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On Norm-Dependent Positive Definite Functions

By

Yasuo YAMASAKI*

Summary: Any norm-dependent positive definite function on an infinite dimensional
normed space can be written as a superposition of exp(—c\\ • ||2). Conversely, for a Hilbert
space, any superposition of exp(—c\\ -1|2) is positive definite. A norm-dependent positive
definite function exists only if the norm is of cotype 2. If exp(—||- | | a) is positive definite
for some c>0, such a form an interval (0, a0] where «0^2. If «0 = 2, then || • || is a
Hilbertian norm. For (/*), Q<p^2, we have a0=p. (Though \\x\\ = (E l*n l p ) 1 / p is not

n
a norm for 0<£<1, the last statement remains valid).

In [1], Chapter 3, it was shown that on a Hilbert space, any positive definite
function dependent only on the norm can be written in the form:

(1) *(?)=( expC-
JCO.oo)

where i> is a finite measur on [0, oo). The proof is based on Bernstein's theorem,
which claims :

Proposition 1 (Bernstein's Theorem). Let f ( t ) be a function on [0, oo). //
and only if f ( t ) is continuous and completely monotone, it is the Laplace transform
of a positive measure on [0, oo), namely it can be written as

(2) /(*)=( exp(-sOd*(s).
JCO.oc)

Here, complete monotoneness is defined as:

Definition 1. A function on [0, oo) is said to be completely monotone, if
for any t, r>0 and ?z=0, 1, 2, ••• we have

(3)

where

(4)

Note that if /(£) is known to be infinitely differentiable, complete mono-
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toneness is characterized by (— l)n(dn/dtn}f(t}^.
The proof of Bernstein's theorem, omitted here, can be found for instance

in [2], Chapter 4.

For a Hilbert space, if %(f)=9(l|f||2) is positive definite, then <p must be
completely monotone. The proof is given in [1] and also in [3] with some
related discussions. But in favor of Dvoretzky's theorem, this statement is
kept valid for any infinite dimensional normed space.

Proposition 2 (Dvoretzky's theorem)a Let X be an infinite dimensional
normed space. For any e>0 and positive integer n, there exist an n-dimensional
subspace R and a Hilbertian norm \\-\\H on R such that

(5) ( l -s) l l f lU^llf i l^( l+s)l l f iU for Vfefl .

This theorem appeared in [4], and arose many researcher's interest which led
to more detailed discussions, for instance [5].

Proposition 3. Let X be an infinite dimensional normed space.
If Z(f)=^>( ||f ||2) is continuous and positive definite, <p must be completely

monotone.

Proof. For given tQ>0 and )?>0, there exists an s>0 such that

(6) \<p(t)-<p(tQ)\<y for (l-

For this e and any given positive integer n, there exist an n -dimensional sub-
space R of X and a Hilbertian norm ||-|U on R which satisfies (5).

Let {^}?=1 be a CONS of R in \\-\\H. Since I is positive definite, we have

(7)

For i^y, we have -£(e<— 0j) =*o, so that
I V LJ H

Thus we get

hence (p(tQ)^ -- —~ — ̂ . Since n>0 and ^>0 are arbitrary, we must have

Next, for given ?0>0, r>0 and y >0, we asssume that (6) holds also for
r instead of tQ and that R is (n+l)-dimensional and {0i}?=0 is its CONS in

H. Put gt=-£el, at = l for Igz^w and ^ = -^en-i^-\/TeQ} at = — 1 for
Y " \

l^i^2n. Then, since Z is positive definite, we have
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(8) -

=2.5
i , y= i

Thus we get

hence

Since 72 >0 and 57 >0 are arbitrary, we must have
In a similar way, we can prove (— l)TOA?l^(ifo)^0 for any m, hence <p is

completely monotone. q.e.d.

Combining the above Proposition 3 with Proposition 1, we obtain the follow-
ing result.

Proposition 4. Let X be an infinite dimensional normed space. If a positive
definite function X(f) is continuous and depends only on the norm ||f||, it is written
in the form of (1).

Remark 1. For a Hilbert space, any function £(£) in the form of (1) is
positive definite, but for a general infinite dimensional normed space, the con-
verse is false. Indeed, we know:

Proposition 5. // %(£)=exp(— 1|£ ||2) is positive definite on a normed space X,
then X must be a Hilbert space.

Proof. By (infinite dimensional) Bochner's theorem (for instance, c.f. [6]),
I corresponds to a cr-additive measure /j. on Xa, the algebraic dual space of X.
The correspondence is

(9)

For a fixed ?=£(), the equality X(£f)=exp(— £2|(f ||2) means that *(£) follows one-
dimensional Gaussian distribution of the variance 2||f||2. So that we have

(10)

Thus, the function $£x)=x(t~) belongs to L2(//), and the map f

becomes a norm-preserving imbedding of X into L\fj.). Hence X is a Hilbert
space as a subspace of L\[JL). q.e.d.
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Remark 2. A norm-dependent positive definite function does not always
exist. Especially, if the norm is not of cotype 2, it never exists, (cf. [6] Part
B Theorem 19.7 and its corollary).

Next, we shall discuss about whether exp(— |H|a) is positive definite or not.
The following results are essentially known ([7], [8]), but we shall formulate
and prove them in our way. For a preparation, we state a lemma.

Lemma* On [0, oo), the function /a(0=exp(—ta) is completely monotone if
and only if O^Sa^l.

Proof. Evidently fa(t) is not completely monotone for a<Q. We shall check
, . . d n f athe sign of — .

is all right if a^O.

is true if O^a^l, but false for sufficiently small t if a>l. Suppose that

-^r/«=S ifli»^a-Bexp(-n and (-l)nakn^Q for O^a^l.

Then we have

-^j^«=Si^

This means that

Thus, considering k^n and O^a^l, we get (— l)7i+1afe,n+1^0. This assures
that fa(£) is completely monotone if O^a^l. q.e.d.

Proposition 6. // exp(— ||f ||a°) is positive definite on a nor me d space X, so is

exp(-||ei|a)/0r OrSa^o.

Proof. Since exp(— ta/OCQ) is completely monotone, from Bernstein's theorem
we have

(ID
JCO.oo)
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Since positive definiteness is closed under pointwise convergence and linear
combination with positive coefficients, (11) assures that exp(— ||f||a) is positive
definite.

Remark 3. The set {a>0; exp(— ||?lla) is positive definite} forms an in-
terval, if not empty. This interval is closed at right, since positive definiteness
is closed under pointwise convergence, so that it is of the form of (0, <x0].

We have aQ<2, since every norm-dependent positive definite function is
written in the form of (1), and exp(— £a /2) is not completely monotone for a>2.
We have aQ=2 if and only if X is a Hilbert space.

Proposition 7. Let 0>(f) be a non-negative function on X. Suppose that for
any n, m and £>0, r>0, there exist &, £J(z=l, 2, ••• , n, j=l, 2, ••• , ni) such that

and

Then, every <p( • )-dependent positive definite function X(?)=F(y>(?)) is written in
the form of

for l<i=£j^n, l=S/

(12) *(£)= exp(-sp(£))di,(s).
JCO.oo)

Proof is obtained similarly as the proof of Proposition 3. In this case
implies that F is completely monotone.

Corollary. For the space (lp), 0<p<2, every norm-dependent positive definite
function X(£) is written in the form of

(13)

Remark 4. Conversely, every X(f) in the form of (13) is positive definite
on (lp}, because exp(— \ t \ p ) is positive definite on R and exp(— ||?||p)=

Remark 5. The criterion of this corollary shows us that exp(— ||f||p') is
positive definite if and only if Q<p'^p. Thus we have a0=p for (lp\ 0<p^2.
(aQ is of the same meaning as in Remark 3).

The discussions in the proof of Proposition 7 do not require any norm. So,
Corollary and Remarks 4 and 5 are valid also for 0<p<l. (||?||=(S?=il£*lp)1/p,
whether it is a norm or not).
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