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Self -duality and Integrable Systems

By

Yousuke OHYAMA*

§ 0. Introduction

In his lectures (1984-85) at Kyoto University, Professor M. Sato presented a
program for generalizing the soliton theory ([9] ; cf. [10]). The Kadomtsev-
Petviashvili (KP) equation is a typical example of the soliton theory. The KP
equation is written in the form of deformation equations of a linear ordinary
differential equation. The time evolutions of a solution are interpreted as
dynamical motions on an infinite dimensional Grassmann manifold ([7], [9]).
The Lie algebra of microdifferential operators of one variable acts on this
manifold transitively. He conjectured that any integrable systems can be
written in the form of deformation equations of a linear system, and proposed
to investigate a deformation of differential equations in higher dimensions. He
showed a simple example of a deformation of holonomic systems in higher
dimensions ([9]), and its generalization is treated in [4]. In this paper we
study a deformation of ^-modules in higher dimensions.

First we review the KP equation. We denote by 8 the ring of microdif-
ferential operators of one variable x. We fix a microdifferential operator P,
and denote by tP a time variable with respect to P. We study the following
evolution equation associated to P:

)+W, (0.1)

where W=W(x, D^l+^^w^D^e. We denote by <W the set of such
operators W. This space *W is a group by the composition of e. We get the
KP-hierarchy taking P=Dn

x (u = l, 2, 3, • • • ) in (0.1). The equation (0.1) defines
a dynamical motion on CW. This infinitesimal action of the Lie algebra € on
<W is transitive.

The purpose of this article is to give a foundation for higher dimensional
generalization of the KP hierarchy. Let now 6 be the ring of microdifferential
operators in several variables. Similarly to the one dimensional case, fixing an
operator Pe£, we shall study the following equation
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dW
)+W} (0.2)

o p

where the operator W is a 0-th order microdifferential operator. Here we
choose a decomposition 6—S)©e^ and (WPW~l)+^^) is the component of
WPW'1 according to this decomposition. In general the equation (0.2) imposes
some constraints on the initial value W(tP=ty, since the vector field defined by
(0.2) is not tangent to the space £(0). There is no operator W0 such that the
equation (0.2) has a solution W(t)^€ with the initial value W0 for any
We take generators P in (0.2) only in the Lie subalgebra V of €

Fk(x', D0), E ( x f , DQ)^e for 0^

where x'=(xlr xz, ••• , xr-i\ This Lie algebra contains the transformation
groups both of the self -dual Yang-Mills equations and of the self -dual Einstein
equations (see [7], [8]). In §2 we will determine the subspace <W of <£(0) so
that the vector field defined by (0.2) for any PeF is tangent to fW. The space
<W is a subgroup in 8. The Lie algebra V acts on *W transitively.

In the case of r— 3, our integrable system is nothing but a composed system
of the self -dual Yang-Mills equations and the equations of self -dual metrics on
Riemannian manifolds of dimension four. The Lie algebra V acts transitively
on the space of self -dual connections on self -dual spaces. Thus we obtain a
group-theoretical description of the twistor theory ([1], [5]).

Notations. We use the following notations : Z denotes the set of integers.
N denotes the set of non-negative integers. We denote by C the complex
number field. We denote by ln the unit matrix of size nXn.

§ 1. Deformation ^-Modules

Throughout this paper we shall work in the category of formal power
series, ^=C[[x]]=C[[^0, xlf ••• , ^r-i]](r^2). Let S) be the ring of differential
operators with coefficients in O. Then every differential operator P of order
m can be written as :

P= S aa(x)D*,
ae-ZV7", \a\£m

where a a ( x ) are elements of O, a=(a0, al} ••• , ar-i}
(^NT

J \a\=aQ
Jra1-\ ----- \-ar-i,

Da
x=Da

Q*DaS--D?i^ and Dj=d/dxj (;=0, 1, ••• , r-1).
The ring e of formal microdifferential operators is a set of formal Laurent

series in DQ} D1} ••• , Dr--^ with only non-negative powers of Dlf ••• , Dr^. The
precise definition is as follows. We denote by 6(m) the space of formal series :
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P= "2 aa(x}Da
x

a^Z*Nr-l, \a\$m

where aa's are elements of O, and the summation is taken through a=(aQ, alf

"- , tfr-i), where aQ<^Z, a^N, ••• , ar-\^N. We set

We endow the O-module 6 with a structure of ring by extending the Leibniz
formula. For two elements P—^adaD

a
x and Q=^j^b^D^x of £, we define the

composition P°Q by

where b$f>=Dr
x(bp). The ring £ has an increasing filtration by subspaces

{£(ro)}mez. We have

For any 0-submodule =£ of £ we define the induced filtration {-£(ra)}mez °^ -^
by £(m)=J:r\€(m).

Let <f?^ be the O-module consisting of the formal microdifferential operators
of the form

The ring dJ is the direct sum of 3) and 6$. For any Pe£, we define
and P-^6^ by the decomposition of £:

For any O-submodule X of 6? we define the 0-module J7_ by X-—
Remark that 5(0)=O©<?^(0).

In the following we shall study a left .0-submodule / of € which satisfies
the following condition:

for any meZ. (1.1)

For example /=.$ satisfies (1.1). We make clear the structure of such a <D-
submodule /.

Lemma 1.1. Suppose that a £)-submodule I of 6 satisfies the condition (1.1).
Then I is generated as S) -module by a unique operator W such that

PFe£(0) and W+=l. (1.2)

Proof. The operator W is obtained by decomposing the identity operator
1<E<£(0) into the sum of an operator in 7(0) and an operator in £0(0) according
to the condition (1.1):
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)= 7(0)0(^(0)

1=W+U.

It is evident that W is contained in £(0) and that W+=l. Since we have

for any m^Z, we obtain that

) for any m^

Thus the £?-module P—3)W also satisfies (1.1). Because / contains 7' and both
satisfy (1.1), 7 coincides with 7'. The uniqueness is clear. D

Remark that W in Lemma 1.1 is invertible by (1.2).

We investigate nonlinear evolution equations according to the program of
M. Sato ([9], [10]). For any P^S and any ^-submodule 70 of e we define the
time evolution It of 70 by the following differential equations:

•^^-+V(f)P^It for any V(f)€=/ t . (1-3)

We call P<E.6 the generator of the evolution equation (1.3).
In general we cannot find any .0-submodule It which solves (1.3). In this

paper we shall study the case that we can find a solution It of (1.3) which is
a ^-module satisfying (1.1) for any t. Then It is generated by an operator
PF(Oe£(0) by Lemma 1.1 and we can rewrite the equation (1.3) in terms of the
generator W(t).

Lemma 1.2. We fix an operator P^€. We assume that the solution It of
the evolution equation (1.3) is a 2)-submodule which satisfies (1.1) for any t. Then
the equation (1.3) reduces to the following equation

+W(t)P=(W(t)PW(tri)+W(t) , (1.4)

where the operator W(f) is the generator of It in Lemma 1.1.

Proof. From the equation (1.3) there exists an operator B(t}^£) such that

dt

Thus we have

B(t)=V/(t)PW(t)-l

at

Since the operator W(t) is contained in l+£p, the operator (dW(t}/dt}W(tYl is
contained in <^. Thus we obtain that B(t}=(W(t}PW(tYl}+* n
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Remark. The equation (1.4) is rewritten as

2jj- =(WPW-l)+W-WP

= -(WPW~1)-W. (1.5)

The evolution equation (1.4) is associated with an infinitesimal action p of
6 on the space €. For P^Q the vector field p(P) is given as follows.

where the tangent space Tw£ is identified with Q by the structure of vector
space of £.

Theorem 1.3. For any P, Q^Q we have

Proof. We denote by si and e2 the time parameters with respect to P and
Q, respectively. We set P=WPW'1 and Q=WQW~1. We have

exp(e1/o(P))Wr=(l-e1(P)_)^ mode?,

QXp(e2p(QW=(l-ez(Q)-W model.

Hence we have, modulo e\, e\

Thus we obtain, modulo e?,

Similarly we have, modulo sf, si

exp(e2K(?))exp(£1|0(P))^

= (l-ezQ--e1P- + ele2(lQ-, P]-+P-Q-W .

By the formula

p(e1p(/J))exp(ea/o(OW--exp(

modef, e|,
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we obtain

(1.6)

Since [P+, Q+]-=0, the right hand side of (1.6) is equal to

When P, Qe£ commute with each other, the following equations are com-
patible by Theorem 1.3:

dW
ds
dW
dt

where W=W(s, 0.
In the case r—1, for any Pe£ and for any I0=3)W(Q) the solution It of

the equation (1.3) satisfies the condition (1.1) for any t. With the choice P—
Dn

Q (72=1, 2, •••), we obtain the KP-hierarchy ([7], [8]):

In higher dimensional case, we must choose a nice pair of the generator P and
IQ=3)W(ty in order that It satisfies the condition (1.1) for any t. We shall see
the evolution equation (1.4) constrains the initial value W(0) in the following
example.

Example 1.1. We consider (1.4) in the case r=2. We take D\ as the
generator of the equation (1.4). We write

W(t)= S w
i+j^Q,3^Q

The operator W(t)Dl is decomposed into the sum

Then we have
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The equation (1.4) is equivalent to the following:
^- • • .

^~ + uitj=Q fordt

—a"1'1 Wi,j-i=Q, for f-r/=l.
OXo OXo

The second equation constrains the initial data H7(0).

§2. Integrable Systems in Higher Dimensions

In the example 1.1 we have considered the equation (1.3) for one generator
P=Dl. In this section we will introduce a space V of generators, and determine
the space of ^)-submodules I of £ such that the condition (1.1) is preserved
under the time evolution (1.3) for any PeF.

First we review two known examples, the self-dual Yang-Mills equations
and the self-dual Einstein equations. We can interpret both of the equations as
integrable systems of three variables (see [14]).

Example 2.1. Self-dual Yang-Mills equations (see [5], [11]). The self-dual
Yang-Mills equations are written in the following form

dAl _ dA2

8x2
 1} 2> ' dxi

5 1-

for gauge fields Al9 .42eMat(nXn) on four-dimensional manifolds.
The evolution equation (1.4) is generalized to the case that W and P have

matrix coefficients. We introduce the space "WynM and the Lie algebra VYjnW '•

x2, D0)= S w t ( x l f xJDt*;
i(=N

, 3J),

The evolution equation (1.4) for P^VymW with any initial value
has a solution in WymW. We consider the equation (1.4) for P—D0Dl}

VYM(n) :

dW
+WDQD1=(WD0D1W~l)+W,

ZW-1\W. (2.2)

3s

dW
dt

In terms of the coefficients ws of W the equation (2.2) is written in the form
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dwl dwl+i dwi
ds dxi dxi

^wlt (2.3)
dt dx2

for i>0. We set AJ=diul/dxJ(j = l) 2). By eliminating w2 from the equation
(2.3) for z=l, we obtain the equation (2.1).

Example 2.2. Self-dual Einstein equations (see [2], [12]). The self-dual
Einstein equations are written in the form (see [6])

"^ 1> 2> , — -«
Ai, X2, S, I),

3 3
x s A |_j5 /x % $ f\

( X l , X t, s,

- - ( z 1 ; x,, s, 0 + f C x i , x,, s, 0-0 (/=!, 2). (2.4)

In the following we forget the last equation in (2.4) for simplicity.
We introduce the space WE and the Lie algebra VE :

.
j, k<=N j Ik I j<o

VE={F1(x1, xz, D0)D1+F2(x1, x2, DQ)D2', F1}

The evolution equation (1.4) for P<^VE with any initial value W^WE has a
solution in %. We consider (1.4) for P=DQD1} DQD2^VE:

dW
2W-l)+VV. (2.5)

In terms of the coefficients gltj the equation (2.5) is written in the form:

3s dxi dxi dxi dxi dx2 '

Z=%zi_9|^i^il_%zi^l for ,-=li2f y<0.
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We set Aj=-dg^-Jdx]t B3=-dgz,^/dx}(j=lt 2). By eliminating gli_2(i=l, 2)
from the equation (2.6) for i=l, 2, j= — l, we obtain the equation (2.4).

We shall unify these two examples and obtain more general systems. We
introduce the Lie subalgebra V of Q which contains both the Lie algebras VYM

and VE:

V={F0(x
f, D0)x0+ S F J ( x r

9 D 0 )
0<J<r

Fk(x'9 00), E(x'9 D

where x'=(xly xz, ••• , x r-i).

Lemma 2.1. 7 /s isomorphic to ^(l){8)oCf[[^]][^"o1] as a Lz'e algebra.

Proof. Set Z=Cr = {(z0, 5=1, ••• , ^r- i )^C r}, and r={z€E_Y; z0=0}. We
take the transformation

Then the transform of 7 is

The Lie algebra ^(l)(8)C'[[>]][>"o1] is the direct sum of the Lie algebra
?[[^]][^"o1] of vector fields and the commutative Lie algebra CTMX.Xu1],

where the Lie algebra 0 is defined by

0= S OD7.
0^j<r

The Lie algebra ®(8)0C[[#]][x"o1] corresponds to the infinitesimal coordinate
transformations, and the Lie algebra C[[^]][^^1] corresponds to the infinitesimal
gauge transformations of a line bundle.

Now we shall determine the set of ^}-submodules in € such that the condi-
tion (1.1) is preserved under (1.3) with respect to any Pe7. We introduce the
subspaces <Wm and <WYM of G :

a !

?.rri where G^G^x', D0)e£(-l

Proposition 2.2. Le£ /0==^^0 ^^ a <3)-submodule of 8. Assume that the
time evolution of IQ for any P^V also satisfies the condition (1.1). Then W0

factorizes into the product of Wm^.<Wm and W

WQ=WmWYM.

Remark. The operator Wm corresponds to the equation of self -dual metrics
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(see § 3).

Proof of Proposition 2.2.
Step 1.

Lemma 2.3. Let W(t) be the solution of (1.4) for P^V with
Then (W(t)PW(t)-1)- is contained in

Proof. It follows from the equation (1.5) that

Since the operator (dW(t)/dt)W(tY* is contained in £(0), we obtain Lemma 2.3.
D

Step 2. For any Pe£, let P be W,PW~Q\

Lemma 2.4. Suppose that P, Q^V commute with each other. The operator
[_P+, QL]- is contained in

Proof. We consider the solution W=W(s, t) of the equation (1.5) for the
operators P, Q:

8W

)-Wf (2.7)

where W=W(s, t). Since [P, Q]=0, the system (2.7) is compatible by Theorem
1.3. It follows from Lemma 2.3 that WPW~l is contained in ^+<^(0). We have

3W
-- -

at ot at

= -(WQW-l)-WPW~l+WPW-\WQW-1)-

Hence \_P, Q_] is contained in 5)+^(0). Since [P_, Q-] is contained in
by Lemma 2.3, [P+, Q_] is contained in 5>+<£#(0). D

>. 3. Recall that P denotes W0PW^1 for any Pe^. We define the
operators Gt, H%^e (0^/<r) as follows:

Zi=xt+Gi(x, Dx] for i=l, 2, - , r-l ,

XQ = XQ + HQ(X, Dx),

Di=Dt+Ht(x, Dx) for 1=1,2, -, r-l. (2.8)
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Lemma 2.5. Assume that W0 satisfies the condition irifProposition 2.2. The
operators Git Ht are written in the following form :

Hi= 23 Ktj(x', D*)Dj+Lt(x, D0) for
0<7<r

where Ktj(x
f, D^e, Lt(x, DQ)&€(—1),

and x'=(xi, • • • , x r-i).

Proof. We shall show the following statement (2.9)n by the induction on w :

for some G-, //,-, G? and H'i (Q<i<r) such that

G«, H'l^€(-n\ G'i, H'{<=€(-n-l) for

fi= 2] Ktj(x',Do)Dj+Lt(x,DQ) for O^z'
o<7<r

with ^(A:', Z?0), £<(*, A)e^(-l). (2.9)n

It is evident that the statement (2.9)0 is true. By assuming (2.9)re we shall
prove (2.9)n+1.

We expand the operators :

GJ= S g
k<Q,a'<=Nr-l

H'j= 23 hffa,DtD*',. (2.10)
*^0,a'e2Vr-l

Since GO belongs to G(—ri), we have

S+1 modulo

The operator (D0— Go)n+2 belongs to &+€($), because GO does not contain
Dj (0</<r). Hence we obtain

D^2=-(n+2)G'^D^1 modulo £)+€(G).

Since D%+2 is contained in <2)+£(0) for any neZ by Lemma 2.3, G?#3+1 is also
contained in ^>+5(0). Therefore we obtain

*i°i-,a',.«'=0 for |a'|^2. (2.11)

Similarly we have, modulo
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By Lemma 2.3, D%+1Djt x0D%+2 and XjDn^Dk are contained in 3)+e(Q). Thus
we obtain

A^'i-».«-=0 for k'|^3,

h^l-n,a'+e=(n + l)g?l-n,a> for |«'|=1,

A«(>..|-»-i.«'=0 for |a' §;2,

^?a- i-.-i,«' =0 for |«'|^2, (2.12)

where j=l, 2, ••• , r-1 and e,=(0, ••• , 1, ••• , 0)eJVr-1.
We denote by cy and c^' the subspaces of

{ S Fk(x, D,}Dk+E(x, D0); Fk(x, A>), E(x, Da0<k<r

'=-{ S

For P, Q^cy the commutator [_P, Q~\ is contained in ^V . Since //J
are contained in cy' , [_Hi, Hj~] and \_XQ, Hj] (O^f, ;<r) are contained in cy.

For y>0 we have

= [^0, ̂ j ] - 1 - modulo £(-71-

Since [Jc0, ̂ ]=0, [JCD , H'fl-(dH'{/dxJ belongs to ^(-n-2)+q/. By (2.10) we
have, modulo €(—n

1-71--1^1^. (2.13)a^^

We obtain from (2.12) and (2.13) that

/zi^_B .a ,=0 for 1« / |=2 J 0<;<r,

g^.n.a.=Q for a' |=l- (2-14)
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Similarly by the equations

[ 5 o , ] = - + - [ G o , ] = 0 for

, ^] = - + [G,, Go]-[G0, xj=0 for

we obtain
i- e dh^l- dg-Jl- o

97f^=0, —kf^=0, -^^=0. (2.15)
0 0XQ

For 0<z<r we have modulo <£(—!)

S. (2-16)

By (2.12) and (2.14) we have

//'^n= S /il^-n.e.Do1^ modulo 5(-l),
0<Kr ;

-72Gi/DS-1A = -w^.o^o1^i modulo <?(-!).

We set J^l; and Lt in (2.9)re as follows :

m<o

By (2.9)n we have

=DtDt+{D,(Hl+ S ^+I,)} +
1SJ<7-

-Do^-t- S (/zi\ ),ej+^ l,,.-1)^+/ l,_1. (2.17)
lSj<r

Sublemma. We have

Proof. The commutator [(JD05l)+, D7iDl~] is contained in 5)+6?(0) by Lemma
2.4. By (2.16) and (2.17) we have, modulo £(0)

S /^\)-,,e,^
1

0<j<r
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= [£„, Dt, -ngL'liD-M]

+ l(DtDi')+, 2 Ai^n../>o1/VKA>-G{
«<j<r

Since (£„#<)+ and So^rfc-i-n.^'^+CAj-GJ^CDi+tfi') are contained in <=V,
the operator

[£„£*, -rcgio'.oDo1^]
^n-CO) ^n-(O) 2 - ( 0 )- Pg-n.o D-iD2 „ gg-n.Q n— n ~ u o -L/i /t ^ i/i

is contained in £)+£(0). This implies (2.18).

It follows from (2.11), (2.12) and (2.14) that we have

lo^2,e/^^r-2^.+^o^l,o^on-l)e^^
H(-( 2 Ai^-L.^'-^^ + Al^o/^-Je^C-n-l),

0<fe<r

for 0<z<r. Thus we obtain (2.9)n+1 from (2.15) and (2.18). n

Step 4. Now we shall prove Proposition 2.2. We introduce a micro-
differential operator

W — y — -GaYa<*na',yy 77i — Zj . u- A uxi ,ae2v^ a !

where Ga = G%QG%° ••- G?i^ is given in Lemma 2.5. Then we have

Hence we get
WmDQW^=D0-GQ. (2.20)

Similarly we obtain that

(2.21)

Set WYM=W^W. Then it follows from (2.8), (2.20) and (2.21) that WYX com-
mutes with D0? Xi, •- , XT-I. Therefore WYM is contained in

Thus we have completed the proof of Proposition 2.2.

We set
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We shall investigate the structure of <W, ^m and ^WYM-

Proposition 2.6. The spaces <W, ̂ W^ and <WYM are groups by the composition
of microdifferential operators, and WYM is a normal subgroup in <W.

Proof. It is evident that WYM is an abelian group.
Let Wm=^a(l/a\)Gaxa^Da

x', and W'n=?}p(l/p !)FM°#£ be operators in
. For any microdifferential operator P(x', A,), we set

The last equality follows from (2.20) and (2.21). Noting that P commutes with
Gj, the composition

r 1

is contained in ^Wm. For WYM=l£icWl(x')D^iGWYM the operator

(2.22)

••• , Xr-.i+Gr-iXDo-Go)-1 (2.23)
i^o

is contained in <WYM. Since cW=cWm
(WYM, it follows from (2.22) and (2.23) that

^ is a group and that WYM is a normal subgroup of *W. D

We define the Lie subalgebras Vm and VYM of V

We have

Proposition 2.7. For any P^V (resp. Vm, VYM) and W^<W (resp.
we have WPW'^V (resp. Vmj VYM\

Proof. For I7=Sa(l/a \)Gax,a^D^'^cWm we have

LDt,Wl= 23 ^^G«-*i^x«Q«D«',
OZj<r a a ! OXi

0<7<r
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j
where i=l, 2, ••• , r—1, and s;=(0, ••• , 1, ••• , 0)eJVr. Similarly we have

Hence we obtain
/> ^-l /-\ x-l

I7A^-1=A- 2 ^F/^7'1-^^^-1 for
o<;<r OXl OXZ

Wx*W-l = xQ- 2 [>„, GjyvD.lF^-E.to, GoF/^W-1. (2.24)
0<7<r

We set

r ||^ for 0<z<r ,
G z ; =j 9z l

I Uo, GJ z=0,

for 0^/<r. Then we have

-1 for 0<f<r . (2.25)
0<;<r

Since Gue<?(— 1), the matrix ( d l J + G l J ) o ^ i t J < r is invertible. Hence V/D1W~1

(Q<i<r) and WxoW'1 are contained in Fm, because GIJ is independent of ,TO,
independent of XQ, D1} ••• Dr-i. For any operator P = P(x', DQ)^S, WPW~l is
independent of XQ, Dlf ••• , ,D r_i by (2.20) and (2.21). Hence we get Proposition
2.7 for Vm and Wm.

The proposition is evident for VYM and WYM. For IFm^7^m and E^=FF3/

the operator WmEW^ is contained in VYM by (2.20) and (2.21). For WYM(~
Wyy \ve have

WyjfI>tW?Jf=^»— ^W?if for 0<f<r ,

Since WY3I commutes with DQ} x1} ••• , xr-i, the operator WY^PWY
1M is contained

in V for any P^V. Since V = Vm@VYM and tW=Wm
<WYM, we get Proposition

2.7. D

Example 2.30 We shall write down the evolution equations (1.4) for W^W
in the case r=3. We take DQDlt DQDZ as generators of (1.4).

We set

/ I \ _
\«e^v3 a ! / i

where Gl(xlt xZ) DQ}— Sgi.jUi, ^2)^0 O'=l, 2).

Then we have



SELF-DUALITY AND INTEGRABILITY 717

dl(Jl
a - l

0*2

Taking time parameters s and t with respect to DQDl and DQDlt respectively,
we obtain the evolution equations

^99^^(2.26)

It follows from (2.26) that we obtain the Zakharov-Shabat type equation

9 r, r, , dgQ,-i , ^ dgl,-1 „ , dwl

(2.27)
1=1,2

We shall investigate the infinitesimal action p of the Lie subalgebra V of
£. Remark that the Lie algebra of the group W (resp. Wm, "Fr^ is canonically
isomorphic to the Lie subalgebra V _ — Vr\6^ (resp. (Vm)_,

Theorem 2.8. T/zg ac^'ow p of V (resp. Vm, VYM) preserves the space <W
(resp. <Wm, <WYX\ The action of F_ (resp. (Vm)_, (FFlf)_) coincides with the in-
finitesimal right action of on the group <W (resp. <Wm, "WYM\

Proof. For any element Pel/ (resp. Vm, VYM) and any operator
(resp. ^Wmy WYM), vv^e have

The tangent space TW<W (resp. Tw<Wm, TW^YM} is identified with V.W (resp.
(Vn)-W, (VYM}-W}. By Proposition 2.7, — (WPW~l)-W is contained in
(resp. Tw<Wm, TW<WYM\ Taking PeF_ (resp. (Fm)_, (FF3/)_), we have
—WP. Hence the action p is the right action of vector fields. n

By Theorem 2.8 the Lie algebra F (resp. Vm, VYM) acts on W (resp. ^m,
transitively.

§ 3. Twistor Theory and Integrable Systems

On oriented Riemannian manifolds of dimension four, the Weyl curvature
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tensor C decomposes into two components, the self -dual part C+ and the anti-
self-dual part C_. A manifold is called self -dual (resp. anti-self-dual) when C_
(resp. C+) vanishes. Penrose [5] showed that the vanishing of the anti-self-
dual part of the Weyl tensor is precisely the integrability condition of the
existence of a curved twistor space.

In this section we prove that the equation C+=0 is the compatibility condi-
tion of the deformation equations of filtered £)-submodules in 8 (See [13] in
which the Frobenius integrability condition of the equations of self dual metrics
is discussed). We get the equations of self -dual metrics from the equation
(2.26) for W&W*.

Let M be a complex four-manifold and g a holomorphic metric, i.e. a non-
degenerate symmetric holomorphic covariant two-tensor on M. We shall choose
a holomorphic orientation on M which is necessary to define the complex Hodge
^-operator. Our discussion being only local, we can assume the existence of
two complex vector bundles S+ and S_ : the bundles of self -dual and anti-self-
dual spinors.

Let {0/}.;=i.2.3.4 denote a local coframe on M such that g=eie2+eBe^ We
can write them in spinor language as

** *2l r«6i0i ^102 "I
— &i e~ J L <p2<j>l <f>2$2 J

where <p1} <f?2 (resp. 0i, 02) are the bases of self-dual (resp. anti-self-dual) spinor
coframes.

We take P=P(S_), the projective bundle of the rank two vector bundle S_.
We parametrize S_ locally by

and [!.=[*!/ fa is an affine coordinate for fa^Q.

Theorem 3.1. ([5]) The Riemannian manifold (M, g) is self -dual iff the
following Pfaffian system Q on P is integrable :

0 :=

Q: ^.=^+^=0, (3.2)

az".~ -/Jtei + e^Q,

where a)ij is the connection form of S- with respect to the frame 0i and <f>2.

Let A(Q) be the sheaf of vector fields orthogonal to the Pfaffian system Q.
The sheaf A(Q} is a Lie algebra iff Q is integrable. In this case there exists
a local basis (vlt v2) of A(Q) such that [vlt v2]=0.

Proposition 3.2. Assume (M, g) is self-dual. With appropriate coordinates
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y, Xi, xz, s, t) of P, there exists a commuting basis (vi, v2) of A(Q\ in the fol-
lowing form

3 ,3 / dR 9 , dS 9 , 9T 3 \*i — __ 3 __ i ___ i_ ___ ___ I
3s dxi \3*i dxi dxi dx2 dxi 3^/

9 3 /3* 3 dS 3 3T 3

where the functions R, S and T do not depend on L

Proof. First we notice the following lemma.

Lemma 3.3. ([3]) Let (M, g) be a self -dual Riemannian four -manifold.
Then there exist local coordinates (plf p2, qi, q2} of M such that

It follows from Lemma 3.3 that we can take local frames {0.^=1.2.3.4
follows :

By Theorem 3.1 the ideal J generated by (0, fflf o2} is closed under the exterior
derivative d. Thns we have

*2=0. (3.4)

By direct calculations we have

--^

for functions K, L, M and TV independent of p. Thus we have

dP12 dPn ^Q dP22 dP2l =Q

dq^ 3^2 3^i oq2

Hence we can define new coordinates (x1} x2, s} t, p} by the following equations:

s = p2) t=-pl.

The differential forms 6, al and c72 are written in these coordinates as follows:
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for functions AJt B3, EJ} F3 (j=l, 2), and /, (/=!, 2, 3, 4) independent of p. It
is easily verified that the following vectors v1} v2 belong to A(Q) :

We set the vector field

3s ' dx-i

, S • 3
ut OXi OX2

The commutator [yl} v2~] is written in the following form

(3-5)

where the coefficients of vectors nl and UQ are independent of p.
By the integrability condition, [vlf v2~] is a linear combination of Vi and z;2

and since [vif v2~] does not contain (9/9s) nor (9/90, ^i and ^2 commute with
each other. It follows from (3.5) that

Thus there exists a function f=f(xi, x2, s, f) such that

We can take new coordinates (Z=fi+f, xlt x,, s, t). With these coordinates
we have

3 . „ 3 . „ 3
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where C1=@//3s)-(/4+/,4i+/»Bi) and C2-(3//30-(/i+/2^2+/352). Again
taking the coefficients of p in [vlf v2], we obtain that

9*2 9*1 ' 9*2 9*i ' 9*2 9*i '

Thus there exist functions R, S and T which are independent of X such that

dR ^L — n dT _ ._
dxj * J} 9*;-

 J' dxj 3

This completes the proof of Proposition 3.2. D

Remark. By Theorem 3.1 and Proposition 3.2 the equations of self-dual
metrics are equivalent to the compatibility condition [vl9 Vz]=Q:

3ZT 92T dR 92T / dR dS \ 92T 95 92T ^Q

"* c/s(/*2 c/*2 c/*i \c/*i c/*2' uXiuXz uXi d%2

9T 9# 92^ , / 9J? 9S \ 92# , 9S
- I —r z I-

9s9*2 9*2 9*2 9*f \9*i 9*2/9*i9*2 9*i 9*1

9T dR d2S /3R dS \ 925 9S 92S
9s9*2 9*i 9*2 9*f \9*i 9*2/ 9*i9*2 9*i 9*1

(3.6)

In the equation (2.26) we take W^.<Wm. In this case wl vanishes. Replac-
ing g Q , i , gi,i and g2,i with R, S and T, respectively. The equations (2.27)
reduces to (3.6). Therefore we have

Theorem 3.4. The Lie algebra Vm acts on the space of self -dual metrics.
This action is transitive.

Let <WQ be the space of W^^W which commute with DQ. In the equation
(2.26) we take W^<WQ. In this case GQ vanishes. The equation (2.27) reduces
to the composed system of the self -dual Yang-Mills equations and the self -dual
Einstein equations (see Examples 2.1 and 2.2). Let VQ be the Lie subalgebra of V :

VQ={ S Fj(x',DJDj+E(x',DJ;
0<j<r

Fk(x', D0}^£(Q<k<r}, £(*', DQ}^e} .

Then VQ acts on <WQ. Thus the self -dual Einstein equations are a specialization
of our integrable system.
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