On the Bifurcation Set of a Polynomial Function and Newton Boundary

By

András NÉMETHI* and Alexandru ZAHARIA*

§1. Introduction

Let $f: \mathbb{C}^n \to \mathbb{C}$ be a polynomial function. It is well known that there exists a finite set $\Gamma \subseteq \mathbb{C}$, such that $f: \mathbb{C}^n \setminus f^{-1}(\Gamma) \to \mathbb{C} \setminus \Gamma$ is a locally trivial fibration (see [1], [5], [13], [15], [16]). The smallest such set Γ we call the *bifurcation* set, denoted by B_f (in [1], [2] it is called the set of atypical values). Since the map f is not proper, the set B_f contains besides the set Σ_f of all critical values of f perhaps some other points (the "critical values at infinity" or "critical values of second type" [12]). There are some special cases when the polynomial has no critical values at infinity (hence $B_f = \Sigma_f$): Pham [13] and Fedoryuk [4] have imposed lowerbound conditions for ||grad f(x)|| for large values of ||x||, Kouchnirenko has proved in [6] for convenient polynomials with nondegenerate Newton principal part at infinity, Broughton [1], [2] for "tame" polynomials and the first author [8], [9] for the larger class of "quasitame" polynomials.

In this note we give an *explicit* set S_f , such that $B_f \subseteq \Sigma_f \cup S_f$. More precisely, let grad $f(z) = \left(\frac{\overline{\partial f}}{\partial z_1}(z), \dots, \frac{\overline{\partial f}}{\partial z_n}(z)\right)$. We denote by $\mathcal{M}(f)$ the *Milnor* set of the polynomial f, namely

 $\mathcal{M}(f) = \{z \in \mathbb{C}^n \text{ ; there exists } \lambda \in \mathbb{C} \text{ such that } \operatorname{grad} f(z) = \lambda z \}.$

We define the set S_f by:

$$S_{f} = \left\{ \begin{array}{l} c \in C; \text{ there exists a sequence } \{z^{k}\}_{k} \subseteq M(f) \text{ such that} \\ \lim_{k \to \infty} \|z^{k}\| = \infty \text{ and } \lim_{k \to \infty} f(z^{k}) = c \end{array} \right\}$$

In the second section we prove:

Theorem 1. Let $f: \mathbb{C}^n \to \mathbb{C}$ be a polynomial map. Then $B_f \subseteq \Sigma_f \cup S_f$.

Communicated by K. Saito, December 25, 1989.

^{*} Department of Mathematics INCREST, Bd. Păcii 220, RO-79622 Bucharest, Romania.

In the third section we consider the Newton nondegenerate case. In this situation, the set S_f can be determined very easy and explicitly. Namely, let $f = \sum_{\nu \in N} a_\nu z^\nu$ be a polynomial of *n* variables (where $\nu = (\nu_1, \dots, \nu_n)$ and $z^\nu = z_1^{\nu_1} \dots z_n^{\nu_n}$ as usual) with f(0)=0. As in [6], [11] we denote $\operatorname{supp}(f)=\{\nu \in N^n; a_\nu \neq 0\}$, $\overline{\operatorname{supp}(f)}=$ the convex closure in \mathbb{R}^n of $\operatorname{supp}(f)$, $\tilde{\Gamma}_-(f)=$ the convex closure of $\{0\} \cup \operatorname{supp}(f)$, $\tilde{\Gamma}(f)=$ the union of the closed faces of the polyhedron $\tilde{\Gamma}_-(f)$ which do not contain the origin. If $\Delta \subseteq \tilde{\Gamma}(f)$ is a closed face, we note $f_d(z)=\sum_{\nu\in A} a_\nu z^\nu$ and we say that f is nondegenerate on Δ if the system of equations $\frac{\partial f_A}{\partial z_1}(z)=\dots=\frac{\partial f_A}{\partial z_n}(z)=0$ has no solutions in $(\mathbb{C}^*)^n$. We say that f is nondegenerate on Δ . By definition, f is convenient if the intersection of $\operatorname{supp}(f)$ with each coordinate axis is non-empty.

A closed face $\varDelta \subseteq \overline{\operatorname{supp}(f)}$ is called *bad* if:

(i) the affine subvariety of dimension=dim \varDelta spaned by \varDelta contains the origin, and

(ii) there exists a hyperplane $H \subseteq \mathbf{R}^n$ with equation $a_1 x_1 + \cdots + a_n x_n = 0$ (where x_1, \cdots, x_n are the coordinates in \mathbf{R}^n) such that

- a) there exist *i* and *j* with $a_i < 0$ and $a_j > 0$
- b) $H \cap \overline{\operatorname{supp}(f)} = \mathcal{A}$.

We can express more geometrically the condition (iia) by saying that the hyperplane H intersects the interior of the positive octant $(\mathbf{R}_{+})^{n}$.

Let \mathcal{B} denote the set of bad faces of $\overline{\operatorname{supp}(f)}$. If $\Delta \in \mathcal{B}$ we define:

$$\Sigma_{\mathcal{A}} = \{ f_{\mathcal{A}}(z^0) ; z^0 \in (C^*)^n \text{ and } \operatorname{grad} f_{\mathcal{A}}(z^0) = 0 \}.$$

It is clear that $\Sigma_{\mathcal{A}} \subseteq \Sigma_{\mathcal{F}_{\mathcal{A}}}$, hence $\Sigma_{\mathcal{A}}$ is a *finite set*. We have the following:

Theorem 2. Suppose that f is not convenient, Newton nondegenerate and f(0)=0. Then $B_f \subseteq \Sigma_f \cup \{0\} \cup \bigcup_{A \in \mathcal{A}} \Sigma_A$.

In the convenient case, $B_f = \Sigma_f$ (see [6], [2]).

In the last section of this note there are some remarks. Also, for n=2, we compare our Theorem 2 with the result of Hà and Lê, which gives B_f in terms of the Euler-characteristic of the fibers $f^{-1}(c)$ (see [5]). In particular, for n=2, our formula is the best possible (see Proposition 6).

§2. Proof of Theorem 1

We need the following lemma, which is a direct consequence of the definitions: **Lemma 3.** Let $D \subseteq C \setminus S_f$ be a closed disc. Then $f^{-1}(D) \cap \mathcal{M}(f)$ is bounded.

For $a, b \in \mathbb{C}^n$ we note $\langle a, b \rangle = \sum_{j=1}^n a_j \overline{b}_j$. For $R \in (0, \infty)$ we put $S_R = \{z \in \mathbb{C}^n; \|z\| = R\}$ and $B_R = \{z \in \mathbb{C}^n; \|z\| \leq R\}$.

Now for the proof of the theorem we fix $c \in \mathbb{C} \setminus (\Sigma_f \cup S_f)$ and D a small open disc centered at c, with the closure $\overline{D} \subseteq \mathbb{C} \setminus (\Sigma_f \cup S_f)$. Let $R \in (0, \infty)$ be sufficiently large such that $f^{-1}(D) \cap \mathcal{M}(f) \cap \{z \in \mathbb{C}^n; \|z\| \ge R\} = \phi$ (this is possible by Lemma 3) and such that S_R meets transversally $f^{-1}(c')$ for all $c' \in D$ (also possible if D is small enough). It follows that $\operatorname{grad} f(z)$ and z are C-linearly independent vectors for all $z \in A$, where $A = f^{-1}(D) \cap \{z \in \mathbb{C}^n; \|z\| \ge R\}$, and therefore we can find a smooth vector field $v_1(z)$ on A such that $\langle v_1(z), z \rangle = 0$ and $\langle v_1(z), \operatorname{grad} f(z) \rangle = 1$.

Let $\varepsilon > 0$ be such that for every $R' \in [R, R+\varepsilon]$ and for every $d \in D$, we have $f^{-1}(d) \cap S_{R'}$. Since $D \cap \Sigma_f = \phi$, the fibration theorem of Ehresmann gives that the restriction $f: (f^{-1}(D) \cap B_{R+\varepsilon}, f^{-1}(D) \cap S_{R+\varepsilon}) \to D$ is a locally trivial fibration with the fiber $F = f^{-1}(c) \cap B_{R+\varepsilon}$, a smooth manifold with boundary $\partial F = f^{-1}(c) \cap S_{R+\varepsilon}$. Hence there exists a diffeomorphism $\psi: (F \times D, \partial F \times D) \to (f^{-1}(D) \cap B_{R+\varepsilon}, f^{-1}(D) \cap$ $S_{R+\varepsilon})$ such that $f \circ \psi$ is the projection onto D. Thus the vector field $w: F \times D$ $\to T(F \times D) = TF \times TD$, w(z, d) = ((z, 0), (d, 1)) will give a vector field v_2 on $f^{-1}(D) \cap B_{R+\varepsilon}$ such that $\langle v_2(z), \operatorname{grad} f(z) \rangle = 1$ for every z. Glueing together v_1 and v_2 , we obtain a vector field v on $f^{-1}(D)$ such that $\langle v, \operatorname{grad} f \rangle = 1$ and such that for every z with $\|z\| \ge R+\varepsilon$, we have $\langle v(z), z \rangle = 0$. Now using the solutions of the differential equation $\frac{dz}{dt} = v(z)$ we obtain that the restriction $f: f^{-1}(D) \to D$ is a trivial fibration.

§3. Proof of Theorem 2

We need a version of Curve Selection Lemma from Milnor's book [7]. This seems to be well known. For a proof, we refer the reader to [10].

Lemma 4. (Curve Selection Lemma) Let $f_1, \dots, f_q, g_1, \dots, g_s, h_1, \dots, h_r \in \mathbb{R}[X_1, \dots, X_m]$ be polynomial functions with real coefficients. Let $U = \{x \in \mathbb{R}^m; f_i(x)=0, i=1, \dots, q\}$ and $W = \{x \in \mathbb{R}^m; g_i(x)>0, i=1, \dots, s\}$. Suppose that there exists a sequence $\{x^k\} \subseteq U \cap W$ such that $\lim_{k \to \infty} \|x^k\| = \infty$ and for all $j \in \{1, \dots, r\}$, $\lim_{k \to \infty} h_j(x^k) = 0$. Then there exists a real analytic curve $p: (0, \varepsilon) \to U \cap W$ with $\lim_{k \to \infty} \|p(t)\| = \infty$, $\lim_{t \to 0} h_j(p(t)) = 0$ for $1 \leq j \leq r$ and of the form $p(t) = at^a + a_1 t^{a+1} + \cdots$ with $a \in \mathbb{R}^m \setminus \{0\}$ and $\alpha < 0$.

Using Theorem 1 and Curve Selection Lemma, it is sufficient to prove the following:

If f is a Newton nondegenerate polynomial with f(0)=0 and if $p(t)\in \mathcal{M}(f)$ is an analytic curve such that

(1)
$$\lim_{t \to 0} \|p(t)\| = \infty \quad and \quad \lim_{t \to 0} f(p(t)) \in C$$

then $\lim_{t\to 0} f(p(t)) \in \Sigma_f \cup \{0\} \cup \bigcup_{\Delta \in \mathcal{B}} \Sigma_{\Delta}.$

To prove this we consider the expansions

(2)
$$\begin{cases} p(t) = at^{\alpha} + a_{1}t^{\alpha+1} + \cdots \\ f(p(t)) = bt^{\beta} + b_{1}t^{\beta+1} + \cdots \\ \text{grad } f(p(t)) = ct^{\gamma} + c_{1}t^{\gamma+1} + \cdots \end{cases}$$

and the identity

(3)
$$\frac{df(p(t))}{dt} = \left\langle \frac{dp}{dt}, \operatorname{grad} f(p(t)) \right\rangle.$$

The condition $p(t) \in \mathcal{M}(f)$ means that there exists an analytic curve $\lambda(t) \in C$ such that for every t, we have

(4) $\operatorname{grad} f(p(t)) = \lambda(t)p(t)$.

If grad $f(p(t))\equiv 0$, the identity (3) shows that f(p(t)) is constant with respect to t, namely $f(p(t))\in \Sigma_f$.

So we can suppose that grad $f(p(t)) \neq 0$. Similarly, $f(p(t)) \neq 0$, since otherwise by derivation $\lambda(t) \cdot \left\langle \frac{dp}{dt}, p \right\rangle = 0$ which is in contradiction with grad $f(p(t)) \neq 0$ and $\left\langle \frac{dp}{dt}, p \right\rangle \neq 0$. From (4) we get also $\lambda(t) \neq 0$. Let $\lambda(t) = \lambda_0 t^{\delta} + \lambda_1 t^{\delta+1} + \cdots$ be the expansion of $\lambda(t)$, where $\lambda_0 \neq 0$. From (1) we can assume that $a \neq 0, \alpha < 0$, $b \neq 0, \beta \geq 0$ and $c \neq 0$. Using (4), the scalar product $\langle a, c \rangle \neq 0$, hence from the expansions (2) and the formula (3) we get that $\gamma + \alpha - 1 \geq 0$ and thus $\gamma > 0$.

Renumbering the] coordinates, if necessary, we may assume that $p(t) = (p_1(t), \dots, p_n(t)) = (w_1^{0}t^{\nu_1} + w_1^{1}t^{\nu_1+1} + \dots, \dots, w_k^{0}t^{\nu_k} + w_k^{1}t^{\nu_k+1} + \dots, 0, \dots, 0)$, where $w_1^{0} \neq 0, \dots, w_k^{0} \neq 0$ and $\alpha = \nu_1 \leq \nu_2 \leq \dots \leq \nu_k$. Identifying \mathbf{R}^k with $\{x \in \mathbf{R}^n; x_{k+1} = \dots = x_n = 0\}$ we have $\operatorname{supp}(f) \cap \mathbf{R}^k \neq \phi$ since $f(p(t)) \not\equiv 0$.

Consider the continuous function $l_{\nu}(x) = \sum_{j=1}^{k} \nu_j x_j$ on \mathbb{R}^n . Let Δ be the unique face of $\overline{\operatorname{supp}(f)} \cap \mathbb{R}^k$ where the restriction $l_{\nu} : \overline{\operatorname{supp}(f)} \cap \mathbb{R}^k \to \mathbb{R}$ takes the minimal value, say d, and let $m \in (-\infty, 0)$ be such that

$$m < \min\{l_{\nu}(x); x \in \overline{\operatorname{supp}(f)}\}$$
.

Then $f(p(t))=f_d(w_0^0)t^d+\cdots$, and for $j=1, \cdots, k$, $\frac{\partial f}{\partial z_j}(p(t))=\frac{\partial f_d}{\partial z_j}(w^0)t^{d-\nu_j}+\cdots$, where $w^0=(w_1^0, \cdots, w_k^0, 1, \cdots, 1)$.

If d > 0, we have $\lim_{t \to 0} f(p(t)) = 0$.

If d=0 and $\nu_k \leq 0$, then $f(z_1, \dots, z_k, 0, \dots, 0)$ does not depend on z_1 , hence $\frac{\partial f}{\partial z_1}(p(t))\equiv 0$, in contradiction with (4) and $p_1(t)\equiv 0$.

If d=0 and $\nu_k > 0$, then for the hyperplane $H \subseteq \mathbb{R}^n$ with equation $\nu_1 x_1 + \cdots + \nu_k x_k - m(x_{k+1} + \cdots + x_n) = 0$ and the face Δ , the condition (ii) is fulfilled. Thus if (i) is not fulfilled, then Δ is not a bad face of $\overline{\supp(f)}$ and it follows that Δ is a closed face of $\tilde{\Gamma}(f)$. By the nondegeneracy condition on Δ , there exists $l \in \{1, \dots, k\}$ such that $\frac{\partial f_{\Delta}}{\partial z_l}(w^0) \neq 0$. (We recall that $f_{\Delta}(z)$ does not depend on the variables z_{k+1}, \dots, z_n .)

But this is in contradiction with the following lemma:

Lemma 5. Let d, Δ, w^0 be defined as above. Suppose that $d \le 0$ and $d \cdot f_{\Delta}(w^0) = 0$. Then there exists no $l \in \{1, \dots, k\}$ such that $\frac{\partial f_{\Delta}}{\partial z_{L}}(w^0) = 0$.

Proof of Lemma 5. Suppose that there exists $l \in \{1, \dots, k\}$ such that $\frac{\partial f_{\mathcal{A}}}{\partial z_{\iota}}(w^0) \neq 0$. By condition (4) and $\gamma > 0$ we get that $\delta + \nu_l = d - \nu_l > 0$, hence $\nu_l < 0$. Let $I = \{j; \nu_j = \nu_l\}$. Again by (4) we have for $j \in \{1, \dots, k\}$:

$$j \in I \Longrightarrow d - \nu_j = \delta + \nu_j$$
 and $\frac{\partial f_{\mathcal{A}}}{\partial z_j}(w^0) = \overline{\lambda}_0 \overline{w_j^0};$
 $j \notin I \Longrightarrow d - \nu_j < \delta + \nu_j,$ hence $\frac{\partial f_{\mathcal{A}}}{\partial z_j}(w^0) = 0.$

Thus, from the Euler relation for the weakly quasihomogeneous polynomial $f_{\mathcal{A}}$, $\sum_{j=1}^{k} \nu_j z_j \frac{\partial f_{\mathcal{A}}}{\partial z_j}(z) = d \cdot f_{\mathcal{A}}(z), \text{ we obtain for } z = w^0 \text{ the absurd equality } \nu_l \cdot \lambda_0 \sum_{j \in I} |w_j^0|^2 = 0.$ This ends the proof of Lemma 5.

It follows that (i) is also fulfilled and $\Delta \in \mathcal{B}$. By the above lemma, $\frac{\partial f_{\mathcal{A}}}{\partial z_{l}}(w^{0})=0$ for all $l \in \{1, \dots, k\}$ and thus we have $\lim_{t\to 0} f(p(t))=f_{\mathcal{A}}(w^{0})\in \Sigma_{\mathcal{A}}$.

It remains to consider the case d < 0. With this assumption it follows that Δ is a closed face of $\tilde{\Gamma}(f)$. Since $\beta \ge 0$ we get $f_d(w^0) = 0$, hence the nondegeneracy condition on Δ is in contradiction with the above lemma.

§4. Some Remarks

1. S. A. Broughton described in [1] and [2] the class \mathcal{T} of tame polynomials and proved that for a tame polynomial f, we have $B_f = \Sigma_f$.

In [8] and [9], the first author considered the class $Q\mathcal{T}$ of quasitame poly-

nomials and also proved that $B_f = \Sigma_f$ for any quasitame polynomial f. If we denote by $\mathcal{M}\mathcal{I}$ the class of \mathcal{M} -tame polynomials, namely the polynomials f with $S_f = \phi$, then $\mathcal{I} \subseteq \mathcal{Q}\mathcal{I} \subseteq \mathcal{M}\mathcal{I}$, the first inclusion being strict. We don't know if the second inclusion is an equality or not. For other interesting properties of these classes of polynomials see also [10].

2. Also in [8] and [9], the first author proved that $B_f \subseteq A_f$, where

$$\Lambda_{f} \coloneqq \begin{cases} c \in C; \text{ there exists a sequence } \{z^{k}\}_{k} \in C^{n} \text{ such that } \lim_{k \to \infty} \operatorname{grad} f(z^{k}) = 0 \\ \text{and } \lim_{k \to \infty} (f(z^{k}) - \langle z^{k}, \operatorname{grad} f(z^{k}) \rangle) = c \end{cases}$$

It is not hard to prove that $\Sigma_f \cup S_f \subseteq \Lambda_f$, but in general we have no equality, hence the set $\Sigma_f \cup S_f$ is a better approximation for B_f . Such an example is the polynomial $f = x^5 y^3 + x^5 z^2 + x^{11} y^3 z^2 + x$ which is Newton nondegenerate (hence $\Sigma_f \cup S_f$ is a finite set) but $\Lambda_f = C$. This follows by using an analytic curve $(x(t), y(t), z(t)) \in C^3$ with x(t) = t, $[z(t)]^2 = -\frac{5}{9}t^{-6} + \lambda t^{-5} + \mu t^{-4} + \cdots$ and $[y(t)]^3 = -\frac{5}{2}t^{-6} - \frac{81\lambda}{4}t^{-5} + \frac{9(4-90\mu - 891\lambda^2)}{40}t^{-4} + \cdots$.

3. Our conjecture is that for a Newton nondegenerate polynomial f with f(0)=0 we have $\bigcup_{A \subseteq \mathscr{B}} \Sigma_A \subseteq B_f$; for the general case of polynomials, we hope that $S_f \subseteq B_f$. But without a good description of the (all !) fibers $f^{-1}(c)$ it seems that there exists no simple way to prove this.

However, for n=2 we have the following:

Proposition 6. Let $f \in C[x, y]$ be a not convenient and Newton nondegenerate polynomial, not depending only of one variable, and such that f(0)=0. Then

$$B_{f} = \Sigma_{f} \cup \{0\} \cup \bigcup_{\varDelta \in \mathscr{B}} \Sigma_{\varDelta}$$

Proof. We prove this proposition in three steps.

Step 1. $\Sigma_f \subseteq B_f$. The proof is clear.

Step 2. If $f \in C[x, y]$ is a not convenient polynomial with f(0)=0, not depending only of one variable, then $0 \in B_f$.

Proof. Since f is not convenient, f has the form f(x, y)=xg(x, y) (or f(x, y)=yg(x, y), which case can be analysed similarly).

If g(0, 0)=0, then $0 \in \Sigma_f \subseteq B_f$.

If $g(0, 0) \neq 0$, then $g(x, y) = a_0 + a_1 y + \dots + a_m y^m + x \psi(x, y)$ with $a_0 \neq 0$.

Suppose that there exists $a_i \neq 0$, $i \in \{1, \dots, m\}$; by an easy computation we obtain that $0 \in \Sigma_f$, hence $0 \in B_f$.

686

Suppose that $a_i=0$ for all $i=1, \dots, m$; hence $f(x, y)=x(a_0+x\phi(x, y))$ and $\phi(x, y)$ does depend on the variable y. The fiber $f^{-1}(0)$ contains a connected component diffeomorphic to C. But the generic fiber $f^{-1}(\lambda), \lambda \neq 0$, doesn't contain any contractible component. To see this, suppose that T is a contractible component of $f^{-1}(\lambda), \lambda \neq 0$; consider the projection π of T to the x-axis. Then the image $\pi(T)$ is equal to $C^* \setminus \{\text{finite number of points}\}$; hence T is a contractible (branched) covering of $\pi(T)$ with finite fibers and $\pi_1(\text{im }\pi)\neq 0$ and is free, contradiction. Consequently $f^{-1}(0)$ and the generic fiber are not diffeomorphic, hence $0 \in B_f$.

Step 3. Let $f \in C[x, y]$ be a not convenient and Newton nondegenerate polynomial, not depending only of one variable, and such that f(0)=0. If $c \in \bigcup_{A \in \Phi} \Sigma_A \setminus (\Sigma_f \cup \{0\})$, then $c \in B_f$.

Proof. Indeed, in this case the Euler-characteristic of the special fiber $f^{-1}(c)$ and of the generic fiber $f^{-1}(c_{gen})$ differ. The Euler-characteristic of a fiber $f^{-1}(\lambda)$ can be computed by the following formula:

$$\chi(f^{-1}(\lambda)) + \#\overline{(f^{-1}(\lambda)} \cap H_{\infty}) = 2 - (d-1)(d-2) + \Sigma \mu_i(\lambda),$$

where $\overline{f^{-1}(\lambda)}$ is the projective closure of $f^{-1}(\lambda)$, H_{∞} is the hyperplane at infinity and $\Sigma \mu_i(\lambda)$ is the sum of the Milnor numbers of the singularities of $\overline{f^{-1}(\lambda)}$ at infinity (see [5]).

We show that $\Sigma \mu_i(c) > \Sigma \mu_i(c_{gen})$. This follows from the followings two lemmas: the first one describes the singularities at infinity and the second one is applied for these singularities.

Lemma 7. Let f be as above and let d be the degree of f and F(x, y, z) the homogeneousated polynomial of f. Then only (1:0:0) and (0:1:0) can be singularities of $\overline{f^{-1}(\lambda)}$ at infinity. If (1:0:0) is a singularity of $\overline{f^{-1}(\lambda)}$ at infinity, then his equation is $g(y, z) = F(1, y, z) - \lambda z^d = 0$ and the Newton polygon of this singularity can be obtained from the Newton diagram of f in the following way: let P, R, O be the points in the diagram of f with coordinates (d, 0), (0, d) and respectively (0, 0). Then the origin in the diagram of g is P, the positive semiaxes are PR and PO, corresponding to the y-axis and respectively to the z-axis, and $\overline{\supp(g)}$ corresponds to $\tilde{\Gamma}_{-}(f)$. The nondegeneracy of f on the faces of $\tilde{\Gamma}_{-}(f)$ means the nondegeneracy of g on the corresponding faces of $\overline{\supp(g)}$. If Δ is a bad face of $\overline{\supp(f)}$ giving rise to the face \bar{A} of the Newton polygon of the singularity in 0 of g, then the values $\lambda \in \Sigma_{A} \setminus \{0\}$ are exactly the values of λ such that the conditions of nondegeneracy on \bar{A} are not fulfilled.

Lemma 8. Let $h \in C[x, y]$ be a convenient polynomial with grad h(0)=0and let Γ be the Newton polygon of h in origin (see [6], [11] for the definition). Suppose that h is nondegenerate on all the faces of Γ , excepting the 1-dimensional face Δ of Γ which has an endpoint on the axis Ox, where the nondegeneracy condition is not fulfilled. Then the Milnor number $\mu(h, 0)$ of h in 0 is strictly greater than the Newton number $\nu(\Gamma)$. (See [6], [11] for the definition of $\nu(\Gamma)$.)

We omit the proof of Lemma 7, since it is a straightforward verification. For the proof of Lemma 8, let (a, 0) and (b, c) be the coordinates of the terminal points of \varDelta . We consider the covering $\varphi: (C^2, 0) \rightarrow (C^2, 0), \varphi(x, y) := (x^c, y)$ and the singularity $h'(x, y) = h(\varphi(x, y))$ with Newton polygon Γ' ; the relations (15) and (12) from [3] between $\mu(h', 0)$ and $\mu(h, 0)$, respectively $\nu(\Gamma)$ and $\nu(\Gamma')$ enable us to suppose that c divides a-b. Let $m = \frac{a-b}{c}$. We have $f_{\varDelta} =$ $\alpha x^b(y + \beta_1 x^m) \cdots (y + \beta_c x^m)$ with $\alpha, \beta_1, \cdots, \beta_c \in C^*$. The degeneracy condition on \varDelta means that there exist $i, j \in \{1, \cdots, c\}, i \neq j$, such that $\beta_i = \beta_j$. Hence we can consider that $f_{\varDelta} = \alpha x^c (y + \beta_1 x^m)^r \cdot (y + \beta_{r+1} x^m) \cdots \cdot (y + \beta_c x^m)$ for some $r \ge 2$. We change the variables: $\tilde{x} = x, \ \tilde{y} = y + \beta_1 x^m$. Then all the faces of Γ , excepting \varDelta , will be faces of the new Newton polygon Γ'' and $\Gamma'' \supseteq \Gamma, \Gamma'' \neq \Gamma$. Now it is easy to see that $\nu(\Gamma'') > \nu(\Gamma)$ and we finish the proof of Lemma 8 using Kouchnirenko's results [6].

Note that the analogue of Lemma 8 for polynomials with $n \ge 3$ variables in general is not true (see Remarque 1.21 from [6]).

4. Our Proposition 6 (and the inequality from Step 3) can be compared with a result of Hà and Lê (which says that, for n=2, a bifurcation point λ is either critical point or $\chi(f^{-1}(\lambda)) \neq \chi(f^{-1}(c_{gen}))$, and a result of M. Suzuki (which says that $\chi(f^{-1}(\lambda)) \geq \chi(f^{-1}(c_{gen}))$, see [14], Théorème 1).

References

- Broughton, S.A., On the topology of polynomial hypersurface, Proceedings of Symposia in Pure Mathematics, 40, Part 1, 1983.
- [2] _____, Milnor numbers and the topology of polynomial hypersurfaces, *Invent*. *Math.*, 92 (1988), 217-241.
- [3] Dimca, A. and Tibăr, M., Pull-backs of isolated singularities under analytic coverings, Rev. Roum. Math. Pures Appl., 32 (1987), 523-530.
- [4] Fedoryuk, M.V., The asymptotics of the Fourier transform of the exponential function of a polynomial, Dokl. Akad. Nauk, 227 (1976), 580-583.
- [5] Hà, H.V. and Lê, D.T., Sur la topologie des polynômes complexes, Acta Math. Vietnamica, 9 (1984), 21-32.
- [6] Kouchnirenko, A.G., Polyèdres de Newton et nombres de Milnor, Invent. Math., 32 (1976), 1-31.
- [7] Milnor, J., Singular Points of Complex Hypersurfaces, Ann. of Math. Studies, 61, Princeton Univ. Press, 1968.
- [8] Némethi, A., Théorie de Lefschetz pour les variétés algébriques affines, C.R. Acad. Sc. Paris, 303, Série I, n. 12 (1986).
- [9] _____, Lefschetz theory for complex affine varieties, Rev. Roum. Math. Pures

Appl., **33** (1988), 233–260.

- [10] Némethi, A. and Zaharia, A., Milnor fibration at infinity, in preparation.
- [11] Oka, M., On the bifurcation of the multiplicity and topology of the Newton boundary, J. Math. Soc. Japan, 31 (1979), 435-450.
- [12] Pham, F., La descente des cols par les onglets de Lefschetz, avec vues sur Gauss-Manin, Systèmes différentiels et singularités, Juin-Juillet 1983, Astérisque 130.
- [13] —, Vanishing homologies and the *n* variable saddlepoint method, *Proceedings* of Symposia in Pure Mathematics, 40, Part 2, 1983.
- [14] Suzuki, M., Propriétés topologiques des polynômes de deux variables complexes, et automorphismes algébriques de l'espace C², J. Math. Soc. Japan, 26 (1974), 241-257.
- [15] Varchenko, A.N., Theorems on Topological Equisingularity of Families of Algebraic Varieties and Families of Polynomial Maps, *Izvestiya Akad. Nauk*, **36** (1972), 957-1019.
- [16] Verdier, J.L., Stratifications de Whitney et Théorème de Bertini-Sard, Invent. Math., 36 (1976), 295-312.