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Introduction

A generalized version of the classical Martin theorem says that any positive
solution of a second order linear elliptic equation in a domain of a Riemannian
manifold is represented uniquely by an integral of the Martin kernel over the
Martin boundary with respect to a finite positive Borel measure which is zero
at the non-minimal Martin boundary (for a precise statement, see [22, 16, 34,
29, 10] and references therein, or Theorem 1.10 below). Therefore constructing
explicitly the Martin boundary and Martin kernel is crucial in the study of
positive solutions of an elliptic equation.

This paper is concerned with positive solutions of a second order elliptic
equation
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in a domain of a non-compact Riemannian manifold, where g=tet(gij) with
(go) being the Riemannian metric, (aij) is positive definite and locally bounded,
(b1} and (dl) are locally p-th integrable for some p>n, and c is locally
max(/>/2, l)-th integrable.

The aim of this paper is to establish two methods (decomposition methods)
to construct the Martin boundary and Martin kernel for such an equation as
(0.1), and to explicitly construct Martin boundaries and Martin kernels for
equations in unbounded domains of Rn by applying the decomposition methods
to the equations. The first method (tensor product decomposition method) is
concerned with decomposition of an operator and a domain into a sum of tensor
products of operators and a direct product of domains; and the second one
(direct sum decomposition method) is concerned with decomposition of a domain
into the union of a finite number of ends and a relatively compact set.

The problem of determining the Martin boundary and Martin kernel for a
second order elliptic equation in a domain of a non-compact Riemannian manifold
intrigued many mathematicians. In the case where the closure of a domain is
compact in the manifold, many analysts gave sufficient conditions for the cor-
responding Martin boundary to be equal to the relative boundary of the domain
(see [11, 12, 9, 39, 38, 17, 7, 35]). As for the case where the closure of a domain
is not compact, however, only recently has much attention been paid to the
problem. Caffarelli-Littman [8] gave an elementary proof of the fact that the
minimal Martin boundary for the Helmholtz operator — A+l on Rn is the unit
sphere Sn~l of Rn and the corresponding Martin kernel for co in S71'1 is equal
to exp(%o>) (for more general results, see [18]); which implies that any positive
solution u of (— A+l)w=0 in Rn is represented uniquely as

(0.2) u(x)= exti)a(d(o),
JSn-l

where ^ is a finite positive Borel measure on 571"1. Agmon [2] gave an
analogous result for a second order elliptic operator with periodic coefficients
on Rn and its extension to Riemannian covering spaces, by exploiting the trans-
lation invariance of the operator and invoking the Krein-Milman theorem. Nakai
[26] showed that the Martin boundary over zero for a stationary Schrodinger
equation with radial potential in a punctured disk of R2 is either one point or
a unit circle (see also [14], [28] and [24]). By closely investigating Green's
functions, Murata [23 and 25] explicitly constructed minimal Martin boundaries
and Martin kernels for stationary Schrodinger operators — A+V on Rn with
potentials V which are principally radial or non-radial in an extreme way.
Landis-Nadirashvili [19] showed that a positive solution to a uniformly elliptic
equation in a cone of Rn which vanishes at the boundary is unique up to a
constant multiple (for such uniqueness theorems, see also [13, 23, 24, 30, 36]).
Aikawa [3] gave a representation formula like (0.2) for positive harmonic
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functions in strips and semi-strips of Rn. Its extension to an elliptic operator
with periodic coefficients and a representation formula for the operator in a
convex cone in Rn have been given recently by Pinchover [31]. On the other
hand, Anderson-Shoen [6] established that the geometric boundary of a complete
manifold of negative curvature is homeomorphic to its Martin boundary (see
also [5]). Li-Tam [20] showed that any positive harmonic function on a
complete manifold with nonnegative sectional curvature outside a compact set
is a positive linear combination of a finite number of specified harmonic functions.

The rest of this paper is divided into four parts. First we introduce
fundamental notions concerning positive solutions of the equation (0.1) and
give relevant basic results. In Subsection 1.1 we show that a so called boundary
Harnack principle holds for positive solutions of (0.1) vanishing at the bound-
ary; the principle plays a crucial role in our study. In Subsections 1.2 and 1.3
we introduce such notions as <5-positivity, minimal growth, criticality, subcriti-
cality and minimal Green's function; and generalize some results given in [1]
and [23, Section 21. In Section 2 we show that the relative boundary of a
Lipshitz domain is imbedded into the minimal Martin boundary for (0.1); which
generalizes corresponding results in [16], [7] and [35].

In the second part we study positive solutions of an elliptic equation

(0.3) Pu(x, y}={L(x, d/dx)+W(x)A(y, d/dy}}u(x, jO=0 in QxxDy,

where Q is a Lipshitz domain of a non-compact Riemannian manifold, D is a
relatively compact Lipshitz domain of another Riemannian manifold, W(x) is a
positive function in Q, L and A are second order elliptic differential operators
as in (0.1) on Q and D, respectively, and A is in addition formally self-ad joint
(for precise conditions, see Section 3). Denote by /lo</L^/U^ ••• the eigenvalues
of the Dirichlet realization A^ of A in L2(J9). In Section 3 we show that there
exists a minimal Green's function G for (P, QxD] (i.e., (P, QxD} is subcritical)
if and only if (L+2QW, Q} is subcritical, give an "eigenf unction expansion" of
G, and establish a method to construct the Martin boundary and Martin kernel
for (P, QxD). A part of a main theorem, Theorem 3.5, reads as follows.

Theorem. Assume that (L+2QW, Q} is subcritical, and let Hj be the minimal
Green's, functions for (L-\-XjW, Q), J=0, 1, ••• , respectively. Suppose that

(a) for each /=!, 2, ••• and f in the Martin boundary 2Q for (L+^W, Q),
there exists the limit

K,(x, £)=lim#/*, *')/#o(*o, *'),
«/-*£

where XQ is a fixed point in Q\
(b) the functions Kj(x, f) are continuous on Qx20',
(c) SQ is decomposed into two disjoint parts 20oo and 200 such that
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Kj(x,&>Q on fixJooo for all /=!, 2, •••

#/*, ?)=0 on QxSQQ for all /=!, 2, -

77z07z #/ig Martin boundary for (P, QxD) is homeomorphic to

where d is an ideal point outside the closure D of D.

Section 4 is devoted to the proof of Theorem 3.5. A main idea of the proof
is to study the asymptotic behavior of the quotient

G(x, x',y,y')/H*(x0, *>„(/) ,

instead of G(x, x' ', y, y')/G(x0, x', y0, y ' ) } as (xf, y') goes to infinity, where (pQ

is an eigenf unction associated with the smallest eigenvalue ^0 of A£. In Sections
5 and 6 we apply the results in Section 3 to equations in unbounded domains
of Rn. Consider, for example, an elliptic operator P=— A-f V(x)+U(y) in a
strip R^xFy, where V is a real-valued radial function in Lqt\oc(R

n) for some
<?>max(n/2, 1), U is a real-valued function in LTtioc(R

m) for some r>max(m/2, 1),
and F is a bounded Lipshitz domain of Rm. Let ju0 be the smallest eigenvalue
of the Dirichlet realization of — Ay+U(y) on L2(F). Suppose that (—^x

JrV+
pQ, #n) is subcritical, and let I be the Martin boundary for (P, RnxF\ Then
Theorems 6.4—6.7 in Section 6 imply that I\(RnXdF) is homeomorphic to

one point or S71'1 or Sn~lxF.

The results to be given in Sections 5 and 6 essentially include those given in
[8, 26, 14, 36, 3] and [23, Sections 3 and 6].

In the third part we establish the direct sum decomposition method. In
particular, we show in Section 7 that the Martin boundary over infinity is
decomposed according decomposition of a domain near infinity : Let Q and Qj
(;=0, 1, ••• , u) be Lipshitz domains such that Q=\Jv

J=0Qj, QQ is compact, QlC\Qj

=$ (ii^j } i, j=l, ••• , v); suppose that (L, Q) is subcritical; then the Martin
boundary I(L, Q} for (L, Q) is homeomorphic to

dQ+{Z(L, fl1)\3fl1}+ ••• +{S(L, Qj\dQv}.

This implies that the Martin boundary over infinity is stable under compact
perturbation in a sense. The results to be given in Section 7 are inspired by
[20] and [23, Section 2].

Finally we give in Appendix a sufficient condition for an equation (0.1) in
Rn or a cone of Rn to have a unique (up to constant multiple) positive solution
vanishing at the boundary.
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§ 1. Preliminaries

In this section we prepare basic notions and theorems concerning positive
solutions of a second order elliptic equation. The section is divided into four
subsections. In Section 1.1 we shall give a comparison theorem (boundary
Harnack principle) for positive solutions vanishing at boundary. In Section 1.2,
on the basis of ideas in [1], we give sufficient conditions for a positive solution
to exist. In Section 1.3 we shall give criteria for the criticality and subcriti-
cality, extending results of [23, Section 2] (for related results, see also [4] and
[32]). Finally, in Section 1.4 we recall the Martin theory concerning represen-
tation of positive solutions.

Let M be a non-compact connected orientable Riemannian manifold of
dimension n and class C2. Let (glj) be the Riemannian metric of M, g=dQt(glJ)J

and dv the volume element of M. We consider a second order elliptic differ-
ential operator L on M

n n

(1.1) L — — ^g~1/zdj(g1/zai3dl)-r*2l(b
idl—g~1/zdlg

1/2dl)
Jrc,

where ( a i j ( x ) } , (bl(x)) and (d\x)) are real-valued measurable contravariant
tensors on M, and c(x) is a real-valued function on M. Here di=d/dxl. We
assume:

( i ) (aij(x)) is symmetric and positive definite for each x in M.
( i i ) For any compact set K of M there exist positive constants 2 and A

such that for any

where ( a i j ( x ) ) = ( a i j ( x ) ) ~ 1
} Tx is a tangent vector space of M at x, and |f | is

the length of £ with respect to the Riemannian metric,
(iii) For some p with

\ b ( x } \ ,

where q=max(p/2, 1), ft(*)=(W*), - , W*)) and d(x)=(d,(x\ ••• , d n ( x ) ) . (Here
/eL r>ioc(M) means that f^Lr(K;dv) for every compact subset A" of M.)

We are interested in positive solutions of the equation

(1.2) Lu=Q in Q,

where Q is a domain of M. By a solution we mean a function w in H\QC(Q)
satisfying the equation (1.2) in the weak sense. Here and in what follows
H\OC(Q) and Hl(Q} denote the spaces of all functions whose up to first order
distributional derivatives belong to Lz.ioc(Q) and L2(Q\ respectively. Recall
that any solution of (1.2) is Holder continuous in Q (see [33]). In what follows,
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Q and dQ stand for the closure and boundary of Q in M.

1.1. Comparison Theorem

In order to state a comparison theorem (boundary Harnack principle) and
Harnack's inequality we define quantitatively a class of operators. Let {Mk}^=l

be a sequence of relatively compact domains of M with regular boundaries such
that MfcCMfc+i for any k and {J%=lMk=M. Let {Ak, Ak, Nk}^ be a sequence
in R*+.

Definition 1.1. We say that L belongs to £{Ak> Ak, Nk\ if L is an operator
of the form (1.1) satisfying ( i ) , (ii), (Hi), and the following inequalities

(1.3) tk\$\2^ 23 atjWtej^AtM* for all x^Mk and ^Tx,
i.j=i

(1.4) \\\b\ + \ d \ \ \ L p < M k , + \\c\\Lq<Mk)£Nk.

The following theorem follows from a result of [33].

Theorem 1.2 (Harnack's inequality)- Le£ L belong to 6{%k, Ak, Nk}, and K
a compact subset of an open set Q of M. Then there exists a positive constant
C depending only on G{lk, Ak, Nk\, K, and Q such that

max wfgCmin u
K K

for any nonnegative solution u of (1.2).

We call a domain D of M is a Lipshitz domain if for each point z of 8D
there exist a coordinate neighborhood (U, <]j) of z, a ball B in U with center z,
a function (/> on Rn~l, and a positive constant m such that

', *„); s'

I^UO-^y^rSmU'-/] for any %',

(cf. [7]). By definition, a domain without boundary is also a Lipshitz domain.
We denote by B(r, z) a ball of radius r centered at z.

The following theorem is an extension of Theorem 1.4 of [7], where uni-
formly elliptic operators of divergence form on Rn were treated (see also [9]
and [39]).

Theorem 1.3 (Comparison theorem). Let D be a Lipshitz domain of M,
, and L an operator in £{2k, Ak, Nk}. Then there exist positive constants
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r0 and C depending only on 6{Xk, Ak, Nk} and the Lipshitz continuity of dD
near z such that for any r with 0<r<r0 and any positive solutions u and v of
Lu=Q in B(8r, z)r\D which vanish continuously on B(8r, z)C\dD

(1.5) u(x}/u(Ar(z}}^Cv(x}/v(AT(z}} for all x^B(r,z)r\D.

Here Ar(z} is a point in dB(r, z)r\D whose distance from z is uniformly propor-
tional to r, i.e., there exists a positive constant d such that dr^dist(Ar(z), z}^r/d
for any 0<r<r0.

Proof. Since the theorem is of local character, we may assume that D is
compact. Then we can choose an open neighborhood W of dD so small that
all L in £{/U, Ak, Nk} are cocercive on the Sobolev space H\(W). Solving the
Dirichlet problem and using Harnack's inequality (cf. [33] and [1]), we can
get a positive solution h of L/i=0 in W such that

(1.6) l/c<h(x)<c for all x^

where V is an open set with dDdVdVdW and c is a positive constant
depending only on W,V and € { A k , Ak, Nk}. Let rv— dist(dD, 3V), and u a
positive solution as in the theorem with 8r<n. Put uh—u/h and Lh=hLh.
Then

(1.7) L^-^^-^'S/AV^fl^O+S/W-^t,

and uh is a positive solution of Lhuh--=Q in B(8r, z)r\D which vanishes continu-
ously on B(8r, z)r\dD. Note that Lh belongs to the class 8{czlk, c~2Ak, czNk\
with the whole space M replaced by W. Thus, by applying results of [33]
and slightly modifying the argument in the proof of Theorem 1.4 of [7], we
get positive constants rQ<r± and C' depending only on €{czlk, c~zAk, c2Nk\
and the modulus of Lipshitz continuity of the boundary such that for any r
with 0<r<r0

uh(x}/uh(Ar(z}}<Cfvh(x}/vh(Ar(z^ for all

This yields (1.5) with C=c4C'. Q.E.D.

1.2. Existence of Positive Solutions

Let D be a relatively compact domain of M, and L the operator (1.1).
Denote by H\(D) the Hilbert space defined by the completion of C}(D) in H\D\
Let LD be a linear operator in L2(D) defined by :

Lpu = Lu for tteDomain(L£)={tte7yjCD); Lu^Lz(D)}.

We call LD the Dirichlet realization of L in L2(D). Denote by o(L^) the
spectrum of L£. Put
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(1.8) F(L, ZO=inf{Rez;*e<7(LB)}.

We say that u is a supersolution of the equation Lv— 0 in D if u is a real-
valued function in H\OC(D) such that Lu^Q in D in the distribution sense. A
fundamental fact essentially shown by Agmon [1] is:

F(L, D)>0 if and only if L is S-positive in D, i.e., if u is a supersolution
of Lv=Q in £ and w^O on dD, then H^O in D.

The following theorem generalizes a fact well-known in the special case
where L£ is self -adjoint.

Theorem 1.4. Suppose that D is a relatively compact domain of M. Then
F(L, D} is a simple eigenvalue with positive eigenfunction (p. Furthermore, any
positive supersolution of (1.2) with Q—D is a constant multiple of <p.

Proof. For the sake of completeness we shall give a proof. We first
obtain along the line given in [1, p. 29] that F(L, D) is an eigenvalue. We
next construct a positive eigenfunction. For %<F=F(L, D), solve the Dirichlet
problem

Kj-lcE/yjGD), (L-JOu;i=0 i n / ? .

Then u* = 1 — Gi((L — ̂ )-l), where G* is Green's operator. By the ^-positivity,
u*>Q in D. Put v* = uji/\\Uji\\, where \\UA\\ is the norm of u^ in LZ(D). Then
we can choose a sequence {^}"=i such that as /— >«>

V>r, U M ^ H O O , ^.-l/i|2^||-^> weakly in H\(D)

for some 99 in H\(D}. Clearly, <p is a positive solution of the equation (L—F}(p
=0 in D. Let u be any eigenfunction for F r, and w+=max(w, 0). We may
assume that w+^0. Then (L—F)u+<^Q in D and u+^H\(D}. Since L is
coercive on H\(E] with £ being the intersection of /} and a sufficiently small
neighborhood of 3D, there exists a positive constant e such that <p—£^+>0 in
£). Put £0— sup{e>0; <p— eu+>Q in /?}. Then we see from the maximality
that <p=eQu+. Hence u = u+=(p/eQ, which completes the proof of the first half
of the theorem. The second half can be shown similarly. Q. E. D.

Now, let Q be a domain of M whose closure Q may not be compact. Let

(1.9) F(L, Q)=mf{F(L, D)

Here Dc=M means that D is a subdomain of M whose closure is compact in
M. We note that (1.8) and (1.9) are consistent, since F(L, D)^F(L, D') for
Dc.Dr(^M (see [1, Remark 3.5], which also implies that (1.9) is equal to the
one defined by Agmon [1, (3.11)]). The following theorem is a slight extension
of Theorem 3.1 of [1].
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Theorem 1.5. The following properties are equivalent.
(i) There exists a positive solution of (1.2).
( i i ) There exists a positive supersolution of (1.2).
(iii) F(L, fi)^0.
(iv) F(L, L>)>0 for every open set DmM with DdQ and 9Dnfl=£{4.
(v) L is d-positive in such an open set D as in (iv).

Proof. By employing the argument in the proof of Theorem 3.1 in [1]
with minor modification, we get the equivalence of ( i ) , (ii) and (iii) and that
of (iv) and (v). Since (iv) clearly implies (iii), it suffices to show that (i)
implies (iv). Let u be a positive solution of Lu—^ in Q. Since u is also a
positive solution of Lu=Q in D, F(L, £)^0. Suppose that F(L, D)=0. Then
we obtain by Theorem 1.4 that there exist a positive constant C and a positive
solution (p in H\(D} of L<p-—0 in D such that u = C<p. But u>Q on dDr\Q,
which is a contradiction. Hence F(L, D)>0. Q. E.D.

1.3. Criticality5 Subcriticality, and Minima! Growth

Let Q be a domain of M, and L the operator (1.1). Assume that F(L, Q}
2^0. Choose an increasing sequence of domains {Qk}™=l such that Qk^M,
dQkr\Q^<l>, Qk^@, and \J%=1Qk=Q. Let Gk be the Green's function associated
with L3A. By Theorem 1.5 and Harnack's inequality, the sequence G k ( - , y} is
increasing as &-»oo and either it converges to an LI. ioc(fi)-f unction G ( - , y) or
it diverges to infinity. In the first case, G ( - , y) is positive in Q and clearly
satisfies LG(-, y)=dy('), where dy(-) is Dirac's measure concentrated at y^Q.
We call G ( - , y) the minimal Green's function for L in Q. Obviously, whether
a minimal Green's function exists or not is independent of the choice of an
exhaustion {Qk} of Q. We call (L, Q) subcritical in the first case, and critical
in the second case (cf. [23]). (We call (L, Q) supercritical if F(L, 0)<0.)

Let dQ be the boundary of a compactification fl" of Q, and 7 a subset of
dQ. Suggested by Agmon [1] we call u a solution of minimal growth at T if
u has the following properties (i) and (ii):

(i) u is a solution of the equation Lu=0 in the intersection of Q and a
neighborhood of T in Q~ (which we call a ^-neighborhood of 7).

(ii) For any positive solution v of Lv=Q in a ^-neighborhood of T there
exists a positive constant C such that |w|^Cz; in another ^-neighborhood.

From the proof of Theorems 5.2 and 5.4 in [1] and the definition of criti-
cality we have the following theorem.

Theorem 1.6. (L, Q} is critical if and only if there exists a positive solution
u of (1.2) of minimal growth at infinity of the one point compactification of Q.
In this case, any positive supersolution of (1.2) is a constant multiple of u.
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The following theorem is an extension of Theorem 2.4 of [23] (see also
[15, Theorem 2] and [4, Theorem 2]).

Theorem 1.7. (i) (L, Q) is critical if and only if F(L, Q)^Q and
F(L—r, £?)<() for any nonnegative function r in Lpt\oc(Q) which is positive on a
set of positive measure.

(ii) // F(L—r, fi)^0 for some r as in ( i) , then (L, Q} is subcritical. Con-
versely, if (L, Q) is subcritical, then there exist a strictly positive continuous
function s on Q such that F(L—s,

Proof. We have only to show (ii), since (i) follows from (ii). First,
assume that F(L—r, Q)^Q. Then, by Theorem 1.5, there exists a positive
solution v of (L—r)v=Q in Q. Clearly, v is a positive supersolution of Lu=Q
in Q. Now, suppose that (L, Q} is not subcritical. Then (L, Q) must be
critical. By Theorem 1.6, v—Cu for a constant C and a positive solution u of
(1.2). This is a contradiction. Next, assume that (L, fl) is subcritial. We
see that for any nonnegative continuous function / with compact support in Q
there exists a positive solution u of Lu=f in Q. Therefore, by using a
partition of unity, we can construct (cf. the proof of Theorem 2 in [4]) a
positive continuous function g on Q such that Lg is strictly positive continuous
function on Q. Put s=Lg/g. Then g is a solution of (L— s)g=Q, which
implies that F(L-s, fi)^0. Q.E.D.

The following theorem is an extension of Theorem 2.6 in [23].

Theorem 1.8. Let Q' be a domain of M such that Q'dQ and
If F(L, £)^0, then (L, Q') is subcritical.

Proof. Choose a nonnegative continuous function r^O with support in
Q\Qf. By Theorem 1.7, (L+r, Q} is subcritical; and so there exists a minimal
Green's function H for L+r in Q. Let {Qk}%=1 be an exhaustion of Q', and
G'k Green's function for Lfy. By Theorem 1.5, Gi^H for all jfe = l, 2, ••• .

Thus (L, Q') is subcritical. Q.E.D.

We close this subsection with the following theorem, an extension of the
formula (2.8) in [23].

Theorem 1.9. Assume that (L, Q) is critical. Let r^O be a nonnegative
continuous function with compact support in Q. Let G be the minimal Green's
function for L+r in Q. Then a positive salution u of (1.2) satisfies

(1.10)
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Proof. With Gk being the Green's function for (L+r, Qk), k — l, 2, ••• ,

put v k(x)=\G k(x , y}(ru}(y}dy. Then, (L+r)(u—vk)=Q in Qk and u— vk>Q on

dQk. Thus u^vk in fl* for any k, which implies that u^v in Q with v being
the right hand side of (1.10). We have that Lv=r(u—v)^Q. By Theorem 1.6,
v—Cu for some C>0; and so Q=Lv=r(u—v). Hence v=u. Q. E. D.

1.4. Martin Boundary

Suppose that (L, Q) is subcritical, and let G be the associated minimal
Green's function. Then we see that Martin's representation theorem of positive
harmonic functions can be extended to positive solutions of the equation (1.2)
(cf. [22, 34, 16, 10] ; see also [29]). For completeness, we explain briefly the
representation theorem. Fix a point x0 in Q. For x and y in Q, put

K(x,y)=G(x,y)/G(x*,y) if

K(x, 30=0 if xQ=y and x^y, and K(x, 30=1 if xQ=y = x. A sequence {yk}^=i
is called a fundamental sequence if {y k] has no point of accumulation in Q and
{K(-, yk)}lk=i converges to a positive solution of the equation (1.2). Two
fundamental sequences {y k] and {y'k} are called equivalent if lim fe_oo/£(-, 3M=
lim*_ooK"(-, y'k). Denote by I the set of all equivalence classes of fundamental
sequences. For a) in St put K(-, cy)=limfe^oJf(-, yk) with {3;*} being a repre-
sentative of a). Recall that a positive solution u of (1.2) is called minimal if
for any positive solution v of (1.2) with v^u in Q there exists a positive
constant C such that v—Cu in Q. Let a be the set of all a) in I such that
K(-, a)) is a minimal solution. Denote by QL the disjoint union Q+2 of the
sets Q and 2. We call S, a, QL, and K(-, o>) with cye^ the Martin boundary,
minimal Martin boundary, Martin compactification of Q, and Martin kernel for
(L, fl) with reference point x0, respectively. Choose a positive continuous
function / belonging to Li(fl), and set

(1.11) d(z, z')=

for any 2 and z' in ^Q1". Then it is easily seen that d is a metric on QL ;
which is compact with respect to the topology induced by the metric d ; the
relative topology of Q is equal to the original one; and I is the boundary of
QL. Furthermore, we have

Theorem 1.10. (i) Any minimal solution of (1.2) is equal to a constant
multiple of K(- , co) for some CD in a.

( i i ) a is a countable intersection of open subsets of 2.
(iii) K(x, z) is continuous on (QxQL)\{(x, j t); xr=Q}.
(iv) For any positive solution u of (1.2) there exists a unique finite non-
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negative Borel measure p on 2 such that fjt(S\a)=Q and

(1.12) u(x)={ K(x,<o)p(da>).
J ff

§ 2. Imbedding of a Boundary Part Into the Minimal Martin Boundary

Let Q be a domain of M, and L be the operator (1.1) on M. Assume that
(L, Q) is subcritical. Let I,a,QL, and K(- , <0) with co^2 be the Martin
boundary, minimal Martin boundary, Martin compactification of Q, and Martin
kernel for (L, Q}. A main result of this section is the following theorem,
which considerably extends Theorem 6.1 of [16] where more regularity of dQ
and the coefficients of L was assumed.

Theorem 2.1. Assume that (L, Q} is subcritical. Let S be an open subset
of dQ such that Sd5D for some Lipshitz domain D with DdQ. Then S is
homeomorphically imbedded into a ; more precisely, for any point z in S there
corresponds a point a)z in a and the mapping 0 defined by

0(x)-—x for x^Q and 0(z)=(oz for z^S

gives a homeomorphism of Q-}-S as a subspace of M onto Q-r{o)z ; z^S} as a
subspace of QL.

We prepare a lemma for the proof of Theorem 2.1.

Lemma 2.2. Let 3 be a non-empty family of continuous functions on Q
having the following properties ( i )~(iii) :

( i ) Any u in EF satisfies

Lu=Q and u>0 in Q ,

where XQ is a fixed point in Q.
( i i ) // u, v<^3 and u>v in Q, then

(iii) There exist a positive constant C, an increasing sequence (0 k}lk=i of
open subsets of Q with \J™=iOk—Q, and a sequence ( x k } ^ = l of points with
dO kC\Q such that for any u and v in £F and k = l, 2, •••

(2.1) u(x}/u(xk}^Cv(x}/v(xk} for all x^dOkr\Q ,

(2.2) // u^C'v ondOkr\Q for some C'X), then

u^C'v in Ok.

Then 3 consists of only one element.
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Remark. Conversely, if a family 2" satisfying (i) consists of one point,
then (ii) and (iii) are clearly satisfied.

Proof. Let u and v be elements in 3. By (2.1), we get

l = u ( x 0 ^ [ _ C u ( x k ) / v ( x k y ] v ( x 0 ) = C u ( x k ) / v ( x k ) for any k.

Thus u^Czv in Q. Put e0=sup{e>0; eu<v in Q] and w=v—£0u. Then,
either iu=Q or w>Q in Q. Suppose that w>Q in Q. By ( i ) , w(x)/w(x0)
belongs to £F. Thus the same argument as above shows that w>du in Q for
some <5>0, which contradicts the maximality of e0- Hence w=Q, and so V=SQU.

Q.E.D.

Proof of Theorem 2.1. Let z be a point in 5. By Harnack's inequality,
there exists a sequence {yk}^=i such that ;yfe-»z and K(-, 3> *)-»/*(•) as &—>oo
with h being a positive solution of (1.2). We see that h has the following
properties:

(a) Lh=Q and /i>0 in Q, h(x0)=l.
(b) Let Af ~ be a one point compactification of M. Let d£? be the boundary

of the closure of Q in M". Then /z is of minimal growth at dQ\B(r, z) for
any r>0, where 5(r, z) is a ball of radius r centered at z. (As for the minimal
growth, see Section 1.3.)

We claim that the set £F of all functions satisfying (a) and (b) consists of
one point. Properties (i) and (ii) in Lemma 2.2 hold clearly. For k—-l, 2, ••• ,
put Ok=Q\B(rQ/2k, z} and xk = ArQ/Zk(z) where r0 and ArQ/2k(z) are such a
constant and point as in Theorem 1.3. Then Theorems 1.2 and 1.3 show the
existence of a positive constant C satisfying (2.1) for any u and v in £F and
k = l, 2, ••• . Now, let us show (2.2). Fix r with 0<rrgr0/2, and denote by B
the ball B(r, z). Let u belong to EF. Choose an exhaustion {Qj}™=i of Q such
that Br^QdQj^M for any /. Let Uj be the solution of the Dirichlet problem

Lu^Q in Qj\B, Uj=Q on dQy\B, u=u on dBr\Q3.

By the d-positivity, u3 is increasing as ;—>oo and converges to a positive
solution u~^u. By the property (b), u — u~ is a nonnegative solution of minimal
growth at infinity of the one point compactification of Q\B. Thus Theorem
1.6 shows that u = u~ in Q\B. This approximation of u together with Theorem
1.5 yields (2.2). Hence, by Lemma 2.2, SF consists of one solution. The proof
of the claim is now complete.

The claim implies that any sequence [y^k^i converging to z is a funda-
mental sequence and two such sequences are equivalent. Similarly, we obtain
that the Martin kernel K(x, z) is continuous in z on S (cf. [7, Corollary 3.2]).
Since \imswpx^zK(x, z)>0 and

, y'k)=Q uniformly with respect to k~ 1, 2, •••
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if {y'kfei is a sequence in Q such that z is not its accumulation point, we
obtain that K(x, z}^K(x, o>) for any CD in 2 with a)^z. Finally, suppose that
a positive solution v satisfies v(-)^K(- , z) for some z in S. Then, V(X)/V(XQ)
satisfies (a) and (b), and so v(x)=v(x0)K(x, z). Thus K(- , z} is a minimal
positive solution. This completes the proof of the theorem. Q. E. D.

The following theorem, an immediate consequence of Theorem 2.1, is
worthy to mention.

Theorem 2.3. Let Q be a relatively compact Lipshitz domain of M with
nonempty boundary. Suppose that (L, Q} is subcritical. Then QL=Q and

Proof. By Theorem 2.1, Q is imbedded into QL, dQda, and {K(> , z)}z&dQ
separates points of dQ. Since Q is compact, this implies that I—dQ. Hence
I=a=dQ. Q.E.D.

Remark. In the special case where M=Rn and L is an operator of diver-
gence form (i.e., bi=di=Q and c=0), Theorem 2.3 was proved in [7] (see
also [12, 9, 39, 17, 38, 35]).

§ 3. Tensor Product Decomposition

In this section we study the structure of positive solutions of a second
order elliptic equation Pu=Q in a product domain, where P is a sum of tensor
products of operators. A main theorem of this section is Theorem 3.5, which
will be proved in Section 4.

Let P be an elliptic operator of the form

(3.1) P=L®I+W®A,

where L is an elliptic operator (1.1) on M satisfying (i)~(iii), / is the identity
operator on a connected orientable Riemannian manifold N of dimension m and
class C2, W is a multiplication by a positive measurable function W(x) such that
W(x) and W(x}~1 are both locally bounded, A is formally self-adjoint elliptic
differential operator on N given by

m m
(3.2) A=- S G-l/2dJ(G

lf2Aijdi)+^(Bidi-G-1^diG
1'2Bi)+C,

i,j=l i=i

where G=det(Gij) with Gtj being the Riemannian metric on N, the operators A
and P satisfy the conditions (i)~(iii) below (1.1) with obvious modifications.
Here L®/ denotes the tensor product of L and /. Let Q be a domain of M,
and D a relatively compact Lipshitz domain of N with nonempty boundary or
a compact domain without boundary. We shall investigate the structure of
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positive solutions of the equation

(3.3) Pu=Q in QxD.

Main results of this section are concerned with the Martin boundary and
Martin kernel for (P, QxD}. The results to be given will be proved only in
the case where dD^(j), since the proof for the other case is similar to and
simpler than the proof for the case dDi^<j>.

Let ^o</£i<U2^ ••• be the eigenvalues repeated according to multiplicity of
the Dirichlet realization AD of A on L2(D). Let ^ (/=0, 1, • • • ) be an eigen-
function associated with Aj such that {<pj}™=i is a complete orthonormal system
of L2(D). Recall that the smallest eigenvalue AQ is simple and the correspond-
ing eigenfunction (p0 is positive in D (see, for example, Theorem 1.4 in Section
1.2).

We begin with the following criterion for the existence of a positive solution
of (3.3). (As for the notion F(L+^W, Q), see (1.9).)

Theorem 3.1. There exists a positive solution of (3.3) if and only if

Proof. If F(L+^W, fl)^0, then Theorem 1.5 implies the existence of a
positive solution <J) of (L+hW)<J)=Q in Q. Put u(x, y)=<f>(x)<p0(y). Then u is
a positive solution of (3.3). Conversely, assume that there exists a positive
solution of (3.3). Suppose that r(L+ZQW, £)<0. Then there exists a Lipshitz
domain EmO such that T=F(L-T-^Wf £)<0. By Theorem 1.4, choose a positive
solution <p of

(L+ZQW-r)(j)=Q in E with $=0 on dE .

Put v(x, y)=<f>(x)<p0(y). Then, (P-flv=Q in ExD and v=0 on d(ExD). On
the other hand, (P—r)u =—Tu>Q in ExD. Thus we have by Theorem 1.4
that u—Cv for some C>0. But u>0 on dExD, which is a contradiction

Q.E.D.

Now, assume that r(L+A0W, -2)^0. Let (Qk}°k=i be an exhaustion of Q
such that Qk is a relatively compact Lipshitz subdomain of Q, Qk(^Qk+i for
any fe, and ^3fe t fl as ^->oo. Let Gk and /fj, fe = l, 2, ••• , be the Green's
functions for the Dirichlet realizations P5^xi> and (L+2QW)Qk, respectively.

Lemma 3.2. Let K be a compact subset of Qk, and U an open set such that
KdU(^Qk. Then there exists a positive constant C depending only on K, U, and
the operator P such that for all l^k and (x, xf, y, yf)^Kx(Qk\U)xD2

(3.4) C<Gl(x, xf, y,

Proof. We denote by u1 the function in (3.4). Regarding Gl(x, x', y, y'}
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and H\(x, ocf)(pQ(y)<pQ(yr) as function of (x, y), we see that both functions are
positive solutions of the equation Pu=Q in UxD which vanish continuously on
UxdD. Then, by Theorems 1.2 and 1.3, there exist positive constants C' and
C" such that for all (x, y) in KxD

C'^u (x, xf, y, y')/u (XQ, x', yQ} y'}^.C",

where (x0, y0) is a fixed point in KxD. Applying the same argument as above
to the functions u l ( x Q , x', y0, y') of ( x 1 , y'}, we obtain that with another con-
stant C' and C"

(O.D) O ^u \x, x , y, y )/u (x$} x$} y§) y®)— {-/

for all (x, xr, y, yr) in Kx(Qk^U}xD2, where (x'0, y'Q} is a fixed point in
(Qk^U}xD. Put

For any /(*) in H\(Ql}r\C\Ql) with (L*+^W^C°(J2Z), we have (cf. [33])
that

h(x, x')(L*+

G'(x, x', y, y")P*
x D

Thus we get

(3.6)

for any (x, x') in Q2
L\{x = xf}. Therefore, multiplying (3.5) by

and integrating it on DxD, we have

This together with (3.5) yields (3.4). Q.E.D.

A direct consequence of Lemma 3.2 is the following

Theorem 3.3. (P, QxD} is critical (or subcntical) if and only if (L+20W, Q}
is critical (or subcritical}.

In the remainder of this section we assume that (L+hW, Q} is subcritical.
Let G and HJ} j=Q, 1, ••• , be the minimal Green's functions for (P, QxD} and



MARTIN BOUNDARIES 601

AjW, Q), respectively. Here we have used Theorem 1.7 and the assumption
W>0.

Theorem 3.4. For any (x, x', y, y'} in (Q*\{x = x'

(3.7) G(x, x', y, y'}= fl H&x, x'

where the right hand side of (3.7) converges uniformly on Kx(Q\U)xD2 for any
compact subset K and an open set U with KaU<^Q.

Proof. Let H] be the Green's function of the Dirichlet realization
(L+JtjWyak of L+ljW on L2(Qk). The same argument as in the proof of (3.6)
shows that

\DGk(x, *', y, yr)(pJ(y")dy=Hk
J(x9 *>//)

for any (x, x' , y'} in (Q2
k\{x = x f } ) x D , k = l, 2, ••• , ;=0, 1, ••• . Letting k->°°

we obtain that

(3.8)

for any (x, xf, y') in (Q*\{x = x'})xD and /=0, 1, ••• . Thus

(3.9) IHJ(X> x')^(y')]8= GU, x', y} yjdy .

Choose open sets Ui and Uz such that KzLU^U^U. It follows from (3.6)
that

(3.10) C^G(x, x', y} yr}/LHQ(x, x')<pM<p*(y'K£C-1

for any (x, xf , y, y'} in U2X(Q^U)xDz. This implies that G is bounded on
U2x(Q^U}xDz. Furthermore, G as a function of (x, y) satisfies the equation
PG=Q mUxD. Thus, by Theoreme 7.1 of [33], there exist positive constants
a and C' such that

\G(x, x', y} y'}-G(z, x' , y, y')\£C'[di

for any (x, z) in U\. This implies that

(3.11) Si^/.U, *')-#/*, ^0]^(^0}2

with another constant C. From (3.9) and (3.11) we obtain that the series in
the right hand side of (3.7) converges, as functions of (x, y), in L^U^D)
uniformly with respect to ( x ' , y') in (Q\D}xD; furthermore, the right hand
side is a solution of Pu=Q in U^xD which vanish continuously on
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Thus we obtain by Corollarire 5.2 of [33] and Theorem 1.3 that the series
converges uniformly on Kx(Q\U)xD2. This implies that both sides of (3.7)
are continuous on (Qz\{x=x'})xD2 ; which together with (3.8) shows (3.7).

Q. E. D.

Let 2*0, (70, KQ and Q° be the Martin boundary, minimal Martin boundary,
Martin kernel, and Martin compactification for (L+20W, Q} with reference point
Xo^Q, respectively. Denote by I, a, K, and QxDp those corresponding to
(P, QxD} with reference point (x0, y^QxD. Note that Theorem 2.1 implies
that

(3.12) QxdDda and the relative topology of QxD in QxDp is equal to that

of QxD in MxN.

In what follows, A+B will stand for the disjoint union of two sets A and B.

Theorem 3.5. Suppose that (L+ZoW, Q) is subcritical. Assume the following
conditions (P. IMP. III).

(P. I) For each /—I, 2, ••• and f in 2Q, there exists the limit (which is
denoted by Kj(x, £))

(3.13) lim Hj(x, x')/HQ(x0, *'), x^Q .

(P. n) The functions Kj(x, £) are continuous on Qx20.
(P. HI) There exist subsets 2Qoo and 2QQ of S0 such that 2Q=SQoo-{-SQo and

(3.14.oo) Kj(x,&>Q on QxS^ for all /=!, 2,

(3.14.0) Kj(x,&=0 on QxSw for all j=l, 2,

Then the following conclusions (i)~(iv) hold.
(i) With d being an ideal point outside of D,

Z=QxdD+ZQooxD+SOQX{d}.

(ii.O) For each (£, d) in I 0 0 X { d } , a subset U of QxDp is a neighborhood
of (£, d) if and only if there exists a neighborhood V of £ in Q° such that

(ii.oo) For each (£, rj) in SQooxD, a subset U of QxDp is a neighborhood
of (£, if) if and only if U~DVxW for a neighborhood V of f in Q° and a neigh-
borhood W of f] in D.

(iii.O) For each

(3.15) K(x, f, y, d)=KQ(x,
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(iii.co) For each (£, if) in 20ooxD,

(3.16) K(x, £, y, rt=

where \_<p3/(p*] is a continuous extension of the function </>J/<PQ on D to D, and
C(f , if) is a positive constant defined by

(3.17) C(£, 9)= S XX*0, f)9/3>o)[^o](5?).
J=0

Furthermore, the series (3.16) converges uniformly on each compact subset of
QxD.

(iv.O) (JooX {d})n<7 - C
(iv.oo) (j?0oox/5)r\0- D (I'

Remark 3.6. We obtain as in the proof of Lemma 4.1 below that if Q is
a Lipshitz domain, then dQc.SQoo; more precisely, the limit (3.13) for any £e9£?
and j exists, and K3(x, £), y=l, 2, ••• , are positive continuous functions on

Remark 3.7. Since #/*, x'^H^x, x') for any y=2, 3, — , we see that if
K\(x, 6) exists and is equal to zero, then K3(x, |)=0 for any y=2, 3, ••• . An
interesting open problem is whether K3(x, f)>0 for any j=2, 3, ••• if ^(x, f)
>0. We shall see in Sections 5 and 6 that this holds if (L+AQW, Q) can be
reduced to the one dimensional case.

§4. Proof of Theorem 3.5

This section is devoted to the proof of Theorem 3.5. The theorem yields,
among others, a method of constructing the Martin boundary for a second order
elliptic operator which can be expressed as a sum of tensor products like (3.1)
in a product of domains.

Lemma 4.1. For j=l, 2, ••• , <pj/<pQ in D has Holder continuous extension to
D.

Proof. We have only to treat the case where dD^<j). For e>0, put
De={y^D; dist(;y, dD)<e}. Choose e so small that there exists a positive
solution h of the equation (A—2j)h=Q in a neighborhood U of D£ such that
inf {h(y} ; y(ED£}>Q. Put

(4.1) J4ft=-.Si/r
2G-1'23//z2G"Mi>3<), <pt=<pt/h.

Then
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(4.2) 4A^=0=-4Ap?+(^-Wpoft=0 in U r\D .

Let (p± be the solution of the Dirichlet problem

(4.3) Ahu=Q in D£ and u=max(±<pf, 0) on 9De.

Clearly, ^±>0 in L>£ and <pf= $+— $-. Thus we have only to prove that
are Holder continuous on D£. Put

(4.4) u(y,t)=$±(y) and v(y, 0=pf

where f is a real number. Set 3=7r/[4(^— ̂ o)1/2]. Then it and v are positive
solutions of the equation

(4.5) (Ah-d*/dt*)w=0 in (Ur\D)x(-d, d), w=0 on dDx(-d, 5).

Since (Ah-d
2/dt2) is elliptic, the argument in the proof of Theorem 7.9 of [17]

together with Theorem 1.3 in Section 1 shows that

u(y, t}/v(y, 0

is Holder continuous on D8x[—5/2, 8/2], Since u(y, Q)=<f>±(y) and v(y, Q)=
<p$(y), this proves the lemma. Q. E. D.

Recall that K(x, xr , y} y')=-G(x, x', y, y')/G(x0, xr , yQ, yr], where G is the
minimal Green's function for (P, QxD) given by (3.7).

Lemma 4.2, (i) For any sequence {(x'k, yi)}^=i in QxD with x'k— >fe
as k^<x>,

(4.6) limK(x, xi, y, y'k)=KQ(

(ii) For any sequence {(x'k, yi)}^! in QxD with x'k— >|^^ocx, and y'k~*f]^D
as /e— >oo,

(4.7) \imK(x, xi, y, y'k)=%K,(x9 f)^(3^)C^/^o](^)C(f, vr
i ,

£-»oo j=Q

where C(f, 7]) is a constant given by (3.17). Furthermore, the series in (4.7)
converges uniformly on each compact subset of QxD.

Proof. We shall show only (ii), since the proof of (i) is similar. Let

(4.8) J ( x , x', y, y')=G(x, x', y, yfVlH0(xQ, x'My'ft .

Then, by (3.10), for any compact subset K of Q there exists a constant C such
that

(4.9) C<p0(y)<J(x, xi, y, yr
k}

for any (x, y) in KxD and &>1. Thus, for any subsequence of {(x'k, y'k)}k
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there exists its subsequence {(x'kl, y'kl)}i such that J ( x , x'kl, y, y'kl) converges as
/— »co to a positive solution I(x, y) uniformly on KxD. By Lebesgue's dominated
convergence theorem, Theorem 3.4, and Lemma 4.1,

I I(x, ytyj(y)dy=lim\ J ( x , x'kl, y, yf
kl)</>j(

J D i-*oo J D

=limHj(x, x'kl)(pj(yi^/lH0(

This implies the limit function I(x, y) is determined uniquely by (£, 77). Hence

J(x, £, y, ?)=lim/{*, *i, y, ?*)=
J=0

from which (4.7) follows. The latter half of the lemma (ii) can be shown along
the line given in the proof of Theorem 3.4. Q. E. D.

Lemma 4.3. // a finite nonnegative Borel measure Y on D satisfies, for some
i) in D,

(4.10) IVj/vdW-fyj/VolWdr, for any /=0, 1, • • - ,

then Y is equal to the probability measure concentrated on the point 7].

Proof. Consider the operator P=-d2/dxz-\-A-/tQ in (-1, l)x£. Then we
see from the proof of Theorem 2.1 that the Martin compactification of (—1,
with respect to P is equal to (— 1, 1)XD, and the boundary points are all minimal.
With the same notation as in Theorem 3.5, we have

K3(x, l)=\\mH,(x, x')/H0(x, *'
X' -»1

for any x in ( — 1, 1) and /=!, 2, ••• . Thus Lemma 4.2 implies that

K(x, 1, y, ?)=

Thus, by the assumption of the lemma,

K(x, 1, y, l)=

Since /T(,T, 1, y, 27) is minimal, this implies the lemma. Q. E. D.

of Theorem 3.5. In view of Theorem 2.1 and Lemma 4.2, put

(4.11) K(x,X,y,Y)= lim K(x,x',y,y') for (X,
x'-*X, y'-*Y
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(4.12) K(x,$,y,i))= lim K(x, x', y, y') for (f,
*'-»£. I/'-*??

(4.13) #(*, f, 3», d)=\imK(x, x', y, y') for

We claim that functions in the set

{#(*, u, y, v);(u,v)s=QxdD+S0»xD+SnX{d}}

are different each other. To this end it suffices to show that if K(x, f , y, >?)—
K(x, f , y, ?'), then (£, ?)=(£', 9')- Assume that #(*, f , y, y)=K(x, f , ;y, 5')-
Multiplying the both sides by 9/;y) and integrating them on D with respect
to y, we obtain that

K,(x,

where C' = C(£, 3?)/C(f, 3?'). This implies that C' = l, £=£', and
[0>//po](7') for all /=0, 1, --- . Thus, by Lemma 4.3, f]=7]'. This proves the
claim. On the other hand, any sequence {(x'k, yi)}f=i without accumulation
points in QxD has a subsequence {(x'kl, y'kl}}™=i such that one of the following
statements (a)~(c) holds:

(a) The subsequence converges to a point in QxdD.
(b) It converges to a point in IQooxD.
(c) The sequence {xr

kl}i converges to a point in 2Q0.
This implies (i) and (iii).

In view of (3.12), QxD+2 is compact with respect to the topology r
induced by neighborhood systems described in (ii). Thus, in order to prove
(ii), it suffices to show that the identity map from (QxD+I, r) onto QxDp

is continuous. But this follows from the assumption (P. I )~(P. ffl) and the
formula

(4.14) K(x, X, y, Y)= fj [//,(%, X)/HQ(x0, ,Y)]^(^)C^/^o](F)C(Z, F)-1

J = 0

for any (x, X, y, Y} in (Qz\{X=x or xQ})xDxdD, where C(X, Y) is determined
by K(x*, X, 3;0, F)=l.

Let us show (iv. 0). Assume that K(x, f, y, d) is minimal. If a positive
solution (p of the equation (L+AQW)(p= 0 in fl satisfies <f>(x)^KQ(x, f) in £?, then

This implies that <f>(x)(pQ(y)/</)Q(yQ)=CKQ(x, £)<po(y)/<po(yo) for some constant C.
Thus <f>(x)=CKQ(x, f), which shows that #<>(•, f) is minimal. Conversely,
suppose that K"(z, f, y, d) is not minimal. Then there exist finite nonnegative
Borel measures /! on QxdD, p on 2QQ with ^({f})=0, and v on I0ooxD such
that



MARTIN BOUNDARIES 607

(4.15) K(x, |, y, < 0 = ( * , X, y,

K(x, C, y, d}d^+ _K(X, C, y,
O JZoooXZ?

Choose an exhaustion {flft}"=i of Q such that Qk^Qk+i^Q for any &, and put

K(x, X, y,

Clearly, uk is of minimal growth at d(QxD)\(Qk+1xdD), where d(QxD) is
the boundary of QxD in MxD with M being the one point compactification
of M. On the other hand, since

uk(x, %)<K0(x, $)<pQ(y)/<po(yo),

uk is of minimal growth at Qk+2XdD. Thus uk is of minimal growth at
d(QxD), which together with Theorem 1.6 shows that uk— 0 for any k. This
implies that A=Q. Similarly, v=0. The equation (4.15) now becomes

K0(x, f)9o(3;)/^o(3;o)= K0(x,

where p({£})=Q. This implies that K0(x, f) is not minimal. The proof of
(iv.O) is complete. It remains to prove (iv.oo). Assuming that K(x, £, y, 7]) is
not minimal, we shall show that KQ(x, f) is not minimal. We obtain in the
same way as above that

(4.16) K(x, £, y, 9)=Jv _K(x, C, 3^,

for some finite nonnegative Borel measure v on SQooxD with i/({f, 3y})=0.
Multiply both sides of (4.16) by <p}{y) and integrate them on D with respect to
y. Then we have by Fubini's theorem that

(4.17) A,

for y=0, 1, ••• . The above equality for /=0 becomes

(4.18)

where ^ is a finite measure on IQoo defined by

for any Borel set 5 of £Qoo. If ^(J0ooM«f })>0, (4.18) already proves that KQ(x, £)
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is not minimal. Therefore, suppose that X(IQK3\{$})=0. Then (4.17) becomes

where p is a measure on D defined by

for any Borel set ^4 of 5. Thus

Since v({£, )?})=0, we have that ^({^})= 0. Hence the above equalities contradict
Lemma 4.3. This concludes that KQ(x, £) is not minimal. Q. E. D.

§ 5. Schrodinger Equations In a Cone

In order to illustrate the scope of the results in Section 3, we shall give
applications of those results to equations in unbounded domains of Rn in this
and the next section.

Let P be a Schrodinger operator

(5.1) P=-A+7,

where A is the Laplace operator on Rn and V is a real-valued radial function
in Lgfioc(/?n), where q>n/2 and n^2. Let D be a Lipshitz domain in the unit
sphere S71'1 of Rn, and

In this section we investigate positive solutions of Pu=Q in E. We should
mention here that in the special case where D^S71'1 the results to be given
in this section are essentially the same as those given in [23, Section 3] (see
also [26] and [14]). But we shall state the results without excluding those
for the special case, which will be used in the next section.

We see that (5.1) can be rewritten as

(5.2) P=-r1-B3/3r(r1-BS/5r)+y(r)-r-M ,

where A is the Laplace-Beltrami operator on S71"1. Thus P is of the form
(3.1) with M=/?+=(0, oo), JV=SB-1,

L=-rl-nd/dr(rn-ld/dr)+V(r), A=-A, and W=r~2.

Let /£0<^i<^2<J ••• be the eigenvalues repeated according to multiplicity of the
Dirichlet realization of — A on LZ(D), and <ps an eigenf unction associated with
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Xj chosen so that (<piy <pj}=dijf where 6^=1 if i—j and 5^=0 if /=£/. Put

(5.3.1) a^l

(5.3.2) j8^=l

(5.4) Lj=

It is easily seen that for any /=0, 1, ••• there exists a unique solution gj of
the initial value problem

(5.5),- Ljgj=0 on R+,

(5.6), g£r)=raJ+O(raJ+1) as r->0.

Theorem 5.1. There exists a positive solution of the equation Pu—§ in E
if and only if gQ>Q on R+.

Proof. In view of Theorems 3.1 and 1.5, it suffices to show that
if the equation (5.5)0 has a positive solution h. Since g0(r)>Q near 0, it is
obvious that if h is a constant multiple of g0, then g0>Q on /?+. Thus assume
that h is linearly independent of g0. Since (5.5)0 has a solution / such that

) as r->0,

we obtain by (5.6)0 that

for some constant C. This proves that g0>0. Q. E. D.

Theorem 5.2. (i) (P, E} is subcritical if and only if for each <5>0

(5.7)

(ii) (P, E) is critical if and only if gQ>Q and the integral in (5.7) deverges.

Proof. We see that

(5.8) rc

Thus, by Theorem 3.3, (P, E) is critical if and only if (L{, .R+) is critical.
But Theorem A.5 in [23, Appendix] implies that (L{, R+) is critical if and only
if g0>0 and the integral in (5.7) diverges. This proves (ii); and also (i)
because if g0(s)=0 for some s>0, then (5.7) does not hold. Q. E. D.
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Theorem 5.3. Assume (5.7). Then the minimal Green's function G for
(P, E) is given by

(5.9) G(r, r', a, o>')=

for 0<r^r'<°o and (a),a)')^Dz, where

(5.10) /Xr')=£X

Furthermore, G(r, r' ', a), a)')=G(r', r, a), o>') for

Proof. Denote by Hj(r, r'} the minimal Green's function for (L3, R+).
Noting that we take rn~ldr as the volume element of /?+, we obtain by
elementary calculations that

(5.11) #/r, r')-£/r)//r') for 0<r:gr'<oo,

=fi(r}gj(r'} for 0<r'^r<oo.

This together with Theorem 3.4 proves the theorem. Q. E. D.

In the remainder of this section we assume (5.7). Let J?0, ffo, R"+ and K0

be the Martin boundary, minimal Martin boundary, Martin compactification of
/?+, and Martin kernel for (LQ, R+) with reference point 1, respectively. Then
we obtain from Theorem A.7 of [23] that

(5.12) £0=cr0={0, oo}, R>+=[0, oo] ,

(5.13) /fo(r,0)=/0(r)//o(l),

Denote by 21, cr, EF and /f those corresponding to (F, E) with reference point
(1, coQ)^R+xD, respectively. In the following theorems, we shall use the
notation K(r, CD; *)?) instead of K(r, *, a), f]) with *=0 or oo.

Theorem 5.4. Assume that

(5.14)

Orf and °°d being ideal points at zero and infinity, respectively,

Ep is, as a topological space, the closure of E in the one point compactification
of Rn ; and

(5.15) K(r, a) ; Od)=/0(r)po(®)/[/o(l)po(tt>D)] ,

(5.16) K(r, o) ; oorf)=5f0(r)
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Proof. We have by (5.6) and (5.11) that for any /=!, 2, •••

(5.17) ii
') V-o #„(?•'

By (5.11),

(5.18) li

But elementary calculations show that (5.14) holds if and only if

(5.19) ljm/Xs)//o(s)=0 for all /=!, 2, -

(cf. proofs of Theorems 3.2 and 3.3 in [23]). With the same notation as in
Theorem 3.5, (5.17), (5.18) and (5.19) show that ^00= {0, oo}=J0. Hence
Theorem 3.5 together with (5.12) and (5.13) yield the theorem. Q.E.D.

Theorem 5.5. Assume that

(5.20)

Then

Ep is, as a topological space, the closure of E in the compactification
Rnjr{oo(o; o)<=Sn~1} of Rn obtained by attaching the unit sphere at infinity to
Rn ; and there hold the formulas (5.15) and

(5.21) K(r, a) ; oof )= ± fl^(r)pX®)C^/P

where a3 are positive constants defined by

(5.22) aj=limg0(r)/gj(r)
r-»oo

and C(oof)=S;=0a

Proof. We obtain along the line given in Lemma 3.7 of [23] that if (5.20)
holds, then the limits (5.22) exist and are positive. With hj—go/gj we have

Thus //r)//o(r)->ay as r->oo, which together with (5.18) implies that

(5.23) limff/r, r')/H0(l, r')=aigj(r)/g0(l).
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Theorem 3.5, (5.17) and (5.23) imply the theorem. Q.E.D.

Remark 5.6. The results of this section can be extended to Schrodinger
operators with principally radially symmetric potentials along the line given in
[23, Section 5].

We conclude this section with a remark concerning relevant results.

Remark 5.7. The results of this section considerably extend those in [23,
Section 6], where the half space case was treated (see also [36]). In the case
where P=—A and E is a cone with nonempty boundary, the solution gQ of the
initial value problem (5.5)0 and (5.6)0 is given by gQ(r)-— ra° with a0>0; and
so (5.7) and (5.14) hold. Thus Theorem 5.4 implies that there exists a unique
positive solution of — Au=Q in E with u—§ on dE and u(l, a)0)=l. This kind
of uniqueness theorem for uniformly elliptic equations of divergence form was
given in [19]. We shall show in Apoendix an extension of it as an application
of the comparison theorem (Theorem 1.3 in Section 1) and a criterion of uni-
queness (Lemma 2.2 in Section 2).

§ 6. Equations in the Product of a Cone and a Bounded Domain

In this section we study positive solutions of an elliptic equation in the
product of a cone in Rn and a bounded Lipshitz domain in Rm by applying the
results in Sections 3 and 5.

Let P be an elliptic operator on R™xR™ (n^2 and m^l) of the form

(6.1) P=-A,+V(x)+JF(x)[-Ay+tf(;y)],

where V and W are real-valued measurable radial functions on Rn such that
V^Lq,loc(R

n) for some #>(m+?z)/2, W>0, W and W~l are both locally bounded,
and U is a real-valued function in Lr,\oc(R

m}, r>(m+ri)/2. Let D be a Lipshitz
domain with nonempty boundary in Sn~l, or D=Sn'1; and

E={xe=Rn\{Q};x/\x\E=D} if 8D^<f>,

=Rn if D^S71-1.

Let F be a bounded Lipshitz domain in Rm. In this section we investigate
positive solutions of the equation

(6.2) Pu=0 in ExF.

With L=—AX+V and A=—AV+U, Pis rewritten as P=L(g)/+W<8)A; and
L is also rewritten as (5.2). Let {Jt^JLo and {^}"=0 be the eigenvalues and
eigenfunctions of — AD, respectively, as in Section 5. Denote by {^*}*U and
{0*}?=o those corresponding to the Dirichlet realization Ap on LZ(F) of the
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operator A. Let aj9 fa and L3 (/=0, 1, • • • ) be the constants and the operators
defined by (5.3) and (5.4), respectively. Let gjk (/, k=Q, 1, 2, • • • ) be the solution
of the initial value problem

(6.3) (Lj+f*kW)gJk=Q on R+,

(6.4) gjk(r)=r*J+o(raJ+l) as r-»0.

We write p=gQ0.

Theorem 6.1. There exists a positive solution of (6.2) if and only if p>0
on R+.

Proof. We treat only the case where E=Rn. Theorems 3.1 and 5.1 imply
that p>Q if and only if the equation L/u=(LJ

rfjt0W}u=Q in #n\{0} has a
positive solution u. Note that u = CgJrh in a sufficiently small punctured ball
£\{0}, where g is the Green's function for (L')S and h is a positive solution
of Lfh=Q in B. Thus u is equal to either a positive (not necessarily minimal)
Green's function on Rn with pole at the origin or a positive solution on Rn.
Hence the existence of a positive solution in ^n\{0} is equivalent to that of a
positive solution in Rn. Q. E. D.

Theorem 6.2. (i) (P, ExF) is subcritical if and only if for each <5>0

(6.5)

(ii) (P, ExF) is critical if and only if p>Q and the integral in (6.5)
diverges.

Proof. We treat only the case where E=Rn. Since the minimal Green's
function for (L+pQW, Rn\{Q}) is, if it exists, equal to the restriction to #n\{0}
of that for (L+^W, Rn), the theorem follows from Theorems 3.3 and 5.2.

Q.E.D.

In the remainder of this section we assume (6.5).

Theorem 6.3. The minimal Green's function G for (P, ExF) is given by

(6.6) G(x, xf, y, y')= j] Hh(x, x'

for any (x, xf, y} y')£E(Ez\{x = x f } ) x F z , where

(6.7) Hk(x, x')= So^*(kl)/y*(l^l)

for (x, xr) with x ^\x'\, and Hk(x, x'}=Hk(x
f, x] for \x'\^\x . Here
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(6.8)

Proof. Theorems 3.4 and 5.3 yield the theorem. Q. E. D.

Let Rn+{oo} be the one point compactification of Rn, and Rn+ooSn-1 the
compactification of Rn obtained by attaching the unit sphere at infinity. Denote
by I, a, ExFp and K the Martin boundary, minimal Martin boundary, Martin
compactification of ExF, and Martin kernel for (P, ExF) with reference
point Oo, 3>0) in DxF, respectively. Put

(6.9) /1= j>- V(0'(j V V(s)-2 ds)dt ,

(6.10) /a

Then we have the following theorems.

Theorem 6.4. Assume that /1=/a=oo. Then

(6.11) 2=<j

where f is an ideal point outside of F; ExFp is, as a topological space, the
closure of ExF in the one point compactification of RnxF; and

(6.12) K(x, ood, y, /)=goo(

Theorem 6.5. Assume that /!=oo and /2<°°. Then

(6.13) Z=<r

ExFp is, as a topological space, the closure of ExF in (#n+{oo})xF; and

(6.14) K(x, ood, y, ij)=

where aok are positive constants defined by

(6.15) flo*

and C(o°d, 57) zs a constant chosen so that K(xQ, °°d, yQ, 17)=!.

Theorem 6.6. Assume that /i<oo an^ /2=oo.

(6.16) J=tf=3(£xF)+{(oof, /);

a subset of ExFp is a neighborhood of (oof, /) // anrf 072/3; 2'/ it contains a set
of the form
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with N being a neighborhood of oof in Rn+ooSn~l; and

(6.17) K(X9 oof, yt /)= S Gj-ogjodtflV/*/!* )[^y^o](?)^o(30/C(oof, /),
j=0

where ajo are positive constants defined by

(6.18) ajQ=limgQ0(r)/gjQ(r),

and C(oof, /) is a constant determined so that K(xQ, oof, y0f /)=!.

Theorem 6.7. Assume that /i<oo anrf J2<oo. T/zen

(6.19) 2W=3(£XF)+{(oof, ,); fe5, oyeF};

ExFp is, as a topological space, the closure of ExF in (Rn+ooSn-1')xF; and

(6.20) K(x, oof, y, )?)= fj 2 fl^^(|x|)^(x/|x|)[^/9>o](«

where ajk are positive constants defined by

(6.21) flj*

C(oof, 97) 2S a constant chosen so that K(xQ, oof, 3;^ ^)=1.

We need several lemmas in order to prove Theorems 6.4~6.7.

Lemma 6.8. Let hk(r)=gQk(r)/gQQ(r), k=l, 2, ••• . Then one has:
( i ) hk are differ entiable strictly increasing positive functions on R+.
( ii ) The following conditions (a), (b) and (c) are equivalent each other :

(a) 12=00; (b) limr^oo/ii(r)=:oo ; and (c) limr_>OQhk(r')— oo for any k=l, 2, ••• .
(iii) The following conditions (a7), (b') and (c') are equivalent each other :

(a') 72<oo; (b') limr_Jii(r)<oo; and (c') limr_co/i*(r)<oo for any k = l, 2, ••• .
(iv) limr^00/o*(r)//oo(r)=[limr^ooAft(r)]-1 for any k=l, 2, ••• .

Proof. We have from (6.3) and (6.4) that when r^tfo-/30>0,

l—(t/rY(6.22) £

and when a0— ̂ o^O (i.e., ao^^o^O and n=2),

(6.23)
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Thus, /ifc(r)->l as r-»0. Furthermore,

This implies that /i£(r)->0 as r->0. On the other hand, with p=gQO we have
that

Therefore we get

(6.24)

This implies (i).
Let us show (ii) and (iii). Suppose that 72— °o. Since /z f t^l we have from

(6.24) that

This together with the monotone convergence theorem implies that

for any &=1, 2, ••• . Conversely, suppose that I2<°o. With ^ fixed, choose
# so large that

JR

where jp(oo, 0— lin-ir->ooF(r, t). Then we have that for any r>R

(°o, t}hk(t}dt+hk(r}/2.

This implies that lim r_oo/ijfe(r)<oo. Hence we get (ii) and (iii).
It remains to show (iv). By (6.8),

(6.25)
/oo(r)

Suppose that hk(r)-+°° as r-^oo. Since /z& is increasing,
which implies that

/o*(r)//00(r) —> 0 as r-^oo .
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On the other hand, if limr^oo/i&(r)<co, then (6.25) clearly implies (iv). Q. E. D.

Lemma 6.9. Let h j k = g j k / g Q k , 7 = 1, 2, ••• and k=Q, 1, ••• . Put

(6.26) /*

Then one has :
( i ) hjk are differ entiable strictly increasing positive functions on R+.
( ii ) With k fixed, the following conditions (a), (b) and (c) are equivalent

each other', (a) /ft = oo; (b) limr^hlk(r)=co ; awd (c) lim r_oo/ijft(r)=oo /or any
7 = 1,2,-.

(iii) WWi & jfaed, f/zg following conditions (a'), (b') end (c') arg equivalent
each other: (a7) /*<oo; (b') lim r_co/ii f t(r)<oo ; and (c') limr_oo/z^(r)<°o /or
7 = 1 , 2 , . - . .

(iv) limr^0o/J*(r)//o*(r)=[limr^00/iyA(r)]-1 for any j and k.

Proof. We obtain that

(6.27) hik(r)=(l,-lJ\TG(r, t}hjk(t}dt ,

G(r, 0=

By using (6.27) we can show the lemma in the same way as in the proof of
Lemma 6.8. Q.E.D.

Lemma 6.10. Suppose that /2<
c°. Then /I<°Q (or /i=oo) if and only if

Jk<
co (or Jk = ̂ ) for all k=Q, 1,

Proof. Lemma 6.8 implies that if /2<co, then for any k there exists a
positive constant C such that

for l<r<oo.

Since JQ=Ii, this together with (6.26) shows that

C-±T < r <r4/" •^ li^Jk^^ J-i ,

which proves the lemma. Q. E. D.

Proof of Theorem 6.4. Let Hk(x, x'\ k=l, 2, ••• , be the minimal Green's
function for (L+pkW, E) given by (6.7). Write x=(r, (o) and x'=(r', (t)'\ By
(3.10), for any <5>0 there exists a positive constant C such that

(6.28) C<Gk(x, xf)= - f .f1"~
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for any r'I>max(l, r+d) and (a), a>') in Dz. Thus we obtain by Lemma 5.13
that

ChS lim -

Thus with the same notation as in Theorem 3.5, Kk(x, ^d)=Q for any
fc=l, 2, ••• . For (s, )?) in (max(r, 1), oo)x3D,

(6.29) lim

Thus #*(*, (s, 7))>0 for any fe = l, 2, ••• . By (6.28),

/f*U, (s, 77)) — > ^U, oo^) as (s, rf-*o°d .

In this way we can show (P. I), (P. H) and (P. ffl) with J00={oo^} and
SQOO=dE. Hence Theorem 3.5 implies Theorem 6.4. Q. E. D.

Proof of Theorem 6.6. The same argument as in the proof of Theorem
6.4 shows that (P. I), (P. H) and (P. HI) hold with IQQ=ooD and IQoo=dE.
Thus Theorem 6.6 follows from Theorem 3.5 and Lemma 6.9. Q. E. D.

Proof of Theorem 6.5. Lemmas 6.8~6.10 and Theorem 5.3 imply that
aQk, k=Q, 1, -" , defined by (6.15) are positive and

lim Hk(x, x

Thus (P. I )~(P. ffl) hold with SQOO=dE+{ood}, and so Theorem 6.5 follows
from Theorem 3.5. Q. E. D.

Proof of Theorem 6.7. The same argument as in the proof of Theorem
6.5 shows that (P. I )~(P. ffl) hold with ^000=3£+oo5; furthermore,

~ o Q } S f l
J = 0

Thus Theorem 6.7 follows from Theorem 3.5. Q. E. D.

We conclude this section with several remarks.
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Remark 6.11. The results of this section can be extended to an operator
(6.1) with V and W being principally radially symmetric along the line given
in [23, Section 5].

Remark 6.12. Aikawa [3] identified the Martin compactification of ExF
for (—A, £xF), where E—Rn or R+, and F is a bounded Lipshitz domain in
Rm. In this special case we see that /!<oo and /2=°o. Thus his result is a
special case of Theorem 6.6. Take, for example, (—A, RnxF). Then we
obtain from Theorem 6.6 that

K(x, oof, y, /)=

Remark 6.13. Theorems 6.4~6.7 correspond to the following four cases
I~IV, respectively; i.e., I: /1=/2=oo; II: /1==oo and Iz<°° ', III: /i<°° and
/2=-o; IV: Ii<oo and Iz<™. These four cases can be realized by (6.1) with
W(x)=(l+\x\)b on RnxF. More precisely, when 6>— 2, three cases I, III and
IV can occour; when b—— 2, two cases I and IV can do; and when b<—2,
three cases I, II and IV can do.

§ 7. Direct Sum Decomposition

In this section we give a method to construct the Martin boundary for a
domain by decomposing it into a finite union of domains which are disjoint
outside a compact set.

In order to states a main result of this section we need some preparation.
Let L be a second order elliptic differential operator (1.1) satisfying (i)~(iii)
on a non-compact connected orientable Riemannian manifold M of dimension n
and class C2. Let Q and Qit /=0, 1, ••• , u (v: a natural number), be Lipshitz
domains of M such that

(7.1) Q=\JQj}
.7 = 0

£0 is compact, Q3r\Qj^ (*'=£/; *, ;=1, ••• , iO, and 5,^0 (;=1, ••• , v).
Suppose that (L, fl) is subcritical. Let G, S, a and K be the minimal Green's
function, Martin boundary, minimal Martin boundary, and Martin kernel for
(L, Q) with reference point XQ. By Theorems 1.5 and 1.7, (L, Q}) is also sub-
critical for /=!, ••• , v. Denote by Gjt Ij} GJ and Kj those corresponding to
(L, fl;) with reference point Xj. In view of Theorem 2.1, put

and Tj=

Let //+(L, -0, F) be a metric space defined by

(7.2) ff+(L, fl, r)={wef/1
1

oc(^); Lu=Q and ^^^0 in fl
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with the metric associated with the uniform convergence on each compact
subset of Q. Denote by H+(L, Qj} Fj) the one corresponding to (L, Qj\
/=!, ••• , v. We shall write H+=H+(L, Q, F) and HJ+=H+(L, Qj, L3} when
there is no fear of confusion. It is clear that for any f in F (or ^ in Fj)
A"(-, ?) (or Kj(-, £/)) belongs to H+ (or Hj+, respectively).

Now, let us introduce a mapping T from H+ to the direct sum

of HI+, ••• , Hv+. Let u be in H+. For /=!, ••• , v, choose a nonnegative function
9; in C§(M) such that <p,=l in a neighborhood of dQ,r\Q. Set

(7.3) BX*)=(?>,«X*)

for x in Qj. Clearly, B3u is a unique positive solution of the Dirichlet problem :
Lv=0 in QJt v—u on dQj, and v is of minimal growth at Fj. Let M^wLo,.

Define a mapping T from //+ to the direct sum by

(7.4) Tu—(ul—Blu, uz~Bzu, ••• , uv—Bvu}.

Next, we introduce a mapping S from the direct sum to H+. (We shall show
later that S is the inverse of T.) Let v=(vlf ••• , v») with Vj^HJ+, and v] the
extension of v3 on Q3 to M defined by v~=Q on M\Qj. Since ^- vanishes
Holder continuously on dQ3 and there exists a positive constant C such that

for all a^Q in Cl(Q3r^N) with N being a sufficiently small neighborhood of a
point of 8Qj (see [33, Lemma 5.2]), i>7 belongs to H\QC(M}. Thus the restriction
Vj of L^7 to Q belongs to H~l(Q\ Furthermore, we can show that F^O in
the distribution sense as follows: (i) Choose a positive solution h of Lh—Q in
a neighborhood of dQ3f^Q; (ii) use the identity hVj=Lh[(Vj/h}^~\, where Lh is
the operator given by (1.7); and (iii) show that Lh[_(Vj/hT~\^ by applying
Lemma 2.10 of [1]. We are now ready to define S by

(7.5) SvM= ±

We shall denote by G*LvJ the second term in the right hand side of (7.5). The
above argument shows that —G*Lv~ multiplied by any nonnegative function
in Co(M) is a nonnegative function in H\(Q\ Thus S is a mapping from the
direct sum to H+.
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Theorem 7.1. Suppose that (L, Q} is subcritical and Q is decomposed as (7.1).
Then one has'.

( i ) S is a continuous order preserving bijection from the direct sum
QV

3=1H+(L, QJ} Fj) to H+(L, Q, F} ; T is a continuous order preserving bijection
from H+ to the direct sum] T^S'1 and S=T~\

( i i ) There exists a homeomorphism 0 from F to the topological union
^j=iFj with Flr\FJ=6 (*>/). Furthermore, for any f in F with <P(£)<E/%,
if ^j->? as /->oo in QL, then 3> /-»$(£) as /-»oo in Q%.

(iii) 0 maps T onto Sj^iTV
(Iv) For any £ in F such that $(£) belongs to Fk,

(7.6) K(x, |)-

where vjt£=0 for j^=k and vk.e(x)=Kk(x,

Proof. ( i ) Suppose that a sequence {u*}?U In the direct sum converges
to v. Then {(vk^T} k converges to vj in H?OC(M), and {L(vk^}k converges to
Lv'J in H~l(Q\ Thus { S v k } k converges to Sv in H+, which proves the con-
tinuity of S. If w^v in the direct sum, then S(w—v)^Q] which implies that
Sw^Sv. Hence 5 is order preserving. Similarly, we obtain that T is con-
tinuous and order preserving. Let us show that TSv=v for any v in the direct
sum. With u/ = — Sj=iG*L!/;, we have that

(TSv}k^^^v-\nk^w\Qk-Bk(^^v-+w}=vk + w Qk-Bkw.

We claim that W=w — Bkw=Q in Qk. Since W—Q on dQk and W is of minimal
growth at Fk, we see that W is a nonnegative solution of Lw—^ in Qk which
is of minimal growth at S*- Thus Theorem 1.6 implies that W=Q in Qk,
which shows that (TSv)k~vk for any k. In order to complete the proof of ( i )
it suffices to show that T is one to one. Suppose that Tu = Tv for u and v in
H+. Since (u—v)J=BJ(u—v') for any /=!, ••• , v and M— u=0 on dQ, v/e obtain
that

for any s>0, where 3; is a fixed point in Q. Thus M^V in fi. Similarly,
v<u. Hence u=v, which proves that T is one to one.

( i i ) We have that

(7.7) Gk(x, y}=G(x, y)-BkG(x, y},

which implies that

(7.8) Gk(x, y)/G(xQ, y}=K(x, y)-BkK(x, y).

Suppose that {^-}~=i is a sequence in Qk such that limj^y^^^F in QL.
Then, by (7.8), there exists a unique gk in Fk such that yj-*£k in Q% as ;-^co?

K(x, &-BkK(x, f)>0 in fl», and
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(7.9) Kk(x, £)=[#(*, &-BkK(x, £)]/[#(**, &-BkK(xk,

Since K(x, y3\ />!, are positive solutions of Lu=Q in Qi(l^k} which are of
minimal growth at Ft and uniformly bounded on each compact subset of Qtl

we further obtain that

(7.10) K (x, ^-BlK(x, f)=0 in Ql9l*k.

The equalities (7.9) and (7.10) show that if a sequence {3^}°^ in Q converges
to £ in F, then there exists a unique pair (k, £ *) with £* in /% such that 3/;->
£* as /-»co in ^f1. If we define 0 by $(£)=£*, we get (ii).

(iii) Since 5 and T are order preserving, (iii) follows from (7.9).
(iv) follows from ( i ) and (7.9). Q. E. D.

A direct but interesting consequence of Theorem 7.1 is the following
theorem which asserts, for example, that the Martin boundary over infinity is
stable under compact perturbation in a sense.

Theorem 7.2. Suppose that (L, Q) and (Z/, Q'} satisfy the hypotheses in
Theorem 7.1; and assume that Q3~Q'j for j'^Q and L = Lf on Uj=i^. Let F,
T and K be as in Theorem 7.1; and F', ?f and K' the ones corresponding to
(L1 ', Qf}. Then F=F', Y=Yf, and there exists a positive constant C such that

(7.11)

for all £ in F and x in {Jv
J=lQj.

Proof. (7.11) follows from the Harnack inequality, the comparison theorem,
and (7.6). Q. E. D.

Remark. In the special case where v=l and dQ^Ql^Q', results relevant
to Theorem 7.2 were given in [23, Section 2], [24], [21], [27] and [37] (see
also [32]).

We conclude this section with a remark and examples illustrating the scope
of Theorem 7.1. Systematic applications of Theorem 7.1 are left to the reader.

Example 7.3. Let D be a Lipshitz domain whose closure is included in the
upper hemi-sphere, and

Q={x<=Rn\{0}; x/\x\^D}\jRn~lX(-l, 1).

Then we see that the spectrum of the Dirichlet realization (— A)5 of —A in
L2(£?) consists of [0, oo). We might expect that positive harmonic functions
in Q vanishing on dQ are proportional as in the bounded domain case. However
Theorems 7.1, 6.6 and 5.4 (see also Remarks 5.7 and 6.12) show that
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a\dQ is homeomorphic to {°°d}+Sn~l,

where a is the minimal Martin boundary for (—A, Q).

Example 7.4. Let F be a bounded Lipshitz domain in Rm, and X0 the
smallest eigenvalue of (— -4)£, where A is the Laplace operator on Rm. Let
Q=R1XF and Q'=Q\B, where 5 is a closed ball in Q. Then Theorem 3.3
shows that (— A— 2Q, Q} is critical and any positive harmonic function is a con-
stant multiple of <p0(y), where <f>Q is an eigenfunction for 20. On the other hand,
Theorem 1.8 shows that (—A— ̂ 0, Q') is subcritical; and we see from Theorems
7.1 and 3.5 that any positive harmonic function in Q' vanishing on dQ' is a
nonnegative linear combination of two positive harmonic functions K± vanishing
on 3Qf such that

;) as x -> ±00

0o(3^) as -*->+«>,

where C± are positive constants (cf. Theorem A. 7 and Example A. 10 of [23]).

Remark 7.5. In view of Theorem 2.1 one might expect that there holds
such a more localized version of Theorem 7.1 as the following:

Suppose that (L, Q) is subcritical. Let Q' be a Lipshitz subdomain of Q.
Denote by 2 and 2' the Martin boundary for (L, fl) and (L, £?'), respectively.
Then S'\dQ' is imbedded into S\dQ.

But this is not valid in general as the following example shows. Let Q—
Rz, Q'=={xt=R*i *!>() and *2>0}, and L^-A+7, where 7=1 on £' and F^Q
on Q\Qf. Then we see that 2'\dQ' is homeomorphic to [0, Tr/2], On the
other hand, Theorem 7.1 of [23] implies that S consists of one point.

Appendix. A Uniqueness Theorem

In this appendix we give a uniqueness theorem for positive solutions of
an elliptic equation in a cone or Rn.

Let L be an elliptic operator (1.1) on M=Rn, n^2, satisfying ( i )~(iii), and
the following condition :

There exist positive constants a<l<fi, 7, A, A, and a sequence {Rk}*k=i of
positive numbers with Rk-+°° as k— »°o such that for all k = l, 2, •••

(A.I)

(A.2) 2 |

where ^ft-
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Let D be a Lipshitz domain with nonempty boundary in the unit sphere
Sn-i of Rnf Let E=Rn or a Lipshitz domain in Rn of the form

where F is a bounded Lipshitz domain.
We consider the following problem :

(A.3) Lu=Q and u>Q in E, w=0 on 8E(if

Recall that a positive solution of Lu=Q in £ exists if and only if /"(L, £)^
(see Theorem 1.5 in Section 1).

Theorem A, Suppose that F(L, E)^0. Then (A.3) has a solution which is
unique up to a constant multiple.

Proof. By virtue of Theorem 7.2, it suffices to show the theorem in the
case where E=Rn or a cone generated by D (i. e., F=$). We treat only the
cone case, since the other case can be treated similarly and more easily. Let
XQ be a fixed point in E with \x0\=l. For r>l, put Er=E^{ |#|<r}. Since
F(L, £r)>0 by Theorem 1.5, there exists a positive solution wr satisfying

Lwr=Q in Er, wr=0 on 3Er\Er, wr = l on £n{ U"l =r} .

Put ur(x)=wr(x)/wr(x0\ By the Harnack inequality, there exists {r^J^ such
that r^— >oo as y-^-00 and {w r j-}j converges uniformly to a continuous function u
on each compact subset of E. Clearly, u is a solution of (A.3). This proves
the existence.

Let us show the uniqueness by applying Lemma 2.2 in Section 2. Let £F
denote the set of all solutions u of (A.3) normalized by u(xQ)=l. Then the
condition (ii) in Lemma 2.2 holds clearly. Suppose that u and v are solutions
of (A.3). For k=l, 2, • • - , write uk(x)=u(Rkx). Then uk and vk are positive
solutions of

Lkw=0 in G={xEiE-, a<\x\<p}, w=0 on 3Gr\dE ,

where

L* = - 23 S/fl'OA+il^^K^Sf-SiCi,j=i <=i
We see that for all k

1 = 1

where ||-||p denotes the norm of LP(G) and C is a constant independent of k.
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Thus the comparison theorem (Theorem 1.3) and the Harnack inequality yield

the inequality

(A.4) u(Rkx)/u(RkxQ)<Cv(Rkx}/v(Rkx0)

for all k and x^{x^E; 8\\x -l|<min(l-a, 0-1)}. Thus (2.1) holds with

Ok=ERk and xk=RkxQ. On the other hand, (2.2) holds because u=v=Q on

dEr\ERk and F(L, ERk)>0. Hence Lemma 2.2 yields the theorem. Q. E.D.

Remark. In the case where E is a cone with nonempty boundary, Theorem

A is essentially a considerable extension of Theorem 2.1 of [19]. The theorem

in the special case E=Rn includes Theorems 5.6 and 5.7 of [23] except for the

asymptotic behavior at infinity of a positive solution. Together with results of

[24], it also yields an extension of Theorem of [13].

Remark. Theorems A and 2.1 imply that the Martin compactification of E

for (L, E} is the closur of E in the one point compactification of Rn.
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