ 2. Inequalities

We consider operator monotone functions f on $[0, \infty)$ of the form

(2.1)
$$
f(z) = kz + \int_0^{\infty} \frac{z}{z+t} d\mu(t), \qquad k \ge 0,
$$

$$
f(0) = \lim_{s \to 0+} f(s) = 0, \int_1^{\infty} d\mu(t)/t < \infty, \qquad \mu(0) = 0,
$$

and for the monotone increasing function μ we assume also that μ' exists and is positive in $(0, \infty)$. We also consider a pair of two bounded linear operators *A, B* on a complex Banach space \mathcal{H} satisfying

(2.2)
$$
\text{Sp}(A), \text{ Sp}(B) \subset \mathbb{C} \setminus (-\infty, 0),
$$

$$
\|t(A+t)^{-1}\| \le M, \ \|t(B+t)^{-1}\| \le N \quad \text{for all } t > 0.
$$

For such functions f and operators A , B one can define

$$
f(A) = kA + \int_0^\infty A(A + t)^{-1} d\mu(t) \quad \text{and similarly } f(B).
$$

 $\overline{\mu}$

 \mathcal{C} on

As
$$
\int_{1}^{1} \|A(A+t)^{-1}\| d\mu(t) \leq M \|A\| \int_{1}^{1} \frac{d\mu(t)}{t} < \infty
$$

and
$$
\int_{0}^{1} \|A(A+t)^{-1}\| d\mu(t) = \int_{0}^{1} \|1-t(A+t)^{-1}\| d\mu(t) \leq (M+1) \int_{0}^{1} d\mu(t) < \infty,
$$

the above integral is a uniformly convergent Bochner-Stieltjes operator valued integral and $f(A)$ is a bounded linear operator on \mathcal{H} .

Let *X* be in the unit ball of $B(\mathcal{H})$ and put $c = \|\mathbf{A}X - XB\|$. For all $s \ge 0$ we have

$$
(2.3) \quad \|f(A)X - Xf(B)\| = \|k(AX - XB) + \int_0^s t(X(B + t)^{-1} - (A + t)^{-1}X)d\mu(t)
$$

+
$$
\int_s^\infty t(A + t)^{-1}(AX - XB)(B + t)^{-1}d\mu(t)\|
$$

$$
\leq kc + (M + N)\mu(s) + cMN \int_s^\infty \frac{d\mu(t)}{t}.
$$

This last expression takes its minimum for $s \ge 0$ in $s = \lambda = \frac{cMN}{M + N}$, as its derivative with respect to s for $s > 0$ is

$$
\mu'(s)(M + N - cMNs^{-1}).
$$

Let $a = 2(M + N)$ and let $MN \ge 1/2$ or $k = 0$. One easily checks that

524 KHRISTO N. BOYADZHIEV

$$
kc + (M + N) \int_0^{\lambda} d\mu(t) + cMN \int_{\lambda}^{\infty} d\mu(t)/t
$$

\n
$$
\leq a \left(k\lambda + \int_0^{\lambda} \frac{\lambda}{\lambda + t} d\mu(t) + \int_{\lambda}^{\infty} \frac{\lambda}{t + \lambda} d\mu(t)\right) = af(\lambda).
$$

This way we have proved the theorem:

Theorem 2.1. Let A, B be two operators on the Banach space \mathcal{H} satisfying (2.2). Then for every function f of the form (2.1) and every $X \in B(\mathcal{H})$, $\|X\| \leq 1$:

(2.4)
$$
||f(A)X - Xf(B)|| \leq af(b||AX - XB||)
$$

where $a = 2(M + N)$, $b = MN/(M + N)$ and $MN \ge 1/2$ or $k = 0$.

Note that when
$$
MN \ge 1
$$
 and
\n
$$
\int_0^\infty d\mu(t)/t < \infty
$$
, i.e. $f'(0)$ is finite, it follows from (2.3) for $s = 0$:
\n(2.5) $||f(A)X - Xf(B)|| \le f'(0)MN||AX - XB||$ for all $X \in B(\mathcal{H})$

in accordance with (1.2).

We shall present now one variety of (2.4) which is of particular interest. Starting from the representation

$$
z^{\alpha}=\frac{\sin \alpha \pi}{\pi}\int_{0}^{\infty}\frac{z}{z+t}t^{\alpha-1}dt,\ z\in\mathbb{C}\setminus(-\infty,\ 0),\ 0<\mathrm{Re}\alpha\leq 1
$$

one can define the fractional powers

$$
A^{\alpha} = \frac{\sin \alpha \pi}{\pi} \int_0^{\infty} (A + t)^{-1} At^{\alpha - 1} dt
$$
 and in the same way B^{α} (see [2]).

Proposition 2.2. For A, B satisfying (2.2), $0 < \text{Re}\alpha \leq 1$, and all $X \in B(\mathcal{H})$ *one has*

(2.6) || *A*X - XB** || ^ C(M , N, a) || X || x - Rea - Rea

 $where$

$$
C(M, N, \alpha) = \frac{|\sin \alpha \pi|}{\pi \operatorname{Re} \alpha (1 - \operatorname{Re} \alpha)} (MN)^{\operatorname{Re} \alpha} (M + N)^{1 - \operatorname{Re} \alpha}
$$

Proof. Proceeding as in (2.3) we find for every $s > 0$ and $X \in B(\mathcal{H})$ $\|A^{\alpha}X-XB^{\alpha}\|$ $\frac{|\sin \alpha \pi|}{\pi} \bigg(\|X\| (M+N) \int_0^s |t^{\alpha-1}|$ $\Vert dt + \Vert AX - XB\Vert MN \int^{\infty} |t^{\alpha-2}| dt$

INEQUALITIES FOR COMMUTATORS 525

$$
\leq \frac{|\sin \alpha \pi|}{\pi} \left(\frac{\|X\| (M+N)}{\text{Re}\alpha} s^{\text{Re}\alpha} + \frac{\|AX-XB\| MN}{1-\text{Re}\alpha} s^{\text{Re}\alpha-1} \right) \qquad (as |t^{\gamma}| \leq t^{\text{Re}\gamma}).
$$

Minimizing the right hand side for $s > 0$ we get (2.6).

Proposition 2.3. Let H be a Hilbert space, $\|\cdot\|_p$ -the Schatten norm, $1 \leq p$ $\leq \infty, f-a$ function as in (2.1) and A, $B \in B(\mathcal{H})$ -operators satisfying (2.2). Then *one has*

(2.7)
$$
||f(A)X - Xf(B)||_p \le af(b||AX - XB||_p) \quad \text{for all } X \in B(\mathcal{H}), ||X||_p \le 1,
$$

where $a = 2(M + N), b = MN/(M + N)$ and either $MN \ge 1/2$ or $k = 0$.
Also

(2.8)
$$
\|A^{\alpha} X - X B^{\alpha}\|_p \leq C(M, N, \alpha) \|X\|_p^{1-\text{Re}\alpha} \|AX - XB\|_p^{\text{Re}\alpha}
$$

for all $X \in B(\mathcal{H})$ *,* $\|X\|_p < \infty$, $0 < \text{Re}\,\alpha \leq 1$ *and* $C(M, N, \alpha)$ *as in* (2.6).

Proof. We repeat the proofs of (2.4) and (2.6), using $\|\cdot\|_p$ instead of $\|\cdot\|$ and estimating on the right hand sides of the inequalities in the following way:

$$
|| X(B + t)^{-1} - (A + t)^{-1} X ||_p \le (M + N) || X ||_p t^{-1},
$$

$$
|| (A + t)^{-1} (AX - XB) (B + t)^{-1} ||_p \le MN || AX - XB||_p t^{-2}.
$$

Remarks. The technique used in the above proofs-dividing the integral in two parts on [0, s] and [s, ∞) estimated in different ways and then minimizing for $s > 0$ -is not new. It has been used, for instance, by Matsaev and Palant [6] for obtaining the inequality

(2.9)
$$
||A^{\alpha} - B^{\alpha}|| \leq C(M, N, \alpha) ||A - B||^{\alpha}
$$

$$
(0 < \alpha \leq 1, C(M, N, \alpha) \text{ as in (2.6)})
$$

for operators *A, B* essentially as in (2.2).

This method has been used also for proving moment type inequalities

(2.10)
$$
\|A_x^{\alpha}\| \leq C(M, \alpha) \|x\|^{1-\alpha} \|Ax\|^{\alpha} \qquad (x \in \mathcal{H})
$$

$$
(0 < \alpha \leq 1, C(M, \alpha) = C(M, 1, \alpha))
$$

for *A* as in (2.2) -see [5], [8].

Note that Matsaev-Palant's inequality (2.9) follows immediately from (2.6) by putting there $X = 1$ = identity operator. In the same way we obtain from (2.4) the immediate corollary:

Corollary 2.4. Let f be as in (2.1) and let A, B satisfy (2.2). Then $|| f(A) - f(B)|| \leq af(b||A - B||)$ (2.11)

526 KHRISTO N. BOYADZHIEV

(a, b as in (2.4)), *which is a Banach space variety of (LI).*

In this connection see also Theorem 3.4 in [4]. A natural modification of the proof turns it into a theorem for generalized commutators.

§3. Further Inequalities

We want to point out that many functions of the form

$$
f(z)=\int_0^\infty \frac{z}{z+t}g(t)dt, \text{ or } f(z)=\int_0^\infty \frac{h(t)}{z+t}dt, \ z\in\mathbb{C}\setminus(-\infty, 0),
$$

with explicitly given *g, h* can successfully be used for obtaining moment type inequalities for generalized commutators via the above method. To illustrate this we shall present the following example:

$$
\exp(-tz^{1/2}) = \frac{1}{\pi} \int_0^\infty \frac{\sin(t\sqrt{\lambda})}{z+\lambda} d\lambda \qquad (t \ge 0) \text{ (see [2], [10])}.
$$

It is well-known that if *A* is a closed linear operator satisfying (2.2), its square root $A^{1/2}$ (defined as in Section 2) is the generator of a (holomorphic) oneparameter operator semigroup which can be determined by the formula

(3.1)
$$
\exp(-tA^{1/2}) = \frac{1}{\pi} \int_0^{\infty} (A + \lambda)^{-1} \sin(t\sqrt{\lambda}) d\lambda, \qquad t \ge 0,
$$

(see [2], Section 5).

Proposition 3.1. *Let A, B be closed (possibly unbounded) linear operators on the Banach space* $\mathcal H$ *satisfying* (2.2). *Then for any* $X \in B(\mathcal H)$ *for which AX — XB is bounded, we have*

$$
(3.2) \quad \|\exp(-tA^{1/2})X - X\exp(-tB^{1/2})\| \leq C(M, N)t^{2/3} \|X\|^{2/3} \|AX - XB\|^{1/3},
$$

$$
C(M, N) = 3\pi^{-1} (MN)^{1/3} (M + N)^{2/3}, \qquad t \geq 0.
$$

Proof. For all $s > 0$:

$$
\pi \|\exp(-tA^{1/2})X - X\exp(-tB^{1/2})\|
$$
\n
$$
\leq t \int_0^s \left|\frac{\sin(t\sqrt{\lambda})}{t\sqrt{\lambda}}\right| \sqrt{\lambda} \|(A+\lambda)^{-1}X - X(B+\lambda)^{-1}\|d\lambda
$$
\n
$$
+ \int_s^\infty |\sin(t\sqrt{\lambda})| \|(A+\lambda)^{-1}(AX - XB)(B+\lambda)^{-1}\|d\lambda
$$
\n
$$
\leq 2t \|X\|(M+N)\sqrt{s} + MN\|AX - XB\|s^{-1}.
$$

Minimizing this for $s > 0$ we come to (3.2).

References

- [1] Arveson, W., Notes on extensions of C*-algebras, *Duke Math. J.,* 44(1977), 329-355.
- [2] Balakrishnan, A.V., Fractional powers of closed operators and the semigroups generated by them, *Pacific J. Math.,* 10(1960), 419-437.
- [3] Hennings, M.A., Kasparov's technical lemma for £*-algebras, *Math. Proc. Cambridge Philos. Soc.,* 105(1989), 537-545.
- [4] Kittaneh, F. and Kosaki, H., Inequalities for the Schatten p-norm V, *Publ. RIMS, Kyoto Univ.,* 23(1986), 433-443.
- [5] Krein, S.G., Linear Differential Equations in Banach Spaces, *Translations Amer. Math. Soc., 29,* Providence, RI (1971).
- [6] Matsaev, V.I. and Palant, Yu.A., On the powers of a bounded dissipative operator, *Ukrain. Mat. Zh.,* 14(1962), 329-337 (in Russian).
- [7] Olsen, C.L. and Pedersen, G.K., Corona C^* -algebras and their applications to lifting problems, *Preprint.*
- [8] Yosida, K., A perturbation theorem for semi-groups of linear operators, *Proc. Japan Acad. Ser. A Math. Scl,* 41(1965), 645-647.
- [9] , *Functional Analysis,* (6th edition) Springer Verlag, Berlin, 1980.
- [10] Widder, D.V., A transform related to the Poisson integral for a half-plane, *Duke Math.* /., 33(1966), 355-362.