Publ. RIMS, Kyoto Univ. 26 (1990), 667-679

Construction of Gelfand-Tsetlin Basis for $\mathcal{U}_q(\mathfrak{gl}(N+1))$ -modules

By

Kimio UENO*, Tadayoshi TAKEBAYASHI* and Youichi SHIBUKAWA*

Abstract

The Gelfand-Tsetlin basis for irreducible $U_q(gl(N+1))$ -modules of finite dimensions is constructed by means of the lowering operators.

§0. Introduction

In the previous paper [1], we constructed the Gelfand-Tsetlin basis for irreducible $\mathcal{U}_q(\mathfrak{gl}(N+1))$ -modules of finite dimensions, in terms of the lowering operators. In this paper, we will give detailed accounts of our construction of this basis.

We give the result when q is a non-zero complex variable and not a root of unity, however from the view of technical arguments in its proof we also have to deal with the case of q to be a transcendental element over C.

Let $\mathbf{K} = \mathbf{C}(q^{1/2})$ be the field of rational functions in one variable $q^{1/2}$ over the complex number field \mathbf{C} if q is a transcendental element and let $\mathbf{K} = \mathbf{C}$ if q is a complex variable. The quantum universal enveloping algebra $\mathcal{U}_q = \mathcal{U}_q(gl(N+1))$ associated with gl(N+1) is the associative algebra over $\mathbf{K}([2])$.

In [6] Rosso has shown the representation theory of $\mathcal{U}_q(g)$ associated with a complex simple Lie algebra g of finite dimensions. His results are easily extended for $\mathcal{U}_q(gl(N+1))$. In [2] and [5] when q is transcendental, Jimbo has shown that an irreducible finite dimensional left $\mathcal{U}(gl(N+1))$ -module $\widetilde{V}(\Lambda)$ with highest weight $\Lambda = (\lambda_0, \dots, \lambda_N)(\lambda_j \in \mathbb{Z}, \lambda_0 \ge \dots \ge \lambda_N)$ is liftable to a $\mathcal{U}_q(gl(N+1))$ module. Namely, he has shown the existence of an irreducible left $\mathcal{U}_q(gl(N+1))$ module $V(q^{(1/2)\Lambda})$ of the same dimensions as $\widetilde{V}(\Lambda)$ with highest weight $q^{(1/2)\Lambda} = (q^{(1/2)\lambda_0}, \dots, q^{(1/2)\lambda_N})$ for a transcendental element q. Throughout this paper we set $q^{(1/2)\Lambda} = (q^{(1/2)\lambda_0}, \dots, q^{(1/2)\lambda_N})$ for $\Lambda = (\lambda_0, \dots, \lambda_N)$. Also we have an irreducible finite dimensional right \mathcal{U}_q -module $V(q^{(1/2)\Lambda})^*$ with the same properties as

Communicated by M. Kashiwara, December 25, 1989.

^{*} Department of Mathematics, Waseda University, 3-4-1 Ohkubo Shinjuku-ku, Tokyo 169, Japan.

 $V(q^{(1/2)A})$. This module is regarded as the dual of $V(q^{(1/2)A})$. Using these results we construct Gelfand-Tsetlin basis for \mathcal{U}_q -module $V(q^{(1/2)A})$. Jimbo [5] has constructed the Gelfand-Tsetlin basis for the module $V(b^{(1/2)A})$, and has written down the action of \mathcal{U}_q on this basis. We will reconstruct the Gelfand-Tsetlin basis in terms of the lowering operators. (As for discussions on the classical case, see Zhelobenko [4].)

The authors express their gratitude to Professor Y. Nakagami and Doctor M. Noumi for stimulating discussions, also to Professor Y. Shimizu for his constant encouragement.

§1. The Definition and the Representation Theory of $U_q(gl(N+1))$

Let q be a transcendental element over C (resp. a non-zero complex variable and not a root of unity) and $\mathbf{K}=\mathbf{C}(q^{1/2})$ (resp. $\mathbf{K}=\mathbf{C}$). The quantum universal enveloping algebra $\mathcal{U}_q(\mathfrak{sl}(N+1))$ [2] is the associative algebra over K generated by the elements $k_i^{\pm 1}$, e_i , f_i $(1 \le i \le N)$ with the following relations;

$$k_{i} \cdot k_{i}^{-1} = k_{i}^{-1} \cdot k_{i} = 1, \qquad k_{i} \cdot k_{j} = k_{j} \cdot k_{i},$$

$$k_{i} e_{j} k_{i}^{-1} = \begin{pmatrix} q^{-1/2} e_{j} \\ q e_{j}, & k_{i} f_{j} k_{i}^{-1} = \begin{pmatrix} q^{1/2} f_{j} & (i = j \pm 1) \\ q^{-1} f_{j} & (i = j), \\ f_{j} & (i \neq j \pm 1, j) \end{pmatrix}$$

$$[e_{i}, f_{j}] = \delta_{ij} \frac{k_{i}^{2} - k_{i}^{2}}{q - q^{-1}},$$

$$[e_{i}, e_{j}] = [f_{i}, f_{j}] = 0 \quad \text{for} \quad |i - j| \ge 2,$$

$$e_{i}^{2} e_{i \pm 1} - [2] e_{i} e_{i \pm 1} e_{i} + e_{i \pm 1} e_{i}^{2} = 0,$$

$$f_{i}^{2} f_{i \pm 1} - [2] f_{i} f_{i \pm 1} f_{i} + f_{i \pm 1} f_{i}^{2} = 0,$$

$$e_{i}^{m} = e^{-m}$$

where $[m] = \frac{q^m - q^{-m}}{q - q^{-1}}$ is called a *q*-integer.

Furthermore $\mathcal{U}_q = \mathcal{U}_q(g|(N+1))$ [2] is defined by adjointing to $\mathcal{U}_q(\mathfrak{s}|(N+1))$ the elements $q^{\pm(1/2)\mathfrak{e}_i}$ $(0 \leq i \leq N)$ so that $k_i = q^{1/2(\mathfrak{e}_{i-1}-\mathfrak{e}_i)}$ and that $q^{\mathfrak{s}_0+\mathfrak{e}_1+\cdots+\mathfrak{e}_N}$ belongs to the center. We give \mathcal{U}_q a structure of a non-cocommutative Hopf algebra: The coproduct $\Delta: \mathcal{U}_q \rightarrow \mathcal{U}_q \otimes \mathcal{U}_q$ is defined on the generators by $\Delta(q^{\pm(1/2)\mathfrak{e}_i}) =$ $q^{\pm(1/2)\mathfrak{e}_i} \otimes q^{\pm(1/2)\mathfrak{e}_i} (0 \leq i \leq N) \Delta(\mathfrak{e}_j) = \mathfrak{e}_j \otimes k_j + k_j^{-1} \otimes \mathfrak{e}_j, \Delta(f_j) = f_j \otimes k_j + k_j^{-1} \otimes f_j (1 \leq j \leq N).$ The counit $\mathfrak{e}: \mathcal{U}_q \rightarrow \mathbf{K}$ and the antipode $S: \mathcal{U}_q \rightarrow \mathcal{U}_q$ are respectively defined by

$$\begin{split} &\varepsilon(q^{\pm(1/2)\varepsilon_i}) = 1, \qquad \varepsilon(e_j) = \varepsilon(f_j) = 0, \\ &S(q^{\pm(1/2)\varepsilon_i}) = q^{\mp(1/2)\varepsilon_i}, \quad S(e_j) = -qe_j, \quad S(f_j) = -q^{-1}f_j \ (0 \leq i \leq N, \ 1 \leq j \leq N). \end{split}$$

Let g be a complex simple Lie algebra of finite dimensions and $U_q(g)$ be a quantum universal enveloping algebra associated with q. Rosso [6] has esta-

blished the representation theory of $\mathcal{U}_q(g)$. We state his results in the case of $g=\mathfrak{sl}(N+1)$. Let V be a left $\mathcal{U}_q(\mathfrak{sl}(N+1))$ -module. For any $\mu=(\mu_1, \dots, \mu_N) \in (\mathbf{K}^*)^N$, we set $V_{\mu}=\{v \in V \mid k_v v = \mu_v v \ (1 \leq i \leq N)\}$. Whenever $V_{\mu} \neq 0$, we call it a weight space and call μ a weight of V. A left $\mathcal{U}_q(\mathfrak{sl}(N+1))$ -module V is said to be a highest weight left module with highest weight $\lambda=(\lambda_1, \dots, \lambda_N) \in (\mathbf{K}^*)^N$, if there exists a non-zero vector v such that

$$k_i v = \lambda_i v \ (1 \le i \le N), \qquad e_i v = 0 \ (1 \le i \le N),$$
$$V = \mathcal{O}_q \ (\mathfrak{sl}(N+1)) \cdot v.$$

The vector v is called a highest weight vector.

Proposition 1.1 (Rosso [6]).

(i) Let V be a highest weight left $U_q(\mathfrak{sl}(N+1))$ -module of highest weight λ . Then:

(a) V is the direct sum of its weight spaces.

(b) For each weight μ , dim $V_{\mu} < \infty$ and dim $V_{\lambda} = 1$.

(ii) Any finite dimensional irreducible module is a highest weight module.

(iii) Let V, W be highest weight left modules of the same highest weight. If V and W are irreducible, then they are isomorphic.

(iv) If V is a finite dimensional irreducible left module of highest weight λ , then $\lambda = (\omega_1 q^{(1/2)\lambda_1}, \dots, \omega_N q^{(1/2)\lambda_N})$, where for any i, $\omega_1^4 = 1$ and $\lambda_i \in \mathbb{Z}_+$. Conversely any weight of this form is the highest weight of a finite dimensional irreducible left module.

(v) Let V be a finite dimensional left module. Then the module V is completely reducible.

(vi) Any finite dimensional highest weight left module is irreducible.

Further we consider a left $\mathcal{U}_q(\mathfrak{gl}(N+1))$ -module V. For any $\mu = (\mu_0, \dots, \mu_N) \in (\mathbf{K}^*)^{N+1}$, we define its weight space:

$$V_{\mu} = \{ v \in V \mid q^{(1/2)\varepsilon_i} v = \mu_i v \ (0 \leq i \leq N) \}.$$

A highest weight left $\mathcal{U}_q(gl(N+1))$ -module V with highest weight $\lambda = (\lambda_0, \dots, \lambda_N)$ is similarly defined: There exists a non-zero vector $v \in V$ such that

$$\begin{aligned} q^{(1/2)\varepsilon_i}v &= \lambda_i v \ (0 \leq i \leq N), \qquad e_j v = 0 \ (1 \leq i \leq N), \\ V &= \mathcal{U}_q(gl(N+1)) \cdot v. \end{aligned}$$

Using analogous arguments in [6], we can show the following proposition.

Proposition 1.2.

(i) Let V be a highest weight left $U_q(gl(N+1))$ -module with highest weight λ . Then:

(a) V is the direct sum of its weight spaces.

670

(b) For each weight μ , dim $V_{\mu} < \infty$ and dim $V_{\lambda} = 1$.

(ii) Any finite dimensional irreducible left $U_q(gl(N+1))$ -module is a highest weight module.

(iii) If V is a finite dimensional irreducible left $U_q(gl(N+1))$ -module of highest weight λ , then $\lambda = (\alpha \omega_0 q^{(1/2)\lambda_0}, \dots, \alpha \omega_N q^{(1/2)\lambda_N})$, where $\lambda_i \in \mathbb{Z}, \lambda_0 \geq \dots \geq \lambda_N$, $\omega_i^4 = 1, \alpha \in \mathbb{K}^*$. Conversely any weight of this form is the highest weight of a finite dimensional irreducible left module.

(iv) Let V, W be highest left $U_q(gl(N+1))$ -modules of the same highest weight. If V and W are irreducible, then they are isomorphic.

(v) Any finite dimensional highest weight left $\mathcal{U}_q(gl(N+1))$ -module is irreducible.

Let $\mathbf{K}_{\alpha \cdot \omega} = \mathbf{K} \cdot w$ be 1-dimensional left \mathcal{U}_q -module with highest weight $\alpha \cdot \omega = (\alpha \omega_0, \dots, \alpha \omega_N)$, $(q^{(1/2)\varepsilon_i}w = \alpha \omega_i w, e_j w = f_j w = 0, 0 \leq i \leq N, 1 \leq j \leq N)$ and let $V(q^{(1/2)A})$ be an irreducible finite dimensional left \mathcal{U}_q -module with highest weight $q^{(1/2)A} = (q^{(1/2)\lambda_0}, \dots, q^{(1/2)\lambda_N})$. Then $V(q^{(1/2)A}) \otimes \mathbf{K}_{\alpha \cdot \omega}$ is an irreducible finite dimensional left \mathcal{U}_q -module with highest weight $\alpha \cdot \omega \cdot q^{(1/2)A} = (\alpha \omega_0 q^{(1/2)\lambda_0}, \dots, \alpha \omega_N q^{(1/2)\lambda_N})$.

Let $\widetilde{V}(\Lambda)$ be an irreducible finite dimensional left $\mathcal{U}(\mathfrak{gl}(N+1))$ -module with highest weight $\Lambda = (\lambda_0, \dots, \lambda_N)$, $(\lambda_i \in \mathbb{Z}, \lambda_0 \geq \dots \geq \lambda_N)$. Then Jimbo has shown the following.

Proposition 1.3 (Jimbo [2]). When q is transcendental, the modules $V(q^{(1/2)A})$ and $V(\tilde{A})$ are of the same dimensions, and moreover in the classical limit $(q \rightarrow 1)$ the action of $U_q(gl(N+1))$ on $V(q^{(1/2)A})$ tends to that of U(gl(N+1)) on $\tilde{V}(A)$.

§2. Gelfand-Tsetlin Basis for Finite Dimensional $U_q(gl(N+1))$ -modules

In this section, we construct the Gelfand-Tsetlin basis for finite dimensional irreducible left \mathcal{U}_q -modules $V(q^{(1/2)A})$ with highest weight $q^{(1/2)A} = (q^{(1/2)\lambda_0}, \cdots, q^{(1/2)\lambda_N})$, $(\lambda_j \in \mathbb{Z}, \lambda_0 \ge \cdots \ge \lambda_N)$. Noting the argument in §1, we consider only such modules with highest weight $q^{(1/2)A}$.

Let $V = V(q^{(1/2)A})$ be the above module with the highest weight vector $|vac\rangle$:

$$V = \mathcal{Q}_q |vac\rangle, \qquad e_j |vac\rangle = 0 \ (1 \le j \le N),$$
$$q^{(1/2)\epsilon_i} |vac\rangle = q^{(1/2)\lambda_i} |vac\rangle (0 \le i \le N).$$

We also let $V^* = V(q^{(1/2)A})^*$ be a finite dimensional irreducible right \mathcal{U}_{q} -module generated by the highest weight vector $\langle vac |$:

$$V^* = \langle vac | \mathcal{U}_q, \quad \langle vac | f_j = 0 \ (1 \le j \le N),$$

$$\langle vac | q^{(1/2)\epsilon_i} = q^{(1/2)\lambda_i} \langle vac | \ (0 \le i \le N).$$

 V^* is considered as the dual of V.

Let $\mathcal{U}_q(n_+)$ (resp. $\mathcal{U}_q(n_-)$) be the subalgebra of $\mathcal{U}_q(gl(N+1))$ generated by e_j 's (resp. f_j 's), and \mathcal{T} be the subalgebra generated by $q^{\pm (1/2)\varepsilon_i}$'s. In [6], Rosso has shown the following proposition (see also [7]).

Proposition 2.1. We have the triangular decomposition

 $\mathcal{U}_q(gl(N+1)) \cong \mathcal{U}_q(n_-) \otimes \mathcal{I} \otimes \mathcal{U}_q(n_+)$

as vector spaces.

Through the triangular decomposition, we have a natural pairing $V^* \otimes V \rightarrow \mathbf{K}$ defined by

$$(2.1) \qquad \langle vac | b \otimes a | vac \rangle \longmapsto \langle vac | ba | vac \rangle \quad (a, b \in \mathcal{U}_q),$$

with normalization $\langle vac | vac \rangle = 1$.

We introduce elements d_{ni} and $c_{in} (0 \le i \le N)$ in the subalgebra of U_q generated by $q^{(1/2)\varepsilon_i} (0 \le i \le n)$ and e_j , $f_j (1 \le j \le n)$. These elements are called lowering operators and raising operators respectively.

Definition 2.2 (Lowering and raising operators).

For $0 \leq i \leq n \leq N$, we define the elements d_{ni} , c_{in} in the following inductive manner;

$$\begin{aligned} d_{nn} = 1, \ d_{n,n-1} = f_n, \\ d_{ni} = \langle \varepsilon_i - \varepsilon_{n-1} + n - i \rangle f_n d_{n-1,i} - \langle \varepsilon_i - \varepsilon_{n-1} + n - i - 1 \rangle d_{n-1,i} f_n, \\ c_{nn} = 1, \ c_{n-1,n} = e_n, \\ c_{in} = c_{i,n-1} e_n \langle \varepsilon_i - \varepsilon_{n-1} + n - i \rangle - e_n c_{i,n-1} \langle \varepsilon_i - \varepsilon_{n-1} + n - i - 1 \rangle, \end{aligned}$$
where $\langle \varepsilon_i - \varepsilon_j + m \rangle = \frac{q^{\varepsilon_i - \varepsilon_j + m} - q^{-\varepsilon_i + \varepsilon_j - m}}{q - q^{-1}}.$

The following theorem is fundamental for the construction of the Gelfand-Tsetlin basis.

Theorem 2.3. For fixed n, the operators $d_{ni}(\text{resp. } c_{in})(0 \leq i \leq n)$ mutually commute.

We will prove this only for d_{ni} . For this end, we first note the following commutation relations:

(2.2)
$$f_{j}\langle\varepsilon_{k}-\varepsilon_{m}\rangle = \langle\varepsilon_{k}-\varepsilon_{m}-\delta_{jk}-\delta_{j-1,m}+\delta_{jm}+\delta_{j-1,k}\rangle f_{j},$$

(2.3)
$$e_{j}\langle \varepsilon_{k}-\varepsilon_{m}\rangle = \langle \varepsilon_{k}-\varepsilon_{m}+\delta_{jk}+\delta_{j-1,m}-\delta_{jm}-\delta_{j-1,k}\rangle e_{j}.$$

Furthermore we obtain the following lemma by means of the "adjoint relations"

$$f_n^2 f_{n-1} - [2] f_n f_{n-1} f_n + f_{n-1} f_n^2 = 0, \quad f_{n-1}^2 f_n - [2] f_{n-1} f_n f_{n-1} + f_n f_{n-1}^2 = 0$$

and an obvious commutation relation $f_n d_{n-2,i} = d_{n-2,i} f_n$.

Lemma 2.4. We have

- (i) $f_n^2 d_{n-1,i} [2] f_n d_{n-1,i} f_n + d_{n-1,i} f_n^2 = 0$ $(0 \le i \le n-2)$,
- (ii) $d_{n-1,i}^2 f_n [2] d_{n-1,i} f_n d_{n-1,i} + f_n d_{n-1,i}^2 = 0$ $(0 \le i \le n-2)$,
- (iii) $f_n d_{ni} = d_{ni} f_n \quad (0 \leq i \leq n).$

Now we prove Theorem 2.3. We simultaneously establish the following $(2.4)_n$ and $(2.5)_n$ by induction on $n \ (2 \le n)$:

$$(2.4)_{n} \qquad d_{ni}d_{nj} = d_{nj}d_{ni} \quad (0 \le i < j \le n-2).$$

$$(2.5)_{n} \qquad \langle \varepsilon_{j} - \varepsilon_{i} + i - j + 1 \rangle d_{n-1,i}f_{n}d_{n-1,j} + \langle \varepsilon_{j} - \varepsilon_{i} + i - j - 1 \rangle d_{n-1,i}f_{n}d_{n-1,i}$$

$$= \langle \varepsilon_{j} - \varepsilon_{i} + i - j \rangle \{f_{n}d_{n-1,i}d_{n-1,j} + d_{n-1,i}d_{n-1,j}f_{n}\} \quad (0 \le i < j \le n-2).$$

Here we should note that $(2.4)_n$ with j=n-1 has already been shown in Lemma 2.4 (iii), and that $(2.5)_n$ is a generalization of Lemma 2.4 (ii).

The identities $(2.4)_2$ and $(2.5)_2$ are trivial. Suppose that (2.4) and (2.5) be true for the cases of less than n-1. Then we first show $(2.5)_n$. Let $j \leq n-3$. Put

$$\alpha = \varepsilon_j - \varepsilon_i + i - j, \quad \beta = \varepsilon_j - \varepsilon_{n-2} + n - j, \quad \gamma = \varepsilon_i - \varepsilon_{n-2} + n - i.$$

Note that $\alpha + \gamma = \beta$ and

(2.6)
$$\langle \alpha \rangle \langle \gamma - 1 \rangle - \langle \alpha - 1 \rangle \langle \gamma - 2 \rangle = \langle \beta - 2 \rangle.$$

The induction hypothesis and (2.6) lead us to

L.H.S. of
$$(2.5)_n = \langle \alpha \rangle \langle \beta - 1 \rangle \langle \gamma - 1 \rangle f_{n-1} f_n f_{n-1} d_{n-2,i} d_{n-2,j}$$

 $+ \langle \alpha \rangle \langle \beta - 2 \rangle \langle \gamma - 2 \rangle d_{n-2,i} d_{n-2,j} f_{n-1} f_n f_{n-1}$
 $- \langle \alpha + 1 \rangle \langle \beta - 1 \rangle \langle \gamma - 2 \rangle d_{n-2,i} f_{n-1} f_n f_{n-1} d_{n-2,j}$
 $- \langle \alpha - 1 \rangle \langle \beta - 2 \rangle \langle \gamma - 1 \rangle d_{n-2,j} f_{n-1} f_n f_{n-1} d_{n-2,i}.$

Using the adjoint relation $f_{n-1}^2 f_n - [2] f_{n-1} f_n f_{n-1} + f_n f_{n-1}^2 = 0$, we find that, for the proof of $(2.5)_n$, it suffices to show the following;

$$\langle \alpha \rangle \langle \beta - 1 \rangle \langle \gamma - 1 \rangle f_{n-1}^{2} d_{n-2,i} d_{n-2,j} + \langle \alpha \rangle \langle \beta - 2 \rangle \langle \gamma - 2 \rangle d_{n-2,i} d_{n-2,j} f_{n-1}^{2} - \langle \alpha + 1 \rangle \langle \beta - 1 \rangle \langle \gamma - 2 \rangle d_{n-2,i} f_{n-1}^{2} d_{n-2,j} - \langle \alpha - 1 \rangle \langle \beta - 2 \rangle \langle \gamma - 1 \rangle d_{n-2,j} f_{n-1}^{2} d_{n-2,i} = [2] \{ \langle \alpha \rangle \langle \beta - 1 \rangle \langle \gamma - 1 \rangle f_{n-1} d_{n-2,i} f_{n-1} d_{n-2,j} - \langle \alpha \rangle \langle \beta - 2 \rangle \langle \gamma - 1 \rangle f_{n-1} d_{n-2,j} f_{n-1}$$

$$-\langle \alpha \rangle \langle \beta - 1 \rangle \langle \gamma - 2 \rangle d_{n-2, i} f_{n-1}^2 d_{n-2, j}$$

+ $\langle \alpha \rangle \langle \beta - 2 \rangle \langle \gamma - 2 \rangle d_{n-2, i} f_{n-1} d_{n-2, j} f_{n-1}$

By virtue of the induction hypothesis and the adjoint relation, we see that this identity holds. Thus we get $(2.5)_n$ for $j \le n-3$. Further we observe that this identity remains true whenever α , β and γ are commutative elements satisfying $\alpha + \gamma = \beta$. Hence $(2.5)_n$ with j = n-2 is also proved by means of Lemma 2.4(i) (replacing *n* with n-1). Now we show $(2.4)_n$. Making use of the following identities

(2.7)
$$f_n d_{n-1,i} f_n d_{n-1,j} - d_{n-1,i} f_n d_{n-1,j} f_n$$
$$= f_n d_{n-1,j} f_n d_{n-1,i} - d_{n-1,j} f_n d_{n-1,i} f_n d_{n-1,i} f_n d_{n-1,j} f_n d_{n-1,i} f_n d$$

$$= d_{n-1,i} f_n^2 d_{n-1,j} - d_{n-1,j} f_n^2 d_{n-1,i},$$

we get,

$$\begin{split} & [2](d_{ni}d_{nj} - d_{nj}d_{ni}) \\ &= \langle \varepsilon_{j} - \varepsilon_{i} + i - j + 1 \rangle d_{n-1,i} f_{n}^{2} d_{n-1,j} + \langle \varepsilon_{j} - \varepsilon_{i} + i - j - 1 \rangle d_{n-1,j} f_{n}^{2} d_{n-1,n} \\ & - [2] \langle \varepsilon_{j} - \varepsilon_{i} + i - j \rangle f_{n} d_{n-1,i} d_{n-1,j} f_{n} \\ &= [2] f_{n} \times \{ \text{L.H.S. of } (2.5)_{n} - \text{R.H.S. of } (2.5)_{n} \} \\ &= 0. \end{split}$$

Thus Theorem 2.3 is proved.

For multi-indices $\alpha = (\alpha_0, \dots, \alpha_{n-1})$, $\beta = (\beta_0, \dots, \beta_{n-1})$, $\alpha \ge \beta$ stands for the lexicographic order. Set $d_n^{\alpha} = d_{n,0}^{\alpha} \cdots d_{n,n-1}^{\alpha}$, and $c_n^{\alpha} = c_n^{\alpha} n_{1,n} \cdots c_{0,n}^{\alpha}$. We should note that the order of multiples in d_n^{α} and c_n^{α} is not essential thanks to Theorem 2.3. Let \mathcal{G}_n be the left ideal of \mathcal{U}_q generated by e_j $(1 \le j \le n)$. The following proposition is the key to the construction of the Gelfand-Tsetlin basis for the module V.

Proposition 2.5. We have, for $\alpha \geq \beta$,

(2.9)
$$c_{n}^{\alpha}d_{n}^{\beta} \equiv \delta_{\alpha\beta}[\alpha]! \prod_{i=0}^{n-1} \left\{ \prod_{l=1}^{\alpha_{i}} \prod_{k=1}^{n-i} \langle \varepsilon_{i} - \varepsilon_{i+k} + k - l \rangle \right.$$
$$\times \prod_{l=1}^{\alpha_{i}} \prod_{K=1}^{n-i-1} \langle \varepsilon_{i} - \varepsilon_{i+k} + k - l + 1 + \alpha_{i+k} \rangle \left. \right\} \mod \mathcal{G}_{n}$$

where $[\alpha] != [\alpha_0] !\cdots [\alpha_{n-1}] ! ([m] != [m] [m-1] \cdots [2] [1]).$

To prove this proposition, we need to establish several formulas.

Lemma 2.6. We have

$$(2.10) \qquad e_j d_{ni} \equiv 0 \mod \mathcal{G}_{n-1} \text{ for } 1 \leq j \leq n-1;$$

$$(2.11) \qquad e_n d_{ni} = d_{ni}(1)e_n + d_{n-1,i} \langle \varepsilon_i - \varepsilon_n + n - i - 1 \rangle \qquad for \quad 0 \leq i \leq n-2,$$

where
$$d_{ni}(1) = \langle \varepsilon_i - \varepsilon_{n-1} + n - i + 1 \rangle f_n d_{n-1,i} - \langle \varepsilon_i - \varepsilon_{n-1} + n - i \rangle d_{n-1,i} f_n$$
;

$$(2.12) d_{ni}(1)d_{n-1,i} = d_{n-1,i}d_{ni} for \quad 0 \leq i \leq n-2.$$

Proof. We can show (2.10) by induction on n, and can check (2.11) and (2.12) by simple computation. \Box

The following identity is also checked by simple calculation:

(2.13)
$$c_{in}^{m}d_{ni}^{m} \equiv \prod_{l=1}^{m} \prod_{k=1}^{n-i-1} \langle \varepsilon_{i} - \varepsilon_{i+k} + k - l + 1 \rangle (e_{i+1} \cdots e_{n})^{m}d_{ni}^{m} \mod \mathcal{G}_{n-1}.$$

Hence the proof of Proposition 2.5 reduces to the following lemma.

Lemma 2.7. We have

$$(2.14) \qquad (e_{i+1}\cdots e_n)^m d_{ni}^m \equiv (e_{i+1}\cdots e_n)^{m-1} e_{i+1}\cdots e_{n-1} d_{ni}(1)^m e_n \\ + \prod_{k=1}^{n-i-1} \langle \varepsilon_i - \varepsilon_{i+k} + k - m \rangle \sum_{l=0}^{m-1} \langle \varepsilon_i - \varepsilon_n + n - i - 1 - 2l \rangle (e_{i+1}\cdots e_n)^{m-1} d_{ni}^{m-1} \\ mod \mathcal{J}_{n-1};$$

$$(2.15) \qquad (e_{i+1}\cdots e_n)^m d_{ni}^m \equiv [m] ! \prod_{l=1}^m \prod_{k=1}^{n-i} \langle \varepsilon_i - \varepsilon_{i+k} + k - l \rangle \mod \mathcal{J}_n.$$

Proof. We only show (2.14). Suppose the *m*-th step be true. Then we see that

$$\begin{array}{l} (e_{i+1}\cdots e_n)^{m+1}d_{ni}^{m+1} \equiv (e_{i+1}\cdots e_n)^m e_{i+1}\cdots e_{n-1}d_{ni}(1)^m e_n d_{ni} \\ +\prod_{k=1}^{n-i-1} \langle \varepsilon_i - \varepsilon_{i+k} + k - m - 1 \rangle \sum_{l=0}^{m-1} \langle \varepsilon_i - \varepsilon_n + n - i - 2l - 3 \rangle \langle e_{i+1}\cdots e_n \rangle^m d_{ni}^m \\ \end{array}$$

(by the induction hypothesis and Lemma 2.6(2.10))

Here all the congruences mean "mod \mathcal{J}_{n-1} ". We can easily deduce (2.15) from (2.14). \Box

Proof of Proposition 2.5. Since

$$(e_1 \cdots e_n)^{\alpha_0} d_{n_1}^{\beta_1} \cdots d_{n, n-1}^{\beta_{n-1}} \equiv d_{n_1}^{\beta_1} \cdots d_{n, n-1}^{\beta_{n-1}} (e_1 \cdots e_n)^{\alpha_0} \mod \mathcal{G}_{n-1},$$

we get

$$\begin{split} c_n^{\alpha} d_n^{\beta} &\equiv \delta_{\alpha_0 \beta_0} c_n^{\alpha} n_{1,n}^{-1} \cdots c_{1n}^{\alpha_1} \sum_{l=1}^{\alpha_0} \prod_{k=1}^{n-1} \langle \varepsilon_0 - \varepsilon_k + k - l + 1 \rangle \\ &\times d_{n}^{\beta_1} \cdots d_{n,n-1}^{\beta_{n,n-1}} (e_1 \cdots e_n)^{\alpha_0} d_{n}^{\alpha_0} \mod \mathcal{G}_{n-1} \\ &\equiv \delta_{\alpha_0 \beta_0} [\alpha_0] ! \ c_{n-1,n}^{\alpha_{n-1}} \cdots c_{1n}^{\alpha_1} \prod_{l=1}^{n-1} \prod_{k=1}^{n-1} \langle \varepsilon_0 - \varepsilon_k + k - l + 1 \rangle \\ &\times d_{n}^{\beta_1} \cdots d_{n,n-1}^{\beta_{n,n-1}} \prod_{l=1}^{\alpha_0} \prod_{k=1}^{n} \langle \varepsilon_0 - \varepsilon_k + k - l \rangle \mod \mathcal{G}_n \\ &\equiv \delta_{\alpha_0 \beta_0} [\alpha_0] ! \ c_{n-1,n}^{\alpha_{n-1}} \cdots c_{1n}^{\alpha_1} d_{n}^{\beta_1} \cdots d_{n,n-1}^{\beta_{n-1}} \\ &\times \prod_{l=1}^{\alpha_0} \prod_{k=1}^{n-1} \langle \varepsilon_0 - \varepsilon_k + k - l + 1 + \beta_k \rangle \prod_{l=1}^{\alpha_0} \prod_{k=1}^{n} \langle \varepsilon_0 - \varepsilon_k + k - l \rangle \mod \mathcal{G}_n \,. \end{split}$$

Repeating this procedure, we obtain the desired formula.

Now we are in the position to construct the Gelfand-Tsetlin basis for the module $V(q^{(1/2)\Lambda})$.

Let $\mu_{iN} = \lambda_i$. The sequence of integer vectors

(2.16)
$$\mu = \begin{pmatrix} \mu_N \\ \mu_{N-1} \\ \vdots \\ \mu_1 \\ \mu_0 \end{pmatrix} = \begin{pmatrix} \mu_{0N} & \mu_{1N} & \cdots & \mu_{NN} \\ \mu_{0,N-1} & \mu_{1,N-1} & \mu_{N-1,N-1} \\ \vdots & \vdots \\ \mu_{01} & \mu_{11} \\ \mu_{00} \end{pmatrix}$$

is called a Gelfand-Tsetlin scheme attached to the module $V(q^{(1/2)A})$ if each pair of vectors μ_{n-1} , μ_n satisfies the condition that $\mu_{i,n} \ge \mu_{i,n-1} \ge \mu_{i+1,n}$ for all *i*, *n*. For each scheme, we put

and

$$d^{\mu} = d_1^{\mu_1 - \mu_0} d_2^{\mu_2 - \mu_1} \cdots d_N^{\mu_N - \mu_{N-1}},$$

$$c^{\mu} = c_N^{\mu_N - \mu_{N-1}} \cdots c_2^{\mu_2 - \mu_1} c_1^{\mu_1 - \mu_0},$$

where $\mu_n - \mu_{n-1} = (\mu_{0n} - \mu_{0, n-1}, \dots, \mu_{n-1, n} - \mu_{n-1, n-1}).$

Proposition 2.8.

(i) The weight of the vector
$$d^{\mu}|vac>$$
 is $(q^{1/2}(\sum_{i=0}^{\nu}{}^{\mu_{in}},\sum_{i=0}^{\nu}{}^{\mu_{in}},n-1))_{0\leq n\leq N}$.

n-1

. n

(i) The weight of the vector $a_{\Gamma}vac > is$ $(q^{-1}vac)$ (ii) For Gelfand-Tsetlin schemes μ and ν , we have

(2.17)
$$\langle vac | c^{\nu} d^{\mu} | vac \rangle = \delta_{\mu\nu} N_{\mu}^{2}, \quad where \quad N_{\mu}^{2} = \prod_{n=1}^{N} \tau_{n}(\mu_{n-1}, \mu_{n}),$$

(2.18)
$$\tau_{n}(\mu_{n-1}, \mu_{n}) = \prod_{0 \leq i \leq j \leq n-1} \frac{[\mu_{i,n} - \mu_{j,n-1} + j - i]!}{[\mu_{i,n-1} - \mu_{j,n-1} + j - i]!} \prod_{0 \leq i < j \leq n} \frac{[\mu_{in} - \mu_{jn} + j - i - 1]!}{[\mu_{i,n-1} - \mu_{j,n} + j - i - 1]!}.$$

Proof. The proof of (i) is straightforward, and (ii) is a direct consequence of Propriation 2.5. \Box

Note that $N^2_{\mu} \neq 0$. Hence the vectors $\{d^{\mu} | vac > \}$ are linearly independent over K.

From here to Theorem 2.11, we discuss only for a transcendental element q. By Proposition 1.3, dim $V(q^{(1/2)A}) = \dim \tilde{V}(A)$, and from the classical results [8], we know that dim $\tilde{V}(A)$ equals to the number of the Gelfand-Tsetlin schemes. Therefore we obtain the following theorem.

Theorem 2.9. The vectors $|\mu\rangle = d^{\mu}|vac\rangle$ (resp. $\langle \mu | = \langle vac | c^{\mu} \rangle$), where μ ranges over the set of Gelfand-Tsetlin schemes, form a basis of the module $V(q^{(1/2),1})$ (resp. $V(q^{(1/2),4})^*$).

We refer to $\{|\mu\rangle\}$ as the Gelfand-Tsetlin basis of the module $V(q^{(1/2)A})$.

Next we consider the action of the generators of \mathcal{U}_q on the Gelfand-Tsetlin basis. For a Gelfand-Tsetlin scheme μ , we set $\xi = d_{n+1}^{\mu_{n+1}-\mu_n} \cdots d_N^{\mu_N-\mu_{N-1}} |vac\rangle$.

Proposition 2.10. We have

$$(2.19) \quad e_{n}d_{n}^{\mu_{n}-\mu_{n-1}}\xi \\ = \sum_{j=0}^{n-1} \frac{N_{\mu'}^{2}}{[\mu_{j,n-1}-\mu_{n-1,n-1}+n-j]N_{\mu'+\delta_{j}(n-1)}^{2}}d_{n-1,j}d_{n}^{\mu_{n}-\mu_{n-1}-\delta_{j}}\xi, \\ where \quad \mu' = \begin{pmatrix} \mu_{0n} & \mu_{1n} & \cdots & \mu_{n-1,n-1} \\ \mu_{0,n-1} & \mu_{1,n-1} & \cdots & \mu_{n-1,n-1} \\ \mu_{0,n-1} & \mu_{1,n-1} & \cdots & \mu_{n-1,n-1} \\ & & \mu_{0,n-1} & & \end{pmatrix},$$

 $\mu_n - \mu_{n-1} - \delta_j = (\mu_{kn} - \mu_{k,n-1} - \delta_{jk})_{0 \le k \le n-1}, \text{ and } \mu' + \delta_j(n-1) \text{ indicates to replace the } \mu_{j,n-1} \text{ in the } (n-1)\text{-th row by } \mu_{j,n-1} + 1 \text{ in } \mu'.$

Proof. From consideration on the weight of the vector $e_n d_n^{\mu_n - \mu_{n-1}} \xi$, we see that it can be expressed as follows;

$$(2.20) e_n d_n^{\mu_n - \mu_{n-1}} \xi = \sum_a c_a d_{n-1}^a d_n^{\mu_n - \mu_{n-1} - (\alpha, 1 - |\alpha|)} \xi,$$

where $\alpha = (\alpha_0, \dots, \alpha_{n-2})$ is a multi-index, $|\alpha| = \alpha_0 + \dots + \alpha_{n-2}$, and

$$\mu_{n} - \mu_{n-1} - (\alpha, 1 - |\alpha|) = (\mu_{0, n-1} - \mu_{0, n-1} - \alpha_{0}, \dots, \mu_{n-2, n} - \mu_{n-2, n-1} - \alpha_{n-2}, \mu_{n-1, n} - \mu_{n-1, n-1} + |\alpha| - 1).$$

The coefficient c_{α} is given by

(2.21)
$$c_{\alpha} = \frac{(d_{n-1}^{\alpha} d_{n}^{\mu_{n-\mu_{n-1}-(\alpha,1-|\alpha|)}} \xi, e_{n} d_{n}^{\mu_{n-\mu_{n-1}}} \xi)}{\|d_{n-1}^{\alpha} d_{n}^{\mu_{n-\mu_{n-1}-(\alpha,1-|\alpha|)}} \xi\|^{2}}$$

Formally rewriting the definition of d_{nj} to

$$f_n d_{n-1,j} = \langle \varepsilon_j - \varepsilon_{n-1} + n - j \rangle^{-1} \{ d_{nj} + \langle \varepsilon_j - \varepsilon_{n-1} + n - j - 1 \rangle d_{n-1,j} f_n \},$$

we see that, for $d_{n-1}^{\alpha} = d_{n-1,j} \ (0 \le j \le n-2)$ (i.e. $|\alpha| = 1$), (2.22) the numerator of (2.21)

$$= [\mu_{j,n-1} - \mu_{n-1,n-1} + n - j]^{-1} \|d_n^{\mu_n - \mu_{n-1}} \xi\|^2$$

and that the numerator of (2.21) vanishes for $|\alpha| \ge 2$. From (2.20), (2.21), (2.22), we get the desired result. \Box

We can show the following theorem which has been established by Jimbo [5].

Theorem 2.11. The action of the generators of $\mathcal{U}_q(gl(N+1))$ on the Gelfand-Tsetlin basis $\{|\mu\rangle\}$ is expressed as follows:

$$(2.23) q^{\pm (1/2)\varepsilon_n} |\mu\rangle = q^{\pm 1/2} \{ \sum_{k=0}^{n} \mu_{k,n-k} = 0^{-1/2} |\mu\rangle \quad (0 \le n \le N),$$

(2.24)
$$e_{n} | \mu \rangle = \sum_{j=0}^{n-1} a_{\mu+\delta_{j}(n-1),\mu} | \mu + \delta_{j}(n-1) \rangle \quad (1 \leq n \leq N),$$

(2.25)
$$f_{n} | \mu \rangle = \sum_{j=0}^{n-1} b_{\mu-\delta_{j}(n-1),\mu} | \mu - \delta_{j}(n-1) \rangle \quad (1 \le n \le N),$$

where

(2.26)
$$a_{\mu+\delta_{j}(n-1),\mu} = -\frac{\prod_{k=0}^{n} [\mu_{kn} - \mu_{j,n-1} + j - k]}{\prod_{\substack{k=0 \ (k\neq j)}}^{n-1} [\mu_{k,n-1} - \mu_{j,n-1} + j - k]},$$

$$b_{\mu-\delta_{j}(n-1),\mu} = \frac{\prod_{k=0}^{n-2} [\mu_{k,n-2} - \mu_{j,n-1} + j - k]}{\prod_{\substack{k=0\\(k\neq j)}}^{n-1} [\mu_{k,n-1} - \mu_{j,n-1} + j - k]},$$

and $\mu \pm \delta_j(n-1)$ means to replace only $\mu_{j,n-1}$ with $\mu_{j,n-1} \pm 1$ in μ .

Proof. We show (2.24). Since e_n and d_{ji} $(1 \le i \le j \le n-1)$ commute,

$$e_n d^{\mu} | vac \rangle = (d_1^{\mu_1 - \mu_0} \cdots d_{n-1}^{\mu_{n-1} - \mu_{n-2}}) e_n d_n^{\mu_n - \mu_{n-1}} (d_{n+1}^{\mu_{n+1} - \mu_n} \cdots d_N^{\mu_{N-1}}) | vac \rangle.$$

Substituting (2.19) into the above identity, we get

$$\begin{split} e_{n}d^{\mu}|vac\rangle &= \sum_{j=0}^{n-1} \frac{N_{\mu'}^{2}}{[\mu_{j,n-1} - \mu_{n-1,n-1} + n - j]N_{\mu'+\delta_{j}(n-1)}^{2}} \\ &\times d_{1}^{\mu_{1}-\mu_{0}} \cdots d_{n-1}^{(\mu_{n-1}+\delta_{j})-\mu_{n-2}} d_{n}^{\mu_{n}-(\mu_{n-1}+\delta_{j})} \cdots d_{N}^{\mu_{N}-\mu_{N-1}}|vac\rangle. \end{split}$$

Hence

$$e_{n} | \mu \rangle = \sum_{j=0}^{n-1} \frac{N_{\mu'}^{2}}{[\mu_{j,n-1} - \mu_{n-1,n-1} + n - j] N_{\mu'+\delta_{j}(n-1)}^{2}} | \mu + \delta_{j}(n-1) \rangle$$

Making substitution of the formula (2.18) into the right-hand side, we obtain (2.24). Using the duality of $V(q^{(1/2)A})^*$ and $V(q^{(1/2)A})$ one can easily derive (2.25) from (2.24). \Box

Next we discuss for a complex variable q. The construction of the Gelfand-Tsetlin basis for $V(q^{(1/2)A})$ is as follows. Let $V = \bigoplus_{\mu} \mathbf{C} \cdot v(\mu)$, where μ ranges over the Gelfand-Tsetlin scheme attached to highest weight $q^{(1/2)A}$. We define the action of \mathcal{U}_q on V:

$$q^{\pm (1/2)\varepsilon_n} v(\mu) = q^{\pm 1/2} \{ \sum_{k=0}^{\infty} \mu_{kn} - \sum_{k=0}^{n-1} \mu_{k,n-1} \} v(\mu) \quad (0 \le n \le N),$$

$$e_n v(\mu) = \sum_{j=0}^{n-1} a_{\mu+\delta_j(n-1),n} v(\mu + \delta_j(n-1)) \quad (1 \le n \le N),$$

$$f_n v(\mu) = \sum_{j=0}^{n-1} b_{\mu-\delta_j(n-1),\mu} v(\mu - \delta_j(n-1)) \quad (1 \le n \le N),$$

where $a_{\mu+\delta_j(n-1),\mu}$ and $b_{\mu-\delta_j(n-1),\mu}$ are given by (2.26). With this action, V becomes a left \mathcal{U}_q -module. Let $\tilde{V} = \mathcal{U}_q \cdot v(\mu_{vac}) \subset V$, where μ_{vac} is the Gelfand-Tsetlin scheme such that $(\mu_{vac})_{i,n} = \lambda_i$ $(0 \leq i \leq n \leq N)$. Then \tilde{V} is an irreducible left \mathcal{U}_q -module of finite dimensions with highest weight $q^{(1/2)A}$, so $\tilde{V} \cong V(q^{(1/2)A})$. Thus the vectors $|\tilde{\mu}\rangle = d^{\mu}v(\mu_{vac})$ are linearly independent over C. This means that $\{|\tilde{\mu}\rangle\}$ is a basis of V, and further we see that $c^{\mu}|\tilde{\mu}\rangle = c^{\mu}d^{\mu}v(\mu_{vac}) = N_{\mu}^2v(\mu_{vac})$. Hence V is irreducible and isomorphic to $V(q^{(1/2)A})$ as left \mathcal{U}_q -modules. Therefore we see that for a complex variable q, the Gelfand-Tsetlin basis of $V(q^{(1/2)A})$ and the action of \mathcal{U}_q on it are the same as those for a transcendental element q.

Remark 1. Let \mathcal{U}_n be a subalgebra of \mathcal{U}_q generated by $q^{\pm (1/2)\varepsilon_i} (0 \le i \le n)$, e_j , $f_j (1 \le j \le n)$. From Lemma 2.6 (2.10) and Proposition 2.8 (i), it follows that

$$e_{j}d_{N}^{\mu_{N}-\mu_{N-1}}|vac\rangle = 0 \quad (1 \leq j \leq N-1),$$

$$q^{(1/2)_{i}d_{N}^{\mu_{N}-\mu_{N-1}}}|vac\rangle = q^{(1/2)_{\mu_{i},N-1}}d_{N}^{\mu_{N}-\mu_{N-1}}|vac\rangle \quad (0 \leq i \leq N-1).$$

From Proposition 1.2 (iv), (v), we see that the vector $d^{\mu_N-\mu_{N-1}}|vac>$ is the highest weight vector of the finite dimensional irreducible left \mathcal{U}_{N-1} -module $V(q^{(1/2)\mu_0, N-1}, \dots, q^{(1/2)\mu_{N-1}, N-1})$. Hence we get a weak form of the branching law for $\mathcal{U}_N \downarrow \mathcal{U}_{N-1}$.

$$(2.27) \qquad V(q^{(1/2)\Lambda})|_{\mathcal{U}_{N-1}} \supset \bigoplus_{\substack{0 \le \alpha_i \le \lambda_i - \lambda_{i+1} \\ 0 \le i \le N-1}} V(q^{1/2(\lambda_1 + \alpha_0)}, \cdots, q^{1/2(\lambda_N + \alpha_{N-1})}).$$

Using the branching law in the classical case ([4]), and the considerations

about the dimension in Proposition 1.3 and the previous results, we get

Proposition 2.12 (Branching law for $U_N \downarrow U_{N-1}$). We have

$$(2.28) \qquad V(q^{(1/2)\Lambda})|_{U_{N-1}} = \bigoplus_{\substack{0 \le \alpha_i \le \lambda_i - \lambda_i + 1 \\ 0 \le i \le N-1}} V(q^{1/2(\lambda_1 + \alpha_0)}, \cdots, q^{1/2(\lambda_N + \alpha_{N-1})}).$$

Remark 2. If q is real and positive then $\mathcal{U}_q(gl(N+1))$ has a * structure. With this * structure, the module $V(q^{(1/2)A})$ turns out to be unitary [1]. Further $\{|\bar{\mu}\rangle = 1/N_{\mu}|\mu\rangle\}$ is an orthonormal basis, and the action of \mathcal{U}_q on this basis is the same as the result of Jimbo [5].

References

- [1] Ueno, K., Takebayashi, T. and Shibukawa, Y., Gelfand-Tsetlin basis for $\mathcal{U}_q(gl(N+1))$ modules, Lett. Math. Phys., 18 (1989), 215-221.
- [2] Jimbo, M., A q-analogue of $\mathcal{U}(gl(N+1))$, Hecke algebra, and the Yang-Baxter equation, Lett. Math. Phys., 11 (1986), 247-252.
- [3] Gelfand, I.M. and Tsetlin, M.L., Finite-dimensional representations of the group of unimodular mallices, Dokl. Akad. Nauk SSSR, 71 (1950), 825-828.
- [4] Zhelobenko, D. P., Gelfand-Tsetlin bases for classical Lie algebra, in *Representations* of Lie Groups and Lie Algebras, Budapest, 1985, 79-106.
- [5] Jimbo, M., Quantum R matrix related to the generalized Toda system, Lecture Notes in Physics, 246 (1985), 335-361.
- [6] Rosso, M., Finite dimensional representations of the quantum analog of the enveloping algebra of a complex simple Lie algebra, Commun. Math. Phys., 117 (1988), 581-593.
- [7] Yamane, H., A Poincaré-Birkhoff-Witt theorem for quantized universal enveloping algebras of type A_N , preprint, 1989.
- [8] Zhelobenko, D.P., Compact Lie groups and their representations, Amer. Math. Soc., Providence, 1982.