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Second Microlocalization and the
Mellin Transformation

By

Bogdan ZIEMIAN* and Henryk KOLAKOWSKI**

§ 1. Introduction

Let a conormal distribution u be a solution of the equation

-- = f(t x/(!•*>
6

in an open set GdR3 such that (t, x, j)=(0, 0,
In paper [1] J.M. Bony showed that if for £<0 u had conormal singularities

situated on the characteristic surfaces 2j, S2, S3 then for t>Q u is regular
outside Dp 2)2, S3 and the forward light cone starting at the point Sx fl S2 fl S3.

A basic tool used in the proof of this fact was, among other things, the
notion of second microlocalization and in particular of second wave front set.

As it is well known the notion of the first wave front set WFu of a distri-
bution u can be described with the help of the Fourier transformation. We
show that in the case of the second wave front set an analogous role is played
by the Mellin transformation. Moreover we give a new proof of Bony 's theorem
on propagation of 2-microlocal singularities.

§ 2. Second Wave Front Set in Terms of the Space SP(s, s')

Definition 1. (cf. Def. 2.5 [1]). Let u^D'(Rn\{fy) and let u vanish out-

side a unit ball in Rn. Let s, s'^R be such that s-\-sf is a non-negative
integer i.e. s+s'<=N0. We say that u<=SP(s, s') if
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\\x\\-s+™Dhit=L2(Rn) for 0<U|<5+/ (1)

For remaining (s, s') the spaces SP(sf s') are defined by duality and interpolation.

Let for re/Z", xe/Z^fre/Z": *,>0 z=l, — ,n} ^T=;cli ..... 4«. The
point (a ,••• , d)^Rn we denote by bold face a.

In our case it will be more convenient to use, instead of the space L\Rn),
the space Lz(Rn+) with the weight x"1 i.e.

u^L\Rl, x-') if and only if ( | u(x) \ 2x^dx< oo .
JR"+

For u^D'(R\), (1) can be written as u&SP(s, s') if and only if

l, x~i) , 0< U| ̂ j+j' . (2)

If supp t/CJT, where r is a proper cone in R*+ (i.e. such that
overbar denotes closure in Mn) then there exist constants cj} d}->0 such that

Cy*y <||x|| < dkxk, j,k=l,2,—9n for x e T (shortly V^HMD- Then (2)
denotes that

for tZENl P^Rn, 0< U| <
where (xD)x=(x1D1)

Xl'"(^«^Jx"* i-e- tnat

for ^e^S, reJ2n, \l\<s+s' (3)

where | r I = Ti+ • -° + rn ̂  —^+-^-5 which is equivalent to

for 1&NS, \l\£s+s' (3')

and some r0^^w such that | r0| =— s+— ,

Let TcJi" be a cone tangent only to the axis x1 i.e. such that closure
{x^Rn: x1=0} = {0}. Then we have HxH^^ on f1 thus the condition

, x-1) , | /I | <^+/ (4)

is equivalent to the condition

xM*zt+™&ueL2(r, x~i) , \X\ <s+sf . ( 5 )

Fix dx=(8xl9 -, WJe JZi, f =(flf -, OeJZ" and let
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1° p^C°°(i(Rn\{Q}J) be a homogeneous function of order zero defined in a
conical neighbourhood of i/?=(i^i:1f1, • • • , idxn£n), p(ifi)=£Q. The function
p is extended to the set JT+i(J2w\{0}) by putting p(z)=p(Im z).

2° K=(p>K where 9 is a CJT bump function at zero and /c'^C°°(Rn\{Q}) is a
cut-off function in a conical neighbourhood of dx i.e. supp /c'c/21, *' is
homogeneous of order zero and Kf(dx)^pQ.

3° *eC~(iCKw\{°})) be a function with supp *c{ir: l/4<||r||} and *(ir)
= 1 for re{r: l/2<||r||}. The function X is extended to J
by putting z(z)=Z(Im z).

Definition 2. Let (*, £)e7W) = {(0, f):
s, — oo)= U 5P(^? a'). We say that w belongs to SP(s, s') 2-microlocally

o-'

at the point (x9 f , W, 5<f)=(0, ^, 5i, 0) if there exist functions p, K, X satisfying
conditions 1°, 2°, 3° respectively, such that

P(X D)u = X(xD)p(xD)ic(x)u^SP(s, sf).

If u^SP(s, —oo) we define its SP(s9 s')— second wave front set (denoted
2 WFsp(s»s/)«) as a closed subset of the space

(T*(Rn)\Tt(Rn)) U N

consisting of the points (x, £)&T$ such that u^SP(sJrsr, 0) microlocally at
the point (x, f) and of the points (0, f, dx, 0) such that uz£SP(s, sf) 2-micro-
locally (note that in our case the space normal to Tf(Rn) at the point (i, f ) can
be identified with the set of vectors of the form (3x, 0) with dx^Rn and the
topology in N coincides with the topology of conical neighbourhoods of

TQ(R )

the vectors dx in R ).

Definition 3 ([!]). We say that a function a(xf £)<=C°°(R2n) belongs to
SS'-^ if and only if

where ^^

Definition 4 ([!]). We say that a function a(x, f) e C°°((J2!W\{0} xRn)
belongs to SS^TO/ if

a) a(^c, f ) is flat in the following sense :

\DiDWx, f

b) a(x, D) is properly supported, in a strong sense, in Rn\ {0} i.e.
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supp ff(x, x-y) c f (*, y) : k-1 < M< k\{ \\x\\ )

for some k>\. Here, a2 means the Fourier transform with respect to <?. As
in [1] for the function a(x, f)e^f-m'(S^-m') we define an operator a(x, £>)e

Op(2?'-')(QpGSS8""')).
Definition 5 ([!]). Let A be a conic lagrangean submanifold of T*Rn

(here A means It(J2M))« Let (*, I) belong to A and let (W, s|) be a vector
tangent to T*Rn at that point (*9 <?) and not tangent to A at that point If
-4eOp(2o '*')» we will say that .4 is elliptic at (i, f , ^i, 5f) if one has

with C>0? for 0<s<sQ and ^e>/e0>0 (v4=a(%9 /))).

DefiEltioe 6 ([!]). Let u^D'(Rn) and let w vanish outside a unit ball in
IT. We say that us=:Hs'h (s<=R,ktE NQ) if

jfne#I+W(JO for ae^g, \a\<ka

For remaining (j-s ̂ ') the spaces Hs's/ are defined by duality and interpolation.
Let

2?'-00 = H S?'w/ ^S?'""00 = n
m m

J, +00) = n SP(S, s">
s *7

SP(S, -oo) = U SP(̂ 5 *') SP(-oo9 -oo) =
s' SBS

Lemma 1. L^r dx^Rl, \\8x\\= 1, fe J?*. Ler Z? p, /c 6e rf^erf as in

belongs to S So'0 (actually to So'05 and the corresponding operator in
w elliptic at the point (0, £, ^i, 0)). Moreover the symbol P(x, <? ) w concentrated
around (0, f ,

P(^5 z) =
o

is concentrated around (0, i/?, £j

. We show the second part of the lemma. Since p is homogeneous of
order 0 we have
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•v-

K is concentrated around dx thus on the support of K we have that is close
11*11

•v- o v

to dx. On the support of p we have that i £ is close to iff. Since for
IWI IW1

•v-

close to dx, eJ21 it follows from the continuity of the operation of divi-
IWI

sion that £ is close to £ on supp P(x, £).

Proposition 1. SP(s, s')—second wave front set and Hs>s —second wave

front set defined by Bony coincide. More precisely: Let g be a smooth function
with support in the ball J3(Q, 1) c 12 equal to zero in a neighbourhood of zero. Then
(see Remark 2.10, [1]) the mapping

SP(S, S'

where gfl|jc||||JD||)a=-l— ( *<*•*> g(\\X\\\\e\\WeW
(2m) J

defines an isomorphism II of the spaces

SP(s, s')/SP(s, oo) - » Hs-*'/Hs-" .

Second wave front sets are well defined on the quotient space, thus we have well
defined mappings

SP(s, s')/SP(s, oo) -£* H'-'/ff..-

where 3? is the set of closed subsets of the space

and 2WF5 means B-second wave front set.
Assertion'. The diagram (6) commutes.

Proof. We shall prove that if weSPO, sf) 2-microlocally at the point

(x, £, dx, 0) where (jE, £)ery(JZ") then n«=g(||jc|| ||D||)we^s's/ 2-microlocally
at that point. Let Pf*=H, then Pf induces an isomorphism Pf inverse to H.
According to Definition 2 we have Pu^SP(s, s') hence
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P(PfUu)€=SP(s,s') (7)

because Pfliu-u<= SP(s, oo) (Th. 29, [1]) and P(x9 D) eOp(51]§-0). It
follows from (7) that

It is clear that UPPf is an operator in Op(]>]o'0) (for P is an operator in

Op(S 28-°)). We still have to check that ILpPfis 2-microelliptic at (Jc, £, £Jt, 0).

But this is clear since the principal symbol

(By Definition in [1] a(U?Pf) is equal to the symbol (i(P)eS2oi0 after passing
through the isomorphism with the space So'0- But o(P)=P(x9 f) from the
definition of the operator JPeOpCSUo'0) (Def. 3.5 [1]) since P(x, £)eS28'°).
Since II is an isomorphism this ends the proof of commutativity of the diagram
(6).

Remark. In Definition 1.9 in [1] of the second wave front set, it can be
assumed that the operator A eOpCSo'0) concentrated at (0, £ ) and 2-microelliptic
at the point (0, 1, dx} 0) is of the form UPPf where P is defined by Definition 2
for suitable p, Z, K.

Proof. Let Au<=Hs>s/ 2-microlocally. For suitable P, PPfA'1 eOp(S8'°)
and we have JJPPfA^Au^H*'3. But A'1A==I+R9 R^Op(^Q

Q'~N) hence
modulo an operator in Op(So'~^) we have UPPfA~1A=UPPf.

Our aim is to define the second wave front set in a way analogous to the
definition of the (first) wave front set in terms of the growth order of the Fourier
transformation. In our case instead of the Fourier transformation we need
the Mellin transformation. First we recall the definition of a Mellin distri-
bution [2]9 [3].

Let B+ = {x<=Rn+: xf<l9 i - 1, —, n} .

Let a^Rn. Denote by Ma = Ma(B+) the space of functions 9?eC°°(jB+)
such that for every aeJVo

PaM = sup | (*+\xD)*9 1 < oo

with topology given by the seminorms pattt9 a^No. Let a) e (R\J
We define
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Af(ftl)CB+) = U Ma(B+) —inductive limit.
c<co

The dual space M(^(B+) is a subspace of distributions and

M'(BJ = U MUBJ
<a

is called the space of Mellin (transformable) distributions.

Lemma 2. Let u^SP(s, s'), s+s'^N0, suppwc/1 where F is a proper

cone in R$, then weM('p) for p^Rn \p\ <s— — .

Proof. From (3) for Z=Q we have x>ueL2(RH+, *-') for \r\>-s+—

n. Since multiplication by x"*, r^Rn maps M^->M(^+^ it is enough
to show that if u^L2(Rn+, x~l) then weAf £<». Let <p^Ma, a<0; we have for

\\u<pdx\

thus u is a continuous functional on the space M(0)= \JMa. If weM(w) we
«<0

define the Mellin transform of u

(z) = nix-*"*] , Re

(for ze(7* and cyel^", Rez<cy means that Re zy<o>;. 7= 1, ••-,«). The
function (JMu)(z) so defined is holomorphic for Re z<o>.

Lemma 3. u<=L2(Rl, x'1) ?/ awrf o/i(y if (<3ttu)(z)^L2(Rn) as a function
of ITU z for each fixed Re z<0 (i.e. <5tt(z) defined for Re z<0 has a boundary
value for Re z->0, Re z<0 (2«J rAe boundary value is in L2(RnJ).

Proof. The condition u^L2(Rn+, x"1) is equivalent to the condition that
the function h(y) = u(e~*) e L\Rn). Since

= J

we see that the latter condition is equivalent, in view of the Parsevale equality
to the condition that <3ttu(z)^L2(Rn) for Rez=0, hence also for Rez<0

(H(<rVReif30 is in L2 for Re z<0 if w
From Lemma 3 and the fact that



792 BOGDAN ZlEMIAN AND HENRYK KOLAKOWSKI

we get the following characterization of the space SP(s, se) :

Corollary 1. Let u^Df(B+), supp udF —a proper cone, then the following
conditions are equivalent:

ii)

d for every z<= \z<=Cn: 2 Re Zj<s——}
{ y=i 2 J

an

iii) <3ttu e oQzeC": 2 Re z,< j— -J)

» ^and for some a such that S &j=s— —
y=i 2

Now let TcI2+ be a cone tangent only to the axis x^.

Proposition 2. Let u^D'(B+), supp udF —as above. Then the following
conditions are equivalent:

i) ii

ii) <3Uu(z) is holomorphic in the set @Q= {z^Cn: S Re zy<0, cK2<0, e ° 8
5 «w

and for every a^{as=Rn: ai+ — +an<Q, «2<0, -9

^w(a+i/9)eL2(12n) ^ a function of p,

iii) c_5Kw w holomorphic in @Q and <3ttu(a+ip)^.L\Rn) for a=Q,

More generally we have

Proposition 30 Let u&D'(B+)9 supp we F as above, s, s'^R, S+S'&NQ.
The following conditions are equivalent:

i) u^SP(s,s'\

ii) JHu(z) is holomorphic in the set

: RezH

2' ' ~n ' ' S 2

and for every ^e^VJ w#A | ̂  | ̂ ^H-^1' and a^Rn such that
n ^, 1 ^ , 1
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iii) JHu is holomorphic in J2S s/ and
JHu(a+iJ3)<=L2(Rn,(l + \\/31\\)

xi ..... (l+IIAJI)*") for the points a of the

form a^s———^ ----- ^ a2=X2--~, ...,an = Xn—~- where

Proof. From the operational properties of the Mellin transformation and
Proposition 2 we obtain from (5) that for | X \ <s+s'

belongs to L\Rn) as a function of Im z for any fixed Re z such that

Rezj+Rezg+'- '+Rez^O, Re z2<0, •••, Rezw<0

where

By changing the variable z one can see that all assertions of Proposition 3 follow
from those of Proposition 2.

Proposition 4. Let (x, ) e T$(R*)9 dx(=Rn
+,u<^ SP(s, - <*>). u(= SP(s, sf)

2-microlocally at the point (x, f , 8x, 0) if and only if there exist functions X, /c, p
satisfying conditions 1°, 2°, 3° respectively, such that

Corollary 2. The point (i, , 5jc, 0) dbas wor fee/owg /o 2WFsp(s'oo) i
///or some X, /c, p satisfying conditions 1°, 2°, 3° X(z)p(z)t3H(Ku)(z) as a

function 0/Im z is rapidly decreasing for z: Re z1+-«-+RezJ I<5— — .

§ 3. Propagation of 2-MicroIoca! Singularities

Theorem 1. (Propagation of singularities along the incoming bicharacter-

istic). Let dx=(—l, 0), f°=(0, f ') anrffer veSPfe oo). Suppose that vt=H5+ff
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microlocally at (xs <f) for every x=(xl9 0) where x^O and that w= - ve
®xi

SP(s—I, 0+1) 2-microlocally at (0, f, dx, 0). If a>— — then v&SP(s9 a)

2-microlocally at (0, f, Sjc9 0).

Proo/. Replacing v by q(D)v where #(D) is a suitable pseudodifferential

operator microelliptic at £, we may assume f since q(D), - =^) ^at koth

v and w are microlocally concentrated near <? . Further we may multiply v by a

bump function 9 at zero and observe that - (pv) = ( - 9JV+9 - v satisfies
dx1 \ dxl / dxl

the same assumption as w since ( - 9 }v^Hs+<r (by the assumption that
Vd*! / v-

velfs+<r microlocally at ((xl9 0), I) with jCj<0 we have ( — <p }v^SP(s, a)c
\dxl /

SP(s—l, a+1) because 0$suppf - 9 ) ). Consequently we may assume that
\dx1 //

v and w are microlocally concentrated near (0, £). Finally changing ^ to
— Xj we assume that dx=(l, 0). Let X be a cut-off function at (1, 0) sub»
ordinated to F homogeneous of order zero (supp ZdF and % = 1 on a cone Fl

tangent to x9 slightly smaller then F) such that

iv = zw<=SP(s—l, a + 1) globally.

First we show that there exists a unique Mellin distribution u such that

* = -«. (8)

^By Proposition 3 JHw(z) is holomorphic for S RezJ-<j— 1— — , Rez2<j-+c7

— — , • • • , Rezw<^+a — — . Computing formally the Mellin transform of (8)
2, 2,

we get
Jttw(z) = (z1+l)^iu(z1+l9 z') , zf - (z23 .-, zj

hence

-1>zr) (9)

on the set {S Rezy<j— — , Rez2<5-+(7— — , — , RQZH<S + O— — j
I y 2 2 2

Moreover for a fixed d such that 2 ai<s——9 a2<s+a— — , ••-, dn<s+a— — ,
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we have from Proposition 3 (ii) that Jffw(a— l+i/9)eL2(jRw). Since

| > | «i | >0 it follows that also

Thus the inversion theorem for the Mellin transformation (see [2]) implies the
existence and uniqueness of the desired Mellin distribution u.

From (ii) in Proposition 3 we get

for every fixed a such that S aj<s— — , ^2<^2~ — -> '">an<*n~ — > «i<0,
2, 2, 2*

since as before | «!+iA | > | «i | >0.
In order to retain the information on u which will enable us to conclude

that u<=SP(s, a) 2-microlocally at dx=(l, 0) we have to assume, according to
(iii) in Proposition 3, that

^ = s———1i2 ----- ^<0 for

i.e. that cr>— — and s<— (see Fig. 1)

Rez2

j

(—a — 1/2, s+o—1/2)

\*~l

V «

\

i

• s+a 1/2

,-1/2

. s-l

Fig. 1

Let r:cr be a cone tangent to the axis jq such that Z = l on /Y We shall
prove that u=v on Fv

We have

d d n
w = v on jT, .

9^ dxl
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Hence for x^Fl u—v = g(xr) —a Mellin distribution on rx in variables

*' = (*25 "95 xn)- Since both u and v have bounded support and J\ is tangent
to the axis x} it follows that g=0 on J\.

Let r0 be the cone {%eJ3+: 0<x1<l, x2<xl9 °~,xn<x^ (see Fig. 2).
We want to show that u\ To^SP(s, a). From Example 2 in [2] we know that if
X0 is the characteristic function of F0, we have

+zn)z2

A',

Fig. 2

Next (see [3], Proposition 5) for every d such that 2 &j<s— — » «2^ •s' + (7~~ — 9

— 3 ax<0 we have

which, after the change of variables fi=r1H ----- hr^3 r2:=:r2J • • • > fn=rn ^ thQ
convolution, is the w-dimensional Hilbert transform of JKw(a+i*)- Now it is
a well known fact that the Hilbert transform maps L2-functions into L2-
functions. This proves that JM(%Qu)(&+ifi)^L2, and the same is true for

+|X|*o^O for \*\<.s+<*. This in view of Lemma 3 shows that
s, a). Since v=u on rx it follows that v\rinr^SP(s, a).

Finally we note that the condition s< — is not an essential restriction on w.

Indeed, we may replace w by Amw for m large enough where A is the Laplace
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operator in Rn and use the facts that \Am, —1=0, Am: SP(s, s')-+SP(s—2m9 s')
L dxlJ

and if Amu<^SP(s, s'), u^SP(s, — oo) then u^SP(s+2m, s'), since an operator

elliptic in the classical sense is 2-microelliptic.

Lemma 4. Let F be a proper cone in R+, and F' and open subcone in F.

Write x=(xly x') for points x^Rn where x'^Rn~l. Let g(x') be a Mellin dis-

tribution on F, independent of x1 and such that g(xr) e SP(s, s') on J". Then
g(x')(=SP(s,s')onF.

Proof. Let x1 be a cut-off function subordinated to J" such that
Z'(x)g(x')^SP(s, s') globally. Since for every vector dx^F we can find fc>0
such that

X(x) = Xf(kxl9 x')

is a cut-off function in the direction of dx, it is enough to prove that %(x)g(x'} e
SP(s, s') globally. We have

R

'-i ( X'(x19 xr)
R

because

'(kx19 x')xr^'ldxl = kzi ( X'(xl9 x')xr^'ldxl .X'
R R

Since \kzi\ =kRezi thus for a fixed Re z the multiplier kz* has no influence on
the behaviour of the Mellin transform as | Im z | ->oo. This in view of Propo-
sition 3 ends the proof.

Theorem 2. (Propagation of singularities along second bicharacteristics).

Let F be a cone in Rn not tangent to xl i.e. such that F R {Oq, 0), x^R} = {0}.
o

Suppose ve5P(— oo, — oo) on F and let - v=w^SP(s— I, a+l) 2-microlo-
dXl

cally at the points (0, f , dx, 0) for dx<=F where i=(Q, I') for some fixed f'. If

v^SP(s,o) 2-microlocally at (0, £ , dx, 0) for dx^F'—a subcone of F, then
2-microlocally at (0, <f, dx9 Q)for dx<=F.



798 BOGDAN ZlEMIAN AND HENRYK KOLAKOWSKI

Proof. We assume that u and w are microlocally concentrated near f.
Further (subject to a transformation of the form

r±i B~\I o A]
r)

where A^GL(n— 1), B^Rn~l, which preserves ) we may assume that F is

a proper subcone of Rn
+. Let X be a cut-off function subordinated to F (i.e.

Z^C°°(Rn
+), X homogeneous of order zero, supped/"1 and X=l on a slightly

smaller proper subcone of F), and <p a bump function at 0 such that w=^>Zw^
SP(s-l, a+1) globally.

Analogously to the proof of Theorem 1 we show that there exists a Mellin

distribution u such that w= u. Computing the Mellin transformation we get

and as in the proof of Theorem 1 we conclude in view of Corollary 2 that

for every fixed a such that ]>] <*j<s — — 5 a^Q.

We want to prove that JM%u(d-\-il3)^L\Rn) where & is a fixed point

satisfying 5] a~s — — , <*!<(), and X is the characteristic function of a proper

cone containing F. To use the same technique as in the proof of Theorem 1

ti inQ j ) that

: x2<xl9 ••- , ;c^<%1}. We also suppose that supp wc-fce JZ5- -
For jeer we have ^1<C8JC2, ••s^^Q^ for some positive con-

500
w(t, x')dt it follows that for

*i
jcesupp M x^Q^g, o o ' 5 x1<Cnxn and A:̂ !. Thus if z° is the characteristic
function of the set Fl = {x^R+: X1<l,x2<xl9 •••, xn<x1} it follows that
supp ZQu is a proper cone f in !?+ since Xj~~xk j, k=l, 2, •••, n on supp ̂ °w.
The proof that JHZ°u(a+ij3)^L2(Rn) is the same as in the proof of Theorem L
Analogously, in view of Corollary 1 we get u^SP(s., a) on F. The final thing

r5 f$
now is to compare u and v. On the set where <pX = l we have - u = - v

dx1 dXi
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thus u— v=g(x') is a Mellin distribution on that set depending only on x'.
Since on a smaller subcone v^SP(s, a) it follows that g(xf)^SP(s9 a) on that
subcone. Now we apply Lemma 4 to get g(x') e SP(s, a) on r. This ends the
proof.

Theorem 3. (Propagation of singularities along the outgoing bicharacteristic).
Let dx = (!9 0), <?=(0, £') and let v^SP(s, — oo) be such that v = SP(s, a)
2-microlocaIly at the points (0, f , £*, 0) w//ere forei?*. Suppose that

8w = - v
dx,

and weSPO— 1, cj + 1) 2-microlocally at (0, /, W, 0). Tjf <T< — — then

v^SP(s, a) 2-microlocally at (0, I, W, 0).

Proof. By applying to v a suitable cut-off function % at (1, 0) subordinated
o

to a cone FcuR" tangent only to jc1? and a cut-off function p in the direction £
we may assume that supp vcJ1 and w&SP(s—!9 a+l) locally at zero. Thus
for a suitable bump function <p at zero w=y>w^SP(s— 1, a + 1) globally.

As in the proof of Theorem 1 we prove the existence (and uniqueness) of a
Mellin distribution u such that

w = - u .

Moreover

for Re

where H(z)=JH(x1 w)(z) is holomorphic on the set A+iRn and

A = ,

Further for points a<=I, H(a+ip)^L2(Rn) as a function of /?. We want to
invert F(z)=H(z)/z1 at a point aey4 such that d^O. To this end we use the
generalized Mellin transformation M * introduced in [3]. We have

(M-/X0 = F(d+ift)

where

(9)
22"
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Take a point a=(aly a') where 5^0, a=(al9 a'). Then

u(x) =
Rn

Fixing a'+\r' and applying the residuum theorem in variable Zj we get

R

Thus we find

J F(a+ir)x^^dri = J

f /*'
J

R"-1

Since by the definition of the Mellin transformation

we have by the inversion rule (9)

S ° f
.0(1/5 ^ ""T^T^ )X Clf == I WV^CTJ

J

= J ~ix w^i? x/^ = ~l

because u has bounded support as a Mellin distribution. Thus

= u(x)-u(Q, x').

S
xi

w(f, x')dt we see that supp/cT. To prove
0

that/eSPC?, a) locally we have to ensure analogously to the proof of Theorem
1 that

i.e. that cr< 1/2 and s>l/2. Now multiplying / by the characteristic function of
the unit cube {0<#<1}5 which under the Mellin transformation amounts to

computing the Hilbert transform of M*/f since 3tt%(z)=-± '-—L we con-
\ Z j - ' - ' - Z ^ /

elude, as in the proof of Theorem 1, that/eSP^y, a) locally.
r

Finally we compare/and v. We have - /— — v=0 for x^Rn+9 0<
dxl 3xl

for some T, thus /— v=g(x') for 0<^:1<r. Since supp/suppvCT it
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follows that g(x') = Q. This proves that v<=SP(s, a) locally at zero if s>l/2.
The case s<l/2 is reduced to the above by a similar reasoning as at the end
of the proof of Theorem 1.

Theorems 1, 2, 3 together give the following Bony's theorem on the prop-
agation of 2-microlocal singularities:

Theorem 4. Let £=(0, £') and suppose v^SP(s, — oo) microlocally at (0, £)

and v^Hs~1/2 microlocally at (x^Q,^) where;q<0. Ifw=—v<=SP(s— 1, —1/2)
a%1

microlocally at (0, £) f/ze/t veSP(>— e, —1/2) microlocally at (0, £)/or any e>0.

To apply Theorem 1 we observe that for a^R SP(a, —1/2)c
SP(a— e, —1/2 +e), while the inclusions SP(a, —1/2) C SP(a, —1/2—e)c
SP(a—£, —1/2) allow us to apply Theorem 3.

Concluding remark. The technique of the Mellin transformation presented
in the paper can also be applied to get analogous results for the spaces HStSf.
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