Vanishing in Highest Degree for Solutions of D-Modules and Perverse Sheaves

By

Pierre Schapira*

Abstract

Let M be a real analytic manifold of dimension n, X a complexification of M, \mathcal{M} a coherent module over the sheaf of rings \mathscr{E}_X of microdifferential operators. We prove the vanishing of the group $\mathscr{E}_{\mathcal{K}}\ell_{\mathcal{E}_X}^n(\mathcal{M}, \mathscr{C}_M)$, where \mathscr{C}_M denotes the sheaf of Sato's microfunctions. The proof makes use of the duality of perverse sheaves.

§1. Perverse Sheaves

Let X be a complex manifold of dimension n, and let k be a commutative field. We denote by $D^b(X)$ the derived category of the category of bounded complexes of sheaves of k-vector spaces on X, and by $D^b_{C-c}(X)$ the full subcategory consisting of objects with C-constructible cohomology. In other words, F is an object of $D^b_{C-c}(X)$ iff there exists a complex analytic stratification $X = \bigcup X_{\alpha}$ such that for any $j \in Z$ and any α , the sheaf $H^j(F)_{|X_{\alpha}}$ is locally constant of finite rank. To $F \in Ob(D^b(X))$ one associates:

$$D'F = R\mathscr{H}om(F, k_{x})$$
$$DF = R\mathscr{H}om(F, \omega_{x}),$$

where $\omega_X \cong \operatorname{or}_X [2n]$ is the dualizing complex (and or_X the orientation sheaf), on X. Now, let F be an object of $D^b_{C-c}(X)$ and consider the conditions below.

(1.1) For any complex submanifold Y of X of codimension d, $H_Y^j(F)|_Y$ is zero for j < d.

(1.2) For any $j \in \mathbb{Z}$, $H^{j}(F)$ is supported by a complex analytic subset of codimension $\geq j$.

Here, we shall say that F is perverse if it satisfies the conditions (1.1) and (1.2). Remark that this definition differs from that of [B-B-D] by a shift, but it will be more convenient for our purpose. As a consequence of (1.1), one

Communicated by M. Kashiwara, October 31, 1989.

^{*} Université Paris Nord, Départment de Mathématiques, 93430 Villetaneuse France.

obtains, for F perverse:

(1.3) F is concentrated in degrees ≥ 0 .

Moreover, one can easily show (eg. cf. [K-S 2]) that F satisfies (1.1) if and only if D'F satisfies (1.2). Therefore, if F is perverse, one gets:

(1.4) D'F is perverse.

Proposition 1. Let S be a closed subset of X, and let $x \in S$, x being non isolated in S. Let F be a perverse object of $D^b_{C-c}(X)$.

(a) One has $H^j(R\Gamma_{\{x\}}(F_s) = 0$ for $j \le 0$.

(b) If moreover S is subanalytic, then $H^j(R\Gamma_S(F)_x = 0)$ for $j \ge 2n$.

Proof. (a) The sheaf $H^0(F)$ being C-constructible, one deduces from (1.1) that it satisfies to "the principle of analytic continuation", that is, if u is a section of $H^0(F)$ on an open subset of X, the support of u is both open and closed in this open subset. Therefore $H^0(F)|_S$ also satisfies to this principle, and $H^0_{\{x\}}(F_S) \cong H^0_{\{x\}}(X; F_S) \cong \Gamma_{\{x\}}(S; H^0(F|_S)) = 0.$

(b) By the theory of duality for **R**-constructible sheaves, (cf. [V], [K-S1], [K-S2]), one has:

$$DR\Gamma_{S}(F) \cong (DF)_{S}$$
$$(R\Gamma_{S}(F))_{x} \cong \Gamma_{\{x\}}((DF)_{S}))^{*}$$

where * denotes the duality functor $Hom(\cdot, k)$. It is then enough to apply the result of (a) to the perverse object DF[-2n].

§ 2. Application to \mathscr{E}_X -Modules

Let M be a real analytic manifold of dimension n, X a complexification of M. One denotes by \mathscr{E}_X the sheaf on T^*X of (finite order) microdifferential operators (cf. [S-K-K], or cf. [S] for an introduction to the theory of \mathscr{E}_X -modules). One denotes by \mathscr{C}_M the sheaf on T_M^*X of Sato's microfunctions (cf. [S-K-K]). Recall that the restriction of the sheaf \mathscr{E}_X to the zero-section of T^*X identified to X is nothing but the sheaf \mathscr{D}_X of differential operators on X, and the restriction of the sheaf \mathscr{C}_M to the zero-section of T_M^*X identified to M is nothing but the sheaf \mathscr{D}_X of an introduction of the sheaf \mathscr{D}_M of Sato's hyperfunctions. Also recall the definition of the sheaf of microfunctions:

(2.1)
$$\mathscr{C}_{M} \cong \mu_{M}(O_{X}) \otimes \mathfrak{or}_{M/X}[n],$$

where μ_M is the functor of Sato's microlocalization (cf. [K-S1] or [K-S2]) for a detailed construction of this functor).

Theorem 2. Let \mathcal{M} be a coherent \mathscr{E}_x -module. Then:

536

$$\mathscr{E}xt^{j}_{\mathscr{E}_{\mathbf{x}}}(\mathscr{M},\mathscr{C}_{\mathbf{M}}) = 0 \quad for \ j \ge n.$$

In particular, if \mathcal{M} is a coherent \mathcal{D}_{x} -module, then:

$$\mathscr{E}x\mathscr{L}^{j}_{\mathscr{D}_{\mathbf{X}}}(\mathscr{M},\mathscr{B}_{\mathbf{M}}) = 0 \quad for \ j \ge n.$$

Of course the vanishing of these groups for j > n is obvious, since \mathcal{M} locally admits a free resolution of length n.

Proof. (a) Suppose first that $\mathcal{M} = \mathscr{E}_X \bigotimes_{\mathscr{D}_X} \mathcal{N}$, where \mathcal{N} is a holonomic \mathscr{D}_X -module. (We write \mathcal{N} or \mathscr{D}_X instead of $\pi^{-1} \mathcal{N}$ or $\pi^{-1} \mathscr{D}_X$ in the formulas if there is no risk of confusion. Here, π denotes as usual the projection $T^*X \to X$). Set:

$$F = R \mathscr{H}om_{\mathscr{D}_{\mathbf{X}}}(\mathscr{M}, \mathscr{O}_{\mathbf{X}}).$$

Then:

$$\mathbb{R} \mathscr{H}om_{\mathscr{E}_{\mathbf{X}}}(\mathscr{M}, \mathscr{C}_{\mathbf{M}}) \cong \mu_{\mathbf{M}}(F)[n].$$

By a theorem of Kashiwara [K1], one knows that F is perverse (over the field C). Applying Proposition 1(b), we get that $H^j(\mu_M(F)[n]) = 0$ for $j \ge n$.

(b) Assume now that \mathscr{M} is a holonomic \mathscr{E}_X -module, and let $p \in T^*_M X$. If p belongs to the zero-section, \mathscr{M} is a \mathscr{D}_X -module and this is the previous situation. Otherwise we shall use three results of Kashiwara-Kawai ([K-K]). First, there exists a real contact transformation which put char(\mathscr{M}), the characteristic variety of \mathscr{M} , in a generic position. Second, we may assume \mathscr{M} is regular holonomic, and finally \mathscr{M} is generated by a holonomic \mathscr{D}_X -module. Hence, the theorem is proved in the holonomic case.

(c) To treat the general case, we denote by * the functor $\mathcal{N} \to \mathscr{E}_{x} \mathscr{E}_{\varepsilon_{x}}^{n}(\mathcal{N}, \mathscr{E}_{x})$. It is proved by Kashiwara in [K2] that if \mathcal{M} is coherent, then \mathcal{M}^{*} is holonomic, $\mathcal{M}^{***} \cong \mathcal{M}^{*}$ and \mathcal{M}^{**} is a submodule of \mathcal{M} . Define the coherent \mathscr{E}_{x} -module \mathcal{K} by the exact sequence:

$$0 \longrightarrow \mathscr{M}^{**} \longrightarrow \mathscr{M} \longrightarrow \mathscr{K} \longrightarrow 0.$$

Since $\mathscr{K}^* = 0$, \mathscr{K} locally admits a projective resolution of length n-1. Therefore $\mathscr{E}_{\mathscr{K}}\ell_{\mathscr{E}_X}^n(\mathscr{K}, \mathscr{C}_M) = 0$ and $\mathscr{E}_{\mathscr{K}}\ell_{\mathscr{E}_X}^j(\mathscr{M}, \mathscr{C}_M) \cong \mathscr{E}_{\mathscr{K}}\ell_{\mathscr{E}_X}^j(\mathscr{M}^{**}, \mathscr{C}_M) = 0$ for $j \ge n$.

This completes the proof.

Bibliography

- [B-B-D] Beilinson, A.A., Bernstein, J. and Deligne, P., Faisceaux pervers-Astérisque, 100(1982).
 [K1] Kashiwara, M., On the maximally overdetermined systems of linear differential equations, I, Publ. RIMS, Kyoto Univ., 10 (1975), 563-579.
- [K2] , b-functions and holonomic systems, Inventiones Math. 38 (1976), 33-53.

538	Pierre Schapira
[K-K]	Kashiwara, M. and Kawai, T., On holonomic systems of microdifferential equations, III, Publ. RIMS, Kyoto Univ., 17 (1981) 813–979.
[K-S1]	Kashiwara, M. and Schapira, P., Microlocal study of sheaves, Astérisque 128 (1985).
[K-S2]	, Sheaves on manifolds, Grundlehren der Math. 292 (1990).
[S-K-K]	Sato, M., Kawai, T. and Kashiwara, M., Hyperfunctions and pseudo-differential equations, <i>Lect. Notes in Math.</i> 287, Springer-Verlag, (1973) 265-529.
[S]	Schapira, P., Microdifferential systems in the complex domain, Grundlehren der Math. 269, Springer-Verlag, 1985.
[V]	Verdier, J.L., Dualité dans les espaces localement compacts, Sem. Bourbaki 300, (1965-66).