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Absolute Continuity of Poisson Random Fields

By

Yoichiro TAKAHASHI*

§ 0. Introduction

Let R be a locally compact Hausdorff space with countable basis. Given a
nonatomic nonnegative Radon measure 2. on R, we denote the Poisson measure
(or random fields or point processes) with intensity 1 by TT^.

Theorem. Let X and p be two nonatomic infinite nonnegative Radon measures
on R. Then the Poisson measures KZ and TCP are mutually absolutely continuous
if and only if

(a) 2 and p are mutually absolutely continuous and
(b) the Hellinger distance d(p, 1} between 1 and p is finite:

(1) d(p

Furthermore, the Hellinger distance D(xp, m) between KP and KI is then
given by the formula

/o\ D(rr T \^ '

The main purpose of the present note is to give a proof to Theorem above.
In the last section we shall apply Theorem to the problem of giving the precise
definition of the Fisher information or, equivalently, of giving a statistically
natural Riemannian metric for an "infinite dimensional statistical model", which
consists of mutually absolutely continuous Poisson measures.

(3)

Remark, (i) Assume (a) and denote

A- dP
Y~ dl '

Then the Radon-Nikodym derivative ^ is positive and finite ^-almost everywhere
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and the condition (b) means that

(10 V0~-1<EEL\R, X).

In fact, by definition,

( i i ) The case where R is an Euclidean space is already studied by A.V.
Skorokhod in 1957 [4]. He expresses (I7) by two conditions

{ \0-l\dKoo and ( \<j>-l\zdX<°o ,
J |0 - l |> l /2 j !0 - l | g l / 2

(iii) The main idea of the proof of Theorem is the reduction to a theorem
of Kakutani on the absolute continuity between product measures, though the
proof will be given directly.

(iv) The motivation of the present note was the necessity to prove (!')
for the treatment of a Dirichlet form in [5].

First of all let us recall a characterization of Poisson measures by the
Laplace transform, (cf. [3].)

Let us denote by Q the set of integer-valued nonnegative Radon measures
on R : an element ? of Q can be written as sum of unit point masses

Since f is a Radon measure, the points Xi's form a locally finite configuration
in the sense that

for each compact subset K of the base space R.
The space Q is endowed with the relative topology as a closed subset of

the space of Radon measures on R with vague topology, so that for each
continuous function / on R with compact support the functional

(4) <£,/>

is continuous and, conversely, such functionals generate the topology of the
space Q.

The Poisson measure TT;I is characterized by its Laplace transform. Indeed,
there holds the formula

(5)

for any nonnegative continuous function / on R with compact support. Of
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course, the formula (5) remains valid for every Borel functions / provided that
the integral

{ \l-e~f\d*
JR

is finite.
In particular, for every Borel subset B of R

(6) *;,{£

(7) *,{

where we understand exp(— oo)=0.
From (6) and (7) follows a preparatory observation:

Lemma 0. // KX and TTP are mutually absolutely continuous, then for each
Borel subset B of R

(8) 0<i(B)<oo iff Q<p(B)<oo.

In particular, the measures X and p are also mutually absolutely continuous.

§1. Proof of Theorem: "If" Part

Assume that the Radon measures X and p are mutually absolutely continuous
and set

By the assumptions (a) and (b) of Theorem,

(2) 0<0<oo ^-almost everywhere, and

(3)

First of all let us prove the "if" part under a stronger assumption.

Lemma 1. Assume (2) and that the total variation of the signed measure
p—X is finite :

(4) f dp-di\=\ |0-l |<H<oo.
J R J R

Then np and iti are mutually absolutely continuous and

(5)
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Proof. Let / be any nonnegative continuous function R with compact
support. Then,

Consequently, we obtain (5).

Remark. The integrability of the expression in the right hand of (5) is
guranteed by the definiteness of the integral

f (l-e-'frdJi.
jR

Lemma 2, Assume (2) and (3). Then for every positive constant M, we obtain

(6) f (0+l)^<oo, and
Jp>exp M

(7)

Proof. By the symmetry in ^ and 2 it suffices to prove (6) only. But it
is obvious since

if *>expM

for some constant C depending on M.

From now on we always assume the conditions (2) and (3).

Corollary. Set

(8) £={*; 000^2 or

Then,

(9)

Now let us take an exhausting increasing sequence of compact subsets Kt
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(i.e., Kt is contained in Ki+1 for each i and the union of Kt's is the whole
space R) and set

(10) BQ=E and Bn=EuKn (n^l).

Lemma 3. Let %B be the restriction of the measure f to a Borel subset B
and set

(11) F „(£)=<&„,
JB

Then the following limit exists TC ̂ -almost everywhere:

(12)

Furthermore, the convergence of (12) also holds in

Proof. Set B'n=Bn\Bn-i. Then the random variables £BO and £B'n, n^l,
are independent because TT^ is Poisson. Hence the random variables Zn defined
by

Zn=Yn-Yn-i (n^l) and Z0=Y0

are independent. Furthermore, if

then there is a constant C such that

l)2 and

Consequently, the condition (3) implies that the series

(13) S £[Z»]= S ( ,(log^+l-^^ and
71 = 1 71 = 1 JBn

S ^[^2»]= S
71 = 1 n=l

are both absolutely convergent. Hence, by a lemma of Kolmogorov (cf., e.g.,
[2] p. 249 ; also Lemma 1 in the next section)

S^n converges almost surely.
n

Also it is obvious from (13) that the sum converges in L2(;r^). Consequently,
we obtain

(14) Y=limYn exists Ki-almost surely and in Lz(m).
7Z-»oo

Remark. The almost sure convergence of Yn follows also from the
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martingale convergence theorem applied to^the martingale expF^. But we need
the tightness, which will be asserted in the next lemma.

Lemma 4. The limit 7(£) defined by (12) satisfies

(15)

Proof. On one hand, by the Fatou lemma,

On the other hand, by the Jensen inequality,

as n->oo. Consequently, we obtain (15).

Proof of "if" part. Let / be a nonnegative continuous function on R with
compact support. Take an integer n so large that the support of / is contained
in the set Bn defined by (10). Then,

=exp|-( (l-

= H exp{-( ,(l-0)<H-( ,(l-
ft = 0 I J 5 L J B j.

= n
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By Lemma 3 we can let n->oo and find

Consequently, the measures KP and TT^ are mutually absolutely continuous and
the Radon-Nikodym derivative is given by

(16)

The proof of the "if" part is completed.

§2. Proof of Theorem: "Only If" Part

Let p and 1 be two nonatomic infinite nonnegative Radon measure on R
and assume xp and TCX mutually absolutely continuous. As we already observed,
the measure p and ^ are mutually absolutely continuous. Set

a ) ^ 0 ' 0 0 ^
We need the following well-known fact (cf., e.g., [2]).

Lemma 1 (Three series theorem). Let Zt, z^>l , be independent random vari-
ables. If

(2) SZi converges almost surely,

then for every positive constant a the three series

i l ' i t

converge, where

(4) Zi=Zi if \Zt\^a', =Q otherwise.

Conversely, if the three series (3) converge for some positive constant a, then (2)
holds.

Let us use Lemma 1 to show the following:

Lemma 2. For every positive constant M,

(5)

and

(6)
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Proof. The assertion (6) follows from (5) by virtue of Lemma 0 since

To prove (5) let us assume the contrary. Then there would exist an infinite
Borel partition {Bi\ of the set

such that for each i

(7)

because 1 is assumed nonatomic.
Now consider

(8) Jri=sgnf(S<)={ J
if «Si)>0
i/ £(J3,)=0.

They form a Bernoulli scheme under either of TT^ and np. Let P and Q be its
laws under x^ and 7r0, respectively. Then,

(9)
i=0)=e-1 and

The probability measures P and Q are mutually absolutely continuous
because so are TT^ and np. Hence an argument due to Kakutani is applicable
and the Radon-Nikodym derivative is given by

(10) -TB-=expSZie((), oo ) P-almost surely,
ar i

where

(11) Z<

Thus the random variables Zt are mutually independent and

(12) S^i converges.

In particular,

(13) P{Zt<-M in finitely often}=Q

and so, by the second Borel-Cantelli lemma,

(14)

On the other hand, Z t<~M if Xi=Q since ^>1+M on each Bt. Hence
we would obtain
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(15)
i

a contradiction to (14). Consequently, we can conclude (5).

Lemma 3. For every positive constant M,

(16) l{x^R; 00c)<l-M}<oo.

Proof. Interchange the role of p and 2 in Lemma 2.

Proof of "only if" part. Take an arbitrary positive constant M. From
Lemmas 2 and 3 we already know that

(17)

and, therefore, that

(18)

To complete the proof of "only if" part it remains to prove

(19) { \V~$-l\2dZ<oo and
Jl<$*eM

(20) ( i
Ji>j55e-^

If the set {x^.R} K0(x)^eM} has /^-measure finite, (19) is trivial. Other-
wise, we can take a Borel partition {Bl} of this set with l(Bi)—l such that

(21) Bi is contained in {x ; b^ V<j> (x)— l^bi+1}

for some nonincreasing sequence b^b^ ••• ^bn-^Q. Let us use the same
notation as in the proof of Lemma 3. Now Z* are bounded random variables
and the three series theorem implies

Since E[_Zll^:ElZ2
l;Xi=Q']=e-1{p(Bi')-2(Bi')}

z
) we obtain

(22)

(By the way, (22) follows also from S^[Zi]<oo.) Noting that ^(50=1 and
%

that (f>-l^b2
l+1+2bi+l on Bt, it follows from (22) that

(23)



638 YOICHIRO TAKAHASHI

But (23) implies, using A(Bt)=l again, that

Hence we obtain (19) and, automatically, (20) since the latter is nothing but
(19) if p and X are interchanged.

Consequently, from (17)-(20) we obtain

as is desired. The proof of the "only if" part is completed.

§3. The Bellinger Distance: Proof of the Final Part of Theorem

Let us compute the Hellinger distance between mutually absolutely continu-
ous Poisson measures KP and TT* :

Lemma. // the total variation \ \dp-dA is finite, then
JR

xx)=l-exp{-d(p, X)} ,

where d(p, X) is the Hellinger distance between p and L

Proof. Recall Lemma 1 of Section 1. Under the assumption of Lemma
the Radon-Nikodym derivative can be written explicitly:

where ^—dp/dL Consequently,

=l-exp{— g-a ^-l>+<^, Vf -
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Proof of Theorem : the final part. As was proved in Section 2 (14), the
Radon-Nikodym derivative dxp/dxi can be expressed as expF, Y— \\rnY n and

(3) F »(£)=<

where

(4) ^n—^ onBn',=l otherwise.

Since \\(f>n — l \ d / l is finite, we can apply Lemma to find

Noting that I V$n — 11 ̂  1 V0 — 1| and that V^T— 1] is square integrable, one
obtains

D(np, ^,)2-l

The proof is completed.

§4. Application: Hilbert-Riemannian Manifold Associated
with Fisher Information

The geometrical structure of statistical models has been investigated inten-
sively; cf. [1]. Since we obtained the explicit formula for the Radon-Nikodym
derivative d x p / d n z between Poisson measures xp and KI, we can compute the
Fisher information for the "infinite dimensional statistical model"

(1) Psn(Z)={Kp;p~Z, d(p,

The goal of the present section is to show the following :

Proposition. The space L2(p) can be regarded as the tangent space of
Psn(X) at Xp and the Fisher information evaluated at xp is equal to the sym-
metric bilinear form

(2) F(p)[u,v}:=\
J

defined on the space L2(p).
Furthermore, the statistical model Psn(^) equipped with the Fisher information

as Riemannian metric is a Hilbert-Riemannian manifold modelled by L2U).
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Remark. The former part of Proposition above may rather be thought
of as a definition justified by Lemmas 1-2 below. The latter part is a usual
mathematical assertion. By Proposition above one may take a domain of L2(X)
as the parameter space for Psn(X).

One of the implication of the Fisher information is the Cramer-Rao ine-
quality, which takes the following form in the present case.

Corollary,, Let T(|) be a Radon measure valued random variable defined
on the space Q and assume that it is an unbiased estimator for p : namely, assume
that for each xp there holds the equality

(3)

for any continuous function f on R with compact support, where

(4)

Let us denote the variance of T under K p b y

(5) Var,«r, /»:= xf(d&<T(&, />- fdp (^°°).
J Q I JR J

Then there holds the inequality for the average Tn of n independent copies of T :

(6) Varp«rn, /»>-( rdp.
n JR

The minimum is attained by the random variable

Let us recall some basic terminology. In [1] a family M of probability
measures on a given measurable space (Q, &Q) is called a statistical model if
each member is absolutely continuous with respect to a fixed measure, say p,
on (Q, <BQ). Usually it is assumed in statistics that a statistical model is
parametrized by a finite number of coordinates, although we are going to
remove this restriction. So we temporally set

(7) M={P0;6<=6}

and assume that the parameter space © is a domain of some Euclidean space Rn.
Assuming that each PQ is absolutely continuous with respect a measure p

on (Q, <BQ), we denote its Radon-Nikodym derivative by dPo/dp and set

(8) l(6)=logdPe/dt*.

The random variable 1(6) on (Q, &Q) is called the (logarithmic) likelihood,
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Now assume that 1(0) is differentiable in 6 and denote the partial derivatives
by

(9) 3«/(0)=g|-/(0).

Moreover, assume that the random variables (9) are square-integrable with
respect to Pd for each 6 and set

(10) W)=tf*[3i/(0)W)].

Then one obtains the matrix F(0)=(F;/0)) called the Fisher matrix. Obviously
it is nonnegative definite and is associated with the nonnegative definite
symmetric bilenear form

(100 F(6)lufv']=^FiJ(e)uivJ} u=(uj,v=(vt),

which we refer as the Fisher information.
The third assumption is that F(6) is positive definite for each 0. If we

take

as the Riemannian metric on M, then the statistical model M becomes a
Riemannian manifold. This assumption is automatic if there is an unbiased
estimator T of 0, i.e., a random variable T defined on (Q, <BQ) such that

= 6 for all 6.

Let us generalize the above construction of statistical manifold to our model
Psn(X). Since it is infinite dimensional, one cannot define the derivative of the
likelihood nor the Fisher information in a direct way. One has to extend those
notions to "prove" Proposition.

We shall take the space Q as Q and the following function p as the
coordinate of TC p in Psn(X)\

(11) p=log(dp/dZ).

In other words, we set PP=TCP with p defined by dp=epdL Then it follows
from Theorem that

(12)

where M is the infinite dimensional space

(13) M

Here LP(X) stands for the Lp-space for p>Q and L°(X) denotes the space of
(equivalence classes of) ^-measurable functions on R.

Remark. Under the choice of the coordinate stated above the model Psn(Z)
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turns out to be an exponential family in statisticians' terminology. Precisely
to say, it is so in the sense that, at least for p such that ep — 1 belongs to
L\Z) the likelihood l(p) is linear in p up to a nonlinear deterministic additive
constant, namely,

/(/0(£)=logdPP/dft(£)=<£, p>-\ (e*-l)dX.
JR

as is shown in Lemma 1 of Section 1.

What we are to do is to introduce the structure of differentiate manifold
modelled by a certain topological vector space, say E, which satisfies the
following requirements :

(a) The likelihood l(p} is differentiate in each direction u from E.
(b) The directional derivative Dul(p) is a square integrable random variable

under Pp :
Dul(p)^L2(Pp) if u^E.

Since we are concerned with the density functions it is natural to consider
the weak topology (precisely to say, weak* topology) on Psn(X). Hence we say
that

pn converges to p in M

if for any continuous function / on R with compact support

dl.

Definition. Let us call a curve c(t) in M smooth if it is continuously differ-
entiable with respect to the weak topology and if

S f

\R I h at

Remark, (i) It turns out that a condition such as (14) is ina voidable for
the likelihood to be differentiate along c(t).

(ii) Another possible condition in place of (14) is that exp{c(0/2} — 1 is

differentiate in L?(l) and the integral \ c'(t)QXp{c(t)/2}dA is meaningful. But
JR

we do not discuss it.

Lemma 1. Let p^M and u^L\Xp\ Then there is a smooth curve c(t),
^^l, in M such that

c(0)=/> and c'(Q)=u.

Proof. Keeping in mind that \t\e~ltl^e~l for any real t, set
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Then,

e<CO/2_ 1 = (gp/2_ 1 ) +* -

Lt

Since uep/z^L2(Z), one obtains

Furthermore, e c c t ) / 2 is differentiable ^-almost everywhere and in Z/2U) and

In particular, c'(0)=w.
Finally, it is immediate to see

In particular, c'(0)=M.
Finally, it is immediate to see

n

The condition (14) follows from this and similar estimates for t>0.

Now let us use the following conventional notation. We denote

(15) :<

for functions / and g on R if, for any measurable partition { B n } by relatively
compact subsets, the random variables

are well-defined and their sum ^Xn converges in L2WP) and is independent of
the choice of the partition { B n } , p being given.

Lemma 2. Let p^M and utEL2(Ap). Then for any smooth curve c(t} with

c(ty=p and —-,—(0)=w the likelihood / ( • ) is differentiable at t=Q along c(t) in—-,

and the derivative is given by

(16) -^-|(_o

(In particular, it depends only on p and u.) Moreover,
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(17)

Proof. For the first moment let us assume that u belongs to the set

(18) K— {weL°(^); u is bounded and with compact support}.

Then, p+tu^M for any real t. Let us show that the Gateaux derivative exists
and is given by

(19) -~-

If p is such that ep — l^L\^)f then so is c(t}—p-}-tu for any £ and

Consequently, we obtain (19). Now let p be arbitrary. Still we have
c(t)=p+tu<=M but we must take the operation : • : and

Let {57J be a measurable partition {5^} by relatively compact subsets and set

(20) *„(*)

Then,

(21)

and they are well-defined and are mutually independent. Since u is assumed
to have compact support, ^(0=^71(0) except for a finite number of n's.
Furthermore,

> 0

as f->0. Hence the proof of (19) is completed.
Now let u^L2(2p) be arbitrary. Then, p+tu is not necessarily a curve

in M and v/e cannot take the Gateaux derivative any more. We take a smooth
curve c(t) in M with c(ty=p and c'(0)=w and compute the derivative along
c(t\ Define JTn(f) by (20), as before. Then,
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= -—
t JBn

Consequently,

0
t JR

as t-*Q by the condition (14). Hence, £„/(/>)(£)= :<£— ̂ P, w>:
Finally, (14) follows from the direct computation.

Now it will be quite natural to give the following definition.

Definition. Let us call the space L\p) the tangent space at np of Psn(X),
denote

(22) TpPsn(X)=L\p)

and call the following bilinear form the Fisher information at np :

(23) F(p){u, vlDuKpWJWdv:,, (u,

It follows from Lemma 2 that

(24) F(p)lu,v] = \ uvdp (
JR

The proof of Proposition will be completed if we prove the following.

Lemma 3. Take the Fisher information F(p} as Riemannian metric on Psn(Z).
Then it is a trivial Hilbert -Riemannian manifold modelled by L2(^). Moreover,
it is an open submanifold of the manifold LZ(X).

Proof. The space Psn(Z) is identified with the space

The latter can be identified with the open subset

{/eL2W);/+l>0 a.e.}

of the space L2(^) by the injection 0: M=Psn(X)-*Lz(X) defined by

(25)

Denote p=2p. Then the map 0 induces the following map (d$)p from
TpPsn(}()=L2(}lp} onto L2W) in a natural way:
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Consequently, <j> gives a global chart of Psn(X) and (d(j))p is an isomorphism of
T pPsn(X) onto L*(X) up to the constant factor 1/2. Hence, the Hilbert-
Riemannian manifold (Psn(X), F(p)) can be identified with the subset |/eL2(/l);
/+1>0 a.*.} of L'tf).

Proof of Corollary. Let p—^P, i.e., dp — epdl and / be a continuous
function on J? with compact support. By the assumption

JR

For each we A" we can take the Gateaux derivatives of both sides and obtain

EPl<T,f>DJ(py] = \ f u d p .
JR

On the other hand, from the identity l?0[exp /(/>)] = ! we obtain

JSp [/?«/(#)] =0.
Hence,

\\fudpY=Efl{<T, f>-EPl<T,
(.JR J

, f>-Ep[.<T,

by Schwartz' inequality. Consequently,

Var,«T, /»^sup{[ fudp/F(p^u, u]

because K is dense in L2(p). Hence follows (6) and the proof is completed.

Remark. In our statistical model Psn(X) the geodesic PpCS) joining two
Poisson measures xa = Pq and xp=Pp with coordinate q and />, i.e., a=lq and
p=lp, is given by

(26) ePCS)={(l_s)^/2+Sgp/T (O^s^l).

In other words, the geodesic in our Riemannian metric is linear in the square
root of the density of intensity measure and the geodesic distance dist(xp, TTJ)
coincides with the Hellinger distance (up to the constant factor 1/2) :
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(27) dist(np, n^
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