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A Basis of Symmetric Tensor Representations
for the Quantum Analogue of the

Lie Algebras Bn, Cn and Dn

By

Toshiki NAKASHIMA*

Abstract

We give a basis of the finite dimensional irreducible representation of Uq(Xn) (X=
B,C,D} with highest weight NAi (N^Z^o), which we call "symmetric tensor represen-
tation". This basis is orthonormal and consists of weight vectors. The action of U q ( X n )
is given explicitly.

§ 1. Introduction

Let g be a finite dimensional complex simple Lie algebra. One can associate
the quantized universal enveloping algebra Uq(o) with each g([Dri], [Jl]).

In [Lus], [Ro], it was shown that the usual theory of highest weight
representations for £7(g) carries over to UQ(Q) if the parameter q is not a root
of unity. In particular, finite dimensional irreducible representations of £7g(g)
are characterized by highest weights.

For an arbitrary finite dimensional irreducible representation of gl(n, C),
the so-called "Gelfand-Tsetlin basis" is constructed in [GT1]. This basis is
orthonormal and consists of weight vectors (with respect to the diagonal ma-
trices). A similar construction is known for the case of f/g(gl(w, C))([J2]).
Further this basis is used to obtain the Wigner coefficients for the tensor
product of an arbitrary finite dimensional irreducible representation and a vector
representation ([Pas]). Therefore such a basis is useful for explicit calculations
in the representation theory, mathematical physics, combinatorics, etc.

Assume that V is a finite dimensional irreducible representation of Ql(n, C).
As a representation of gl(n — 1, C), V decomposes into irreducible components
with multiplicity free. Then the Gelfand-Tsetlin basis of V is the union of the
Gelfand-Tsetlin basis of the irreducible components. "Gelfand-Tsetlin basis" for
0(72) is also constructed similarly ([GT2]). But it is not clear whether £75(o(n — 1))
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can be embeded in Uq(o(n)) or not. Therefore, such a method cannot be applied
to construct the basis for £7g(o(n)).

The purpose of this paper is to give a basis of the irreducible representa-
tion of Uq(Xn)(X=B, C, D} with highest weight N Al (N<=Z>Q, where Al is the
highest weight of the vector representation). We call such a representation
"symmetric tensor representation of Uq(Xn}". This basis is orthonormal and
consists of weight vectors (with respect to the Cartan subalgebra). In the
construction of these bases, following two points are important. One point is
to find a labelling of the bases. The other is to suppose "support property",
which means the following: if a generator of Uq(Xn) acts on a base, only
"neighboring" (in terms of the labelling) bases appear. In order to find a
labelling, we realize the symmetric tensor representations in V®^ (VAI is the
vector representation). Then we give a base in the form of a linear combina-
tion of the indecomposable vectors (i.e., the tensor products of bases of F^)
with coefficients depending on q. Taking the q—>Q limit of the coefficients, the
surviving indecomposable vector gives a labelling. The reason for considering
such a procedure is the following. In [DJM], the one-to-one correspondence
between bases of finite dimensional irreducible representations of Uq(§i(n, C))
and "semi-standard tableaux" is described by the "Robinson-Schensted corres-
pondence" or the "bump procedure". This correspondence is obtained by taking
the #—K) limit of Pasquier's Wigner coefficients. In this case "semi-standard
tableaux" are the labelling of bases. With such a labelling, the appropriate
support property determines the coefficients of the actions of Uq(Xn).

The author would like to acknowledge E. Date, M. Jimbo, M. Kashiwara,
T. Miwa and M. Okado for valuable advice, continuous encouragement and
correcting the manuscript.

§ 2. Preliminaries and Notations

Let g be a complex simple Lie algebra of rank n. Let A=(aiJ)1^tj^n be
the Cartan matrix of g and let (aOistsn, (/Ois^n be the simple roots and the
simple co-roots such that <hif a^y—aij. Let ( | ) is the Weyl group invariant
inner product on @lCai such that (ai|or<)=2 if at is a long root. For non-zero
parameter q (qW^^Y), Uq($) is the C-algebra generated by {&f , X\, X^}^^n,
with relations;

kiX~jk~j1=qc-iJX'j; kiX^jk~il=qiaiiX~j, (2.2)

\_X\, X~j}=8i,j—\ —- (2.3)

(2.4)
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def
Set qt = q<*i

def fm_r

-1 (n=0, ro),

= 0 otherwise.

In the rest of this paper, we employ the following notation,
def Okv_0-kv

Setting formally ki=qr*i, (2.3) can be rewritten as

[Xi, X-]}=Sitj[ht~\Vi, where vt=

We denote by L^(A) the finite dimensional irreducible representation of
Uq(o) with highest weight A.

We shall construct the bases for the symmetric tensor representation over
Uq(Xn)(X = B, C,D) as follows. We prepare an index set W</} and define

def
actions of generators of Uq(Xn} on V(/^ — @i<=w(/}Cv(t} in the following form;

(2.5)

- (2.6)

(for some constants cf(^), cz(^, ̂ ') depending on ^).

We equip V { x } with the C-bilinear form ( , ) such that the basis {v(&}} is an
orthonormal basis. We have the following identities by (2.6),

(X+
tv(l), v(O)= W), X-tv(t'» . (2.7)

i
When d(£9 ^O^O, we write v(£)->v(t'\ The coefficients c t(^, ̂ ') must satisfy
the following properties (2.8) and (2.9),

j = c i > c i > = C j , , (where r ^ O (2.8)
i;(r) — >v(t*}

S CiW, r02-S c4(/', /)'+([fci VW> v(/)) - (2.9)
<» £' *

In fact these conditions are equivalent to the following,

) , (2.10)

W). (2.11)

Remark that in our case there is a unique I and a unique t* for any given T
and I" (r^").
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§ 3. Symmetric Tensor Representations for Uq(Bn)

In this section, we treat the case of Bn. Let us take the simple roots at=
el—ei+1(l<i<n — l)f an=en, where (elf ••• , en) is an orthonormal basis of the
dual space of the Cartan subalgebra. Fix N^Z^0 and a parameter q. We
assume that q is not a root of unity. Now define W(

B
N} and VB

N\
def __

def

V^= ®m
€vW'

We equip V(/} with the C-bilinear form ( , ) such that
We define the weight of v(£) as follows;

We set

Let gi=(0, -, 0,1,0, -,0)eZIf+1.
We define the actions of generators of Uq(Bn) on V(

B
N} as follows,

(3.1)

1) (3.2)

(3.3)

where ir—l+e-n-i9 ilf—i—en if l-n-i—ln

and £'=t+en, $,"=&—e-n-\ if Ln-i>ln-

The coefficients a^t, &f) satisfy at(£f t'}=ai(tf, t), and are given as follows,

[2(/.i.1-/<+n-i)-l]i/.[2(/.i.1-/i+n-i)+l]i/.
(l^i^n-2) (3.4)

fln-l(/, / —«n-l) =

(3.5)

(̂ ^ fjfj _/ _LW_^ Q"l . f9/7 / -4-w— -7^—11 , /L"\"~t~l "t i^ /1 It) <-}_] 1/2 L \" ~i — 1 » f n " * » «/ -*-Jl/2

•2) (3.6)
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U-(f»+U-i)]i/i[2U-(/.+/-.-1)-l]i/«y/t

(3.7)

[(/n + /-n-l)-2^-1]1/2)1/2 (3.8)

(#»=:£— en or #"=£—e-n-i according to ln=l-n-i or ln<l-n-\)-

Theorem 1. // we define the actions of the generators by (3.1)- (3. 8), VBN*
becomes a U q(B n}-module isomorphic to LBn(NAi}.

Proof. We shall check (2.1)-(2.4). First of all by the definition of at(£t l'\
we have (2.1) and (2.2). In our situation, (2.8) and (2.9) can be rewritten as in
(3.9) and (3.10).

vW ^v(n
\i j {* =* aM, *')*&,**)=&&', WaM", /*). (3.9)

v(l') — >v(l*)

XW)=ai(l, V}v(ir}+ai(l, /*M^*) and Xiv(l)=
i.e.,

")'+fli(/, /**)'= a,(/, /0'+fl*(/,
1«

v(/**)
(3.10)

We can describe X^X~]v(l) and A^ZtK^) by the following diagrams (*=£/,

(A) , (B)

li (C) It (D) L-
1 4 4

Applying (3.9) to the squares (A), (B), (C) and (D) in this diagram, we obtain

If i^j and if i=n or ; = n, we may neglect two squares in the diagram (3.11).
Therefore,



728 TOSHIKI NAKASHIMA

(3.12)

We can describe X\Xiv(() and X~iX\v(f) by the following diagrams,

i
(3.13)

v(f) i v(/—*-<-i)

I'
Note that some arrows and vertices disappear in this diagram when i=n.

Applying (3.9) and (3.10), we obtain

k ~ k**

(3.14)

Here note that * v(£)= [A<]y<y(^)= I>*W]^W by (3.1). We completed
Qi~Qt

the proof of (2.3).

Setting ^0=(A^ ••• , N) and VQ=V($O), we obtain

wtd^Nei X+,vQ=0 (l<i^n}. (3.15)

To verify (2.4), let us prepare the following lemma.

Lemma 1= // v^V^ satisfies X~iV=Q(l^i^n), we have V—CVQ for some
constant c.

Proof of Lemma 1. v can be written as v=^t&WgN^c(^)v(£) with some con-
stants c(6\ From XnV=Q, we have

Because of the linear independence of {v(£')}9 all the coefficients c(£)an(£, #')
must vanish. If t'-t=e-n-i or en, then an(l, t')=an(l', ^)^0 by (3.8). There-
fore we have c(()= 0 if / does not satisfy ln=Ln_1=Ln. From X^-iV=Qf we
obtain

where w(^=an-i(^ ^+en~1)v(£+en-1)+an-i(^ t+e-nW+e-J and the summa-
tion is taken over £(=W(

B
Ny such that ^+gn-i or £+e-n^W(

B
Ny and ln=Ln.l=Ln,

If /, /+*„-!, ^+g_7le^Ar), then a^^^, ^+^-0, an-i(t, t+e-n)^Q by (3.5) and
(3.7). Therefore, ln=Ln,1=Ln implies that {w(&)} are linearly independent.
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Therefore all the coefficients must vanish. Thus, if £ does not satisfy ln-i—ln

=Ln-i=/-n=/_7l+1, we obtain that c(£)=Q. Arguing similarly we obtain c(£)=0,
if I does not satisfy /1=/2=...=/_2=/._1(=A/'). Thus we conclude v= cv0 for
some constant c. q.e.d.

Set £ij=L.H.S. of (2.4). Remark that f?§, commute with J
From that, we obtain

Therefore by Lemma 1, £T,JVO=CVQ. Since the weight of fr.^o is different from
that of VQ, we can conclude £ijV0=Q. Arguing similarly we find that &jv(&)=Q
for any v(£) by the induction on the weight of v(&). The case of £tj follows
from the case of f7tj- by applying the Weyl involution. Thus, it has been shown
that V(

B
m is a finite dimensional Uq(Bn)-modulQ and has only one highest weight

vector (up to constant) with highest weight NAl by Lemma 1 and (3. 15) (remark
AI=SI). Therefore we conclude that V^ is isomorphic to LBn(NAi\ q.e.d.

§4. Symmetric Tensor Representations for Uq(Cn)

In this section, we shall treat the case of Cn. Let us take the simple roots
al=si—si+l (1^2^72— 1), an=2sn where (si, ••• , era) is an orthonormal basis of
the dual space of the Cartan subalgebra. Fix N, and q as in Section 3. Now
define W^ and V(

C
N>,

def

We equip V(
c
m with the C-bilinear form ( , ) such that (v(£), v(ir}}=dit,. and we

define the weight of v(l) as follows ;

3(/i-/i-i)ei-2(/-i-/-*-i)e*-(/-»-/»)en (/o=0).
i=l 1=1

We set

Let 0i=(0, ••• , 0, 1, 0, — , 0)eZI5. We define the actions of generators of
Uq(Cn) to Vtf" as follows,

(4.2)

(4.3)
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The coefficients at(£, /') satisfy flt(/, i'}—ai(if, 0 and are given as follows,

" - 9x „,,Z) (4.4)

•.-/.-i+ijy"

(4.5)

2— /— 1 /2-i-i— i+n— i / 2 - i - i — i - i+w— -i-i— i+i+72— — y
Li_!— / i+n— i][/-i-i— /i-i+n— Oi/2[/-i-i— / i+i+n— i— l]i/2/

2) (4.6)

( }

(4.8)

Theorem 2. // w;e rfg/zne the actions of generators by (4.1)-(4.8),
becomes a U q(C n)-module isomorphic to LCn(NAi\

The proof being similar to that for Bn, we omit it. We only note that
2n

v((N, •" , N)) is a highest weight vector with the highest weight NAlm

% 5. Symmetric Tensor Representations for Uq(Dn}

In this section, we treat the case of Dn. Let us take the simple roots al =
el — ei+1(l<2^n—l}f an=en-l+£n where (ei, ••• , en) is an orthonormal basis of
the dual space of the Cartan subalgebra. Fix N, q as in Section 3. Now define
Wtf\ W^m and V}?>

def

=( e c
/ev^J ieir^> /ev^>

We shall set v±(/)=v(/) for /eTTJ^. We equip Fif) with the C-bilinear
form ( , ) such that these vectors form an orthonormal basis. We define the
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weight wt±(t) of v±(t) as follows,
def n-

-/B-i)en-S(/-<-/-i-i)e<, (/o=0).1=1 1=1

We set

(at a.)

Let e=± and e<=(0, ••• , 0, , 0, ••• , 0)eZI?-1.
We define the actions of the generators of Uq(Dn) on V(

D
N1 as follows,

(5.1)

n-2) (5.2)

When ln-,<l-n, XS-iV+y^a&V, t±en-Jv+(e±en-1) (5.3)

(5.4)

(5.5)

X$v.(()=a£\l, t±en-1)v-(e±en-1). (5.6)

When /»-!=/.,,, JTi-ii«)=ai->
1(/l <+«_,,)t;.(/+e-Il) (5.7)

(5.8)

(5.9)

(5.10)

The coefficients a^, ^') satisfy a((^, f ' ) = a t ( f ' , t) and are given as follows,

2) (5.12)

(5.13)

(5.14)

Theorem 3. // we define the actions by (5.1)-(5.14), V(/> becomes a Uq(Dn)-
module isomorphic to LDn(NAi\

Proof. The proof is similar to Bn and Cn. We only give the proof of
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the following lemma.
2n-l

Lemma 2. Let v0=v((N, ••• , JV)). // v^V(
D

N} satisfies X\v=$ (l^i<*n\ then
we have V=CVQ for some constant c.

Note that the weight of VQ is NAi similarly to the Bn and Cn case.

Proof of Lemma 2. We can write

v= ^ c+(t)v+W+ E c-(S)v-(e)+ 53
t&¥^ *&VW !&¥•}

From X%v=Q, we have

53 c+

+ 53
i&V'jf*) , t+e-

By (5.13) and (5.14),

and aJr}(/,

and {i;+(^+5-7z)}^^e_7le^>, {v-(/+en-i)}«eir^ and
are linearly independent. Therefore all the coefficients must vanish. Hence

), c-(6) and c0(6) vanish for such an I. Thus v can be written as follows,

v= S
*&vtf\ wtf".

ln~l<l-n~l-n+l ln-l=l-n=l-n+l

From X$-iV=Q, we have

If /„.!</-„=/.»+!, then flit^, /+en-i)^0 by (5.13). If /„-!=/-„=/.„+!, then
aS^i^, ^+^-n)=0 by (5.14). Therefore if /B-i</-n=/-B+i, c+(/) must vanish by
the linear independence of {K^+en-1)}Zri_1<z_7l=z_w+1. Thus v can be written as
follows,

The rest of the proof proceeds similarly to the Bn case. <?. e. d.
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