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Quadratic Forms for Singular
Perturbations of the Laplacian

By

Alessandro TETA*

Abstract

Singular perturbations of — A in L2(R3) supported by points, regular curves and regular
surfaces are considered. Using a renormalization technique the corresponding quadratic
forms are constructed and a complete characterization of the domain and the action of the
operators is given, together with explicit expressions for the resolvent.

§ 1. Introduction

In recent years some attempts have been devoted to the construction of
Schrodinger operators with potentials supported by sets of zero Lebesgue
measure. Such hamiltonians are of great importance in applications as models
of a variety of physical situations in quantum mechanics, nuclear physics, solid
state physics, scattering in disordered media etc. (see e.g. [4] and references
therein). Some interesting connections with a model of antenna in classical
electrodynamics are stressed in [13].

The existence of such Schrodinger operators can be proved, under some
very general conditions on the support of the potential, using different techniques.

A natural framework for justifying the formal manipulations of d poten-
tials often employed in the physical literature is non-standard analysis ([!]);
standard methods are used in [2], where a singularly perturbed hamiltonian is
given by resolvent limit of smooth approximating operators, and in [3], where
a construction is obtained studying the non trivial selfadjoint extensions of the
Laplacian restricted to smooth functions vanishing on the support of the
perturbation.

A more abstract result is given in [14], where the notion of singular bilinear
form defining a perturbation of a positive and selfadjoint operator in a Hilbert
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space is introduced and conditions for the construction of the perturbed operator

are given,
Somehow related questions are discussed in [15], where sufficient conditions

for the existence of perturbations of a linear differential operator supported by

a submanifold of codimension greater than zero are given, and in [16], where

the existence and uniqueness of the solution of a Schrodinger type equation

with a potential given by a distribution are proved.

It should be emphasized that, except for some special cases like interactions

supported by points ([4]) or by a sphere ([5]), using the above mentioned methods

it is difficult to get information about the properties of the constructed operator,

e.g. locality of the interaction, detailed structure of the domain, spectrum etc.
The aim of this paper is to develop a new approach, based on the theory of

quadratic forms, for the description of Schrodinger operators in L2(R3) with

£4ike interactions supported by particular sets of Lebesgue measure zero in R3.

More precisely given a set <SdR3, where Q can be a finite number of points,

a regular curve or a regular surface, we define a quadratic form Fg satisfying

the following properties: i) it is closed and lower bounded, ii) D(Fg)^D(FQ)s

where D(F0)=H1(R3) and F0(u, u)=^ \7u\2dx9 in) Fe(u, v)=F0(i/, v) for any

u^D(F0) which vanishes in a neighbourhood of Q and for any veD(F0).

When these conditions are satisfied we say that Fg defines a perturbation

of the Laplacian supported by 8 (cf. definition given in [1], [6]).

Once the quadratic form is defined we provide a complete characterization

of the domain and the action of the self adjoint operator associated to Fg and

also an explicit formula for the resolvent.

Moreover it is clear from the construction that the interaction we are defin-

ing has a local character in the sense that it is completely specified by an assigned

function on G, which is a measure of the strength of the interaction.

In order to illustrate our construction it is convenient to start with the

case in which Q is a finite set of points. As it is well known ([4]), the Schrodinger

operator — 4*.y with (point) interactions located on the set Y={y^ -°,yN},

yt^R3, with strength a— {a19 • • - , aN}9 a.^R, is the unique selfadjoint operator

in L\R3) with resolvent

\- - ytir^n G\ • -y,) (i.i)
i.y=i

where, for /l>0, ratY(X) is the NX N matrix
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and

( G
= <

1 0

G\x) if
if x=0

(1.3)

The domain of — 4^r, as shown by formula (1.1), contains functions which do
not belong to H\R3) and have singularities in yl9 • • • , yN of the type | • —yi \ ~

l,

i=l, -,tf.
Using the analogy with electrostatics we interpret this by saying that, for

each u^D(— datY}> one can define Appoint charges Qu= {gj, ••• , Q^} , depending
on the singularity of w in Y, such that the potential u— Gy Qu, (GYQU is a short
notation for S?-i 2«G*( •—>>,•)) has finite energy, i.e. belongs to H\P?).

This suggests that the quadratic form F^y, associated to — Jrf>F, can be

decomposed into the sum Fe6iY=EF^+0^tY^ where £?F is essentially the energy
associated to the regularized potential u—GYQu and 0£tF is a sort of renormaliz-
ed energy of the system of the point charges Qu located in Y (see § 2).

The same idea is then applied to the more interesting case of a perturbation
of the Laplacian supported by a regular curve C; one has only to replace the
point charges Qu with a linear charge £u distributed on C. The resulting
quadratic form FptC is essentially the sum of the energy £?c associated to
M— GC£«, where G*c£u is the potential produced by £U9 and of an extra term <Z>£>C

due to the renormalized energy of f u (see § 3).
We remark that, exploiting further the analysis in [7], perturbations of the

Laplacian supported by Y or C can also be obtained as suitable limits of Robin
boundary value problems with data on smooth surfaces shrinking to Y or C

respectively.
Finally we will briefly consider the well known case of a perturbation sup-

ported by a regular surface and we will show, by simple algebraic manipulations,
that the corresponding quadratic form can be written in terms of a surface
charge, in analogy with the previous cases (see § 4).

§ 2. Point Interactions

Let Y= {yl9 • • • , yN} be a set of TV distinct points of jR3 and a= {al9 ••- , aN}9
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with a^Ry *=1, ••-,#. For each positive A let us define the following

quadratic form in L2(R3)

C* s.t. u - G$QK^H\R*)} (2.1)

F..Y& «0 = ffrfo «0+<r(fi« Qu) (2.2)

where C is the complex plane and

f 3 1 u-G\Qu\*dx-l \ \u\2dx (2.3)
.'# J>#53' '-"'• JR3

jr _
/ft*- (d f) \ — X1 \T fl\l n*f}3 C*> A\c/Vrvv£K> ^u) ~~.2j I1 a.YWlijxzMu • V"^)

It is easy to check that 0*pF can be obtained as a renormalized energy of the

point charges Qu

(D* (O O } — — V O* lim I V1 QJGx(x— v -1— ^u I-J-T1 a. \ Ol I2
^«,Fvsi«? i^w/ — ^J &w lllll I x i i^M^J' v*- ^KjV ~j j j~ \\JLi ui\ :£u\ •

Moreover the point charges Ql corresponding to a given u&Lz(R3) are uniquely
determined; in particular one has g«=0 for any u^H\R3).

In fact the point charges Q*u associated to u can be explicitly computed.

Let Br(y^ be the sphere of radius r centered in yi and ] Br(yf) | the correspond-

ing volume. For u^D(FgttY), using the Holder inequality and the continuous

embedding of H\IP) into L6(R*\ we have

\u-GyQu\dx<-

Then we conclude

oit i- r f j oft s^s T
lim I ii/1-v — fl* hi t *u hm

Remark 1. Notice that the domain D(FatY) is independent of
Moreover for any <*, /T>0

T(u, w)-ff^(«, w)

= f 1|-^(Gr/C.-
J u
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u, fij

where we have used the equation — 4(G$QU—G$QU)=*G$QU—XG$QU9 the

resolvent identity and an integration by parts. We conclude that FatY is in fact

independent of the choice of ^>0; the positive constant A has the only purpose

to provide a regularization of the behaviour of the Green's function at infinity.

The following proposition shows that FatY defines a perturbation of the

Laplacian supported by Y.

Proposition I. F^y is a quadratic form in L2(R3) closed and bounded below.

Moreover

D(FaiY)^D(FQ) (2.5)

^.rfa v) = *ifa v) (2.6)

for any u, veD(F0).

Proof. The existence of a lower bound is a consequence of the fact that

([4] page 116) F^X) is a symmetric matrix whose eigenvalues are all strictly

increasing in /I, so that there exists ^0(a, 7)>0 such that /^(/Q defines a scalar

product in CN for all /t>^0(a, 7). To prove that the form is closed it is more

convenient to consider

M a<** (2.7)

for any ^>^0(«» Y)- For any sequence {«„} cD(F£>r) converging to u in
L\R3) and such that limM>ffl F^iY(un— um, utt—um)=Q one has

lim IK-wJI^) = 0 (2.8)

Hm ^0,Y(Qaa-QKa, Q.-Q.J = 0 (2.9)

where wn=un—G$QUit. Then there exist w<=H\R3) and Q<=CN such that

lim|K-w|U*') = 0 (2.10)

lim ||G^e..-GJ-e||rtA = 0 . (2.11)

Formulas (2.10), (2.11) and the uniqueness of the strong limit give u=
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w -\-G\Q, i.e. u^D(F0>Y), moreover

Urn F*iY(u-un9 u-un) = 0 (2.12)

and the closedness of F^y is proved. Finally the inclusion relation (2.5) and
the equality (2.6) can be easily checked. Q.E.D0

Using the explicit form of F^y, it is not hard to reconstruct the domain
and the action of the associated selfadjoint operator — daiY

i) = S ir^XJltjQi , i= 1, -, N} (2.13)

= (-4+X)(u-G$Qu) . (2.14)

Moreover formula (1.1) for the resolvent can be easily obtained. The
proof of (2.13), (2.14), (1.1) can be carried out along the same line as the proof
of the propositions 4, 5 of the next section and is omitted here.

Remark 2. If one defines r~ \ x—yi \, Vxe JR3, /= 1, ••- , N, then it can be
verified that the boundary condition satisfied by u^D(—AatY) at the points
yl9"*,yN can be written in the form extensively used in the literature (see [4], [11])

= 0 i= !,•••,#.
0r,

We finally observe that a perturbation of the Laplacian supported by points
in dimension two can be constructed, following exactly the same line as that of
the three dimensional case, the only difference being the logarithmic singularity
of the two dimensional Green's function for —L

§ 3. Perturbations Supported by Curves

The construction of a perturbation of the Laplacian supported by a curve
is more delicate. The essential reason is that the space of the linear charges
distributed on the curve is infinite-dimensional, so that in the definition of the
renormalized energy of the linear charge distribution one has to face the pro-
blems of domain and closedness.

Let C be a curve in R3 of class C1 and, for a chosen initial point and
orientation, let y=y(s), s^I, be a parametric representation of C, where / can
be a finite interval (closed curve) or the whole real line (infinite open curve).

Typically s will be the arc-length of C relative to the chosen initial point
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Moreover we assume that there exists a positive constant e0 such that the
following two conditions are satisfied.

C-l

IXs)— XO I 2> \s— s' 1(1— c \s—s' I T) whenever \s—s'\ <£Q

where r, c are positive constants satisfying cel< 1 .

C-2

| y(s)-y(s')\ >eQ(l-C6r
0)+Klog \s~s'\ whenever \s-s'\>eQ

eo

where K is a positive constant.

Conditions C-l, C-2 guarantee in particular that the curve cannot have
multiple points ; moreover one can verify that

sup-6/J exp(-%/T|Xj)-XJ/)l)*/< + 00 for *>K~*. (3.1)

In fact, using C-l, C-2, we have

As a preliminary step in the construction of the quadratic form we define

'- r log 2e

for any fixed ^>0 and e<e0. We observe that ax(s) depends only on the
geometry of C and it is a constant in the particular cases of a straight line and
of a circumference of radius p

<*.,. = J
27Z:

,
27T Jo L t ,sin
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where /c is the Euler's constant. Moreover one can verify that a\s) is in fact
independent of the choice of S<SQ and it is a continuous and bounded function
of.se/for any ^>0. We shall need the following technical lemma.

Lemma 1. Mm infss/ a\s) = +00 . (3.3)
A-> + <»

Proof. The first integral in the r.h.s. of (3.2) can be estimated through
C-2; one obtains the bound

\ G*(y(S)-y(S'y)dS'<-—± - = supse/ ( exp (- x/T | X*)-XO I W •
Ji*-s'i>e 47usQ(l— eel) h

(3.4)
Moreover using Condition C-l one has

\ \A / „-Jl*-<'l<eL4jr Ly—j'

l-c\s-s'\T

(3.5)
47T

For ^ sufficiently large, the last integral is positive and satisfies

(3.6)

The proof of the lemma then follows from (3.1), (3.4) and (3.6). Q.E.D.

We now introduce a class of admissible linear charges distributed on C.
For a given continuous, bounded from below and real valued function J3
defined on C and for each positive number /I let us define

} (3.7)

c(£, f) = y J /x / \ew-ew\2<fy(s)-y(sWsdsf

(3.8)

Proposition 2, 7%m? exfete ^0(/9, C)>0 such that, for any A>ZQ(p9 C),

£fc) w a Hilbert space w.r, to the scalar product <Z>^c(-> •)•

. The existence of a ^0(/9, C)>0 such that 0£,c(
e
3 •) defines a posi-

tive definite scalar product for ^>/l0(^s C) is a consequence of Lemma L In
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order to prove the completeness one has only to mimic the Riesz-Fisher proof
of the completeness of L2. Given a Cauchy sequence {f n} in 7)(0£)C), it is
sufficient to prove convergence for a subsequence. Pick a subsequence, still

denoted by {£„}, such that (Pj.ctf.-f.+i, £.-£.-n)<2-''. Then

is the monotone limit of

and by the monotone convergence theorem ®eL2(7) and @< + oo a.e.
Moreover \ON(s)— ®N(s')\2Gx(y(s)— y(s')) converges a.e. in 7x7 to \O(s)—
e(s')\2G\y(S)-y(S')) and

JUl£.+r-£.l> | *.+!-£.! )<const.

so by the Fatou lemma we get 0 e7)(0£>c). Thus fi+Sr-iCfn+i— f«) is abso-
lutely convergent to a sum £ with |f — fj <G, so that £ e7)(0£>c). It is now
straightforward to show that lim, <Z>*>c(£-£ „ £-£B)=0. Q.E.D.

By Proposition 2 we get that <Z>£>C is, for 1>AQ(]99 C), a positive and closed
quadratic form in L2(7) so it defines a positive and selfadjoint operator rptC(X)9

which acts on smooth £ as follows

. (3.9)

Now we want to recall two useful properties of the potential

(3.10)

produced by the linear charge f e7)(0£>c). We observe first that the map
£|->G%£, 1>*0(P, C), is a linear bounded map from D(<Z>$iC) to L2(jR3), and its
norm converges to zero for /£-> + oo. The proof, based on an application of the
Fubini theorem, is straightforward. Next it can be shown that G%£&H\R3).

We give here a sketch of the proof. The regularity conditions C-l, C-2 allow
us to define, for any £>0 sufficiently small, a neighborhood of C

Cs = {x^R3\3ly(sx)^C s.t. x lies on the normal plane to C

my(sx)and\x-y(Sx)\<d}. (3.11)

Then an integration by parts yields
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= ~ f
2 J /x/

he s dn
(3.12)

where Gfcl(jc)=l Gx(x— y(s))d59 x^R3. The second term in the l.h.s. of
J/

(3.12) remains bounded in the limit d->0 and the first two terms in the r.h.s. of

(3.12) converge to — 0£>c(<? , f )+ 1 I £(0 1 2P(s}ds, which is finite by hypothesis.
J/

Concerning the integral in the last term of (3.12) we have

f 9G\\£\*)ds = f
J8CS a« J

,
l23\CS

It is now evident that the last term in (3.12) diverges logarithmically for £-»0
and then our assertion is proved.

The above procedure shows, in particular, that <Z>£iC(f , f ) can be considered
as a renormalized energy of the linear charge distribution (cf. § 1). Now we
have all the ingredients to define, for ^>Jl0(/9, C), the following quadratic form
in L2(R*)

s.t. U-G^U^H\R*)} (3.13)

(ttt, f .> (3.14)

where

u u 3 . (3.15)
j?3 JJ23 Ji?3

Given u^L2(R3) then the corresponding linear charge („ is uniquely determined.
In fact if there were £B, £ieZ>(<Z>£iC) such that u-G^u^H\R3) and

u-Gx
c£

f
u<^H\R*) we would also have Gfcfo-fOe^CR3) which is absurd,

by the above considerations, unless Eu=£i.
In particular this means that <fM=0 for u^H\R3).
Moreover from reasoning as in Remark 1 it is not hard to show that F^

is in fact independent of the choice of ^>0. The following proposition shows
that FptC defines a perturbation of the Laplacian supported by C.
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Proposition 3. F$ >c is a closed quadratic form in L2(R3) bounded below,

one has

(3.16)

F,,c(u, v) = FO(II, v) (3.17)

for any u, vG_D(F0).

Proof. The existence of a lower bound for Fp c is a consequence of the

positivity of <Z>£fC for A > ^0(/9, C). In order to prove that it is closed we

consider

/* c(i/, u) = F,tC(u, u)+t ^ | u 1 2dx (3.18)

for any A>AQ(ft, C). For any sequence {un} dD(F^tC) converging to u in L2(R3)

and such that HmM>wl FptC(un—um, un—um)=Q9 one has

lim||zM-zJ|^3) = 0 (3.19)
n tm

lim ®^c(fa,,-fBm> f..-f.J = 0 (3.20)
n t»i

where zn=un—GK
cEUn. Thus there exist z<=Hl(R*) and £ eD(<Z>£§c) such that

lim||zn-z||Flu3) = 0 (3.21)

lim (Z)^c(f-f .., f-eMn) - 0 . (3.22)

By the continuity of the potential of a linear charge and the uniqueness

of the strong limit we get u=z+G^£9 which means u^D(F^tC). Moreover by

(3.21), (3.22) we have limw F^tC(u—un, u— ww)=0 and the closedness of F^tC is
proved. Finally the inclusion relation (3.16) and the equality (3.17) can be

easily verified. Q.E.D.

The selfadjoint operator — A?fC associated to F?tC is by definition the

Schrodinger operator with ^-interaction supported by C of strength ft; its

domain and action are completely characterized as follows:

Proposition 4.

(3.23)

(3.24)

Proof. Let MeD(— Jp>c). Then, by definition, there exists geL2(J?3) such

that
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Fp.<&, v) = (v, g)Lt(lrt (3.25)

for any veD(FpiC). In particular for v^H^lP) one has £,= 0 and (3.25)
becomes

dx (3.26)
* *

which gives u—G^£u&H2(R3). Thus an integration by parts yields

(_^+j)(M_G$O = (-^,c+% • (3.27)

For an arbitrary ve/)(Fp§c) equality (3.25) can be written as

(3-28)

where (3.26), (3.27) have been used and the order of integration has been inter-
changed. Equation (3.28) gives now ^u^D(r^tC(X)) and (rp>c(^)£.)(j) =

(w— CjcfJCK-5))- Conversely given w belonging to the r.h.s. of (3.23) it is
easily checked, following the same line of reasoning, that u^D(— Jp>c) proving
(3.24). Q.E0D.

Remark 3. For weD(— Jp§c), with a smooth f „ let us denote by
the mean value of u over the circle of (a sufficiently small) radius 53 centered
in y(s)^C and orthogonal to C in Xs); then one can define two continuous
function on C

^) = 2,lim^<%|) (3.29)
a-*> log 1/5

0x(j) = lim \ti(y(s), d)-^ log 1] (3.30)
s->o L 2?r 5 J

and it can be verified that the boundary condition (tt—G^u)(y(sJ)=(r^c(X)?u)(s)
is equivalent to

^(s) = 0(5)^) . (3.31)

We remark that the last equation, for a fixed s^I, essentially coincides
with the boundary condition defining a point interaction in dimension two
(see [4] page 98).

It is also possible to give explicitly the resolvent of — J^>c

Proposition §„ For Z>Z0(ft, C) andg&L2(R3) we have
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(3.32)
where Gxg \ c indicates the restriction of Gxg to the curve C.

Proof. The r.h.s. of (3.32) defines a bounded linear operator from L2(R3)
onto D(—AptC)i using (3.24) one immediately proves the proposition. Q.E.D.

In conclusion we observe that, starting from (3.32), one can investigate
spectral properties of — A^tC (such as the location of the point spectrum and
the absence of the singular continuous spectrum) and study the scattering theory
for the pair (— J/3>c, — A). We plane to come back to these questions in
further work.

§ 4 Perturbations Supported by Surfaces

It is well known that a perturbation of the Laplacian supported by a regular
closed surface S can be defined by the following quadratic form

(4.1)

(4.2)

where r is a smooth, real valued function defined on S and us denotes the trace
of u on S. If one defines the surface charge an associated to u

s (4.3)

and, for any ^>0, the potential produced by au

Gx
sau(x) = ou(QG\x-t)d2 (C) xt=R3 (4.4)

JS

then a simple calculation shows that /ys can be written in a form analogous
to the previous cases

(att, O (4.5)

where

s Y

3 u 3 (4.6)
R

(4.7)

G>yfS is clearly a bounded quadratic form in L\2), thus it defines a bounded
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selfadjoint operator PytS(X) in L\2). Using the methods developed in § 2,
§ 3 one can reconstruct the domain and the action of the selfadjoint operator
— AytS defined by FY>S and one can calculate the resolvent. The results are
summarized below

} (4.8)

(4.10)

for any g^L2(RB), It is a simple exercise to show that, when S is a sphere,
(4.10) reduces to the resolvent given in [5].
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