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Second Microlocalization and the
Mellin Transformation

By

Bogdan Ziemian* and Henryk KOLAKOWSKI**

§1. Introduction
Let a conormal distribution u be a solution of the equation

*u &%u ou
5;'5—5;2—8—)12 =f(t. x, y, u)
in an open set £ C R? such that (¢, x, y)=(0, 0, 0)= L.

In paper [1] J.M. Bony showed that if for #<0 u had conormal singularities
situated on the characteristic surfaces Z,, =,, =; then for >0 u is regular
outside 3, 3,, =, and the forward light cone starting at the point =, N =, N =,.

A basic tool used in the proof of this fact was, among other things, the
notion of second microlocalization and in particular of second wave front set.

As it is well known the notion of the first wave front set WFu of a distri-
bution u can be described with the help of the Fourier transformation. We
show that in the case of the second wave front set an analogous role is played
by the Mellin transformation. Moreover we give a new proof of Bony’s theorem
on propagation of 2-microlocal singularities.

§2. Second Wave Front Set in Terms of the Space SP(s, s")

Definition 1. (cf. Def. 2.5 [1]). Let usD'(R"\ {0}) and let u vanish out-
side a unit ball in R". Let s, s’©R be such that s+s’ is a non-negative
integer i.e. s+s'€N, We say that uSP(s, s') if
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Ix||=*™MDue L(R")  for 0< 2] <s+s' (1)
A=, Ay, =, )ENS, |2 =2+t +2,.
For remaining (s, s") the spaces SP(s, s') are defined by duality and interpolation.

Let for rteR", xeR.={x€R": x;>0 i=1, ---,n} x"=x71+----x;». The
point (a ,---, a)€R" we denote by bold face a.

In our case it will be more convenient to use, instead of the space L*(R"),
the space L*(R") with the weight x~7i.e.

weL*(R", x~") if and only if S |u(x) | 2xTdx < oo
»!

For us D'(R"), (1) can be written as u< SP(s, s’) if and only if
x2||x|| MDAy LR, x7T),  0< || <s+s'. @

If supp ucT', where I' is a proper cone in R% (i.e. such that I' N R% = {0},
overbar denotes closure in R") then there exist constants ¢;, d;>0 such that
cx; <|Ix|| <dpxy, j, k=1, 2, ---,n for x &I' (shortly V,x,~||x|]). Then (2)
denotes that

xV2-?(xDY}ucs LA(R:, x 1) (2)

for 2eNg, peR", 0< |2 < s+, |ol=p1++0,=5
where (xD)Y*=(x, D)™ --- (x,D,)*, i.e. that

X'(xDYues LA(R", x7) for 2eN3, reR", || <s+s (3)
where |7|=r+-+7r.,> -—-s—l—%, which is equivalent to

xh(xDY}usLA(R", x71) for 1€N3, |2] <s+s' (3)

and some 7, R" such that |7,| =—s+%.

Let 'CR" be a cone tangent only to the axis x; i.e. such that closure
'n{xeR": x;=0={0}. Then we have ||[x||~x; on I" thus the condition

X2 x|t D e LT, x7Y), 2] < 5+5 (4)
is equivalent to the condition
x\2xpst N DMy e LA, x7T), 2] <545 (5)

Fix 0%=(0%,, -, 0%,)ER", é=(&,, -+, £,)ER" and let
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1° peC=@{i(R"\{0})) be a homogeneous function of order zero defined in a
conical neighbourhood of if=(i6%,&,, -+, 6%,¢,), 0(if)=0. The function
p is extended to the set R"+i(R™ {0}) by putting o(z)=p(Im z).

2° k=g’ where ¢ is a C7 bump function at zero and #'&C>=(R"\ {0}) is a
cut-off function in a conical neighbourhood of dx i.e. supp &' CR%, &' is
homogeneous of order zero and £'(6x)=0.

3° xeC=({i(R"\{0})) be a function with supp ¥ C {ir: 1/4<]||7||} and x(ir)
=1 for r& {r: 1/2<||z||}. The function ¥ is extended to R"+i(R"\ {0})
by putting x(z)=x(Im z).

Definition 2. Let (%, §)eTHR"={(, &): ¢ R"}, 63 R", 8¢ = R",
ue SP(s, —oo)= U SP(s, ¢’). We say that u belongs to SP(s, s") 2-microlocally
at the point (x, E: ox, 64—2):(0, £,0%,0) if there exist functions p, &, X satisfying
conditions 1°, 2°, 3° respectively, such that

P(x, D)u = 2(xD)o(xD)e(x)ucs SP(s, s').

If usSP(s, —oo) we define its SP(s, s')—second wave front set (denoted
2 WESP6&<)y) as a closed subset of the space

(THBNTEER") U N 1o (T(T*R")
consisting of the points (x, £)& T§¥ such that ue SP(s+s’, 0) microlocally at
the point (x, &) and of the points (0, &, 0x, 0) such that ueSP(s, s) 2-micro-
locally (note that in our case the space normal to T§(R") at the point (%, 5) can
be identified with the set of vectors of the form (6%, 0) with x=R" and the

topology in NT*(R,,) coincides with the topology of conical neighbourhoods of
0

the vectors 6% in R").

Definition 3 ([1]). We say that a function a(x, )& C~(R?**) belongs to

m,m’

o™ if and only if
| DEDEa(x, &)| < CglEXm 1«11 4 |[x]] |J€] )~ 1#!
where {&>=(1--||€]]HV2

Definition 4 ([1]). We say that a function a(x, &) € C*((R"\{0} xR")
belongs to S 1™ if
a) a(x, &) is flat in the following sense:

IDg Dta(x, £)] SCapnx”—m-l-lml—lﬁl(l+l|x|| ||E“)m+m’—lm]

b) a(x, D) is properly supported, in a strong sense, in R™\ {0} i.e.
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supp &*(x, x—y)C {(x, »): k'1<H<k}
x
for some k>1. Here, & means the Fourier transform with respect to £. As
in [1] for the function a(x, &) 317" (S 337" we define an operator a(x, D)E
Op(Z8™)(Op(S 25™)).
Definition 5 ([1]). Let 4 be a conic lagrangean submanifold of T*R"
(here 4 means TF(R"). Let (%, &) belong to 4 and let (0%, 65) be a vector

tangent to T*R" at that point (%, !,-:) and not tangent to 4 at that point. If
Aes0p(e™), we will say that 4 is elliptic at (%, £, 0%, 0€) if one has

|a(R+ed%, AE+e06))| = C A™(Ae)™
with C>0, for 0<e<e¢, and Ae>x,>0 (4=a(x, D)).

Definition 6 ([1]). Let u=D’(R") and let u vanish outside a unit ball in
R". Wesay that uc H* (s€ R, kEN,) if

x*us Hs+1#*(R") for eeNj, |a|Lk.

For remaining (s, s") the spaces H ¥ are defined by duality and interpolation.
Let

3 DY

m/

H*** = H* SP(s, +00) = ) SP(s, 5)

SP(s, —o0) = U SP(s, s") SP(—oo0, —o0) = U SP(s, s')

Lemma 1. Let 6%SR", ||0%||=1, EER". Let 2, p, & be defined as in
1°-3° and xE=(x,&,, -, X,£,) then

B(x, &) = x(ix€)o(ix€)x(x)

belongs to S 330°° (actually to 333°, and the corresponding operator in Op(323:°)
is elliptic at the point (0, £, 6%, 0)). Moreover the symbol P(x, £) is concentrated
around (0, £, 0x) if and only if

P(x, z) = 2(2)0(2)(x)
is concentrated around (0, iﬂo, 0X) where i/9°=(i65’rlé‘°1, oo, iBJE,,é:,,).

Proof. We show the second part of the lemma. Since p is homogeneous of
order 0 we have
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p(ixE) = o (i ni_“ 5) .

£ is concentrated around 6x thus on the support of £ we have that ”i“ is close
x

to 0x. On the support of o we have that iﬁf is close to 1ﬂ Since for -
x

11l

close to dx, LERK it follows from the continuity of the operation of divi-

1]

sion that £ is close to & on supp B(x, £).

Proposition 1. SP(s, s')—second wave front set and H*'—second wave
front set defined by Bony coincide. More precisely: Let g be a smooth function
with support in the ball B(0, 1) C R equal to zero in a neighbourhood of zero. Then
(see Remark 2.10, [1]) the mapping

H /
SP(s, s)2u—> g(||x[[|IDIDu s H*

where g(||x||||D|[)u= Gzl S =B g(||xlll| €1DaE)dE

defines an isomorphism 11 of the spaces

I ,
SP(s, s")/SP(s, o) —> H**|H**,
Second wave front sets are well defined on the quotient space, thus we have well

defined mappings

II
SP(S, Sl)/SP(S, oo) —_ Hs,s’/Hs,oo

SP(s,s’ 5,87
PAV) S \ /ZWFH (6)

P
where P is the set of closed subsets of the space
(T*R\TE(R") U Ny (T(T*R"))

and 2WF? means B-second wave front set.
Assertion: The diagram (6) commutes.

Proof. We shall prove that if ueSP(s, s') 2-microlocally at the point

(%, g, 0%, 0) where (%, é)e T#H(R") then Iu=g(||x||||D|)us H**" 2-microlocally
at that point. Let Pf*=II, then Pfinduces an isomorphism Pf inverse to II.
According to Definition 2 we have Puec SP(s, s") hence
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P(PfTlu)eSP(s, s") (7)

because PfTIu—u & SP(s, o) (Th. 29, [1]) and P(x, D) €Op(S13:9). It
follows from (7) that

(I BPITucs H .

It is clear that IIPPf is an operator in Op(319-°) (for P is an operator in
Op(S 313%)). We still have to check that IIPPf is 2-microelliptic at (%, £, 6%, 0).

But this is clear since the principal symbol
o(ILPPf) = 2(ix€)=(ix&)s(x)g(l|x|l|l€]]) = P(x, E)g(lIxIIII€1D) -

(By Definition in [1] o(ILPPf) is equal to the symbol ¢(P)& S 31:° after passing
through the isomorphism with the space 313°. But o(P)=P(x, &) from the
definition of the operator PEO0Op(S 319°) (Def. 3.5 [1]) since P(x, £)eS 3109).
Since IT is an isomorphism this ends the proof of commutativity of the diagram

(6).

Remark. In Definition 1.9 in [1] of the second wave front set, it can be
assumed that the operator 4 €Op(31§-°) concentrated at (0, £ ) and 2-microelliptic
at the point (0, £, 8%, 0) is of the form IIPPf where P is defined by Definition 2
for suitable o, %, &.

Proof. Let Auc H*" 2-microlocally. For suitable P, PPfA-'0p(323°)
and we have IIPPfA'AucH*. But A'A=1I+R, R€Op(3}3~") hence
modulo an operator in Op(3233'~") we have IIPPfA *A=T1PPf.

Our aim is to define the second wave front set in a way analogous to the
definition of the (first) wave front set in terms of the growth order of the Fourier
transformation. In our case instead of the Fourier transformation we need
the Mellin transformation. First we recall the definition of a Mellin distri-
bution [2], [3].

Let B, = {xeR: x;,<1, i=1, -, n}.

Let acR". Denote by M,=M,(B,) the space of functions p&C*=(B,)
such that for every e N}

Pao{p) = sup| (x**(xD)*p| < oo

with topology given by the seminorms p,,, eENj. Let o &€ (BU {co})".
We define
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M (B,) = U M,(B,) —inductive limit.
alw

The dual space M{,(B.) is a subspace of distributions and
M'(B,) = g M (B.,)
is called the space of Mellin (transformable) distributions.

Lemma 2. Let usSP(s, s'), s+s'€N,, suppuCI' where I' is a proper

cone in R, then us M,y for pER" | o] SS——Z—.

Proof. From (3) for 2=0 we have xucs X (R%, x™") for |r| z—s—l—%

rER". Since multiplication by x¥, r €R" maps M (,—>M .y it is enough
to show that if ueLA(R%, x7') then usM{;. Let p=M,, a<0; we have for
a<0

IS updx| < S|u|2x“dxs xe|%dx<C S x21dx < oo
B, B, B, B,
thus u is a continuous functional on the space My=UM,. If usM{, we
a0

define the Mellin transform of u
(Hu)(z) = u[x~*71], Rez<w

(for zeC” and @ € R", Rez<w means that Rez;<w; j=1,-,n). The
function (Hu)(z) so defined is holomorphic for Re z<w.

Lemma 3. ucsL*(R%, x7") if and only if (HMu)(z)EL (R") as a function
of Im z for each fixed Re z<0 (i.e. M(z) defined for Re z<<0 has a boundary
value for Re z—0, Re z<<0 and the boundary value is in LA(R")).

Proof. The condition us LA (R"%, x~") is equivalent to the condition that

the function A(y)=u(e™?)L¥(R"). Since
(@) = | u(e)endy
B,

we see that the latter condition is equivalent, in view of the Parsevale equality
to the condition that Hu(z)eL*(R") for Re z=0, hence also for Re z<<0
(u(e™?)e®e= is in L% for Re z<0 if usL?).

From Lemma 3 and the fact that

(H(xDY'u)(z) = 2" Hu(2)
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we get the following characterization of the space SP(s, s'):

Corollary 1. Let usD'(B,), supp uCI' —a proper cone, then the following
conditions are equivalent :
i) usSP(s, s, s+s' €N,

i) Hue @({ZEC": ,é Re z;< s——%})

and for every z& {ZEC”: Z"} Re zjgs—%}
i=1

SMu(Re z+i-) €L+ (R)=L(R", (1+|I8Ily**),
ave n, ”n _i
iif) ﬂue@({zEC -JE:lREZ,-<S 2})

and for some a such that Sn‘__, a j=s——%
j=1
HMu(G+i-)e L2+ (R").

Now let I'C R’ be a cone tangent only to the axis x;.

Proposition 2. Let ucD'(B,), supp uC I’ —as above. Then the following
conditions are equivalent :
i) uel¥I, x™),
i)  Mu(z) is holomorphic in the set 2= {z=C": él Re z;<0, ¢,<0, ---, @, <0}
=

and for every a€ {aeR": a;+ -+ +,<0, ¢,<0, -, , <0},
Mu(e+if)e LY R") as a function of S,
iii) Mu is holomorphic in 2, and HMu(é+ip) € LA(R") for &=0.

More generally we have

Proposition 3. Let uD'(B,), suppuC I as above, s, s'ER, s+s EN,.
The following conditions are equivalent :
i) ueSP(s, s),
ii) Mu(z) is holomorphic in the set

2, 0= {ZEC”: Re z;-+:--+Re z”<s—%,

Re z,< S—I—S'——%, -, Re z,<<s+ s’—%}

and for every A& Nj with || <s-+s' and e € R" such that
n 1 1
a1+"'+a”£S—E~, dgﬁlz—“?, B ang x”*?,

Mu(a+iB)ELXR", (141811 s« -« (1118l ),
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i) Mu is holomorphic in 2, . and
Mu(e+HiR)EL(R", 1+ ||| 1=+ ~(A+|B,l1)*) for the points a of the

1 1 1
Jorm “1=S—7‘“22—"'—1m a,= 12—7, e, @, = /2,,—3 where
0L+ 42, <s+s".

Proof. From the operational properties of the Mellin transformation and
Proposition 2 we obtain from (5) that for || <s-+s’

UV2x7st N D) (2)
= p}\(z)mu(zl—l—s—%—lz—'“ —'—ln’ 22+22—%’ =y Zgt ﬂ”—%>

belongs to LE(R”) as a function of Im z for any fixed Re z such that
Re z;+Re z,4---+Re 2,<0, Re z,<0, ---, Re 2,<0

where

() = (Zl+s__;'_ll_ —/I,,—l—l)- ....(zl_}_s_%_gz..._l”)

ozttt 2,- 1)

By changing the variable z one can see that all assertions of Proposition 3 follow
from those of Proposition 2.

Proposition 4. Let (x, Eo) eTH(R"), xR, usSP(s, — o). ucSP(s,s)
2-microlocally at the point (x, &, 6x, 0) if and only if there exist functions X, &, p
satisfying conditions 1°, 2°, 3° respectively, such that

2(2)0(2) H(&u)(2) | mgr1. E L (R")
for al—l—--'—]-a,,gs—%.

Corollary 2. The point (x, E, 0x, 0) does not belong to 2WFSP¢*) if and
only if for some X, £, p satisfying conditions 1°, 2°, 3° 2(2)o(z) M(xu)(z) as a

Sfunction of Im z is rapidly decreasing for z: Re z,+---+Re z,< s—%.

§ 3. Propagation of 2-Microlocal Singularities

Theorem 1. (Propagation of singularities along the incoming bicharacter-
istic). Let dx=(—1,0), é=(0, &) and let vE SP(s, o). Suppose that ve H**°
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microlocally at (x, 4-:) Sfor every x=(x,, 0) where x,<<0 and that w=aive
X1

SP(s—1, o+1) 2-microlocally at (0, &, 8%, 0). If a>—% then ve SP(s, )
2-microlocally at (0, £ , 0x, 0).

Proof. Replacing v by q(D)v where g(D) is a suitable pseudodifferential
operator microelliptic at 4‘-:, we may assume (since I:q(D), aixl] =0> that both

v and w are microlocally concentrated near £. Further we may multiply v by a

bump function ¢ at zero and observe that o (qpv)-—-(i ¢)v—|— o 9 v satisfies
0x, ox, ox,

the same assumption as w since (—56—90 veEHT <by the assumption that
X1
ve H**" microlocally at ((x;, 0), :,;) with x;<<0 we have <a~a—¢)vESP(s, g)C
X1

SP(s—1, o-+1) because 06Esupp<ai¢)>. Consequently we may assume that
X1

v and w are microlocally concentrated near (0, {o-‘). Finally changing x, to
—x, we assume that 6x=(1,0). Let ¥ be a cut-off function at (1,0) sub-
ordinated to I' homogeneous of order zero (supp ZCI" and =1 on a cone I
tangent to x, slightly smaller then I') such that

w= IweSP(s—1, c+1) globally.
First we show that there exists a unique Mellin distribution # such that

0
— . 8
ox, ! (8)

B3]

By Proposition 3 Hw(z) is holomorphic for 2”} Re zj<s—l——;—, Re z,<<s+a
1

—%, -+, Re z,,<s—|—a——%. Computing formally the Mellin transform of (8)

we get
L%4"‘.{’(2) = (Zl—,_l)n%u(zl_,_ls zl) 3 Z, = (229 R Zn)
hence
j/lu(z) — ﬂ'lﬁ)(zlz—l, Z’) (9)
1

on the set {E Re z,-<s—%, Re zz<s+a——;—, -, Rez,<s+ a—%, Re zl<0} .
J

Moreover for a fixed @ such that >} &j<s—%, &2<S—i—u—%, e, ci,,<s+a——-;~,
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d,<0 we have from Proposition 3 (ii) that Hw(&¢—1+if)eL*(R"). Since
|@,+ip, | >|&,| >0 it follows that also
ﬂwga—l-’-lﬂ)eLz(Rn).
a,+18,
Thus the inversion theorem for the Mellin transformation (see [2]) implies the

existence and uniqueness of the desired Mellin distribution u.
From (ii) in Proposition 3 we get

Mu(a+Hip)EL(R", (1+||B5|) e+ - (L4118l D)
for every fixed a such that > aj§s~%, a2</12—%, e a,,<x,,——%, a,;<0,

since as before |a,+i8,| > |«,| >0.

In order to retain the information on u which will enable us to conclude
that v SP(s, o) 2-microlocally at dx=(1, 0) we have to assume, according to
(iii) in Proposition 3, that

a1=s—-;——12—---—2,,<0 for 0<2A+2gt-+2,<s+o

i.e. that cr>——% and s<~12— (see Fig. 1)

Re z,
—o—1/2, —1/2
(—o—1/2, 540~ LI P
\.\ 0 +Re z,
(s—1/2, —1/2) —1/2
s—1
Fig. 1

Let I',C I be a cone tangent to the axis x; such that Z=1 on I',. We shall
prove that u=v on I',.
We have

0

= 9 v on I.
ox; 9x,
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Hence for x&TI', u—v=g(x’) —a Mellin distribution on I'; in variables
x'=(x,, *+*, x,). Since both u and v have bounded support and I', is tangent
to the axis x; it follows that g=0 on I',.

Let I'y be the cone {xER%: 0<x,<l, x,<x,, -+, x,<x} (see Fig. 2).
We want to show that u|n € SP(s, 6). From Example 2 in [2] we know that if
X, is the characteristic function of I";, we have

_1)"
M z) = ( .
O(Z) (Zl+zz+...+2”)zz.....zn

— 'xl

Fig. 2

Next (see [3], Proposition 5) for every ¢ such that 31 é& J-Ss—%, @< s—l—a—%,

.ee, &”Ss—l-a——%, a,<<0 we have

M(xu)(&+i18) = lim (FHu(@+ir)= () (e—d+ir))(8)
i

which, after the change of variables 7,=7,+-+7, 7=y *=*» 74=7, in the
convolution, is the n-dimensional Hilbert transform of .Hu(é&-+i-). Now it is
a well known fact that the Hilbert transform maps L?-functions into L*-
functions. This proves that H(¥u)(@-+if)eL? and the same is true for
M(xV2x7st My DMi) for |2| <s+o. This in view of Lemma 3 shows that
u|r,€SP(s, 0). Since v=u on I'| it follows that v|r,or,ESP(s, 0).

Finally we note that the condition s<% is not an essential restriction on w.

Indeed, we may replace w by 4™w for m large enough where 4 is the Laplace
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operator in R" and use the facts that [A"', —a-]=0, 4™: SP(s, s')—>SP(s—2m, s')
X
and if 4"uESP(s, s"), u€SP(s, — o) then u& SP(s+2m, s’), since an operator

elliptic in the classical sense is 2-microelliptic.

Lemma 4. Let I' be a proper cone in R, and I'' and open subcone in I'.
Write x=(x;, x") for points x& R" where x’ € R"*. Let g(x') be a Mellin dis-
tribution on I, independent of x, and such that g(x') & SP(s, s") on I''. Then
g(x")eSP(s,s")Yon I.

Proof. Let %' be a cut-off function subordinated to I such that
2'(x)g(x")eSP(s, s") globally. Since for every vector 6x&I" we can find k>0
such that

2(x) = 2'(kx;, x')

is a cut-off function in the direction of dx, it is enough to prove that z(x)g(x\ &
SP(s, s') globally. We have

HEDN (s, 7) = 1, IF T ¥ 7]

= glx'~*"1 S (3, X )x7H7dxy]
R
= kagx'~¥"1 g 2'(x;, X )x74171dx]
R

= k1 MU' (x)g(x))(2) ,

because

S X' (kxy, x")x757dx, = ka1 S 2 (x, x)x74dx, .

R R
Since |k*1| =k®e# thus for a fixed Re z the multiplier k% has no influence on
the behaviour of the Mellin transform as |Im z|—co. This in view of Propo-
sition 3 ends the proof.

Theorem 2. (Propagation of singularities along second bicharacteristics).
Let I" be a cone in R" not tangent to x, i.e. such that ' N {(x,, 0), x,= R} = {0}.
Suppose v&E SP(— oo, —o0) on I' and let ga—vzweSP(s—l, a-+1) 2-microlo-
X1
cally at the points (0, &, 6x, 0) for 6x&I' where 5 =(0, é") for some fixed {;:’. If
veSP(s, o) 2-microlocally at (0, &, 0x,0) for dx&I''—a subcone of I', then
ve SP(s,0) 2-microlocally at (0, &, 6x, 0) for 6x&T.
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Proof. We assume that u and w are microlocally concentrated near E.
Further (subject to a transformation of the form

+1 B
0 4
where A=GL(n—1), B€ R"™!, which preserves 61) we may assume that I' is
X
a proper subcone of R"%. Let Z be a cut-off function subordinated to I" (i.e.
ZeC~(R%), ¥ homogeneous of order zero, supp ZCI" and Z=1 on a slightly
smaller proper subcone of I'), and ¢ a bump function at 0 such that w=¢Xwe
SP(s—1, 0+1) globally.
Analogously to the proof of Theorem 1 we show that there exists a Mellin
distribution u such that w=iu. Computing the Mellin transformation we get
X1
) = THE=1. 2)

Z
and as in the proof of Theorem 1 we conclude in view of Corollary 2 that
HMu(a+ig)e L+ (R")
for every fixed @ such that >} ajgs~—%, a,<<0.

We want to prove that Hru(d-+if)eLX(R") where & is a fixed point

satisfying > &,-——-s—%, @,<0, and ¥ is the characteristic function of a proper

cone containing I'. To use the same technique as in the proof of Theorem 1

we suppose (again, by applying a transformation of the form [(1) j:‘) that

rc{xeR:: x,<x,, -, x,< x;}. We also suppose that supp wC{x = B%:
x<1}. For xeI' we have x,< C,x,, -+, x, < C,x, for some positive con-

stants C,, Cs, *++, C,. Since u(x,, x’)=—S°° w(t, x')dt it follows that for

X
xesupp u x,<Cpx,, -+, x,<<C,x, and xlgl.1 Thus if ¥° is the characteristic
function of the set M ={xeR": x, <1, x,< X, -+, x,< x;} it follows that
supp 2% is a proper cone I' in R" since x;~xy j, k=1,2, ---, n on supp 2’u.
The proof that . Hx°u(a-+i8) s LA(R") is the same as in the proof of Theorem 1.
Analogously, in view of Corollary 1 we get uc SP(s, o) on I'.  The final thing
0 3}

now is to compare u and v. On the set where pZ¥=1 we have ——u=—"v
ox, Ox,



SECOND MICROLOCALIZATION 799

thus u—v=g(x’) is a Mellin distribution on that set depending only on x’.
Since on a smaller subcone ve SP(s, o) it follows that g(x)& SP(s, o) on that

subcone. Now we apply Lemma 4 to get g(x’)&SP(s, o) on I'. This ends the
proof.

Theorem 3. (Propagatzon of singularities along the outgoing bicharacteristic).
Let dx=(1, 0), f= (o, £ ) and let v&SP(s, —oo) be such that v= SP(s, o)
2-microlocally at the points (0, g , 0x, 0) where 0xE R". Suppose that

3}
w=_——v
ox,

and we SP(s—1, a-+1) 2-microlocally at (0, EB, 0x,0). If o< ——% then
veSP(s, o) 2-microlocally at (0, é, ox, 0).

Proof. By applying to v a suitable cut-off function Z at (1, 0) subordinated
to a cone I'C R tangent only to x;, and a cut-off function p in the direction &
we may assume that supp vCI" and weSP(s—1, o-+1) locally at zero. Thus
for a suitable bump function ¢ at zero w=¢we& SP(s—1, o+1) globally.

As in the proof of Theorem 1 we prove the existence (and uniqueness) of a
Mellin distribution u such that

. 0
W= —u
ax
Moreover

H(z)

Zy

Mu(z) = for Rez<<0,Reze4

where H(z)= (x, W)(z) is holomorphic on the set A4+iR" and
A= {aER”: > aj<s—~’21~, a2<s+a—%, e, a”<s+a—%} .

Further for points e 4, H(a-ig)eLR") as a function of #. We want to
invert F(z)=H(z)/z, at a point = A such that &, >0. To this end we use the
generalized Mellin transformation M“ introduced in [3]. We have

(M%f)(B) = F(a+if)

where

) = g Fla—+ip)x*dy . (9)

R"
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Take a point &=(&,, &) where &<0, ¢=(a,, @’). Then

u(x) — S F@-Hinx®dr .
R’l

Fixing &'+ir’ and applying the residuum theorem in variable z, we get

S F@-Hip)xdtmdy, — S F@-Hip)xtmdy, + HQ, & +ir') .
R R

Thus we find

u(x) =f(x)+ S H(O, a°r+ir/)xrd°’+i‘}‘/drl .

R

Since by the definition of the Mellin transformation
H(QO, &+ir’) = xlv't"[xi'lx"‘o’"”"‘] = ;{,[x'-&’—w’ﬂ] ,

we have by the inversion rule (9)

S HQO, & +ir)x ™+ -1dr = #x, x)dx,

Rn—l

o

u(x,, x)dx;, = —u(0, x")

(S

X

)
i
because u has bounded support as a Mellin distribution. Thus

Jx) = u(x)—u(0, x") .

Since f(x) = u(x)—u(0, x’)=S " w(t, x)dt we see that supp fCT. To prove
0

that f € SP(s, o) locally we have to ensure analogously to the proof of Theorem
1 that

a, =s5s—1/2—2—--—2,>0 for 0<2,4+2;4++2,<s+0

i.e. thato<<1/2and s>1/2. Now multiplying f by the characteristic function of
the unit cube {0<<x<1}, which under the Mellin transformation amounts to

° _ 7
computing the Hilbert transform of M*f (since jfll(z)=¢>, we con-
z .

lw. -azn

clude, as in the proof of Theorem 1, that f &SP(s, o) locally.

Finally we compare fand v. We have K f— i v=0 for xeR?, 0<
ox, ox,

x,<<z for some 7, thus f—v=g(x’) for 0<x,<<z. Since suppf supp vCI it
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follows that g(x")=0. This proves that v&SP(s, o) locally at zero if s>1/2.
The case s<1/2 is reduced to the above by a similar reasoning as at the end
of the proof of Theorem 1.

Theorems 1, 2, 3 together give the following Bony’s theorem on the prop-
agation of 2-microlocal singularities:

Theorem 4. Let £ =(0, £ ") and suppose v SP(s, — oo) microlocally at (0, E°)
andve H*~ 2 microlocally at (x,, 0, 5) where x,<<0. If w=5a— veSP(s—1, —1/2)
X1

microlocally at (0, 5) then ve SP(s—e, —1/2) microlocally at (0, En) for any ¢>0.

Proof. To apply Theorem 1 we observe that for ac R SP(a, —1/2)C
SP(a—e, —1/2+¢), while the inclusions SP(a, —1/2) C SP(a, —1/2—¢)C
SP(a—e, —1/2) allow us to apply Theorem 3.

Concluding remark. The technique of the Mellin transformation presented
in the paper can also be applied to get analogous results for the spaces H**',
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