A Vanishing Theorem for Holonomic Modules with Positive Characteristic Varieties

Ву

Naofumi Honda* and Pierre Schapira**

Abstract

Let M be a real analytic manifold, X a complexification of M, \mathcal{M} a holonomic module over the ring \mathscr{E}_X of microdifferential operators and $Char(\mathcal{M})$ its characteristic variety. We prove that if $(T_M^*X, Char(\mathcal{M}))$ is positive at $p \in T_M^*X$, then $\mathscr{Ex\ell}_{\mathscr{E}_X}^j(\mathcal{M}, \mathscr{C}_M)_p = 0$ for j > 0, where \mathscr{C}_M denotes the sheaf of Sato's microfunctions.

§1. Preliminary

Let us recall the definition of positivity due to Melin and Sjöstrand (cf. [Me-Sj 1,2]) and a theorem of Schapira [S 1] that we shall need.

Let V be a real analytic manifold with complexification W. Denote by $I_k(V)$ the sheaf of \mathscr{C}^{∞} real valued functions on W vanishing up to order k (i. e: with all derivatives of order < k) on V. If one chooses a local coordinate system (x) on W, real on V, one can consider the morphism $v: W \to TV$

$$(1.1) v: (x) \longmapsto (\operatorname{Re} x, \operatorname{Im} x).$$

If α is a 1-form on V, one proves (cf. Melin-Sjöstrand [loc. cit.]) that the function on W, $x \mapsto < \alpha$, v(x) > is well-defined mod $I_3(V)$ and does not depend on the choice of local coordinate system.

Now let X be a complex manifold, $\pi: T^*X \to X$ its cotangent bundle, and α_X the complex canonical 1-form on T^*X .

A locally closed subset Λ of T^*X will be called \mathbb{R}^+ -conic (resp. \mathbb{C}^\times -conic) if it is locally a union of orbits of \mathbb{R}^+ (resp. \mathbb{C}^\times) on T^*X .

Communicated by M. Kashiwara, September 21, 1989.

^{*} University of Tokyo, Faculty of Science, Department of Mathematics, 7–3–1 Hongo, Bunkyo, Tokyo, 113 Japan

^{**} Université Paris Nord, Départment de Mathématiques, Av. J. -B. Clément 93430 Villetaneuse France

An \mathbb{R}^+ -conic real analytic manifold Λ_0 is said to be \mathbb{R} -Lagrangian if Λ_0 is Lagrangian in the real symplectic space $(T^*X)^{\mathbb{R}} \simeq T^*X^{\mathbb{R}}$ (the space T^*X endowed with the 2-form $2\text{Re }d\alpha_X$).

A real \mathbb{R} -Lagrangian manifold Λ_0 is said to be I-symplectic if $\operatorname{Im} d\alpha_X|_{\Lambda_0}$ is non degenerate (i.e. is symplectic). In this case, $T^*X^{\mathbb{R}}$ is a complexification of Λ_0 .

Definition 1.1. Let Λ_0 be an \mathbb{R}^+ -conic \mathbb{R} -Lagrangian and I-symplectic real analytic manifold in T^*X , and let Λ be an \mathbb{R}^+ -conic subset of T^*X . One says (Λ_0, Λ) is positive at $p \in \Lambda_0$ if

(1.2)
$$-\frac{1}{i} < \alpha_X |_{\Lambda_0}, \ v > \geqslant 0 \pmod{I_3(\Lambda_0)}$$

on a neighborhood of p in Λ . (The function v is given by (1.1) with $V = \Lambda_0$).

If $(z; \zeta)$ is a system of holomorphic homogeneous symplectic coordinates with z = x + iy, $\zeta = \xi + i\eta$, $\alpha_X = \zeta_j dz_j$ and $\Lambda_0 = \{y = \xi = 0\}$, then (Λ_0, Λ) is positive at $p \in \Lambda_0$ iff there exists an open neighborhood U of p and a constant $C \ge 0$ such that

$$(1.3) - \langle y, \eta \rangle \ge - C(|y|^3 + |\xi|^3) (z; \zeta) \in \Lambda \cap U.$$

When Λ is a complex Lagrangian manifold, this definition is due to Melin-Sjöstrand [loc. cit]. In the general case, it is due to Schapira [loc. cit].

We shall use the following:

Theorem 1.2 (cf. [S 1]).

Let Λ_0 be an \mathbb{R}^+ -conic \mathbb{R} -Lagrangian and I-symplectic real analytic manifold in T^*X and let Λ be a \mathbb{C}^\times -conic subset of T^*X . We assume that $\Lambda_0 = (T^*_{\partial\Omega}X)^+$ is the exterior conormal bundle to the real analytic boundary $\partial\Omega$ of a strictly pseudo-convex open set Ω , and that (Λ_0, Λ) is positive at $p \in \Lambda_0$. Then there exists an open neighborhood U of p such that

(1.4)
$$\pi(U \cap \Lambda) \cap \Omega = \emptyset.$$

Recall that if $\Omega = \{f < 0\}$, where f is a real function on X with $df \neq 0$, then

(1.5)
$$(T^*_{\partial\Omega}X)^+ = \{(z;\zeta) \in T^*X; f(z) = 0, \zeta = kd'f(z), k \in \mathbb{R}^+\}.$$

Here we denote by d' the complex differential. The following result is immediately deduced from (1.3).

Lemma 1.3. Let X_j be a complex manifold, Λ_{0j} be an \mathbb{R}^+ -conic \mathbb{R} -Lagrangian and I-symplectic manifold in T^*X_j and let Λ_j be a \mathbb{C}^\times -conic subset of T^*X_j (j=1,2). Assume (Λ_{0j},Λ_j) is positive at $p_j \in \Lambda_{0j}$ for all j.

Then
$$(\Lambda_{01} \times \Lambda_{02}, \Lambda_1 \times \Lambda_2)$$
 is positive at $(p_1 \times p_2) \in \Lambda_{01} \times \Lambda_{02}$.

§ 2. The Vanishing Theorem

Let M be a real analytic manifold, and X a complexification of M. We set:

$$\Lambda_0 = T_M^* X.$$

Recall that Λ_0 is \mathbb{R} -Lagrangian and I-symplectic. Let \mathscr{E}_X denote the sheaf of microdifferential operators of finite order on T^*X , and let \mathscr{E}_M denote the sheaf of Sato's microfunctions on T_M^*X (refer to [S-K-K], and cf. [S2] for an exposition of the theory of \mathscr{E}_X -modules).

Let \mathcal{M} be a left coherent \mathscr{E}_X -module defined on an open subset U of T^*X . We shall assume \mathcal{M} is holonomic, and we denote by Λ its characteristic variety:

$$(2.2) \Lambda = Char(\mathcal{M}).$$

Hence Λ is a \mathbb{C}^{\times} -conic subset of U. Let $p \in U \cap T_M^* X$.

Theorem 2.1. We assume (Λ_0, Λ) is positive at p. Then

$$\mathcal{E}xt^{j}_{\mathcal{E}_{X}}(\mathcal{M},\mathcal{C}_{M})_{p}=0 \quad for \quad j>0.$$

Remark. If $p \in M$ (the zero-section of T_M^*X), we get

$$\mathscr{E}xt^{j}_{\mathscr{D}_{X}}(\mathcal{M},\mathscr{B}_{M})_{p}=0$$
 for $j>0$.

Proof.

We shall give the proof in several steps.

(a) By the trick of the dummy variable due to M. Kashiwara, we shall reduce the problem to the case where $p \notin T_X^*X$. Let t be a holomorphic coordinate on \mathbb{C} , real on \mathbb{R} , q = (0; idt) and let δ denote the $\mathcal{D}_{\mathbb{C}}$ -module $\mathcal{D}_{\mathbb{C}}/\mathcal{D}_{\mathbb{C}}t$.

The sequence

$$0 \longrightarrow (\mathcal{C}_M)_p \longrightarrow (\mathcal{C}_{M \times \mathbb{R}})_{(p,q)} \stackrel{t}{\longrightarrow} (\mathcal{C}_{M \times \mathbb{R}})_{(p,q)} \longrightarrow 0,$$

is exact. Thus we get

$$(2.3) R \mathcal{H} om_{\mathscr{E}_{\mathbf{X} \times \mathbb{C}}} (\mathcal{M} \hat{\otimes} \delta, \mathscr{C}_{\mathbf{M} \times \mathbb{R}})_{(p,q)} = R \mathcal{H} om_{\mathscr{E}_{\mathbf{X}}} (\mathcal{M}, \mathscr{C}_{\mathbf{M}})_{p}.$$

Since $(T_{\mathbb{R}}^*\mathbb{C}, T_{\{0\}}^*\mathbb{C})$ is positive at q, the positivity of (Λ_0, Λ) at p implies that of $(\Lambda_0 \times T_{\mathbb{R}}^*\mathbb{C}, \Lambda \times T_{\{0\}}^*\mathbb{C})$ at (p, q) on account of lemma 1.3. Thus assuming the theorem is proved outside of the zero-section, the result follows in the general case from (2.3).

(b) Now we assume $p \in \mathring{T}^*X = T^*X \setminus X$. Let X' be another copy of X, $p' \in \mathring{T}^*X'$, and let φ be a complex contact transformation which interchange (T^*X, p) and (T^*X', p') .

Let
$$\Lambda'_0 = \varphi(\Lambda_0)$$
, $\Lambda' = \varphi(\Lambda)$, $\lambda_0 = T_p \Lambda_0$, $\lambda'_0 = T_{p'} \Lambda'_0$, $\lambda = T_p \Lambda$ and λ'

- = $T_{p'}\Lambda'$. Denote by μ the tangent plane at (p, p') to the Lagrangian submanifold of $T^*(X \times X')$ associated to the graph of φ . Let GL denote the Lagrangian Grassmanian of $T_{(p,p')}T^*(X \times X')$, and consider the properties:
- (2.4) Λ'_0 is the exterior conormal bundle of a strictly pseudo-convex open set Ω of X' in a neighborhood of p'.
- (2.5) Λ' is in a generic position at p' (i.e. $\Lambda' \cap \pi^{-1} \pi(p') = \mathbb{C}^{\times} p'$).

Then the set of μ in GL with the properties $\lambda'_0 = \mu \circ \lambda_0$ and (2.4) is open and non void, and the set of μ in GL with $\lambda' = \mu \circ \lambda$ and (2.5) is open and dense. Thus we may find φ so that (2.4) and (2.5) are both satisfied. Here $\mu \circ \lambda_0$ or $\mu \circ \lambda$ denotes the image of λ_0 or λ by the linear contact transformation associated to μ .

(c) By quantizing φ (cf. [K-S 1,2]), we may interchange \mathscr{C}_M with the sheaf $\mathscr{C}_S = j_* j^{-1} \mathscr{O}_{X'}/\mathscr{O}_{X'}$ where Ω is a strictly pseudo-convex open set with real analytic boundary $S = \partial \Omega$, $(T^*_{\partial \Omega} X')^+ = \varphi(\Lambda'_0)$, and j is the open embedding $\Omega \hookrightarrow X'$.

Now we write Λ , Λ_0 , etc. instead of Λ' , Λ'_0 , etc. Since Λ is in a generic position, we may assume \mathcal{M} is a holonomic \mathcal{D}_X -module by a result of Kashiwara-Kawai (Theorem 5.1.4, [K-K]). Hence we are in the following situation.

X is a complex manifold, Ω is a strictly pseudo-convex open set in X with real analytic boundary $S = \partial \Omega$. \mathcal{M} is a holonomic \mathcal{D}_X -module with characteristic variety Λ , which satisfies (in view of Theorem 1.2):

(2.6)
$$\pi(\Lambda \cap \mathring{T}^*X) \cap \Omega = \emptyset.$$

The condition (2.6) implies that on Ω , \mathcal{M} is locally isomorphic (as \mathcal{D}_{X} -modules) to \mathcal{O}_{X}^{m} for some m by Kashiwara [K].

Thereby $R \mathcal{H}_{OM_{\mathfrak{D}_X}}(\mathcal{M}, \mathcal{O}_X)$ is locally constant and concentrated in degree zero, on Ω . Since $\partial \Omega$ is smooth, we get

$$H^k(R\Gamma_{\Omega}R\mathcal{H}om_{\mathcal{D}_X}(\mathcal{M},\,\mathcal{O}_X))_{\pi(p)}=0 \quad \text{ for } \ k>0.$$

Hence

$$\mathscr{E}xt_{\mathscr{D}_X}^k(\mathscr{M},j_*j^{-1}\mathscr{O}_X)_{\pi(p)}=0$$
 for $k>0$.

To conclude, it remains to prove

$$\mathscr{E}xt_{\mathscr{D}_X}^k(\mathscr{M},\,\mathscr{O}_X)_{\pi(p)}=0 \quad \text{for} \quad k>1.$$

Since $Char(\mathcal{M})$ is in a generic position, there exists a 1-dimensional manifold Y passing through $\pi(p)$, and non characteristic for \mathcal{M} . By the Cauchy-Kowalewski-Kashiwara theorem (cf. [K]), we get:

$$\mathscr{E}xt_{\mathscr{D}_X}^k(\mathscr{M},\,\mathscr{O}_X)_{\pi(p)}\simeq \mathscr{E}xt_{\mathscr{D}_Y}^k(\mathscr{M}_Y,\,\mathscr{O}_Y)_{\pi(p)}\quad \forall k.$$

Here \mathcal{M}_{Y} is the induced system of \mathcal{M} on Y. Since $Proj.dim(\mathcal{M}_{Y}) \leq 1$, we have

$$\mathscr{E}xt_{\mathscr{D}_{\mathbf{Y}}}^{\mathbf{k}}(\mathscr{M}_{\mathbf{Y}},\mathscr{O}_{\mathbf{Y}})_{\pi(p)}=0$$
 for $k>1$.

This completes the proof.

Examples.

- (1) Let M be a real analytic manifold with complexification X and let $\{M_{\alpha}\}_{\alpha}$ be a finite set of closed submanifolds of M. Denoting by X_{α} a complexification of M_{α} , we assume $Char(\mathcal{M}) \subset \bigcup T_{X_{\alpha}}^* X$. Then $(T_M^* X, Char(\mathcal{M}))$ is positive at each $p \in T_M^* X$, and $\mathscr{E}_{\alpha} \mathscr{E}_{\mathcal{D}_X}^j (\mathcal{M}, \mathcal{B}_M)_p = 0$ for j > 0. Hence we recover a result of Lebeau [Le].
- (2) Let $M = \mathbb{R}^{n+1}$ and $X = \mathbb{C}^{n+1}$. Denote by $(t, x_1, ..., x_n)$ the coordinate system of X (real on M). Let \mathcal{M} be the holonomic \mathscr{E}_X module defined by the equations

$$\mathcal{M}: \left\{ \begin{array}{l} P_{j}u = \left(2ix_{j}\frac{\partial}{\partial t} - \frac{\partial}{\partial x_{j}}\right)u = 0 \quad 1 \leq j \leq n, \\ \\ Qu = \left(4it\frac{\partial^{2}}{\partial t^{2}} + \sum\limits_{j=1}^{n}\frac{\partial^{2}}{\partial x_{j}^{2}}\right)u = 0. \end{array} \right.$$

Let $(t, x; \tau, \xi)$ be a coordinate system of T^*X , and $f(t, x) = t + i \sum_{j=1}^{n} x_j^2$. Remark that $[P_j, Q] = 4i \frac{\partial}{\partial t} P_j$ and $[P_j, P_k] = 0$. Moreover the following equations (#) form a regular sequence on their common zero set.

(#):
$$\begin{cases} 2ix_{j}\tau - \xi_{j} = 0 & 1 \le j \le n, \\ \\ 4it\tau^{2} + \sum_{j=1}^{n} \xi_{j}^{2} = 0. \end{cases}$$

Thus $Char(\mathcal{M})$ is defined by equations (#), and we get:

$$Char(\mathcal{M}) = T^*_{\{f(t,x)=0\}} X \cup T^*_X X.$$

Since f(t, x) is of positive type at 0 (for the definition of a positive type function, refer to [S-K-K]), $(T_M^*X, Char(\mathcal{M}))$ is positive at (0; idt) (cf. [S 1]).

References

[K] Kashiwara, M., Algebraic study of systems of partial differential equations, Thesis, Univ. Tokyo 1971.

- [K-K] Kashiwara, M., and Kawai, T., On the holonomic systems of microdifferential equations III, Publ. RIMS, Kyoto Univ, 17 (1981), 813-979.
- [K-S 1] Kashiwara, M., Schapira, P., Microlocal study of sheaves. Astérisque 128, 1985.
- [K-S 2] , Sheaves on manifolds, Grundlehren der Math., 292 Springer-Verlag, (1990).
- [Le] Lebeau, G., Annulation de la cohomologie hyperfonction de certains modules holonomes, C. R. Acad. Sci., 290 (1980), 313-316.
- [Me-Sj 1] Melin, A., and Sjöstrand, J., Fourier integral Operator with complex valued phase functions, *Lecture Notes in Math.*, **459**, Springer-Verlag, (1975), 120-223.
- [Me-Sj 2] , Fourier integral Operator with complex phase functions and parametrix for an interior boundary value problem, *Comm. Partial Diff. Eq.*, 1 (1976), 313-400.
- [S-K-K] Sato, M., Kawai, T., and Kashiwara, M., Hyperfunctions and pseudodifferential equations, *Lecture Notes in Math.*, 287, Springer-Verlag, (1973), 265-529.
- [S 1] Schapira, P., Conditions de positivité dans une variété symplectique complexe. Applications à l'étude des microfonctions, Ann. Sci. Ec. Norm. Sup. 14 (1981), 121-139.
- [S 2] , Microdifferential systems in the complex domain, Grundlehren der Math. 269, Springer-Verlag, (1985).