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Solvability of Linear Functional Equations
in Lebesgue Spaces

By

Sen- Yen SHAW*

§ 1. Introduction

Let A be a closed linear operator on a Banach space X. This paper is
concerned with the solvability and approximate solutions of the equation Ax=y
for a given y^X, especially when X is a Lebesgue space Lp, l^p<°°. The
domain, null space, and range will be denoted by D(A\ N(A), and R(A),
respectively.

Let {Aa} and {Ba} be two nets, indexed by a directed set JL of bounded
linear operators on X with the following properties :

(a) \\Aa\\^M for all a^Jl]
(b) R(Ba}c:D(A) and BaAdABa=I-Aa for all a^Jl;
(c) R(Aa)aD(A) for all a^Jl, w-\imaAAax=Q for all x^X, and s-

limaAaAx=Q for all x<=D(A).
(d) B*x*=$(a)x* for all x*e=R(A)*- (=N(A*) in case D(A)=X) with

We call {Aa} a system of almost invariant integrals for A+I and {£«} the
system of companion integrals. The terminologies go back to those of Eberlein
[4] and Dotson [2] for the case A—T—I with T bounded. The following two
theorems concerning the convergence of { A a x } and { B a y } have been established
in [8] :

(i) {^4ax} converges if and only if it contains a weakly convergent subnet,
if and only if x^N(A)@R(A), and the mapping P: x-*s-\imaAax is a bounded
projection with R(P}=N(A), N(P)=7t(A) and D(P)=N(A)®R(A),

(ii) { B a y } converges if and only if it contains a weakly convergent subnet,
if and only if y^A(D(A}C\R(A)). The limit x=s-limaBay is the unique solution
of the equation Ax—y in R(A).

In a reflexive space, the weak sequential precompactness of bounded sets
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implies that D(P)=X and R(A)=A(D(A}C\R(A}}. The following theorem [8,
Corollary 1.8] is then easily deduced form (ii).

Theorem 1. // X is a reflexive space, then, under the conditions (a), (b), (c),
and (d), the following statements are equivalent :

(1) y = R(A);
(2) { B a y } is bounded;
(3) There is a subnet {B^} of {Ba} such that x—w-limpBpy exists;
(4) x=s-limaBay exists.

Moreover, the ;: in (3) and (4) is the unique solution of Ax=y in R(A).

This theorem holds in particular for any Lebesgue space LP(S, I, /j) with
!<£<oo. In general, while the implications "(3)4=*(4)=X1)=K2)" always hold
(due to (ii), (a), and (b)), the other two implications "(2) =4(1)" and «(1)=K4)"
may not hold in a nonreflexive space (cf. [9] and [8, Remark 1.7]). However,
with some additional assumption, we shall prove in section 2 the following
positive result for L^S, I, //).

Theorem 2. Let X^L^S, 2, p) will p a a -finite measure. If {Aa} and
{Ba} satisfy (a) with M=l, (b), (c), and (d), then (1) and (2) are equivalent. If,
in addition to the above assumption, p is a finite measure and || .4a / II ooS #11/11°°
for all /<ELoo(S, I, p) and a^Jl, then the statements (1), (2), (3), and (4) are
equivalent, and the limit x in (3) and (4) is the unique solution of Ax~y in R(A).

These general theorems can be used to study the solvability and various
approximate solutions of the linear functional equation Ag=f in LP(S, I, JJL),
l<j^<oo. For illustration we shall display in sections 3 and 4 applications to
;z-times integrated semigroups and cosine operator functions, respectively.
Applications to other methods of solving (I—T)x=y such as those considered
in [8] are also possible. In particular, theorems of Lin and Sine [7], and of
Krengel and Lin [6, Theorem 3.1] can be deduced from this result. In section
3, the almost everywhere pointwise convergence of the approximate solutions
of Ag=f will also be observed for the case that A is the generator of a Co-
semigroup of contractions on L^S, Z, ft) that also fulfills the condition that

for all f^L^L^ and

§ 2. Proof of Theorem 2

Suppose (1) holds, i.e., y=Ax. Then (a) and (b) imply that ||5a:y|| =
\\BaAx\\ = \\(I-Aa)x\\£(l+M)\\x\\ for all aejl, i.e., (2) holds.

Conversely, if { B a y } is bounded, we first show that Aay->Q. Indeed, (d)
implies that for each x*(=R(A}L we have
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\\Bay\\ \\x*\\>\<Bay,x*>\ = \<y,$(d)x*y\ = \fW\ \<y, x*>|

which would be unbounded unless (y, %y=Q. Hence y belongs to
R(A). This fact with assumptions (a) and (c) implies that Aay converges in
norm to 0.

Next, let LIM be a Banach limit on the space of bounded functions on Jl,
ft

and define a linear functional q on L1(fjt)*=L00(fjt) by q(x*)=UM(Bpy, .t*>,
ft

x^^LJifjL). Then q belongs to X^ = L00(fjL)^=ba(S, S, (JL), the space of bounded
finitely additive measures (= charges) <//, and ||#||^sup||jBa;y||. We have for
x*^X* and a^Jl

lA**q-](x*)=q(A*x*)=LW<B?y, A*x*>
ft

=UM<(I-BaA)B?y, x*y
ft

=LW<(Bfy-Ba(I-Ai,-)y, **>
P

=LM<(Bfy, x*>-<Bay, x*>+\im<Afy, 5***>
ft ft

=q(x*)-<Bay, **>,

(b) and the fact that Py=0 having been used. Hence A%*q=q—Bay for all
a^Jl.

Li(S, S, fji) can be identified, via the Radon-Nikodym theorem, with
M(S, S, (JL), the subspace of ba(S, 2, p) which consists of all countably additive
measuresC^. Decomposing q—qi+qz with q1^M(S} 2 , (JL) and qz a pure charge
(cf. [12]), and using the contraction assumption and the fact that the norm of
an element of ba(S, I, (JL) is the sum of the norms of its two parts, we obtain
the estimate :

which shows that ql—Bay + Aaql^D(A) and Aql

AAaqi for all a^JL. Taking limits yields that y=Aq1^R(A). Thus we have
proved the equivalence of (1) and (2).

Since, as mentioned in the introduction, the conditions (3) and (4) are
equivalent to that y belongs to A(D(A)nR(Ay)=A(D(A)niD(P)), which is equal
to R(A) when D(P)=X, the second part of Theorem 2 follows from the next
lemma.

Lemma 3. Let (5, £, p) be a finite measure space and let {Aa} and {Ba} be
bounded operators on X=Ll(S, I, (JL) as well as on LJ.S, S, (JL) which satisfy (b),
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(c), and (d). Suppose further that ||Ar/||i^M||/||i for all f&L^S, 2, p) and
Ma/i|U^#||/ii|oo for all hf^LJiS, 2, p) and for all a<=Jl. Then {Aaf} converges
in ZaCS, 2, p) for all f in L^S, I, p).

Proof. If h is a simple function, then \ (Aah}dp ^K\\h\\00p(E) which
JE

converges to 0 uniformly for a^Jl as p(E)-*Q. Hence {Aah; a^Jl] is weakly
sequentially precompact in LX(S, 2, p) (see [3, Corollary IV. 8.11]). It follows
from (i) in the introduction that {Aah} converges in Li(S, 2, p). Since the
set of all simple functions is dense in Li(S, 2, p) and since {Aa} is uniformly
bounded, the convergence of {Aaf} holds for all / in Li(S, 2} p).

§ 3. Generators of n- times Integrated Semigroups

A strongly continuous family {T(t) ', t^Q} of bounded operators on X is
called a n-times integrated semigroup if T(0)=7 and T(t)T(s)=T(t+s)(t, s^
in case n— 0, and if T(0)=0 and

T(OT(s) = . t+s-ry-lT(r}dr-(t+s-rY-lT(r}dr (t, s^
\n — i

in case n^l. A 0-times integrated semigroup is just the classical C°-semigroup.
T(-) is said to be non-degenerate if T(t)x=Q for all £>0 implies z—0, and
exponentially bounded if \\T(f)\\^Mewt for some M^l, w>Q and for all f^O.
For a non-degenerate and exponentially bounded T(-) there exists a uniquely
determined closed operator A, called the generator of T(-), such that (it;, oo)c

p(A) and (/I—A)"1*^ Ane~xtT(t)xdt for all ze^" and ^>i#. For the definitions

and basic properties we refer to Arendt [1], and Tanaka and Miyadera [11].

S t rt
T(s)xds^D(A) and ^4\ T(s)xds =

P ° Jo

T(t)x-(tn/nl)x for all x ^ X ' f \ T(t)Axds=T(t)x-(tn/nl)x for all x^D(A).
rt rtcs

Hence, if we put At:—(n+l)!^"71"1! T(s)ds and Bt:——(n+l)!^"71'1! \ T(u)duds
Jo Jo jo

for £>0, then the closedness of ^4 implies that BtAc:ABt=I— At and ^4£/lC
ylylJ=(n+l)!rn-1Ta)-(n+lX~1/. Thus (c) holds if rn~lT(t} converges strongly
to 0 as £->oo. In particular, both (a) and (c) will hold in case ||7XOII=0(fn)(f-»oo).

To verify (d) let x*^R(Ay. Then <T(u)x-(un/nl)x, x*>=(A\UT(s)xds, x*
\ Jo

=0 for all w^O, so that

f t /»*
, x*>duds
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= ^T<x, x*> for all
72+Z

t
That is, the condition (d) holds with 0(0=

On the other hand, if \\At\\^M for all f^O, then

dt

M

—

for all x^X and /l>0, so that {^— ^l)"1}^^ is a system of almost invariant
integrals and {(Z—A)-1}^ the associated system of companion integrals (see
[8, Example V]).

Now Theorems 1 and 2 can be applied to the two pairs { { A t } , {Bt}} and
{{^(A—A)-1}, {(/£— A ) - 1 } } to deliver the next theorem, which is concerned with
the equivalence of the following conditions:

(SI) yt=R(A);

(S2)

(53) x=w-lim(A—lkY
ly exists for some sequence

(54) x=s-lim(A—Z)~1y exists;

(S5) sup
trs

ojo
T(u}yduds <oo;

S t ^ p s
\ T(u)yduds exists for some sequenceo Jo

(S7) ^ = -s-lim(n+l) ! r ^ n ^ w d s exists ;

(S8) sup t-n(tT(s)yds
«>o Jo

<oo.

Theorem 4. Le^ T(-) be a non-degenerate, exponentially bounded, n-times
integrated semigroup on X, and A be its generator. Suppose that

(n+l)\t-n'l^T(s)xds ^ M||* || for all x^X and t>Q and that
Jo
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strongly as £—»°o.
(i) If X is reflexive, then the conditions (S1)-(S7) are equivalent to each other.
(ii) // X=L1(S, J£, p) with p a a-finite measure, and if M=l, then conditions

(SI), (S2), and (S5) are equivalent; they are also equivalent to (S3), (S4), (S6) and

S t
T(s)fds <£X]|/||oo for all /e

MS, 21, p) and all t>Q.

Remark. If T(-) satisfies the growth condition \\T(t)\\^Mtn/(n+V)\, f^O,
then the hypothesis of Theorem 4 is satisfied and (S8) can be added as another
equivalent condition. In fact, it is easy to see that (S1)=HS8)=HS5) m this
case.

The following corollary for contraction Co-semigroups on Li(S, 2, p) is a
specialization of Theorem 4; the first part of it is due to Krengel and Lin [6]
(see also [9]).

Corollary 5. Let A be the generator of a CQ-semigroup T ( - ) of contractions
on Za(S, 2, ju), with p a a-finite measure. Then with n=Q the conditions (SI),
(S2), (S5), and (S8) are equivalent. //, in addition, p is finite and

sup t'l[tT(s)fds ^tf||/IU for all /eLTC(S, J, «), then (S1)-(S8), with n=Q,
t>0 Jo oo

all are equivalent.

For a given function f^R(A) in LP(S, 2, p), l^ip<°°, we now consider
the almost everywhere convergence of Btf. Suppose a pointwise ergodic
theorem for the system [At\ holds so that Atx converges almost everywhere
on S for all x^Lp. Then for any solution g of the equation Ag=fr Btf—
BtAg—(l—At}g surely converges almost everywhere. If Ag=f has a solution
g in D(A)C\R(A) (This is always the case when {At} is mean ergodic, i.e.
D(P}—X\ then Atg converges to Pg=Q almost everywhere on S and Btf
converges to g almost everywhere on S. In what follows we deduce from
Theorem 4, Corollary 5, and the Cesaro and Abelian pointwise ergodic theorems
in [5] a pointwise convergence theorem for the approximate solutions {Btf}
of Ag=f.

Let A be the generator of a Co-semigroup T(-) of contractions on L^S, I, p)
such that, for some K:>1, supt>0||T(0/IU^/iC||/||eo f°r all /e Lx(5, I, /On
LCX5(S, 2, p). Then, given any /?e[l, <*>), each T(t) can be extended to a linear
operator, still denoted by T(0, on LP(S, I1, //) with ||T(OIIP^A' and {T(0; f^O}
is also a Co-semigroup of operators on LP(S, £, p) (cf. [5, p. 96]). Let A still
denote the generator of the semigroup thus obtained. Under these assumptions
we can formulate the following Theorem.
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Theorem 6. Let l^p<oo. (i) f<=Lp(S, I, a) satisfies sup ^T(u)fdu <oo
t>o Jo p

if and only if Ag=f is solvable in LP(S, S, p). (ii) // Ag=f is solvable, then
the limits

and \im[_(A-l
^-»0 +

exist and coincide almost everywhere on S. (iii) // l<p<°o,or if p=l and fjt is
a finite measure, then the limits in (ii) converge in \\-\\p and the limit function
g is the unique solution of Ag—f in the \\-\\p-closure of R(A\LP).

We end this section with a concrete application to the equation Ag=f in
n d2

Lp(R
n\ l^£<oo, where A is the Laplacian S -3-7-. ^ ^s known that A gen-

i=i UXi

erates the Gauss-Weierstrass semigroup T(-)> which is defined by T(0)=/ and

f<=Lp(R»), t>0.

This is a Co-semigroup of contractions on Lp(R
n). Hence we can formulate the

following specialization of Theorem 6.

Corollary 7. Let f be a function in Lp(R
n), l^p<°o. Then the equation

=/ is solvable if and only if

sup ) f ( y ) d y d t <00,

p

if and only if

sup
p

When p>l, a solution is given by

<00.

the convergence being valid in the sense of pointwise almost everywhere as well
as in the sense of \\-\\P.

§ 4. Generators of Cosine Operator Functions

A strongly continuous family {C(t);t^R} of bounded linear operators on
X is called a cosine operator function if C(0)=/ and C(f+s)+C(f—s)=2C(f)C(s),
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S t
C(s)xds,

o
x^X. The generator A\ — Cff(ty is a densely defined closed operator. There
exist M^l and w^Q such that \\C(t)\\^Mew[tl, t^R. The resolvent set p(A)
contains all 2.2 with A>w, and for each such A

l(F-AYlx={~e-nC(t}xdt for all xt=X.
Jo

See, e.g., Sova [10] for these and other properties of C(-).

For t>Q, let 4, :=2rzrS(s)ds and Bt: = -2t-2('('{US(v)dvduds. Then we
Jo Jo jo jo

have BtAcABt-=I-At, AtAc:AAt=2t-2(C(t)-I), and 5?**=^-** for all
JLZ

1*) (see [8], Example VII). Hence {At} is a system of almost invariant
integrals for A+I and {Bt} is its associated system of companion integrals if
H^ t l l ^M and if t~2C(t)->Q strongly as £->oo. Moreover, as was in the case of
semigroup, the condition ||^4£||^M also implies that {A(A—.4)~1}^>0 is a system
of almost invariant integrals and {(A—A)'1}^ the associated system of
companion integrals.

From Theorems 1 and 2 we can immediately deduce the next theorem, which
is concerned with the equivalence among the following conditions:

(Cl)

(C2)
X>0

(C3) x=w-\im(A—Ak)~
1y exists for some sequence {^*}—»0+;

(C4) x=s-lim(A—}i)-1y exists;

(C5) sup ^{'{'{"sWydvduds <oo;
t>o Jojo jo

S t k r s r u
\ \ S(v)ydvduds exists for some sequence {^}-»°°;o Jo jo

(C7) x = -s-lim2t-2(t\S{US(v)ydvduds exists;
t-*oo Jojojo

(C8) sup [*S(s)yds <°o.
«>o Jo

Theorem 8. Let C(-) be a cosine operator function on X. Suppose that

2t~2{tS(s)ds ^M for all t>Q and r*C(0->0 strongly as t-+™.
Jo

(i) If X is reflexive, then condition (C1)-(C7) are equivalent to each other.
(ii) // X=Li(S, 2, p.) with /jt a a-finite measure, and if M=l, then conditions

(Cl), (C2), and (C5) are equivalent; moreover, they are also equivalent to condi-
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tions (C3), (C4), (C6), and (C7) when p is finite and 2t~z[s(s)fds for

Remark. If ||C(0||^M for all f^O, then both cases (i) and (ii), the condition
(C8) can be added as an equivalent condition, because (C1)=HC8)=KC2).
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