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§ 1. Introduction

In the present paper we shall consider the Schrodinger operators with
magnetic fields:

(1.1) L=-±(dj-i

where dj=d/dxj9 i=^/ — \ , and bj and V are the operators of multiplication by
real- valued functions on Rn, bj(x) and V(x), respectively. V and b=(bl9 •*- ,&„)
are called a scalar potential and a (magnetic) vector potential, respectively, and
the corresponding magnetic field is the skew symmetric matrix-valued function
jB = curl b with (j, k) components

(1.2) Bjk = djbk-dkbj for j,k=l, -,n.

We are concerned with the following property :

(Ess) the restriction L0 of L with domain j®(L0)==C7(/O (the set of all C°°
functions on Rn with compact support) is essentially self-adjoint as an
operator in the Hilbert space L2(Rn).

Sufficient conditions for (Ess) have been investigated extensively by many
authors. In the case where F>0, Leinf elder and Simader [5] showed that the
condition

(P.I) ftGLU^T, div&eLU/Z"), Q<V^L2
loc(R

n),
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is sufficient for (Ess), which is decisive as to the assumption on the local sin-
gularity of the potentials In the sense that (P.I) Is minimal to assure that LQ

defines an operator from C%(Mn) to L\Rn), for we have

L= -J+2*&-F+idiv&+|&|2+F.

As to the assumption on the behavior at infinity of the potentials, the result
given by Ikebe and Kato [2] is fundamental ([2] allows some local singularities
of the potentials; for simplicity, we assume they are C°°):

(P.2) there exists a positive non-decreasing function 2(r)(r>0) such that

V(x)>-Q(\x\) for xelT (\x\ = Vxl+*~+x2
n, *=(*i> -,*.)) and

is sufficient for (Ess), which Is, roughly speaking, almost necessary as well In the
one dimensional case, if one requires a suitable condition on the decay rate at
infinity of V and V" (see [6, Th.X.9]). Eastham, Evans and Mcleod [1] showed
that an estimate of this type is needed only on a sequence of shell-like regions
surrounding the origin: for example, the condition

(P. 3) there exist a sequence of non-overlapping annular regions Am =

Rn\am< \x\ <bm} and a sequence of positive numbers vm such that
(bm-aJvm>K, V(x)>-kvl(bm-amf for xG Am and 2 v^oo, where
K and k are positive constants independent of m

Is sufficient for (Ess). Note that these conditions concern the growth rate at
Infinity of the negative part F_ = max (0, — F) of the scalar potential V. As for
the magnetic potential, no conditions other than its local regularity are required
in these works and, as far as we know, this also seems to be the case with the
results so far known,,

Our purpose in the present paper is to show that the condition on the growth
rate at oo of F_ can be relaxed In the presence of the magnetic field B (rather
than the magnetic potential b because of gauge invariance : see the remark after
Theorem 1.1 below). We restrict ourselves to the case of smooth potentials for
simplicity, though local singularities might be included: we assume

(H.1) V(x) and bs(x) are real-valued C°° functions on Rn.

Define the magnitude of the skew symmetric matrix B(x) by

(1.3) \B(x)\
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Our main theorem is the following

Theorem 1.1. Let the assumption (H.I) hold. Suppose that there exists a
continuous non-decreasing function Q(r)>Qfor r e[0, oo) such that

(1.4) V(x)+\B(x)\^-Q(\x\) for

{
for xtaR", j, k=l, ••• ,n, \a\= 1, 2,

(1.6) j" Q(rrlf2dr = oo ,

where a are multi-indices (a19 • • • , a n) , 5* = 9 *i - • • d*n
n and \ a. \ = a^ -\ ----- \-an. Then

(Ess) holds.

Remark. It is known as gauge invariance that all L=L(b) with common
B= curl b are unitarily equivalent to each other; it follows that the prop-
erty (Ess) with V fixed depends only on curl b. If 6 is smooth as in our case,
then this can be shown quite simply (there are subtleties, however, if 6 is not
smooth; see [4, Theorem 1.3]). In fact, if b' is another C°° vector potential
with curl b'= curl b, then there exists a real- valued C°° function g on Rn

such that 7g=b'—b, which gives (dj—ib^e^dj—ib^e-** and thus L(b')=
eigL(b)e~ig (gauge invariance); hence we have the equivalence of the essential

self-adjointness of L(bf) \ c°°(Rn) an(* that of L(b) \ c°°(Rn) by noting that eig, the
operator of multiplication by the C°° function eigM with modulus 1, is unitary
in L\Rn) and leaves C~(R*) invariant.

In view of (1.4) in the above theorem V_(x) is allowed to grow as fast as
\B(x)\ +6(l*l)» where g is a function satisfying (1.6), which is the same con-
dition as in (P.2) and by which Q should not grow faster than r8 (d>2). Hence,
in the case where | B(x) \ grows sufficiently fast, say, at a rate comparable to
|jc|s (£>2), Theorem 1.1 gives a wider class of potentials satisfying (Ess) than
those given in [2] or [1],

A quantum mechanical interpretation of essential self-adjointness is that the
uniqueness of a self-adjoint realization means the uniqueness of the dynamics of
the quantum mechanical particle (see, e.g., [1]). If the particle reaches infinity
in a finite time, some boundary condition at infinity should be imposed so as to
determine a reflection law, in which case LQ is not essentially self-adjoint. Thus
Theorem 1.1 can be interpreted as follows: the presence of a strong magnetic
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field can prevent the particle from going to infinity in a finite time even though

the scalar potential is highly repulsive so that the particle would go to infinity

in a finite time if the magnetic field were absent.

§ 2. General Theorems

In this section, we are going to state two more theorems, from which

Theorem 1.1 can be derived.

First, we give a more general sufficient condition for (Ess).

Theorem 2,1, Let the assumption (H.I) hold. Suppose that there exist a

continuous non-decreasing function 2(r)>0 for re[0, oo) and an nXn skew

symmetric matrix valued C°° function ft(x)=(ft jk(x)) (ftjk is real, J3jk=—ftkj) on

Rn such that

(2.1) \ft(*)\<l for

(2.2) V(x)+^jk(x)Bjk(x)>-Q(\x\}

(2.3) \R(x)\<Q(\x\} for x(=Rn where

(2.4) J Q(r)

Then (Ess) holds.

Note that the magnitude \ft\ of skew symmetric matrix ft in (2.1) in the above

theorem is defined by

(2.5) \ f t \ = {S/#?*}^

as in (1.3).

From this theorem it is known that the condition (1.5) in Theorem 1.1 is

rather technical: By putting ft constant in this theorem, e.g., ^12=19 ^2i=~"l>
fijk=Q otherwise, we know that the condition (1.5) can be omitted in Theorem 1.1

if (1.4) is replaced by V(x)+B12(x)>—Q(\x\). We can also obtain Theorem 1.1

itself as a particular case of this theorem by putting approximately Pjk=

Bjkj | B |, as we shall see later in the proof of Theorem 1.1. Theorem 2.1 can be

obtained, in turn, as a corollary to a more general theorem given below.

Second, we shall give a theorem concerning a second-order elliptic operator

of the form
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n _

(2.6) T= 2 (i^j+fj)Gjk(idk+fk)+W,
j,k=i

where Gjk, /}, W and /} are operators of multiplication by functions on Rn,

Gjk(x), fj(x)9 W(x) and fj(x) (the complex conjugate of /}(*)), respectively.
Note that many authors as [2], [3], or [1] treat operators of the form (2.6), rather
than simply of the form (1.1), with real-valued Gjk and/}. We assume

(H.2) Gjk(x), fj(x) are C°° complex-valued functions on RH, W(x} is a C°° real-
valued function on Rn and Gjk(x)=Gkj(x) for x^Rn and 7, fc=l, ••-,«,

and define a symmetric operator T0 in L\Rn) by

OM = TM for

Although G;jfe are apparently complex- valued in (2.6), it is verified by direct
calculation, as is shown in (2.12) below, that the coefficients of the second order
terms of T are given in terms of the real part of Gjk. We further assume the
following condition, which is, therefore, nothing but the ellipticity condition on
T:

(H.3) The symmetric matrix (ajk(x)) is positive-definite at each point x^R"

where ajk(x)=RQ Gjk(x) (Re means the real part).

We define a*(r) for r>0 by

(2.7) a*(r) = max {the greatest eigenvalue of («/&(*))} .
\*\ = r

Our last theorem is the following

Theorem 2.2. Let the assumptions (H.2) and (H.3) hold. Suppose that the

Hermitian matrix (Gjk(x)) is nonnegative-definite, i.e.,

(2.8) (Gjk(x))>0 for x^Rn .

Moreover, suppose that there exist a continuous non-decreasing function M(r)
>0/or r e[0, oo) such that

(2.9) W(x)>-M(\x\) for

(2. 10) p {a*(r)M(r)> '^dr = oo .

Then TQ is essentially self-adjoint in L\Rn).

Theorem 2.1 is obtained from Theorem 2.2 by taking (Gjk)=I+i/3 (I is
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the nxn Identity matrix) with a suitable choice of/}: as we shall see later, L
then equals T with W=V+^j<k /3jkBjk—R. [2] or [3] have given results quite
similar to Theorem 22 concerning operators of the form (2.6) with real-valued
Gjk and fj9 and Theorem 2.2 can be proved in the same manner as theirs with
little modification. We shall give, however, a complete proof of Theorem 2.2
for the sake of self-containedness.

Here we carry out a calculation for the later use in the proof of Theorem 2.1,
as well as to show that (H.3), under the assumption (H.2), is the ellipticity
condition on T,

Put

(2.11)

where bs are real-valued C°° functions on R". Then we claim

(2.12) T = 2 tf,(Re (?,») tf t+S {2 Re (FjG^-d^lm Gjk)}
J,K

GJt)Bit+i 2 dj(Gjkek)+-2 GjkT}ek+W,

where (B^ is the magnetic field given by (1.2). By this equality, it is known
that the coefficient of the second order term djdk in T is —Re Gjk=—ajk.

To show (2.12), first we have from (2.6),

(2.13) T = 2 (H

= 2 Hjj,k ,

For the first term on the right we obtain

(2.14) Stfyfyff,
3 •*

because we have

and because we further obtain by using Gjk—Gkj and the commutation relation

i 2 (Im Gy,)^.774 = i 2 (Im Gjk}{H }nk-

= -2 (Im Gy»^B/* •
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Moreover, we have by using Gjk=Gkj for the third term on the right of (2.13),

(2.15) g EjGJkek = 2 G^Hf+i 2 9fPjkeJ)

3,k 3 3 J,k ' 3

Thus we have (2.12) from (2.13), (2.14) and (2.15).

§ 3. A Priori Estimate

To prove Theorem 2.2, we shall make use of the following a priori estimate
concerning the operator T, which holds not only for C°° functions with compact
support but also for all the C°° functions on Rn, and which is very similar to
those utilized also by many authors as [7], [2] and [3] for the proof of the essential
self-adjointness of T0 with real-valued Gjk and/}.

Lemma 3.1. Under the same assumptions as in Theorem 2.2, there exists
a constant C such that

for all w<E C°°(/O> where W(r)= (' a*(ty1/2dt and || • || denotes the usual norm of
</o

L\R").

We need two elementary propositions for the proof of this lemma :

Proposition 3.2. Letf(r)>Qfor r >ra satisfying \ f(r)~ldr= oo and g(r)&

Z-Vo, ~). Then lira inf/(r) | g(r) \ =0.
r->«>

Proposition 3.3. Let Q be a continuous non-decreasing function on [0, oo)
satisfying Q(G) > I and F a continuous function on [0, oo) such that F>0 and

$
00
F(r)dr=oo. Then, for any S>0, there exists a Cl function p on [0, oo) such

oo
that

for allr>Q, where W(r)=d F(t)dt .
Jo

We shall give proofs of these propositions in the last section.
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Proof of Lemma 3.1. Suppose that the assumptions of Theorem 2.2 hold.
To prove the lemma, it is clear that it suffices to consider only the case where
M(0)>1 and Jr=|l«||2+[[rwl|2<oo. Then we can apply Proposition 3.3 with

Q(r)=M(r\ and F(r)=2a*(r)-'/2 and *=l/2, since a*(r) defined in (2.7) is

positive by (H.3) and continuous by (H.2) and ( a*(r)"1/2rfr=oo by (2.10).

Therefore, by Proposition 3.3, there exists a function p^Cl([Q9 oo)) such that

(3.1)

(3.2) M(r)<p(r)<2M(W~l{W(r}+l}}

for all r>0, where

(3.3) W(r) = d(' F(t)dt = f a
Jo Jo

Let C(jc)=C(r)=l/p(r)eC1(^{0}) where r=|jc| , Bt={x<=R*\ \*\<t}
and St={x^Rn\\x\=t}, Then we have by Green's formula,

(3.4)

i\ C{S>>jGik(i
JSt J,k

where dS means the Lebesgue measure on 5, and vj=vj(x)=xjl\x\. Put the
first term on the right of (3.4) ®(t), i.e.,

(3.5)

for r>0. Note that the integrand on the right of (3.5) is non-negative by (2.8).
Since by (2.6)

l.h.s. of (3.4) =

where C=C(r)=d£(r)/dr, we have by (3.4),

(3.6) 0(0=1 C(Tu-Wu)adx+i( C^^GM
JBt JBt j.k

-/( c&vfr
JSg j,k

= /+//+///.
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Then, since C l w I 2 > 0 , we have by (2.9)

/<( C\(Tu)u\dx+\ Z(r)M(r)\u\zdx.
JBt JBt

Hence we have

(3.7) 7<2(||M||2+||rM||2) = 2*,

since C(r)=l/p(r)<l/M(r)<l by (3.2). On the other hand, by (2.8), the
Schwarz inequality for the sesquilinear form Sy.t^f^ implies the following
pointwise estimate

IS*,M''

«]W E Gy.̂ ]"*

Hence, since we have

0£S Gy*^- = g (Re Gy>.v,£a*(r)

by (2.7) and by the fact that fy is real and Syv*=l, we have

(3.8) | v,WG,A

for all x&Rn. Therefore we have by (3.8) the following estimate for the second
term of the right-hand side of (3.6):

I // 1 < [ | f ;(r) I ̂ W^E Gj&di+fMiWM1* \u\dx.
JBt J.k

Thus, since we have by (3.1)

dr

we have by using the Schwarz inequality and by (3.5)

(3.9) l / / l < 2 ( [Cs Gj&
JBf 3*k
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Similarly, by (3.8), we have the following estimate for the third term of the

right-hand side of (3.6):

= C(01/2«*(0V2 f [C S M'
«/s* y tft

Thus, since I C(0 1 < 1, we have by using the Schwarz inequality and by (3.5)

(3.10)

Therefore we have by (3.6), (3.7), (3.9) and (3.10)

0(t)<4K+— <2>(0+a
2

which implies

(3.11)
J S t

We shall show that (3.11) with ®(t)>Q and ®'(t)>Q implies

(3.12)

which is, by (3.5), equivalent to

Then we obtain the required inequality

= 32(||rM||2+iHp),

since C(r)=/o(r)-1>2-1M(2P-1{r(0+l})~1 by (3.2) and V is defined by (3.3).
Therefore it remains to show that (3.11) with 0(0 >0 and <Z>'(0>:0 implies

(3.12). If <Z>(0=0 for ;>0, then clearly (3.12) holds. Thus, since <Z>(0>0,

we prove (3.12) assuming 0(r0)>0 for some r0>0. Since 0'(/-)>0 and

LVo, ~). Therefore,

ince [ f lalW^eLVo. °°). we have
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which enables us to apply Proposition 3.2 with this g(t) and /(0===a*(01/2 s*nce

5 00
a*(t)~1/2clt=oo. Thus we obtain by Proposition 3.2

r0

lim inf [ f | „ | *dSf*a*(t)V* = 0 .
Js

Therefore there exists a sequence {tn} such that ^->oo and

2

Then we have by (3.11) 0(tn)<lZK+— 0(tn). Therefore, since 0(f) is non-

decreasing, lim <2>(0=lim sup <&(*„)< 16K, which proves (3.12). Q

§ 4. Proofs of the Theorems

In this section we shall give proofs of the theorems given in Sections 1 and 2.

Proof of Theorem 2.2. Since TQ is a symmetric operator in L2(Rtt), the

essential self-adjointness of TQ is, as is well-known (see, e.g., [6, Theorem X.I]),

equivalent to the property that Tfu=±iu implies u = Q for u^£D(Tf). We

only treat the case of Tfu=iu, because the case of T$u=—iu can be proved

in the same way.

Suppose that ut=3)(T$) and Tfu=m. Then u^L\Rn) and Tu=iu holds

in the distribution sense. Since Tis elliptic by (H.3), we have weC°°(J2B) by

(H.2). By Green's formula (apply (3.4) with C= 1), we have

(Tu-Wu)udx
f

= \ {S M'9*+/*M^-+/» fc+i \ , {2 vyM'
jBt j,k Joj j,k

Since Tu=iu, Gjk=Gkj and W is real- valued, by taking the imaginary part

of this equality, we have,

Therefore, we have by (3.8) and by the Schwarz inequality

(4.1) { |w|2^<«*(01/2[ ( 2 Mi0»+/X/s,+/,>««]l/a[ L I»I
JS/ Jstj,k Jst
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On the other hand, since Tu=iuGL2(R"), we have by Lemma 3.1,

Therefore,

which, with [ \ \u\ VS]"2 e JL2(1 , oo), implies,
Jst

(4.2)

Moreover let /(O = [a*(i)M(W ~l {5^(0+1} )]1/2- Then we have by (3.3)

f~ dt = t°° dW(t) = r ds
Jo ft) Jo jif(y-1{y(0+i»vl Jo

= f00 £/y(Q _ f00

J^-s(i) MV 2 Jr-

which equals oo by (2.10). Thus we can apply Proposition 3.2 with these/and

g by (4.2) to obtain limmff(t)\g(t)l=Q. Now, since the right-hand side of
'"*" f

(4.1) equals /(O I g(OU we have \ \u\2dx=Q, i.e., w=0B Q
JRn

For the proof of Theorem 2.1, we need an elementary proposition:

Proposition 4B1. Let P = (j3jk) be annxn matrix, where pjk is real, fijk =

— pkj. Then we have

where \/3\ is given in (2.5).

A proof of this proposition will be given in the last section.

Proof of Theorem 2. 1 . First, define

(4.3) GJk

where djk is the Kronecker delta. Then, since pjk is real and Pjk=—Pkj>

Ojk=Gkj. Moreover, (2.1) implies (2.8) according to Proposition 4.1. (H.3) is

fulfilled and a*(r)=l because ajk(x)=RQ Gjk(x)=djk. Second, define
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«, = -j-2*9*fty,
(4.4) 2

/; = bi+ei •
Then we have

(4.5) 2 # Rfi^G^-SyOm G,$ = 2ek-^ 0^=0 .

Moreover, since 2y diei=\ Sj.*(fy0*^*)s0 and 2y.»^»«/e*sO by /9/t=

— $y, we have

' 2 SXG/*e*)+2 G,4Fye4 = -2 W,*«»)+2 «J ,
y,* y,* JP* y

which is equal to R by (2.3) and (4.4). Therefore, we have by (2.12) and (4.5),

(4.6) T = S # 3

which will coincide with L if we take

y<*

Then we have by (2.2) and (2.3) W(x)>— 2Q(\x\\ from which, if we further
take M=2Q, (2.9) is satisfied. (H.2) is satisfied by these Gjk, fj and W. Finally
(2.10) is satisfied by (2.4), since a*(r)=l. Now we can apply Theorem 2.2
to prove that the property (Ess) holds, since TQ=LQ by (4.6). Q

Proof of Theorem 1.1. Let 0(r) be a C°° function on R such that

f 1 for r<l /2,
(4.7) 0(r)= - 7

I 1/r for r>2 ,

(4.8) 0<0(r)<l/r for all r>0.

And define

(4.9) ftjk(x) = 0( | B(x) I )Bjk(x) for j, fc = 1, -.-, n .

Then, by (4.7), (1.2) and (H.I), /3jk<=C°°(Rn) is real and satisfies ftjk=-pkj.
(2.1) holds by (1.3), (2.5) and (4.8). Moreover, according to (4.9) and (4.7),
there exists a constant C such that

T>kPjkBjk = <t>(\B\)\B\*> \B\-C.

Thus, it follows from (1.4) that (2.2) holds with Q replaced by Q+C, and hence
with Q replaced by C& for sufficiently large constant C15 since 2(r)>2(0)>0
forr>0.
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From (4.9) by a direct calculation, we have

I Jo \ *<'

which with (4.7) shows

'B«W I for

C2 max | d,5s,(*) | for | B(x) \
«,f

for sufficiently large constant C2. Therefore we have

(4.10) I SuM*) I < — — max|0Af(*)|

for all jceJK*. Next, we have

from which, similarly for (4.10), we obtain with some constant C3 chosen suffi-
ciently large,

rmax.- .,19.- B,t (x)\}* max, ,\dmd, Bst (x) \- ' j i

for all xeJ?n. In view of (4.10) and (4.11)? it follows from (1.5) that (2.3) is
fulfilled if Q is replaced by C4g with sufficiently large constant C4.

Consequently, we have shown that the assumptions of Theorem 2 A are
satisfied, provided that the assumptions of Theorem 1.1 are satisfied, JS is taken
as in (4.9) and Q is replaced by C5Q with suitable constant C5(=max{Cl5 C4}
in the above argument), since (2.4) then follows from (1.6), Thus we can prove
Theorem 1.1 by applying Theorem 2.L Q

§ 5. Proofs of the Propositions

In this section, we shall give proofs of the propositions; that of Proposition
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3.3 will be given in the last place.

Proof of Proposition 3.2. Suppose that lim inf/(r) | g(r) \ 4=0. Then, since
r->oo

/(r)>0, it follows that there exist e>0 and r^rQ such that /(r)| g(r)| >e for
all r>rlf Namely, \g(r)\>sf(r)~l for r>r1? which induces a contradiction

J
oo
/(r ) ~x dr = oo . Thus lim inf f(r ) | g(r) | should

rQ r-*«»
equal 0. D

Proof of Proposition 4.1. Let u=t(ul9 ••• , un) and v^^v^ ••-, vw) be column

vectors with n complex components and denote (u, v)=][]y-i uj^j- Then, by
the fact that j3jk are real and by the relation Pjk=—Pkj> (ifiu, u) is real and we
have

(iftu, u) = i ^ PjkukUj

= ' S PjkUkUj + i S

Hence we have by the Schwarz inequality,

(5.1) | (tftu, u
y

We have by a direct calculation,

2 J.*

-y S

Therefore, by (5. 1), we have - 1 p \ (u, u) < (iftu, u) < \ p \ (u, u).

For the proof of Proposition 3.3, we need another proposition:

Proposition 5.1. Let —oo<a<b<oo, h^Ll(a,b). Suppose that

C[a, b], G(x)>Qfor all x^[a, b], Q<h<G a.e. on (a, b) and (* hdx <^ Gdx.
Ja Ja

Then, for any e>Q, there exists some geC0(c, b) such that 0<g<G on [a, 6],
b f b f b

gdx = \ hdx and \ \ g—h\dx<e, where CQ(a, b) is the set of all the conti-
a Ja Ja
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nuous functions on [a, b] with compact support contained in (a, b).

Proof. We shall write I fdx=\f. First note that the family of functions

S= {geC0(a, b)\Q<g<G on [a, b]} has the properties:

(5.2) g1,g2e5impKesJft+(l-*)&e£ for

(5.3) gl9 g2 e 3 implies ft

(5.4)

where g: Vg2(*) = max {&(*), g2(x)}, ̂  Ag2(*)=min {&(*), g2(x)}.

Let 5>0. Choose some gQ<=C0(a, b) such that \ | A— gQ \ < e/2. Let gl =

(g0VO)AG. Then, since G is continuous and >0, g^S, Moreover, gx satis-

fies 1 1 h—gi | < e/2. In fact, we have

A)) A(G-A)

0-A) VO (by -

Similarly we have

ft-* = (feo-A)A(G-*)) V(-A) (by -h<G-K)

> (gQ-h)/\(G-h)>(gQ-h)M (by G-/z>0) ,

and hence [ g1— h \ < \ gQ—h \ .

First consider the case where 1 ga < I h. Then, since I h < \ G, we know

by using (5.3) and (5.4) that there is some g2^G such that g!<g2 and

Jg i<J^<Jg 2 <jG. Put g=gl+%2-gl) where *=J (A-ft)/J (&-ft).

Then clearly | g= | A, and ge^ by (5.2). Since | | g-gl\=l | |g2-g1| =

^ I (g2~~ gi) = l (h— gi)<^A we have \ ] g— /z| <e. Therefore, this g has the

required property.

Second, in the case where I h< I g19 take g =^g1? where ^= \ A / V g^^^O if

I 5ri=0)- Then it is not difficult to verify that g has the required property, since

J Igi-gl-J (gi~g)<5 (gi-A)<e/2. D

Proof of Proposition 3.3. Write R(r) = 2Q(¥ -1 {¥(r)+ 1} ) and let
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(5.5)

(5.6)

Note that, from these definitions, it follows immediately

(5 7\ i>*/--x ^ w/'-x i 1

ff Q\ I / —\ "^ W/_.\ I 1

*(r)«

First we claim

(5.9) ^Hc(r)<^*(r) for all r>0,

(5.10) 0^^-*(j)—T/r*(r)<W(s)—W(r) for r<5,

(5.11) 0<^(5)—ir*(r)<>V(s)—W(r} for r<,y.

In fact, first note that, to show (5.9), it suffices to prove that

Suppose that this does not hold. Then,

(5.12) nr)+-l->r(5)+— ?— for some r^s .
K(r) d\s)

Since R(r)>Q(r)>Q(0)>l, the left hand side of (5.12) is less than W(r)+l.
Thus by (5.12) F(r)+l>2%y), which means W~l{W(r}+\} > s. Therefore,
since Q is non-decreasing, we have Q(^r~1{^r(r)+l})>Q(s). However, this
contradicts (5.12), because Q^"1 W0+l})<#00 and ¥(r)<W(s) by W'=

Second, by the definitions (5.5) and (5.6), it is clear that ^* and \^# are
non-decreasing, that is to say, the first inequalities of (5.10) and (5.11) hold.
Let us consider the second inequality of (5.10). Take r*>r according to (5.5)
such that

(5.13)
Q(r*)*

Then ^*(r)=^*(r*) by (5.5). Let s>r. If s<r* then -fr*
and hence ^•*(j)=^*(r). If ^>r* then, by (5.7) and (5.13),
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by the monotonicity of Q and W. We have thus (5.10). We can prove the
second inequality of (5.11) by a similar argument taking s*<s such that

) by (5.6). Let r<s. If r>^ then

and hence Vr*Cs)=Vr'*(r)- If r<s* then

Thus we have the claims (5.9)5 (5.10) and (5.11).
By (5.10) and (5.11) it is known that ^* and ̂  are absolutely continuous

and

(5.14) o < < r = dF a.e. on (0, oo) ,
dr

(5.15) o < - < ^ ' - dF a.e. on (0, oo) .
dr

We shall show that (5.9), (5.14) and (5.15) imply the existence of a function
•j^eC^O, oo ) such that

(5. 1 6) ^*(>)< •?W< ̂ W for a11 r e P» °°) »

(5.17) o < < S F ( r ) for all r e[05 oo) .
dr

Assuming these properties we can define p by

i.e., p(r)= {^(r)-F(r)} -vs. By (5.16) and (5.8) p <= C*[Q, oo) and also by (5.16),
(5.7) and (5.8) we have

(5.18) Q(r)<p(r)<R(r)

and, by (5.17)
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which is equivalent to

(5.19)

Since we have taken R(r)=2Q(Wl{W(r)+l})9 (5.18) and (5.19) are the required
properties for p in the proposition. Thus it remains to prove that (5.9), (5.14)
and (5.15) imply the existence of ^eC^O, oo) satisfying (5.16) and (5.17).

Let

(5.20)

G=dF.

Then 0</z<(? by (5.14) and (5.15).
First, suppose that

(5.21) h(r) = G(r) a.e. on [R, oo) for some

In this case, for any e>0, we can take geC[0, oo) such that g(r)=G(r) for

r>R, \R\h—g\<e and 0<g<G (approximate h in Ll(Q, R) by ^eCtO, R]
Jo

with the property g1(R)=G(R) and put g=(gl\/Q)/\G on [0, R] and g=G on

[R, oo)). Let $(r)=ir0(R)+{ g(t)dt. Then we have by (5.21)
J*

f ^(r)-^0(r) for r>£ 3

for

Therefore, if we choose 6 =— rmn0^r^R(^(r)—^(ry), which is positive by
4

(5.9), we have (5.16) and (5.17) by (5.20) and by $'=g.
Next, suppose that (5.21) does not hold. Then there exists a sequence

!

n
*+1(<7-A)>0. Apply

R*
Proposition 5.1 with (a, b)=(Rk, Rk+1) and with h and G in (5.20), which can
be easily verified to satisfy the assumptions of Proposition 5.1. Let ek =

r A + 1 ), which is positive by (5.9). Then by Proposi-

tion 5.1 there exist functions gk^CQ(Rk, Rk+1) such that
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(5.22)

(5.23)

(5.24)

Define g=gA on [Rk, Rk+1] for each fc=l, 2, — . ThengeC[0, co), 0<g<<7

on [0, oo) by (5.22). Therefore, if we define $(r) = fa(0) + [r g(s)ds, ^e
Jo

C^O, oo ) and Q<&'<G, which means (5.17) by (5.20). Moreover, it follows

from (5.24) that ^(Rk)=^0(Rk) for k=l, 2, • • - , which with (5.23) imply

(**(*)-*(*))* I < ^ for r e= [^5 *„. J .

Hence ^ satisfies (5.16) by (5.20) and by the choice of ek. This completes the

proof of the proposition. D
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