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Solvability of Linear Functional Equations
in Lebesgue Spaces

By

Sen-Yen SHAW*

§1. Introduction

Let A be a closed linear operator on a Banach space X. This paper is
concerned with the solvability and approximate solutions of the equation Ax=y
for a given y=JX, especially when X is a Lebesgue space L,, 1<p<oo. The
domain, null space, and range will be denoted by D(A), N(4), and R(A),
respectively.

Let {A,} and {B.} be two nets, indexed by a directed set A of bounded
linear operators on X with the following properties:

@) [ALIEM for all ac;

(b) R(B.)CD(A) and B,ACAB,=I1—A, for all a=;

() R(A,)CD(A) for all a4, w-limgAA,x=0 for all x<X, and s-
lim, A, Ax=0 for all xD(A4).

(d) Bix*=¢(a)x* for all x*<R(A)* (=N(A*) in case D(A)=X) with
lim, | @(a)| =oo.

We call {A,} a system of almost invariant integrals for A+I and {B,} the
system of companion integrals. The terminologies go back to those of Eberlein
[4] and Dotson [2] for the case A=T —1I with T bounded. The following two

theorems concerning the convergence of {A4,x} and {B,y} have been established
in [8]:

(i) {Aax} converges if and only if it contains a weakly convergent subnet,
if and only if x=N(ADR(A), and the mapping P: x—s-limaAxx 1s a bounded
projection with R(P)=N(A), N(P)=R(A) and D(P)=N(A)YDR(A),

(ii) {Bay} converges if and only if it contains a weakly convergent subnet,
if and only if ye AD(AYNR(A)). The limit x=s-lim,B,y is the unique solution
of the equation Ax=y in R(A).

In a reflexive space, the weak sequential precompactness of bounded sets
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implies that D(P)=X and R(A)=A(D(A)NR(A)). The following theorem [8,
Corollary 1.8] is then easily deduced form (ii).

Theorem 1. If X is a reflexive space, then, under the conditions (a), (b), (c),
and (d), the following statements are equivalent :

(1) y=R(A);

(2) {Bsy} is bounded;

(3) There is a subnet {Bg} of {B.} such that x=w-limgBgy exists;

(4) x=s-lim,B,y exists.
Moreover, the = in (3) and (4) is the unique solution of Ax=y in R(A).

This theorem holds in particular for any Lebesgue space L,(S, X, #) with
1<p<oo. In general, while the implications “(3)& (4)=(1)=(2)” always hold
(due to (ii), (a), and (b)), the other two implications “(2)= (1)” and “(1)= 4)”
may not hold in a nonreflexive space (cf. [9] and [8, Remark 1.7]). However,
with some additional assumption, we shall prove in section 2 the following
positive result for L,(S, 2, p).

Thecrem 2. Let X=LS, 2, p) wih p a o-finite measure. If {A.} and
{B.} satisfy (a) with M=1, (b), (c), and (d), then (1) and (2) are equivalent. If,
in addition to the above assumption, p is a finite measure and |[Aofl-=K| [~
for all f=L«S, 2, p) and a=dJ, then the statements (1), (2), (3), and (4) are
equivalent, and the limit x in (3) and (4) is the unique solution of Ax=1y in R(A).

These general theorems can be used to study the solvability and various
approximate solutions of the linear functional equation Ag=f in LS, X, p),
1<p<c. For illustration we shall display in sections 3 and 4 applications to
i-times integrated semigroups and cosine operator functions, respectively.
Applications to other methods of solving (/—7T)x=y such as those considered
in [8] are also possible. In particular, theorems of Lin and Sine [7], and of
Krengel and Lin [6, Theorem 3.1] can be deduced from this result. In section
3, the almost everywhere pointwise convergence of the approximate solutions
of Ag=f will also be observed for the case that A is the generator of a C,-
semigroup of contractions on L(S, X, g) that also fulfills the condition that
IT@)f|-=K|f|. for all f&L L. and ¢=0.

§2. Proof of Theorem 2

Suppose (1) holds, i.e., y=Ax. Then (a) and (b) imply that |B,y|=
|BaAxl|=(I—A)x|£A+M)| x| for all acd, i.e., (2) holds.

Conversely, if {B,y} is bounded, we first show that A,y—0. Indeed, (d)
implies that for each x*<R(A)' we have
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Byl x*1Z I<Bey, x*)| =<y, ¢l@)x*>| =|d(@)| <y, x*>|,
which would be unbounded unless <y, x>=0. Hence y belongs to *‘(R(A)")=
R(A). This fact with assumptions (a) and (c) implies that A,y converges in

norm to 0.
Next, let LIﬂM be a Banach limit on the space of bounded functions on U,

and define a linear functional ¢ on L,(p)*=L.(y) by q(x*)legM(Bﬁy, ¥
x*¥& Lo(y). Then g belongs to X**=L.(u)*=ba(S, X, p), the space of bounded

finitely additive measures (=charges)< g, and |lg||<sup||B,y|. We have for
x*&X* and acd

[Aii*q](x*)=q(Aix*)=L£M<B,9y, Afx*>
=LIM((I—BoA)Bsy, x*
:LIﬂM«Bﬁy"Ba(I'"Aﬂ)y, x5
-——LIﬂM<(B,ey, x*y—<B.Yy, x*>+1iﬁm<Aﬁy, Bix*)

=q(x*)—<{Bay, x*>,

(b) and the fact that Py=0 having been used. Hence A}*¢=¢—B,y for all

acs A,

LS, 2, p) can be identified, via the Radon-Nikodym theorem, with
M(S, ¥, p), the subspace of ba(S, X, ¢) which consists of all countably additive
measures< . Decomposing ¢=g¢,+¢. with ¢;=M(S, X, p) and ¢, a pure charge
(cf. [12]), and using the contraction assumption and the fact that the norm of
an element of ba(S, ¥, p) is the sum of the norms of its two parts, we obtain

the estimate:
g2l =1 A%* g2l =llg:— Bay — A¥*q1+g.|
=|g1—Bay—Aaqil+ gzl ,

which shows that ¢,=B,y+A.q.€D(A) and Aq;=AB,y+AAxqi=y—Ay+
AAqq, for all ae 4. Taking limits yields that y=Aq¢,=R(A). Thus we have

proved the equivalence of (1) and (2).

Since, as mentioned in the introduction, the conditions (3) and (4) are
equivalent to that y belongs to A(D(A)N\R(A))=A(D(A)ND(P)), which is equal
to R(A) when D(P)=JX, the second part of Theorem 2 follows from the next
lemma.

Lemma 3. Let (S, X, p) be a finite measure space and let {A,} and {B,} be
bounded operators on X=L,(S, X, y) as well as on L(S, 2, p) which satisfy (b),
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(c), and (d). Suppose further that |[A.fIL\=MIfl, for all feL(S,2, p) and
|Aehll=<Kl|h|e for all h= LS, 2, p) and for all a=A. Then {A,f} converges
in Ly(S, 2, p) for all fin LS, 2, p).

Proof. 1f h is a simple function, then ‘SE(Aah)dp‘gKHhHmy(E) which

converges to 0 uniformly for ac A as p(E£)—0. Hence {A,h; asA} is weakly
sequentially precompact in L,(S, 2, p) (see [3, Corollary IV.8.11]). It follows
from (i) in the introduction that {A,h} converges in L,(S, X, g). Since the
set of all simple functions is dense in L,(S, 2, g) and since {A,} is uniformly
bounded, the convergence of {A,f} holds for all f in L(S, X, p).

§3. Generators of n-times Integrated Semigroups

A strongly continuous family {7T'(#); =0} of bounded operators on X is
called a n-times integrated semigroup if T(0)=I and T@)T(s)=T(t-+s)t, s=0)
in case n=0, and if 7(0)=0 and

1 t+s s
TOTS) =g, t+s—"T@dr—{ t+s—r=T(ar} @, 520
(n—1)! Ue 0
in case n=1. A O-times integrated semigroup is just the classical C°-semigroup.
T(-) is said to be mnon-degenerate if T(t)x=0 for all t>0 implies x=0, and
exponentially bounded if || T ()| £Me®* for some M=1, w>0 and for all ¢=0.
For a non-degenerate and exponentially bounded 7'(-) there exists a uniquely
determined closed operator A, called the generator of T(-), such that (w, «o)C

o(A) and (Z—A)“x-——S:l"e‘“T(t)xdt for all xX and A>w. For the definitions
and basic properties we refer to Arendt [1], and Tanaka and Miyadera [11].
It is known [1, Proposition 3.3] that S:T(s)xdseD(A) and AS:T(s)xds:
THx—@"/nl)x for all x&X; S:T(t)Axds=T(t)x—(t"/n!)x for all x=D(A).
Hence, if we put A, :=(n+l)!t'"‘1S:T(s)ds and BL:-:——(n—{-l)!t‘"“S:SzT(u)duds
for ¢>0, then the closedness of A implies that B,ACAB;=I—A, and A,AC
AA, =+t 'TE)—(n+1)"*1. Thus (c) holds if ¢~*~!T(¢) converges strongly
to 0 as t—oo. In particular, both (a) and (c) will hold in case |T#)||=0@*)({t—oo).

To verify (d) let x*<R(A)*. Then {T(u)x—u™/n!)x, x*>=<AS:T(s)xds, x*>
=0 for all ©=0, so that

(x, BEx*>=(B.x, x*>=—(n—i—l)!t‘""S:S:T(u)x, x*>duds

:—(n—l—l)t‘"“SZSZu“duds(x, x*)
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— ¢ * e
—— {x, x*> for all x=X.
That is, the condition (d) holds with ¢(t):———7—1—:_—é—.

On the other hand, if ||A:|<M for all ¢=0, then
||(2—A)-1x||_s_]lgje-“z"T(t)xdt“

§2n+1§me—lt
0

S:T(s)xds”dt

- an+l
= (n4 1!
M

ZTHXH

MS:e‘“t"“dt Izl

for all xX and 1>0, so that {A(A—A) '}.> is a system of

695

almost invariant

integrals and {(A—A)'};> the associated system of companion integrals (see

[8, Example V).

Now Theorems 1 and 2 can be applied to the two pairs {{A.}, {B:}} and
{{A(A—A)7'}, {(A—A)"'}} to deliver the next theorem, which is concerned with

the equivalence of the following conditions:
(S1) yeR(A);
(S2) supll(2—A)"yll<oo;
>0

(83) x=W-lkim(A—,2k)'1y exists for some sequence {4,}—0%;

(S4) x=s-lim (A—2)"'y exists;
tcs
©5) sup|t-={ | Twyduds|<oo;

(S6) x:—w-lim(n-i—l)!t;“"S:kS:T(u)yduds exists  for

{te}—oo;

(S7) x=—slim(n+1)! z-n-lg S:T(u)duds exists ;

[
t 0
(S8) st\ig“t‘"SoT(s)yds“<oo.

Theorem 4. Let T(-) be a non-degenerate, exponentially
integrated semigroup on X, and A be its generator.

”(n—l—l)!t‘”“S:T(s)xdsngMHxll for all x=X and t>0 and

some sequence

bounded, n-times
Suppose that

that t="~'T()—0
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strongly as t—oo,
(i) If X is reflexive, then the conditions (S1)-(S7) are equivalent to each other.

(i) If X=L(S, %, p) with p a o-finite measure, and if M=1, then conditions
(S1), (S2), and (S5) are equivalent; they are also equivalent to (S3), (S4), (S6) and

(S7) in case p is a finite measure and ”t'“'IS:T(s)fdsN <K|flle for all fe
LS, 2, u) and all t>0.

Remark. If T(-) satisfies the growth condition |T(®|<Mt*/(n-+1), t=0,
then the hypothesis of Theorem 4 is satisfied and (S8) can be added as another
equivalent condition. In fact, it is easy to see that (S1)=(S8)=(S5) in this
case.

The following corollary for contraction Co-semigroups on L(S, 2, p) is a
specialization of Theorem 4; the first part of it is due to Krengel and Lin [6]

(see also [97).

Corollary 5. Let A be the generator of a Cy-semigroup T(-) of contractions
on LS, X, p), with p a o-finite measure. Then with n=0 the conditions (S1),
(S2), (S5), and (S8) are equivalent. If, in addition, p s finite and

§gg|{t‘IS;T(s)fdsl) <K|flw for all feLLS, X, p), then (S1)~(S8), with n=0,
all are equivalent.

For a given function f&R(A) in L,(S, ¥, p), 1<p<co, we now consider
the almost everywhere convergence of B.f. Suppose a pointwise ergodic
theorem for the system {A,} holds so that A,x converges almost everywhere
on S for all x=L,. Then for any solution g of the eguation Ag=f, B.f=
B,Ag=(I—A.)g surely converges almost everywhere. If Ag=/f has a solution
g in D(A)NR(A) (This is always the case when {A;} is mean ergodic, i.e.
D(P)=X), then A,g converges to Pg=0 almost everywhere on S and B.f
converges to g almost everywhere on S. In what follows we deduce from
Theorem 4, Corollary 5, and the Cesaro and Abelian pointwise ergodic theorems
in [5] a pointwise convergence theorem for the approximate solutions {B.f}
of Ag=f.

Let A be the generator of a Cy-semigroup 7T'(-) of contractions on L.(S, X, )
such that, for some K=1, supuso|T@)fl-=Klf]- for all feL(S, X, N
LS, 2, p). Then, given any p&[l, o), each T() can be extended to a linear
operator, still denoted by T'(t), on L,(S, 2, p) with |[T@I,<K and {T(@);t=0}
is also a Cy-semigroup of operators on L,(S, 2, ) (cf. [5, p. 96]). Let A still
denote the generator of the semigroup thus obtained. Under these assumptions
we can formulate the following Theorem.
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Theorem 6. Let 1<p<oo. (i) f&Ly(S, 2, p)satz'sﬁesstL;r())“S:T(u)fdqu<oo

if and only if Ag=f is solvable in Ly(S, 2, p). (i) If Ag=f is solvable, then
the limits

time{ [ "(~T@A@dvdu and timIA-2-71s)

exist and coincide almost everywhere on S. (iii) If 1<p<oco,or if p=1 and p is
a finite measure, then the limits in (ii) converge in |-\, and the limit function
g is the unique solution of Ag=f in the ||-|p-closure of R(A|Lj).

We end this section with a concrete application to the equation Ag=f in
2
L,(R™, 1<p<oo, where A is the Laplacian ; a_ax?

erates the Gauss-Weierstrass semigroup T(-), which is defined by T(0)=I and

_qyl2
22N i)y, Fe LR, 10.

It is known that A gen-

(TOw=@mty | exp(—

This is a C,-semigroup of contractions on L,(R"). Hence we can formulate the
following specialization of Theorem 6.

Corollary 7. Let f be a function in Ly(R™), 1=p<co. Then the equation
Ag=1f is solvable if and only if

supl Lo amorer eno( - D) rnna] <o,

if and only if

sl fomor ol

%:’Ii)f(y)dyds”ﬁoo.

When p>1, a solution is given by

oo
0

: lx—y1*
—_ -2t -n/2 _
g(r)y=—lim|"e-aaty | exp(—2)fG)dyat,

= time [ [tmnymrexo(—2 2 s yduds,

oo

the convergence being valid in the sense of pointwise almost cverywhere as well
as in the sense of || p-

§4. Generators of Cosine Operator Functions

A strongly continuous family {C(@);t=R} of bounded linear operators on
X is called a cosine operator function if C(0)=1I and C{+s)+Ct—s)=2C(t)C(s),
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s,teR. The associated sine function S(-) is defined by S(t)x=S:C(s)xds,

x=X. The generator A:=C”(0) is a densely defined closed operator. There
exist M=1 and wz=0 such that [|[C@)[|=Me*'", t=R. The resolvent set p(4)
contains all A* with A>w, and for each such 4

Z(ZZ—A)‘Ingje'“C(z‘)xdt for all x=X.

See, e.g., Sova [10] for these and other properties of C(-).
For t>0, let Az:=2t'ZS:S(s)ds and B, ::—Zt'ZS:SZXZS(v)dvduds. Then we
2
have B, ACAB,=I—A,, A,(ACAA,=2t"*C({t)—1I), and B¥x*= {2 x* for all

x*& N(A*) (see [8], Example VII). Hence {A;} is a system of almost invariant
integrals for A-1I and {B,} is its associated system of companion integrals if
AN <M and if t-2C(t)—0 strongly as t—oo. Moreover, as was in the case of
semigroup, the condition ||A.|<M also implies that {A(A—A) '}, is a system
of almost invariant integrals and {(A—A)'}is, the associated system of

companion integrals.
From Theorems 1 and 2 we can immediately deduce the next theorem, which
is concerned with the equivalence among the following conditions:

(C1) yeR(A);
(C2) gggll(l—A)“yll<W;

(C3) x:w—lkim(A—lk)‘ly exists for some sequence {1,}—0";
(C4) x=s-21i1;xl(A—2)‘1y exists;
tCs(u
(C5) sup“t"zg S S S(v)ydvduds”<oo;
>0 0JoJo
(C6) x=—W-1kimZt;ZS:kS:S:S(v)ydvduds exists for some sequence {£3}—oo;

) x—————s-%im2t‘2S:S:S:S(v)ydUduds exists ;

(C8) sgg”S:S(s)ydsuéom

Theorem 8. Let C(-) be a cosine operator function on X. Suppose that
HZt'zg‘tS(s)ds“gM for all t>0 and t2C(#)—0 strongly as t—oo.

(1) If X is reflexive, then condition (C1)-(C7) are equivalent to each other.
(i) If X=L\S, 2, p) with p a o-finite measure, and if M=1, then conditions
(C1), (C2), and (C5) are equivalent; moreover, they are also equivalent to condi-
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tions (C3), (C4), (C6), and (C7) when g is finite and \.2t‘2S:S(s)fdsHm§Kl| flw for
al fELS, 3, p).

Remark. If |C@#)|<M for all t=0, then both cases (i) and (ii), the condition
(C8) can be added as an equivalent condition, because (Cl)= (C8)= (C2).
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