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Self-duality and Integrable Systems

By

Yousuke OHYAMA®*

§0. Introduction

In his lectures (1984-85) at Kyoto University, Professor M. Sato presented a
program for generalizing the soliton theory ([9]; cf. [10]). The Kadomtsev-
Petviashvili (KP) equation is a typical example of the soliton theory. The KP
equation is written in the form of deformation equations of a linear ordinary
differential equation. The time evolutions of a solution are interpreted as
dynamical motions on an infinite dimensional Grassmann manifold ([7], [9]).
The Lie algebra of microdifferential operators of one variable acts on this
manifold transitively. He conjectured that any integrable systems can be
written in the form of deformation equations of a linear system, and proposed
to investigate a deformation of differential equations in higher dimensions. He
showed a simple example of a deformation of holonomic systems in higher
dimensions ([9]), and its generalization is treated in [4]. In this paper we
study a deformation of 9-modules in higher dimensions.

First we review the KP equation. We denote by & the ring of microdif-
ferential operators of one variable x. We fix a microdifferential operator P,
and denote by ?¢p a time variable with respect to P. We study the following
evolution equation associated to P:

g—W+WP:(WPW")+W, 0.1)
tp

where W=W(x, D,)=14+2,«ow,(x)Di=&. We denote by 9 the set of such
operators W. This space 9 is a group by the composition of £&. We get the
KP-hierarchy taking P=D? (u=1, 2, 3, ---) in (0.1). The equation (0.1) defines
a dynamical motion on 9¥. This infinitesimal action of the Lie algebra & on
Y is transitive.

The purpose of this article is to give a foundation for higher dimensional
generalization of the KP hierarchy. Let now & be the ring of microdifferential
operators in several variables. Similarly to the one dimensional case, fixing an
operator P=¢&, we shall study the following equation
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-g—tVK+WP=(WPW“)+W, 0.2)
P

where the operator W is a 0-th order microdifferential operator. Here we
choose a decomposition €=96&; and (WPW-),€9 is the component of
WPW-! according to this decomposition. In general the equation (0.2) imposes
some constraints on the initial value W(t=0), since the vector field defined by
(0.2) is not tangent to the space &(0). There is no operator W, such that the
equation (0.2) has a solution W(t)=& with the initial value W, for any Pcé.
We take generators P in (0.2) only in the Lie subalgebra V of &

V={Fyx’', Do)xo-l-0 2 Fi(x', Do)Ds+E(x’, Do);
si<r

Fu(x’, Dy), E(x’, Do)eé& for 05 k<r},

where x'=(x,, x4, -, x,—;). This Lie algebra contains the transformation
groups both of the self-dual Yang-Mills equations and of the self-dual Einstein
equations (see [7], [8]). In §2 we will determine the subspace % of &(0) so
that the vector field defined by (0.2) for any PV is tangent to 9. The space
9 is a subgroup in & The Lie algebra V acts on 9 transitively.

In the case of »=3, our integrable system is nothing but a composed system
of the self-dual Yang-Mills equations and the equations of self-dual metrics on
Riemannian manifolds of dimension four. The Lie algebra V acts transitively
on the space of self-dual connections on self-dual spaces. Thus we obtain a
group-theoretical description of the twistor theory ([1], [5]).

Notations. We use the following notations: Z denotes the set of integers.
N denotes the set of non-negative integers. We denote by C the complex
number field. We denote by 1, the unit matrix of size nXmn.

§1. Deformation 9-Modules

Throughout this paper we shall work in the category of formal power
series, O=C[[x]]=C[[xo, X1, -+, x--1]1(r=2). Let 9 be the ring of differential
operators with coefficients in @. Then every differential operator P of order
m can be written as:

P= 3 a.x)D3,

aeNT,|alsm
where a,(x) are elements of O, a=(a,, a;, -, a--1))ENT, |a|=ayt+a,++a,-,,
D3=DgoD%1---Dgryt and D;=0/0x; (=0, 1, -+, r—1).
The ring & of formal microdifferential operators is a set of formal Laurent
series in D,, Dy, ---, D,-, with only non-negative powers of D, ---, D,-;. The
precise definition is as follows. We denote by &(m) the space of formal series:
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P= 2 aa(x)Dg

acZxNT-1 |a|sm
where a,’s are elements of @, and the summation is taken through a=(a,, ai,
-, @r-y), Where a,=Z, a,=N, -, a,.,=N. We set

e=\U &em).

mez
We endow the ©-module € with a structure of ring by extending the Leibniz
formula. For two elements P=3,a,D% and Q:ZﬁbﬁD% of &, we define the
composition P-Q by
a
P-Q= ab(T)Dg+ﬂ-r’
Q a,ﬁerNzr—l,reNT(7’>a ?
where b4” =D%(bg). The ring & has an increasing filtration by subspaces
{&(m)} mez. We have
em)ée(n)=&n+m).
For any ©-submodule .£ of & we define the induced filtration {.L(m)}nez of L
by L(m)=_LNE(m).
Let &; be the O-module consisting of the formal microdifferential operators
of the form

> aq(x)D3.
(<0

The ring &€ is the direct sum of 9 and &;. For any P&, we define P,€9
and P_.c&; by the decomposition of £:

E=9PEy
P=P,+P..

For any O-submodule .£ of & we define the O-module £L_- by L.=LNE,.
Remark that &£(0)=0@¢&4(0).

In the following we shall study a left 9-submodule I of & which satisfies
the following condition:

E(m)=I(m)PE4(m) for any meZ. 1.1

For example [=9 satisfies (1.1). We make clear the structure of such a 9-
submodule 1.

Lemma 1.1. Suppose that a D-submodule I of & satisfies the condition (1.1).
Then I is generated as D-module by a unique operator W such that
Wee) and W,.=1. (1.2)

Proof. The operator W is obtained by decomposing the identity operator
1€£(0) into the sum of an operator in I(0) and an operator in &£,4(0) according
to the condition (1.1):
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E0)=10)De4(0)
1=W+U.
It is evident that W is contained in &(0) and that W.=1. Since we have
EmW =&(m), Es(mW=8E4(m)
for any m=Z, we obtain that
EmM)=D(m)WDE 4(m) for any meZ.

Thus the 9-module I’=9W also satisfies (1.1). Because I contains I’ and both
satisfy (1.1), I coincides with I’. The uniqueness is clear. O

Remark that W in Lemma 1.1 is invertible by (1.2).

We investigate nonlinear evolution equations according to the program of
M. Sato ([9], [10]). For any P& and any 9-submodule I, of & we define the
time evolution 7, of I, by the following differential equations:

ov ()
ot
We call P& the generator of the evolution equation (1.3).

In general we cannot find any 9-submodule I; which solves (1.3). In this
paper we shall study the case that we can find a solution I, of (1.3) which is
a 9D-module satisfying (1.1) for any ¢ Then I, is generated by an operator
W()=&(0) by Lemma 1.1 and we can rewrite the equation (1.3) in terms of the
generator W(z).

+V®PeI, for any V(@)el,. (1.3)

Lemma 1.2. We fix an operator P=&. We assume that the solution I, of
the evolution equation (1.3) is a D-submodule which satisfies (1.1) for any t. Then
the equation (1.3) reduces to the following equation

oW (t)
ot

where the operator W(t) is the generator of I, in Lemma 1.1.

+WOP=W@O)PWB)™).W (), (1.4

Proof. From the equation (1.3) there exists an operator B(t)=9 such that

aw ()
ot

+WHP=B®OW().

Thus we have

BO)=W®)PW@) '+ i’}$W(t)‘1 .

Since the operator W(f) is contained in 1+&g, the operator (@W(t)/0H)W(t)™* is
contained in &g;. Thus we obtain that B()=(W{)PW () ")s. O
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Remark. The equation (1.4) is rewritten as

%%V— =(WPW-),lW-WP
=—WPW-H.W. (1.5)

The evolution equation (1.4) is associated with an infinitesimal action p of
€ on the space £&. For P& the vector field p(P) is given as follows.

W — —(WPW-H.WeTyeE,

where the tangent space Twé& is identified with & by the structure of vector
space of &.

Theorem 1.3. For any P, Q=& we have
p(LP, @D)=—Lp(P), p(@)].

Proof. We denote by &, and e, the time parameters with respect to P and
Q, respectively. We set P=WPW-! and Q=WQW-'. We have

exp(e; o(PYW=(1—&,(P))W mod ¢},
exp(e,0(Q)W=(1—e,(Q)-)W mod &3.
Hence we have, modulo &2, €2
exp(e; o(P)(1—ex(WQW™)-)
=l—ey((1—e,P)Q(1+e.P))-
=1—e,0_+ee [P, 0.
Thus we obtain, modulo &2, &2
exp(e:p(P)) exp(e.0(Q)W
=exp(e:p(P)(1—e,(WQW 1) )W
=(1—e&Q-+eieal P, Q1)A—e, P)W
=(1—e.P.—e.Q +ee([P, G1-+Q-P)w.
Similarly we have, modulo &2, &}
exp(e;0(Q)) exp(e, p(P)HW
=(1—e0-—e.P+ee([Q-, P1+P.Q)W.
By the formula
exp(e;p(P)) exp(e:0(Q)W —exp(e,0(Q))exp(e, o(P)W
=ei6[p(P), p(@)IW mod &}, €,
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we obtain
[o(P), o(@IW=A[P., Q1.+G.P.—[Q_, P1.—B.§_tw
={[E, 0. +Q1—[Q., P+P1+[0., Pyw. (1.6)
Since [P,, §,]-=0, the right hand side of (1.6) is equal to
[, Q1-W=—p([P, Q]W . O

When P, Q=& commute with each other, the following equations are com-
patible by Theorem 1.3:

a%/Z—z(WPW-I)JrW—WP,

ow _

7=(WQW VW-wa,
where W=W(s, t).

In the case r=1, for any P& and for any I,=9W(0) the solution I, of
the equation (1.3) satisfies the condition (1.1) for any . With the choice P=
D% (n=1, 2, ---), we obtain the KP-hierarchy ([7], [8]):

oW ()
ot
In higher dimensional case, we must choose a nice pair of the generator P and
I,=9W(0) in order that I, satisfies the condition (1.1) for any . We shall see
the evolution equation (1.4) constrains the initial value W(0) in the following
example.

+WDs=WHDIW()).W(t).

Example 1.1. We consider (1.4) in the case »=2. We take D} as the
generator of the equation (1.4). We write

wh= = wi.ngDju Wo,o=1.

1+7<0,720

The operator W(#)D? is decomposed into the sum

E=IWDEy

WODF=W DWW @) ). WH+U .
Then we have

aw_” aw-—xo

2 -1\ — 2__ . o :

WODI (1)), = (Di—25 =5 D=2 25 20),

U= X wu;,(x)DiD}

i+7s1,1<0

_ 8w¢_1,j aw-m _ azwi_j

—i+j§1,i<0< 2 0xq +2 0x, Wi.g=1 0x2
0w_y, 0w_1,; 0wy, ini
2 0x, Wi.st+2 0x, 0x; )D°D1'
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The equation (1.4) is equivalent to the following:

agvi.j +u; =0 for i+;=<0,

t

awi-u‘ Ow-1,1 = =
0x, 0x, wi, j-=0,  for i+j=I.

The second equation constrains the initial data W(0).

§2. Integrable Systems in Higher Dimensions

In the example 1.1 we have considered the equation (1.3) for one generator
P=D%. In this section we will introduce a space V of generators, and determine
the space of 9-submodules I of & such that the condition (1.1) is preserved
under the time evolution (1.3) for any P&V.

First we review two known examples, the self-dual Yang-Mills equations
and the self-dual Einstein equations. We can interpret both of the equations as
integrable systems of three variables (see [14]).

Example 2.1. Self-dual Yang-Mills equations (see [5], [11]). The self-dual
Yang-Mills equations are written in the following form

04, 04,
—az(xl) X2, S, t)—_az(xl) X2, S, t):
0 0
I:'a?"i—fll(xh X2, S, t): 32‘__}‘142(7517 X2, S, t)]—o (21)

for gauge fields A,, A,&Mat(nXn) on four-dimensional manifolds.
The evolution equation (1.4) is generalized to the case that W and P have
matrix coefficients. We introduce the space %y y(n) and the Lie algebra Vyu(n):

Wyu(n)={W(x,, xs, Do):_z wi(xy, x2)D5°;

iEN

w;eMat(nXn, C[[x,, x.11), wo=1a}.
Vyu(m)={F(x, x2, Do)D1+Fo(x1, X2, Do)Dy+E(x1, %4, Do);
F,, F,=Mat(nXn, 9), EeMat(nXn, &)}.

The evolution equation (1.4) for PV yy(n) with any initial value WeWyy(n)
has a solution in Wy,(n). We consider the equation (1.4) for P=D,D,, D,D,=
Vyu(n):

%—V:JFWDODF(WDOD,W*W,

7
%I—:+WD0D2:(WDOD2¥T/"1)+W. (2.2)

In terms of the coefficients w; of W the equation (2.2) is written in the form
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ow, _ OWq 41 ~%w
ds ~ 0x, ox,

(2.3)

dw,  dwi.  dw,
at - axg axz

By eliminating w, from the equation

W,,

for 1>0. We set A,=dw,/0x,(j=1, 2).
(2.3) for =1, we obtain the equation (2.1).

Example 2.2. Self-dual Einstein equations (see [2], [12]). The self-dual

Einstein equations are written in the form (see [6])

gf: (x4, X3, S, t):%élz(xl, Xy, S, 1),

gf (1, 20y 5, D)= gxz (%1, %3, 5, 1),

[;—s—l—fll(xx, X3, S, l)%—i—Bl(xl, Xs, S, t)a_i;,
%—i—Az(xl, X2, S, t)% + By(x1, Xs, S, t)—f}i—z]:o’

(2.4)

aB] (xly x2; S, t)+%<xl) X2, S, t):O (]:1; 2)

axZ axl

In the following we forget the last equation in (2.4) for simplicity.
We introduce the space 9%z and the Lie algebra Vg:

1 ) .
We={W= 8 ——GIGiDIDL; Gi= B g..,(x, D% (=1, 2)f.
7, kEN ] k! 7<0 J
Ve={F(x1, x5, Do)D\+F;(x1, x5, Do)Ds; Fy, [,EE}.
The evolution equation (1.4) for PV with any initial value We%; has a

solution in 9z. We consider (1.4) for P=D,D,, DD,V g :

%—VZHVDODl:(WDODIW*nw,

%ItlJ,—WDODzz(WDODgW"‘)JrW. (2.5)

In terms of the coefficients g,,, the equation (2.5) is written in the form:

agm _ 0g..,-1 _ 0811 agl.j . 08, -1 0g:.;
as 0%, 0x, 0x, 0x; 0x,

agm _ agt,;—l . 0g: _1 agi,j 0g2. -1 agi'j o '
o T ox,  ox, ox.  om ox, Tor ==L2 j<0. (@26
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We set A,=—0g:,-.1/0x,, B,=—0g, -1/0x,(j=1, 2). By eliminating g, -, (=1, 2)
from the equation (2.6) for ;=1, 2, j=-—1, we obtain the equation (2.4).

We shall unify these two examples and obtain more general systems. We
introduce the Lie subalgebra V of & which contains both the Lie algebras Vyu
and Vg:

V=A{F(x', Do)xo+ 3 F,(x', Do)D,+E(x’, Dy);
0T

Fk(x’: DO): E(xl: D())Ee; (O§k<7’)} >

where x'=(x1, X3, ***, Xr-1)-
Lemwa 2.1. V is isomorphic to D1)RQeCL[x]][x%"] as a Lie algebra.

Proof. Set X=C"={(zy, 2y, =, 2,-)EC"}, and Y={z=X,; z,=0}. We
take the transformation

P — =1 — —
xo=2%D,,, D, =2z3v', x'=2', Dy=D,.

Then the transform of V is 9(1)QRC[[z1]1[z7"]. 5

The Lie algebra 9(1)QC[[x]][x3"] is the direct sum of the Lie algebra
OReC [[x]1][x3"] of vector fields and the commutative Lie algebre C[[x]][x3'],
where the Lie algebra 6 is defined by

0= > oD,.
0T
The Lie algebra O@ReC[[x]j[x5'] corresponds to the infinitesimal coordinate
transformations, and the Lie algebra C[[x] ][ x3'] corresponds to the infinitesimal
gauge transformations of a line bundle.

Now we shall determine the set of 9-submodules in & such that the condi-
tion (1.1) is preserved under (1.3) with respect to any P<=V. We introduce the
subspaces W, and Wyy of €:

Wu={Wix, D= 3~ GrxpoDz €6
acNT (X!
G*=G3G: - Gezt where G,=G(x', D)eé(—1},
(WYM:{W(-X’; DO):lEENWZ(x’)DBi; u)zEC[I:xlr ) xr—l]]; wOEl}'

Proposition 2.2. Let [,=9W, be a D-submodule of &. Assume that the
time evolution of I, for any PEV also satisfies the condition (1.1). Then W,
factorizes into the product of Wn=Wn and WyyEWyw ;

Wo=WaulWysy.

Remark. The operator W, corresponds to the equation of self-dual metrics
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(see §3).

Proof of Proposition 2.2.
Step 1.

Lemma 2.3. Let W(t) be the solution of (1.4) for P&V with W(0)=W,.
Then W(®PW(t))- is contained in €40).

Proof. 1t follows from the equation (1.5) that

ag/;‘(t) W@y =—WOPWH™-.

Since the operator (0W(t)/at)W(t)~! is contained in &(0), we obtain Lemma 2.3.
O
Step 2. For any Peg, let P be W.PW3.

Lemma 2.4. Suppose that P, Q=V commute with each other. The operator
[P,, _]- is contained in &4(0).

Proof. We consider the solution W=W(s, t) of the equation (1.5) for the
operators P, Q:

w_ 1
= —(WPWLIW,

W oWy, @7

Since [P, Q]=0, the system (2.7) is compatible by Theorem
1.3. It follows from Lemma 2.3 that WPW-! is contained in 9+&4(0). We have

i -1 _W_ -1__ -la_W_ -1
Fr WPW-H= ot PW-'—WPW 5t w

WQW-Y)_.WPW-'+WPW- WQW™)_
=[WPW-, (WQW-)_].

where W=W(s, t).

Hence [ﬁ, Q.7 is contained in D+E4(0).  Since [13_, (5-] is contained in &4(0)
by Lemma 2.3, [P,, O_] is contained in D+E40). O

Step. 3. Recall that P denotes W,PW3' for any P=&. We define the
operators G;, H,e€ (0<i<r) as follows:
ﬁo=Do—"Go(x: D,),

Xi=x;+Gi(x, D) for =1, 2, ---,r—1,

£0:x0+H0(x7 DZ') »
ﬁi:Di+Hi(x: D.) for

i=1,2, -, r—1. 2.8
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Lemma 2.5. Assume that W, satisfies the condition in$Proposition 2.2. The
operators G;, H; are written in the following form:

G;=Gy(x’, Dy)e&(—-1),

Hi=o<JZ<TK,-J(x’, Dy)D;+Ly(x, D)  for 0=i<r,
where K;;(x', Do)=&, Li(x, Dy)e&(—1),
and x'=(xq, 1, Xr-1).

Proof. We shall show the following statement (2.9), by the induction on n:
Gi=Gi+GY, Hi=H{+Hf
for some G;, H{, G and H’ (0<i<r) such that
4, Hle&(—n), G, Hi=&(—n—1)  for 0<i<r,

Gi=G(x', Dys&(—1),

H{=O<JZ_‘,<TKi,~(x', Dy)D;+Li(x, Dy)  for 0<i<r
with K (x', Do), Li(x, Do)E&(—1). (2.9),

It is evident that the statement (2.9), is true. By assuming (2.9), we shall
prove (2.9)n+41.
We expand the operators:

Gj= 3 gihuDiDE,

k<0,a’'€NT~—
Hy= 3 heDiDs. (2.10)
Since G% belongs to &(—n), we have
Dyr=(D,—G{— Gy
=(Do—G)" " —(n+2)G{(Doe—Go)***
=(Dy— Gy —(n+2)G4 D%+ modulo &£(0).

The operator (Dy—G{)"™* belongs to 9+&(0), because G; does not contain
D; (0<j<r). Hence we obtain

Drv=—(n+2)G4D2*' modulo 9+&(0).

Since D2+ is contained in 9+&(0) for any n=Z by Lemma 2.3, GYD%* is also
contained in 9+&(0). Therefore we obtain

g9 _era=0 for |a’'|=2. (2.11)
Similarly we have, modulo 94&(0)
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8+ :—(n—f-l)G”DnD +H/1Dn+1

2

%oﬁg 2= (n+42)x,GID+ H{ D2+
GUDE" Dyt 2,(HY DY —(n+ DG DAD,).

,%Jﬁg*—lﬁ =G5
By Lemma 2.3, ﬁs‘“ﬁj, J?oﬁ{)”z and yéjD{,‘“Dk are contained in 9-+&(0). Thus
we obtain
h R i -n. e =0 for |a’|=3,
hR narve,=(n+1)g%na  for |a'|=1,
h-(-ola’l—n—l,a':() for Ia’ng,
g% icn-1,0=0  for |a'|=2, (2.12)
where j=1, 2, -, »—1 and ¢,=(0, -+, 1 ,0eNT,

We denote by &’ and <V’ the subspaces of 9+&(0):
:{ <k2<rFk(x, DO)Dk+E(xy DO); Fk(xl DO); E(X, DO)ES} H

CV’:{0<kZ<TFk(X’, D)Dy+E(x, Do); Fi(x’, Do), E(x, Do)E&}.

For P, Q=<' the commutator [P, Q] is contained in <. Since H;, 0<7<r)
are contained in <V’, [H/, H;] and [x,, H}] (0=<7, j<r) are contained in <.

For 7>0 we have
aHo

]] [xt); H] +|:Ho, H:l

aH//
Hi1-+[Hi, H71+[HYS, Hil)

:[x()) H{]/]

+(txo B2 aH‘) LH;, Hj])

/l
=[x, H1]— Z modulo &(—n—2)+<V.

J

Since [0, D;1=0, [x,, H}]—(@H%/3x,) belongs to &(—n—2)+<y. By (2.10) we
have, modulo &(—n—2)4+<Y
aHlI
[xo, H/]/]_—azjo—
H j ahiogb—l—la’l a’' f B
= +|a'VYh@D A s lenela a
= 2 ((7’1 Fla'DhY - 1q I, a _—-———ax] )Dol tatipa; (2.13)

la’ 122

We obtain from (2.12) and (2.13) that

RSB _pe=0 for |a'|=2, 0<j<r,
g9 _, =0 for |a’|=1. (2.14)
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Similarly by the equations
~ ~ _3H] aGo _ .
[D,, D,]= ax, T ox, —[G,, H;]=0 for 0<j<r,
N . 3G, . . .
[DO’ xj]: axo +LG]1 GO:]—LGOI x]]':o for O<]<7’,
[ D, #3=1+LDs, H1—[Gs, x,]+[Go, Hi]=1,
we obtain
a/’li]%—n.ek o ahiog—n.ck . 3gif{_n,0 _
ir. =0, i1, =0, Fx0 =0. (2.15)
For 0<7/<r we have modulo &(—-1)
DD, =(Do—Gi—GOM D+ Hi+HY)
=((Do=Go) " —nG{(Dy—G)" D, +H{+-HY)
=—nG{D? D, +(Dy—G)"D,+H)+H"D?. (2.16)

By (2.12) and (2.14) we have

HiDi= 2 h%-u.,D5'D, modulo &(—1),

0T
—nGyD D, =—ng® (D3'D, modulo &(—1).

We set K., and L, in (2.9), as follows:
I(”(JC’, DO):EOIZL.]', m(x,)Deg

L(x, Do)tgoli,m(X’)DE"-
By (2.9), we have

(§0ﬁ1>+:<D0'—Go)(D1+H{-[—HZ)
:DoDi+{Do(H{+12 K, -- L)}y
sj<r
=DD,+ X (hy;’e]_;-kl,]._1)D1+ll,_1_

(2.17)
1s<Lr
Sublemma. We have

089, _

=0, (2.18)

Proof. The commutator [(ﬁnﬁl)h 55‘]1] is contained in 9+&(0) by Lemma
2.4. By (2.16) and (2.17) we have, modulo &(0)

[(D.D,),, D2D.]

=[DoDy)s, —1g%.oD7'Dit 3B A% _n o, D7D, 4+ (Do— Gy Di+H})]

oy
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E[DOJ Di) _ngSOI)L,O EID‘E]
+[(BeDi)s, = hD_y D7 D4(Do—Go)(Di+-HY)].

0i<r i
Since (5ol~)i)+ and 20<,~<Thi",’_n,ejDaleJ.—(Do—G{,)”(Di—i—H{) are contained in <V,
the operator

[DoD;, —ng% D' D]

_ 08% 0 1y . 0280 _ 0°g%.0
T DyDi—n 0x; Di=n 0x,0%,
is contained in 9+&(0). This implies (2.18). =
It follows from (2.11), (2.12) and (2.14) that we have
Gi—g9 . Dy"sé(—n—1),
Gi—g8& 1Dy tee(—n—2),
Hg—( h& s e, D" 2D +hS 1 WDy ) =EE(—n—2),
0<ELT
H{—( 3 h% 1., D Dy +h& o DeMEE(—n—1),
0<r<T
for 0<7<r. Thus we obtain (2.9),+, from (2.15) and (2.18). O

Step 4. Now we shall prove Proposition 2.2. We introduce a micro-
differential operator

Wm:: 2 —l—G"‘x"‘ODgi,

aéNT @l

where G*=G%G%0 --- G&r;1 is given in Lemma 2.5. Then we have

_ Q0 ~a__ag-1Da’
[Do, Wm]—anIVTmG -7500 1D:c’
=G, >} iG“x:’)‘OD‘;Z=G(,Wm.
aénT al
Hence we get
W aDWit=Dy—G,. (2.20)
Similarly we obtain that
WaxWa=x;4+G; (1=j<r). (2.21)

Set Wyu=WW. Then it follows from (2.8), (2.20) and (2.21) that Wyy com-
mutes with D,, x;, .-+, x,-;. Therefore Wyy is contained in Wyy.
Thus we have completed the proof of Proposition 2.2. O

We set
W={WaWyuy; WaSEWn, WyuEWyn}.
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We shall investigate the structure of 9%, W, and Wyu.

Proposition 2.6. The spaces W, W, and Wy are groups by the composition
of microdifferential operators, and Wyy is a normal subgroup in W.

Proof. 1t is evident that 9y is an abelian group.
Let Wa=3.(1/a!)G*x5D% and W5,=34(1/B)FFx%DE be operators in
Wa.. For any microdifferential operator P(x’, D,), we set

~

P:zlvaW;nl:P(xl""Gly t xr—1+Gr—-1, DO—GO)-

The last equality follows from (2.20) and (2.21). Noting that P commutes with
G,, the composition

1

W Wi =3 —— F8W , x80DE;
T B!
1 ~x, 1 .y
:EFF ﬂ_&T Gaxtgﬁﬁng,ﬁ'ﬁ
=S (F+Gy Dy (2.22)
7 '
is contained in W,. For Wyuy=3W.(x")Di*cWy, the operator
W WyuWz!
ZE Wi(x1+ Gy, X2+ Gay s Xroy+Gro)(Do—Go)™* (2.23)

is contained in Wyy. Since W=W . Wyy, it follows from (2.22) and (2.23) that
W is a group and that 9y, is a normal subgroup of . O

We define the Lie subalgebras V, and Vyy of V
Va={F(x', Do)xo-l-0 > Fy(x', Do)D;; Fu(x', D)€, 0=k<n)},
<j<r

Veu={E(x', Do); E(x', Dy)=&}.
We have
V=VnDVyu.

Proposition 2.7. For any P<V (resp. Vo, Vyy) and W=W (resp. Wan, Wyn),
we have WPW=&V (resp. Vau, Vyn).

Proof. For W=>,1/a)G*x% D% =W, we have

T — & a—s~an agNa’
LD, W ]—O§JZ<T§J 218 7z, x§0Dg

=5 Ciyp 4 9y,
ozr 0% 0x;
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j
where i=1, 2, ---, r—1, and ¢,=(0, - ,0)eNT". Similarly we have
[xo, I’V]:O<]2<T[x0y G]]I’VD;"H:?CO, GolW x,.

Hence we obtain

WDW-'=D,— 3} 96, L WD,W-— 9G, Wx Wt for 0<i<r,
oGer 0%, 0x,
W:L‘OW‘IZXO—K% Cxo, G,I7 DW= %0, Go]Wx W1, (2.24)
<r
We set

_{ 96, for 0<i<r,
% 2
Xo, GJ] ZIO:
for 0<j<r. Then we have
Xo=(1+Goo)Wx W14+ 2 G,,WD,W-1,
0T
D, =G, W x V! + 2 0,,+G.,)WD,W-1 for 0i<r. (2.25)

Since G,,€&(—1), the matrix (0,,+G.)oss ;< is invertible. Hence WD W-!
0<i<r) and Wx,W-! are contained in V,,, because G,, is independent of x,,
independent of x,, Dy, --- D,-;. For any operator P=P(x', Dy=&, WPW is
independent of x,, Dy, ---, D,._; by (2.20) and (2.21). Hence we get Proposition
2.7 for V., and Wy,

The proposition is evident for Vyy and Wyy. For Wu=W, and E=Vyy
the operator W,EWz3! is contained in Vy, by (2.20) and (2.21). For Wyye
Yy wWe have

WyyD W3 =D,— aTg/;M Wik for 0<i<r,

WyuxWii=x0—[x0, WyyWrk.

Since Wyy commutes with Dy, x,, -+, x,-;, the operator Wy PIVTY, is contained
in V for any P=V. Since V=V ,BVyy and W=W, Wy, we get Proposition
2.7. O

Example 2.3. We shall write down the evolution equations (1.4) for Wew
in the case r=3. We take D,D,, D,D, as generators of (1.4).
We set
W= 5, G550z (S (x5,
aENd ¢ i

where G,(x1, %5, Do)= %gi,;(xb x)D% (=1, 2).
J

Then we have
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NN 0g0. -1 08:.-1 _auh
(D0D1)+—D0D1“‘a—x1—xo 2 ox, 3 —axl’

5gn,—1 ; agz.—1D ow,

Xo- —a.
0x, 5 0x, toox,

(DyDy),=DyD,—

Il

Taking time parameters s and ¢ with respect to D,D, and D,D,, respectively,
we obtain the evolution equations

ow ¥ . agov—l i agt,—l . ow, 7
0s _H/DODI—_(DODI— 0x, M_lgT".z 0x, D. 8x1>” ’
ow - ago,—1 = 3g1,_1 . 0w, 7 2.9
S AWDDy= (DD 3 x5 PRD WL (2.26)

a agg,_l agz.—l awl
{-a?_DODI_{F 0x, x°+i=1,z 0x, Dud 0x,’
8 ago -1 801 -1 e au’l]
2 DD+ 28ty £ RS 2.27
ot DoDz‘l‘ ax2 ?~0+i=1 . axz D1. axz 0 ( )

We shall investigate the infinitesimal action p of the Lie subalgebra V of
&. Remark that the Lie algebra of the group % (resp. Wn, Wya) is canonically
isomorphic to the Lie subalgebra V_=VN&y (resp. (Vau)-, Vyu)-).

Theorem 2.8. The action p of V (resp. Vm, Vvu) preserves the space W
(resp. W, Wyu). The action of V_ (resp. (Vau)-, Vyu)-) coincides with the in-
Jfinitesimal right action of on the group W (resp. Wm, Wyn).

Proof. For any element PV (resp. Va, Vyy) and any operator Wea
(resp. W, Wyy), we have

p(P)y=—WPW-H.WeTwe.

The tangent space TwW (resp. TwWm, TwWyy) is identified with V_W (resp.
V)W, Vya)-W). By Proposition 2.7, —(IWWPW-)_W is contained in TwW
(resp. TwWm, TwWyu). Taking PeV_ (resp. (Va)-, Vyi)-), we have p(P)=
—WP. Hence the action p is the right action of vector fields. O

By Theorem 2.8 the Lie algebra V (resp. Va, Vyx) acts on W (resp. W,

Wyy) transitively.

§3. Twistor Theory and Integrable Systems

On oriented Riemannian manifolds of dimension four, the Weyl curvature
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tensor C decomposes into two components, the self-dual part C. and the anti-
self-dual part C.. A manifold is called self-dual (resp. anti-self-dual) when C._
(resp. C.) vanishes. Penrose [5] showed that the vanishing of the anti-self-
dual part of the Weyl tensor is precisely the integrability condition of the
existence of a curved twistor space.

In this section we prove that the equation C,.=0 is the compatibility condi-
tion of the deformation equations of filtered 9-submodules in & (See [13] in
which the Frobenius integrability condition of the equations of self dual metrics
is discussed). We get the equations of self-dual metrics from the equation
(2.26) for Wew,,.

Let M be a complex four-manifold and g a holomorphic metric, i.e. a non-
degenerate symmetric holomorphic covariant two-tensor on M. We shall choose
a holomorphic orientation on M which is necessary to define the complex Hodge
*_operator. Our discussion being only local, we can assume the existence of
two complex vector bundles S, and S-: the bundles of self-dual and anti-self-
dual spinors.

Let {e;},-1,2,5,4 denote a local coframe on M such that g=e,e;+ee,. We
can write them in spinor language as

[ al=[o8 oo 3D

where ¢, ¢, (resp. @i, ¢,) are the bases of self-dual (resp. anti-self-dual) spinor
coframes.

We take P=P(S.), the projective bundle of the rank two vector bundle S..
We parametrize S- locally by

(%, p1, pr2) —> p1Pi(x)+ p205(x) ,

and p=p;/p. is an affine coordinate for p,=+0.

Theorem 3.1. ([5]) The Riemannian manifold (M, g) is self-dual iff the
following Pfaffian system £ on P is integrable:

g :=d;l+(021#2“‘(wzz-wn)#—wm:()»
Q: 0,:=pe,te,=0, (3.2)
Gy .= _/.lel+e4:0,

where w;; is the connection form of S- with respect to the frame ¢, and @,.

Let A(Q) be the sheaf of vector fields orthogonal to the Pfaffian system 2.
The sheaf A(Q) is a Lie algebra iff £ is integrable. In this case there exists
a local basis (v,, v,) of A(Q) such that [v,, v,]=0.

Proposition 3.2. Assume (M, g) is self-dual. With appropriate coordinates
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(4, X1, %o, S, 1) of P, there exists a commuting basis (v, vs) of A(RQ), in the fol-
lowing form

=2 _a__(a_R_a_Jra_Si Qﬂi)
T as axl ax1 axl 3x1 ax2 aX1 32 ’

9 a_(aR 0,05 5 0T 2y

R TR PRV P AL Pa L P Y

(3.3)
where the functions R, S and T do not depend on A.

Proof. First we notice the following lemma.

Lemma 3.3. ([3]) Let (M, g) be a self-dual Riemannian four-manifold.
Then there exist local coordinates (b, Ps, g1, =) 0of M such that

8=, 2 Pulp, )dpidy;.

It follows from Lemma 3.3 that we can take local frames {e;};1 254 @S
follows :

e, =—dp,, 92:_(P11dQ1+P12d42),
84—‘—(1172, €3=P21d41+P22d42-

By Theorem 3.1 the ideal 4 generated by (#, a;, g.) is closed under the exterior
derivative d. Thns we have

da, NONc, Na,=0,
do, NONoiNa,=0. (3.4)
By direct calculations we have

0Py, . 0P,
841 342

dozA0A01A02=(( aagiz - %1;? )ﬂz’i‘MlH“N)d‘u/\dpl/\dpz/\d%/\d%,

)i+ Kt L)dpAdpiAdpAdgi N dgs,

dal/\ﬁ/\ol/\azz((

for functions K, L, M and N independent of g. Thus we have

aPlZ_aPII____ aPzz_aPm:O
a‘]l aQZ ’ 601 642 )
Hence we can define new coordinates (xi, x,, s, ¢, ) by the following equations:
axl _ axZ _ .
aqi - Pli; aqL _P2i, (Z—'l7 2)
Szpz, t=_‘:b1.

The differential forms @, ¢, and ¢, are written in these coordinates as follows:
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0=dy+p2(E1ez+Eze3)+p(Flez+er3)+;],e;,
g1=pds+(dx,+ Ads+A,dt),
Go=pdt+(dx,+ Bids+ B.dt),

for functions A,, B,, E,, F, (j=1, 2), and J, (j=1, 2, 3, 4) independent of g. It
is easily verified that the following vectors v,, v, belong to A(£):

9 .9 9 9 SR T TS
‘—#K+3?_‘41H_BI 9%, +(E1,u +F1F 4.—]2[,! ]A)aﬂ B
o 0 9 9 B Ty T

— = ax2 _af —A, o, —B, ox, +(Eqp +Fz# +j3/1 Jo a‘u .

We set the vector field

0 0 0
lx—g—Alm—Blm,
l,= 0 - 0 0

ot Mg Py,

The commutator [vy, v,] is written in the following form

(v, v2]=<E2¢+FZuZ>£~I—<E1¢+F,p2>ai

+{(BeFi— EsFop+ @, i—2E, Ju b L(E)— I E)pe

+(F2j1 F]]Z a]Z - aj3 1(F2) lg(Fl)) }aa!,l +‘Uu1+u0, (3.5)

where the coefficients of vectors u, and u, are independent of g.

By the integrability condition, [v,, v,] is a linear combination of v; and v,
and since [v,, v,] does not contain (0/ds) nor (d/0t), v; and v, commute with
each other. It follows from (3.5) that

E,=0, F=0(G=1,2, 22_0&

0x, 0x;
Thus there exists a function f=f(x,, x,, s, t) such that
0 6
a{ —]27 f —.]3

We can take new coordinates (2:;1—}- f, %1, X5, s, 1). With these coordinates
we have

Y 9 2 3
=g g (Mg HBg T0g),
5 8 2 9 2

=55 gy (At Bag G 27)
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where C,=(0f/0s)—(Ji+J:Ai+J:B)) and Cy=@f/0)—( i+ JeAstJ:Bo). Again
taking the coefficients of p in [v,, v,], we obtain that

9A, 04, 9B, 98B, 9C, dC,

0xs  0xi’  0x, 0xi’  0xp 0%y

Thus there exist functions R, S and T which are independent of 4 such that

0R 0S oT .
7996—1_‘4]’ a—xj_ s P =C; for j=1, 2.
This completes the proof of Proposition 3.2. 0O

Remark. By Theorem 3.1 and Proposition 3.2 the equations of self-dual
metrics are equivalent to the compatibility condition [v,, v.]=0:

o*'T 0*T OR 0T oR 85) 0°T 0S 0°T _

ataxl - asaxZ —_mm _a;CT—b_—xg‘ axlaxg mm— ’

FR___PR__OT _OR PR (R _5S) PR 35 PR
0tdx, 0s0x, 0x, 0x; 0x? \dx, 0x,/0x.0%x, 0x, 0x%
BS @S 0T _ORFS R 05y S L 0555,
0tdx, 0s0x, 0x, 0x, 0x? (6x1 0x,/0x.0x, = 0x, 0x%

3.6)

In the equation (2.26) we take W<=%,. In this case w, vanishes. Replac-
ing g1, 1.1 and g,, with R, S and T, respectively. The equations (2.27)
reduces to (3.6). Therefore we have

Theorem 3.4. The Lie algebra V., acts on the space of self-dual metrics.
This action s transitive.

Let 9, be the space of W9 which commute with D,. In the equation
(2.26) we take W=, In this case G, vanishes. The equation (2.27) reduces
to the composed system of the self-dual Yang-Mills equations and the self-dual
Einstein equations (see Examples 2.1 and 2.2). Let V, be the Lie subalgebra of V :

Vi={ X Fy(x’, DO>Dj+E(x,7 Dy);

osiLr

Fu(x’, D)ee0<k<r), E(x’, Dy<é€}.

Then V, acts on %, Thus the self-dual Einstein equations are a specialization
of our integrable system.
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