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Construction of Gelfand-Tsetlin Basis
for U (g{(N+1))-modules

By
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and Youichi SHIBUKAWA*

Abstract

The Gelfand-Tsetlin basis for irreducible U, (g/(N-1))-modules of finite dimensions
is constructed by means of the lowering operators.

§0. Introduction

In the previous paper [1], we constructed the Gelfand-Tsetlin basis for
irreducible U, (g{(N-+1))-modules of finite dimensions, in terms of the lowering
operators. In this paper, we will give detailed accounts of our construction of
this basis.

We give the result when ¢ is a non-zero complex variable and not a root
of unity, however from the view of technical arguments in its proof we also
have to deal with the case of ¢ to be a transcendental element over C.

Let K=C(g'?) be the field of rational functions in one variable ¢'/% over the
complex number field C if ¢ is a transcendental element and let K=C if ¢ is a
complex variable. The quantum universal enveloping algebra U,=U,(¢/(N-+-1))
associated with g/(N+1) is the associative algebra over K([2]).

In [6] Rosso has shown the representation theory of U,(g) associated with
a complex simple Lie algebra ¢ of finite dimensions. His results are easily
extended for U,(g/(N4+1)). In [2] and [5] when ¢ is transcendental, Jimbo has
shown that an irreducible finite dimensional left U{g/(/N-1))-module V(4) with
highest weight A=(2,, -, Ax)A,EZ, ,=--=2y) is liftable to a U, (gl(N+1))-
module. Namely, he has shown the existence of an irreducible left U,(g/(N-+1))-
module V(g%/»4) of the same dimensions as V(/) with highest weight ¢@/»4=
(g%, ... g/ ANY for a transcendental element g. Throughout this paper we
set gD A=(gW» %0 ... qWDANY for A=(4,, ---, Ax). Also we have an irreducible
finite dimensional right U,module V(g/®4)* with the same properties as
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V(g/»4). This module is regarded as the dual of V(g/®4). Using these
results we construct Gelfand-Tsetlin basis for U,-module V(¢g®/®4). Jimbo [5]
has constructed the Gelfand-Tsetlin basis for the module V(6%/®4), and has
written down the action of U, on this basis. We will reconstruct the Gelfand-
Tsetlin basis in terms of the lowering operators. (As for discussions on the
classical case, see Zhelobenko [4].)

The authors express their gratitude to Professor Y. Nakagami and Doctor
M. Noumi for stimulating discussions, also to Professor Y. Shimizu for his
constant encouragement.

§1. The Definition and the Representation Theory of U, (4/(N-+1))

Let ¢ be a transcendental element over C (resp. a non-zero complex variable
and not a root of unity) and K=C(q'/?)(resp. K=C). The quantum universal
enveloping algebra U,(s[((N-+1)) [2] is the associative algebra over K generated
by the elements k%', e,, f; (1=/<N) with the following relations;

k k 1= k ! kt—l ki'kj:k]'ki;

g%, g f; (G=j%1)
kie;ki'=| qe;, kif k7= q7'f; (i=7),
e; S G#5x1, 1)
kZ
[el; f]] 61] q q_1 H

Les, e;1=[fs f31=0  for [i—j|=2,
ee;.—[2]eie;. 0450002 =0,
fizfiil—[zjfifztlfi+fi:1fi2:0s

m -m
where [nz]=% is called a g-integer.

Furthermore U,=Uy(g/(N+1)) [2] is defined by adjointing to U,(s/(N+1))
the elements ¢*/® (0=</<N) so that k;=¢q'/?¢i-1~0 and that g*o*<1*"*+<¥ belongs
to the center. We give U, a structure of a non-cocommutative Hopf algebra:
The coproduct A: U,—U,QU, is defined on the generators by A(g*=¢/®e)=
g=PeiReT (0= i<N)A(e,)=e,Qk;+ k7' Re;, A(f N=F ,Qk;+k ;'R f (1=j<N).
The counit e: U,—K and the antipode S: U,—U, are respectively defined by

e(g*s)y=1,  e(e;)=e(f;)=0,
S(g=amey=g7amei Se)=—qe;, S(f)=—q"'f; 0=<i<N, 1<j<N).

Let g be a complex simple Lie algebra of finite dimensions and U(g) be a
quantum universal enveloping algebra associated with g. Rosso [6] has esta-
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blished the representation theory of U, g). We state his results in the case of
g=s[(N+1). Let V be a left Uy s{((N+1))-module. For any p=(p, -, pgnx)E
(K*)¥, we set V, ,={veV|kw=pyv (1<i<N)}. Whenever V,+0, we call it a
weight space and call g a weight of V. A left U (:{(N+1))-module V is said
to be a highest weight left module with highest weight 2=(2,, ---, Ax)=E*",
if there exists a non-zero vector v such that

kov=2v (1={<N), ev=0 (1=/<N),
V=4, {(N+1)-v.
The vector v is called a highest weight vector.

Proposition 1.1 (Rosso [67).

(i) Let V be a highest weight left U s{(N+1))-module of highest weight
A Then:

(@) V is the direct sum of its weight spaces.

(b) For each weight p, dimV ,<co and dim V,;=1.

(ii) Any finite dimensional irreducible module is a highest weight module.

(iii) Let V, W be highest weight left modules of the same highest weight.
If V and W are irreducible, then they are isomorphic.

(iv) If V is a finite dimensional irreducible left module of highest weight 2,
then A=(w,q"/?%1, - | wxq®/PAN), where for any i, w=1 and A,=Z,. Conversely
any weight of this form is the highest weight of a finite dimensional irreducible
left module.

(v) Let V be a finite dimensional left module. Then the module V is com-
pletely reducible.

(vi) Any finite dimensional highest weight left module is irreducible.

Further we consider a left Uy(g/(N+1))-module V. For any p=(tto, =+, tn)
=(K*)¥*!, we define its weight space:

V={veV gt w=pp (0<i<N)}.

A highest weight left U, (4/(N +1))-module V with highest weight A=(4,, -, iy)
is similarly defined: There exists a non-zero vector vV such that

gmry=2 (0<i<N), ep=0 (1<i<N),
V=U(gl(N+1))-v.

Using analogous arguments in [6], we can show the following proposition.

Proposition 1.2.

(i) Let V be a highest weight left Uy gl(N +1))-module with highest weight
A. Then:
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(@) V is the direct sum of its weight spaces.

(b) For each weight p, dimV ,<co and dimV,;=1.

(ii) Amny finite dimensional irreducible left U,(gl(N +1))-module is a highest
weight module.

(iii) If V is a finite dimensional irreducible left Uy (gl(N —+1))-module of
highest weight 2, then A=(aw,g®'P%, - | awyg®/PAN), where 2,=Z, 4,2 -+ 22y,
wi=1, asK*. Conversely any weight of this form is the highest weight of a
finite dimensional irreducible left module.

(iv) Let V, W be highest left Uy gl(N+1))-modules of the same highest
weight. If V and W are irreducible, then they are isomorphic.

(v) Any finite dimensional highest weight left Uy (gl(N+1))-module is
irreducible.

Let K,.,=K-w be 1-dimensional left U,-module with highest weight a-0=
(aw,, -, awy), (VP tw=aw,w,e,w=f,w=0,0</<N, 1<;<N) and let V(g@»4)
be an irreducible finite dimensional left €U, module with highest weight ¢¢/®4=
(q@/®%0, ... gAY Then V(g/*1)XK,., is an irreducible finite dimensional
left U,-module with highest weight a-@-g®/21=(aw,g*/>%, --- , awyq*/?*¥),

Let 17(/1) be an irreducible finite dimensional left U(g/(N +1))-module with
highest weight A=(4,, -*-, Ax), (44=Z, 2o=---=2y). Then Jimbo has shown the
following.

Proposition 1.3 (Jimbo [2]). When g is transcendental, the modules V (q©/®4)
and V(A1) are of the same dimensions, and moreover in the classical limit (g—1)
the action of U gl(N+1)) on V(g/®4) tends to that of U(gl(N-+1)) on V(A).

§2. Gelfand-Tsetlin Basis for Finite Dimensional U, (¢/(IV-1))-modules

In this section, we construct the Gelfand-Tsetlin basis for finite dimensional
irreducible left €U,modules V(g©/®4) with highest weight ¢/®41=(g/®»%, ...
gu»AN), (A;€Z, Ay=-+-=2Ay). Noting the argument in §1, we consider only such
modules with highest weight ¢¢/2>4,

Let V=V(g*/®4) be the above module with the highest weight vector |vac>:

V=4U,lvac>, ejlvac>=0 (1<7<N),
g®cilyac>=¢%%|pac> (0Zi<N).

We also let V*=V(g®/»4)y* be a finite dimensional irreducible right U,-
module generated by the highest weight vector <vac]|:

V*=<vac| U, <wvacl|f;=0 1Z7=N),
<vaclgtPeri=¢4Mlicyge| (0<i<N).

V* is considered as the dual of V.
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Let Uy(n,) (resp. Uy(n-)) be the subalgebra of Uy g/(N+1)) generated by
e,’s (resp. f;’s), and g be the subalgebra generated by ¢=@/®<’s. In [6], Rosso
has shown the following proposition (see also [7]).

Proposition 2.1. We have the triangular decomposition
U(gl(N+1)= U(n)QRTQUy(n+)
as vector spaces.

Through the triangular decomposition, we have a natural pairing V*QV—
K defined by

2.1) vaclb@alvac) — {vaclbal|vac) (a, b&,),

with normalization <vac|vac>=1.

We introduce elements d,; and ¢;, (0</<N) in the subalgebra of U, gener-
ated by ¢“/»¢t (0<7{=<n) and e;, f; (1=<j<n). These elements are called lowering
operators and raising operators respectively.

Definition 2.2 (Lowering and raising operators).
For 0</<n<N, we define the elements d.;, c;» in the following inductive
manner ;

dan=1, dnn-1=fn,
dni:<8i—5n-1+n—‘i>fndn_1,7;—<E1,—En—1+n—i—1>dn—l,if7t )
Can=1, Cn-1,n=€n,

Cin:ci-n-len<5i_5n—1+n"—i>—enct,n-1<51_5n—1'+_n—l.'—1>;
qsi—6j+m__q-s,;+5j—m
g—q”
The following theorem is fundamental for the construction of the Gelfand-
Tsetlin basis.

where {g;—e;+m)>=

Theorem 2.3. For fixed n, the operators dn; (resp. cin) (0=i<n) mutually
commute.

We will prove this only for d,;. For this end, we first note the following
commutation relations :

(2-2) f]<5k_em>:<5k_5m_5jk'—5j—l,m+5jm+5j—1,k>fj:
(2.3) e]<5k'_5m>:<5k'_5m+5jk+6j—l,m_ajm"—aj—l,k>ej-
Furthermore we obtain the following lemma by means of the “adjoint relations”

fafass— 21 afn-sfat fa-if2=0, fiosfa—[2]fa-sfufn-rtfafi-i=0
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and an obvious commutation relation f,d,-s :=dn-2 if n-

Lemma 2.4. We have

(1) fida-1.a—[R1fndnrifntdar:if2=0 0<i=n—2),
(i) di-vifn—[21dn-1fndn-r o+ fadies.=0 0=i=n—2),
(iil) fadni=dnifn O<is=n).

Now we prove Theorem 2.3. We simultaneously establish the following
(2.4), and (2.5), by induction on n (2<n):

(2-4)71 dnidn;:dnjdni (O§l<]§n—2)
(2.5)n <5]—51+l'_]-+1>dn—1,1,fndn—1,J+<51_51+i‘j—1>dn—1.jfndn—1.1
:<51—51+i—].>{fndn—1.1,dn—1,]+dn—l,idn—l,jfn} (0§Z<]§.n—2)

Here we should note that (2.4), with j=n—1 has already been shown in Lemma
2.4 (iii), and that (2.5), is a generalization of Lemma 2.4 (ii).

The identities (2.4), and (2.5), are trivial. Suppose that (2.4) and (2.5) be
true for the cases of less than n—1. Then we first show (2.5),. Let j<n—3.
Put

a=¢,~e,+i—], B=¢,~enotn—j, T=e;—~en_t+n—i.

Note that a+7=§ and

(2.6) aXr—1>—<a—1Xr—2>=<{B—2>.

The induction hypothesis and (2.6) lead us to

L.H.S. of (2.5),=<aXB—1Xr—Dfn-sfafn-1dn-2:dn-2,

HLaX =20 —=2dn-s..dn-s.if n-1fnf n-1
—aTDB=1Xr—2dn-s.if n-1fnf n-1dn-2.;s
—La—=1XB=2r—1>dn-s.jf n-rfnfn-1dn-2.1-

Using the adjoint relation f2_,f,—[2]fn-1fnfn-1F+fnf2-1=0, we find that, for
the proof of (2.5),, it suffices to show the following ;

X B—DX =1 fh-1dn-s,i@n-s ;+<a>{B—2)r—2>dn-s,id -2, 2-1
—La+1{B—1)r—2>dns.if i-1Gn-2.;
—a—1XB=2r—1>dn-s.if i-1dn-2..

=21 B—DI =1 fn-1dn-sifn-1dn-s,,
—LaX{B=2G =1 fn-18n-2:dn-s.;fn-s
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—<La{B—1>—2%d s, if2-1dn-2;
+<a><ﬁ_2><r—2>dn—z,ifn—ldn—z,jfn—l} .

By virtue of the induction hypothesis and the adjoint relation, we see that this
identity holds. Thus we get (2.5), for j<n—3. Further we observe that this
identity remains true whenever «, 8 and 7 are commutative elements satisfying
a+r=pf. Hence (2.5), with j=n—2 is also proved by means of Lemma 2.4(i)
(replacing n with n—1). Now we show (2.4),. Making use of the following
identities

(27) fndn-l,ifndn—l,]"dn—l,ifndn—l,jfn
:fndn—l,jfndn—l,z'_dn—l,jfndn—l,ifn ’
(28) [Zj(fndn—l,ifndn—l,J—fndn—l,jfndn-l.7,)

:dn—l.if%dn—l,J_dn—l.jf%dn—l,i »

we get,
[21(dnidn;—dr;dns)
={e;—eit+i—j+1dn 1 if 3dns e, —eiti—]—1Ddn-1,;f 3dn-1.
—[2Ke;—eti—>fndn-1.:dn-1,5/n
=[2]f. < {L.H.S. of (2.5),—R.H.S. of (2.5),}
=0.

Thus Theorem 2.3 is proved.

For multi-indices a=(aq, - @n-1), B=(Bo, ***, Ba-1), a=p stands for the
lexicographic order. Set d%=d&%---d%n7y, and c¢,*=cgrih--c§%. We should
note that the order of multiples in d,* and c,* is not essential thanks to
Theorem 2.3. Let 4, be the left ideal of U, generated by ¢; (1=<7<n). The
following proposition is the key to the construction of the Gelfand-Tsetlin basis
for the module V.

Propesition 2.5. We have, for a=,
2.9 c5d8=0.5Ta] 1 TL{ I TT Ceo—cuat b
X II KfII <5i_5i+k+k_l+1+ai+k>} mod I, ,

where [a]!=[a] ! -[an_,]! ([m]!=[m][m—1]---[2][1]).

To prove this proposition, we need to establish several formulas.
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Lemma 2.6. We have
(2.10) ¢;d ;=0 mod I,y for 1<7<n—1;
(2.11) endni=drni(lep+dn-q,{ei—En+n—i—1) for 0Zi<n—2,
where d,;(1)=<ei—en1+n—i+1>fpdn1,i—<ei—En1+n—1>dn-1,ifn;
(2.12) dnill)dn-1,s=dp-1,:dni  for 0=Zi=n—2.

Proof. We can show (2.10) by induction on 7, and can check (2.11) and
(2.12) by simple computation. O

The following identity is also checked by simple calculation:

n

(2.13) chdi= zijx kiiI:1<51:_5i+k+k—l+l>(ei+1"'en)md;ﬂi mod Ip-1.

Hence the proof of Proposition 2.5 reduces to the following lemma.

Lemma 2.7. We have
(2.14) (ir1en)™d=(ess1 €)™ Cis1 1 dni(D™en
n-i- m-
+ L Ceimeunat —md S Cei—entn—i—1=2U)(ecr )" AR
modJn-l;

(2.15) (eoraen)md=lm] 1T :I;Ij<ei—e,-+k+k—z> mod 9.

Proof. We only show (2.14). Suppose the m-th step be true. Then we
see that

(eis1-en)™ AR = (Cia1 0n) Cinr Cno1dni(1)Mend ns
+n;II:l<ei—-ei+k+k——m—1>7:%1<ei——sn+n——z'—21—3>(e,~+1---en)"‘d;’”i
(by the induction hypothesis and Lemma 2.6 (2.10))

=(ei4177en) s Cpad ()™ ey
+(esrien)" i1 Cno1@n-y,1dTies— e+ n—i—1)
+ 1L et k—m—1> 3 Ceim et n—i—1=2Ueesrren)"dT:

(by Lemma 2.6 (2.11), (2.12))

=(Cirrr €n) a1 e dni(1)™ ey

+ I et om=1> B Ceimentn—im1=2(ecs e dFs.

(by Lemma 2.6 (2.11))
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Here all the congruences mean “mod J,_,”. We can easily deduce (2.15) from
(2.14). O

Proof of Proposition 2.5. Since
(el"'en)aodnﬂll”'d‘i,"n_—ll-:—dnql"‘dﬁ,nyf—lx(el"'gn)ao modJ"_l’
we get

n-1

agp
c2dE=0a,p,c8m70, 0150 2 D <eo—ertb—I+1)

k=1

Xdf1---dBnz1,(e---e,)%0d 50 mod I,y

20 n-1

Ea“oﬂo[ad Vegart, -t g I};I1<Eo—5k+k—l+1>

a0 7
Xd A1 dBnz, l_Hl ];[=Il<s.,—ek+k—l> mod J,

=0ags,[@0]! an11, e ci81d free-d Bz,

ap p-1 X0 n
X 11;[1 )El(so—sk—}-k—l-}-l—}-ﬁk) 'Zl;[1 k=1<€0—5k+k_l> mod Y, .

Repeating this procedure, we obtain the desired formula. O

Now we are in the position to construct the Gelfand-Tsetlin basis for the
module V(g@/»4),
Let p#;y=4:;. The sequence of integer vectors

et Hon [an s eas UNN
(2.16) L T it

e Ho1 U

Ho oo

is called a Gelfand-Tsetlin scheme attached to the module V(g®/®4) if each pair
of vectors p,-;, ¢» satisfies the condition that p; =gt n-1=ptis,» for all ¢, n.
For each scheme, we put

dt=d 1 Hod 21 d y#NTEN-T

and
C#:ch‘N‘FN—l...62#2‘:“161/‘1'/10 ,

where [ln-ﬂn-lz(#m—ﬂo,n—u ) ﬂn-x.n_/ln-l,n—l)-

Proposition 2.8.

n n=1
(i) The weight of the vector d*|vac> is (qIIZ(i;Oﬂin_iI—iO#i,n_l))g§n§1v.
(ii) For Gelfand-Tsetlin schemes p and v, we have

(2.17) vac|c*d*|vac>=0, N}, where Ni= ll'i[l-rn(pn_l, Ua),
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(218) Tn(#n—ly ﬂn)

Lten—ty nat+7—i]! [ftin—pjntj—i—1]1
osizjsn-1 [ty oy —ptj nor =01V osi<isn [ nor— g nt7—i—111"

Proof. The proof of (i) is straightforward, and (ii) is a direct consequence
of Proprsition 2.5. O

Note that N;#0. Hence the vectors {d”|vac>} are linearly independent
over K.

From here to Theorem 2.11, we discuss only for a transcendental element
g. By Proposition 1.3, dim V(¢/»4)=dim V(4), and from the classical results
[8], we know that dim 17(/1) equals to the number of the Gelfand-Tsetlin
schemes. Therefore we obtain the following theorem.

Theorem 2.9. The vectors |p>=d*|vac>(resp. <pl=<wvacl|c”), where p
ranges over the set of Gelfand-Tsetlin schemes, form a basis of the module
V(g™ (resp. Vigeraye)

We refer to {|pg>} as the Gelfand-Tsetlin basis of the module V (qeu»4,
Next we consider the action of the generators of U, on the Gelfand-Tsetlin
basis. For a Gelfand-Tsetlin scheme g, we set §=d5%1#"--d4¥ #*¥!vac>.

Proposition 2.10. We have
(2.19) e,dihr #n-1g

- 2
:n ! NF' dnot d!‘n‘#n—l‘ajs
1 h -1,7%n 2
J=0 [/“j,n—l——ﬂn-l,71—1+n_.7:|N/21’+0“](n-1)
( #On /lln ---------------------- ‘Llnn
Lo, n~1 Hip-1 o e Un-1,n-1
where p'= ,
| Ho,n-1 Hi,n-1
L Lo, n-1

Lo ftn-1—0,=(Uen— e n-1—0sr)osksn-1, and p'+8,(n—1) indicates to replace the
Uy.a-1 i the (n—1)-th row by pj..-,+1 in p'.

S

Proof. From consideration on the weight of the vector e,d5” #"~'&, we
see that it can be expressed as follows;

(2.20) endﬁﬂ'“n—lézgcad%_ld#‘/‘n—l‘(“’“'“'76,
where a=(a,, -, @n-5) is a multi-index, 'a|=a,+ -+a,-,, and
ta—pa-1—(a, 1—|al)

:</1077."',U0,n—1_a07 Tty ‘un—z,n_fln—z,n-l—'a'n—b ﬂn—l,n—ﬂn—l.n—l+lal —'l).
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The coefficient ¢, is given by

_ (dg_ldﬁn‘.“n-l‘(“v1‘101)5, endﬁn‘#n—lé>
(2.21) Ca= “dz_ld%‘n_ﬂn_l—(a‘l_‘al)sllz

Formally rewriting the definition of d,; to
fndn—l,j=<5j'—5n—l+n_j>_l{dﬂj+<8j_s7l-1+n—j_1>d‘ﬂ—l-]fn} ,

we see that, for d¢.,=d,-, ; (0=7=<n—2)(i.e. |a|=1), (2.22) the numerator of
(2.21)

=[#j n-1— -0 Fn—717 | dEnmEm2E %,

and that the numerator of (2.21) vanishes for |a|=2. From (2.20), (2.21), (2.22),
we get the desired result. O

We can show the following theorem which has been established by Jimbo [5].

Theorem 2.11. The action of the generators of U, (gl(N+1)) on the Gelfand-
Tsetlin basis {|p>} is expressed as follows:

n n—-1
(2.23) qi(lﬂ)en{‘u>:q:1/2{k§0#kn‘k50#k,n—l} lg> (0=n<N),
n-1
(2.24) epip>= jgoa;,+5](n_1)_,,|y+5](n—l)> (1£n=EN),
n-1
(2.25) Fule>= Db pl =3 n—1> (Sn=N),
where

kl;.[()[ﬂkn_ﬂj.n-l_*'j—k:l

(2.26) Ap+é,(n-0, p=" "7 ] s
}e[](:) [,uk,n—l_,u].n—l"*"]—k]

(k#3)

n—2
H[ﬂk.n—z_ﬂj.n—l"{‘]._k]
k=0

b#—ﬁ,(n—n-#“ n—1 . ’
k[IO Lo n1r—tjnat7j—Fk]

)

and p+0,(n—1) means to replace only pj n-, with pj .-+l in p.

Proof. We show (2.24). Since e, and d;; (1<i<j<n—1) commute,
end#|vac>_—_(dl-ltl-#o...dﬁg;l—#n-z)endin-#n-l(dﬁﬁrﬂn...d{;zv—l)]Uac>.
Substituting (2.19) into the above identity, we get
n-1 N2,
2 e
i=o (i n-1—fa-1,n-1tn—71i #'+8,(n-1

- (pp-140)-tp- - —1490 -EN-
X d#1 'uO"'dnﬂ-'i 14050 -4p Zdﬁn (#n-1 ])...dﬁN AN-1lyac>.

e, d*lvac>=
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Hence

n-1 N2
enl,u>:2 £

j=0 [/lj. n-1""Un-1, n—1+n_‘]':|N,.2¢'+Jj(n-1)

lpt+0(n—1)>.

Making substitution of the formula (2.18) into the right-hand side, we obtain
(2.24). Using the duality of V(g®/®4)* and V(g‘"/4) one can easily derive (2.25)
from (2.24). O

Next we discuss for a complex variable g. The construction of the Gelfand-
Tsetlin basis for V(g®®4) is as follows. Let V=@C-v(y), where p ranges
u

over the Gelfand-Tsetlin scheme attached to highest weight ¢%/®4. We define
the action of U, on V:

n n—1
g=Omemp(u)=g= L e Zo bty () (0<n<N),

e v()= 1;2;}: Apsajn-p,a0(p+d(n—1)) (1=n=N),

F oY= bu-s -, =3 n—1) (L<nN),

where Ap+s,n-1, and b,,_ajm_n,,, Nare given by (2.26). With this action, V
becomes a left U,module. Let V=U, v(tyac)ZV, Where pya. is the Gelfand-
Tsetlin scheme such that (gyec)in=24: (0=i<n=<N). Then V is an irreducible
left U, ,-module of finite dimensions with highest weight ¢¢/»4, so V=V (g/»4),
Thus the vectors |i>=d*v(¢va.) are linearly independent over C. This means
that {|#>} is a basis of V, and further we see that c*|a>=c*d*v(ttyac)=
Niv(ttyac). Hence V is irreducible and isomorphic to V(g»4) as left U,-modules.
Therefore we see that for a complex variable ¢, the Gelfand-Tsetlin basis of
V(g/»4) and the action of U, on it are the same as those for a transcendental
element g.

Remark 1. Let U, be a subalgebra of U, generated by ¢=%/®% (0<7i<n),
e,, [,(1£7<n). From Lemma 2.6 (2.10) and Proposition 2.8 (i), it follows that

e,d f¥-#N-1lygc>=0 (1Z£;<N-1),
q(llz)gidll\;N‘l‘N—llvac>:q(1/z)1‘i, N—ldAI;N‘I—‘N—llvac> (OézéN—_l)_

From Proposition 1.2 (iv), (v), we see that the vector d#N¥-#N-i|yac> is the
highest weight vector of the finite dimensional irreducible left Uy_,-module
V(gt®ron-1, ... gt/»ey-1,8-1), Hence we get a weak form of the branching
law for Upy \L Up-1.

(2.27) V(g ®)| gy D ® V(girditen ... glzady+ay-p),

0Lai=2i—Ai+1
0sisN—-1

Using the branching law in the classical case ([4]), and the considerations
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about the dimension in Proposition 1.3 and the previous results, we get

Proposition 2.12 (Branching law for Uy | Uy-,). We have
(2.28) V(q(l/z)A)[cUN_I: D V(gi?A1+ao ... gl2An+ay-1),

0SaiS2i—2+1
0s{isN—-1

Remark 2. 1f ¢ is real and positive then Uy (g/(N+1)) has a * structure.
With this * structure, the module V(¢¢/24) turns out to be unitary [1]. Fur-
ther {|#>=1/N,|u>} is an orthonormal basis, and the action of ¥, on this
basis is the same as the result of Jimbo [5].
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