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On Norm-Dependent Positive Definite Functions

By

Yasuo YAMASAKI*

Summary: Any norm-dependent positive definite function on an infinite dimensional
normed space can be written as a superposition of exp(—c| -||?). Conversely, for a Hilbert
space, any superposition of exp(—c| -||?) is positive definite. A norm-dependent positive
definite function exists only if the norm is of cotype 2. If exp(—||-||?) is positive definite
for some «>0, such « form an interval (0, a,] where a,<2. If ay=2, then |-| is a
Hilbertian norm. For (IP), 0<p=<2, we have a,=p. (Though ||x||=(Z|x,1?)¥P is not
a norm for 0<p<1, the last statement remains valid). "

In [1], Chapter 3, it was shown that on a Hilbert space, any positive definite
function dependent only on the norm can be written in the form:

M 1O={  _exp(—cl&ldue)

where v is a finite measur on [0, o). The proof is based on Bernstein’s theorem,
which claims:

Proposition 1 (Bernstein’s Theorem). Let f(f) be a funciion on [0, ). If
and only if f(t) is continuous and completely monotone, it is the Laplace transform
of a positive measure on [0, o), namely it can be written as

@) f(t):S[0 _exp(—sdx(s).
Here, complete monotoneness is defined as:

Definition 1. A function on [0, o) is said to be completely monotone, if
for any ¢, >0 and n=0, 1, 2, --- we have

3) (—=1rAzf()=0
where
4) A fO)=f(t+T)—f(1).

Note that if f(¢) is known to be infinitely differentiable, complete mono-
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toneness is characterized by (—1)*(d™/dt™)f(t)=0.

The proof of Bernstein’s theorem, omitted here, can be found for instance
in [2], Chapter 4.

For a Hilbert space, if %(&)=¢(l|£]|*) is positive definite, then ¢ must be
completely monotone. The proof is given in [1] and also in [3] with some
related discussions. But in favor of Dvoretzky’s theorem, this statement is
kept valid for any infinite dimensional normed space.

Proposition 2 (Dvoretzky’s theorem). Let X be an infinite dimensional
normed space. For any ¢>0 and positive integer n, there exist an n-dimensional
subspace R and a Hilbertian norm |-|x on R such that

(%) A=e)lélla=éII=A+)élxr  for VEER.
This theorem appeared in [4], and arose many researcher’s interest which led

to more detailed discussions, for instance [5].

Proposition 3. Let X be an infinite dimensional normed space.
If XE)=¢(ll€]?) 7s continuous and positive definite, ¢ must be completely
monotone.

Proof. For given ¢,>>0 and >0, there exists an ¢>0 such that
(6) o) —o(t)| =7 for (1—e)to=t=(1+4¢&)%,.

For this e and any given positive integer n, there exist an n-dimensional sub-
space R of X and a Hilbertian norm ||-|jz on R which satisfies (5).
Let {e;}?_, be a CONS of R in ||-||z. Since X is positive definite, we have

n n t—
@) p) ngx(\/é’(ei—ej))go.
For 7#j, we have “ E(e-——e-) ’ =tf,, so that X( E(e~-—ev))<go(t )+7
]; 2 1 J " [} 2 i J = 0 .
Thus we get
nX(0)+n(n—1Xo(t)+1)=0,
hence go(to)z—:(%)l-—n. Since n>0 and %>0 are arbitrary, we must have

o(ts)=0.

Next, for given ¢,>0,7>0 and %>0, we asssume that (6) holds also for
to+7 instead of ¢, and that R is (n-+1)-dimensional and {e;}?_, is its CONS in
|-l Put siz\/%"eu a,=1 for 1<i<n and Eiz\/%en-i—i—\/?eo, a,=—1 for

n+1<¢i<2n. Then, since X is positive definite, we have
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0= 3 w68

®) :2,;%1 [x(\/ %(ei—e,-))—x(\/ %(ei"‘e pus \/;e‘,)].
Thus we get
0= nX(0)-+n(n—1)¢t)+p)—n(ep(t)—n)—n(n—1Xelt.+17)—17),
hence
) —pltot Oz~ D gy KD

Since n>0 and 7 >0 are arbitrary, we must have @(t,)—¢@(,+7)=0.
In a similar way, we can prove (—1)™AT¢(¢,)=0 for any m, hence ¢ is
completely monotone. qg.e.d.

Combining the above Proposition 3 with Proposition 1, we obtain the follow-
ing result.

Proposition 4. Let X be an infinite dimensional normed space. If a positive
definite function X(&) is continuous and depends only on the norm ||§||, it is written
in the form of (1).

Remark 1. For a Hilbert space, any function X(&§) in the form of (1) is
positive definite, but for a general infinite dimensional normed space, the con-
verse is false. Indeed, we know:

Proposition 5. If X(&)=exp(—||&||?) is positive definite on a normed space X,
then X must be a Hilbert space.

Proof. By (infinite dimensional) Bochner’s theorem (for instance, c.f. [6]),
X corresponds to a c-additive measure g on X¢, the algebraic dual space of X.
The correspondence is

O %(E)=Sexp(ix(8))d,u(x), feX, xeXe.

For a fixed £+0, the equality X(t§)=exp(—¢%|&||?) means that x(&) follows one-
dimensional Gaussian distribution of the variance 2||§||%.. So that we have

(10) ¢l =5 | x@rdptx).

Thus, the function @«(x)==x(§) belongs to L*u), and the map Eﬁ%@e

becomes a norm-preserving imbedding of X into L% ). Hence X is a Hilbert
space as a subspace of L*(u). g.e.d.
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Remark 2. A norm-dependent positive definite function does not always
exist. Especially, if the norm is not of cotype 2, it never exists. (cf. [6] Part
B Theorem 19.7 and its corollary).

Next, we shall discuss about whether exp(—| -||%) is positive definite or not.
The following results are essentially known ([7], [8]), but we shall formulate
and prove them in our way. For a preparation, we state a lemma.

Lemma. On [0, o), the function f.({t)=exp(—t%) is completely monotone if
and only if 0<a<l.

Proof. Evidently f,(t) is not completely monotone for «<0. We shall check

the sign of ddt]’:a .
if =—at* ! exp(—t*)=0
at’ e pimt=
is all right if a=0.
2
——c(liz‘z fa=[—a(a—1t*"2+a??*"?] exp(—t*)=0
is true if 0<a<1, but false for sufficiently small ¢ if «>1. Suppose that

an
dt®
Then we have

dn+1 n
prey fa= kgl [ara(ka—n)t*- " —a,atFrDa-1-1] exp(—t2).

fazé‘,laknt"“‘”exp(—t“) and (—1)a,,=0 for 0<a<l.

This means that
[ a1, ns1=0a1.(@—n)
Qrni1=0po(RA—N)—ap1a 2=k=Zn)
Qpi1, 41— Appl.

Thus, considering 2<n and 0<a<l, we get (—1)"*'a, ,..=0. This assures

that f,(t) is completely monotone if 0<a<1. g.e.d.

Proposition 6. If exp(—|§||*°) is positive definite on a normed space X, so is
exp(—[€[%) for 0=a=a,.

Proof. Since exp(—t®/*0) is completely monotone, from Bernstein’s theorem
we have :

n eXD(—IIEH"‘)=S ., EXP(—s[gl%)du(s).

ro,
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Since positive definiteness is closed under pointwise convergence and linear
combination with positive coefficients, (11) assures that exp(—||&]|¢) is positive
definite.

Remark 3. The set {a>0; exp(—|&]|*) is positive definite} forms an in-
terval, if not empty. This interval is closed at right, since positive definiteness
is closed under pointwise convergence, so that it is of the form of (0, a,].

We have a,<2, since every norm-dependent positive definite function is
written in the form of (1), and exp(—¢%/?) is not completely monotone for a>2.
We have a,=2 if and only if X is a Hilbert space.

Propositien 7. Let ¢(§) be a non-negative function on X. Suppose that for
any n, m and t>0, ©>0, there exist &;, &; (=1, 2, -, n, =1, 2, ---, m) such that
(& —&)=t

and
(&5 £ - £&), +E—E)=t+kT
for 1<Zi#j<n, 127,</e< - <Jp<m.

Then, every ¢(-)-dependent positive definite function X(§)=F(¢(£)) is written in
the form of
(12) X(E)=S[0 - exp(—se(E)du(s).

Proof is obtained similarly as the proof of Proposition 3. In this case
1(&)=F(¢(§)) implies that F is completely monotone.

Corollary. For the space (I?), 0<p<2, every norm-dependent positive definite
Sfunction X&) is written in the form of

(13) 1O={ _exp(—slgl)du(s).

ro,
Remark 4. Conversely, every X(£) in the form of (13) is positive definite
on (/?), because exp(—|t|?) is positive definite on R and exp(—|§]?)=
=1 exp(— (& |P).

Remark 5. The criterion of this corollary shows us that exp(—|&]|?") is
positive definite if and only if 0<p’<p. Thus we have a,=p for (I?), 0<p<2.
(@, is of the same meaning as in Remark 3).

The discussions in the proof of Proposition 7 do not require any norm. So,
Corollary and Remarks 4 and 5 are valid also for 0<<p<l. (J|§]|=(2%=1]&:]7)"?,
whether it is a norm or not).
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