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Some Asymptotic Estimates of Transition
Probability Densities for Generalized
Diffusion Processes with Self-similar

Speed Measures

By

Takahiko FUJITA*

§ 1. Introduction

To a non-negative Borel measure dm(x) on an interval with suitable
boundary conditions on the end points, we can associate a generalized differ-

ential operator A== -- and a strong Markov process X on the support
dm(x) dx

of dm generated by the operator A. The measure dm is often called a string

and the process X a generalized diffusion, also a quasi-diffusion or a gap diffusion,
with the speed measure dm(x), cf. [9] for details.

Let 0>^>/12>--- be the eigenvalues of A= -- and let ;?(r, x, y) be
dm(x) dx

the transition probability density of X with respect to dm(x). It was shown by
M.G. Krein [10] and H.P. Mckean-D.B. Ray [12] that

/i ,x r —** /I f1 A dm, x , V2
(1.1) km— ̂  - (— I Y — {*) dx)

n-**» n \ TC Jo f ax I .

Also it was shown by S. Watanabe ([9], Appendix 2) that

(1.2) lim (-20 log p(t, x,y) = ( (' ±^L(X)
'-*° \ J* * 2 dx

Here in (1.1) and (1.2), - (x) denotes the Radon-Nikodym density of the
dx

absolutely continuous part of the measure dm(x). In the case when dm(x) is
singular, therefore, (1.1) implies only that — Xn grows faster than n2 and (1.2)
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implies only that — logp(t, x, y) grows slower than t"1 as t-*Q. Thus one is
naturally lead, in this case, to a problem of finding more exact growth orders of
-4 and —log p(t, x, y).

In the previous paper [3], we obtained an estimate for the growth order of
eigenvalues for generalized differential operators associated with certain self-
similar measures dm(x). Here we follow Hutchinson [5] for relevant notions
on the self-similarity: He defined the self-similarity of sets and measures by

a family of contraction affine maps and succeeded in giving a solid foundation
of the fractal theory of B.B. Mandelbrot [11]. Such self-similar measures
include, even in the one-dimensional case, many interesting examples of singular
measure like the Cantor measure and the de Rham measure.

The main purpose of this paper is to obtain more exact estimates for
—log p(t9 x9 y) in the case of self-similar measures dm(x). As an application of
our result, we can give an example of some generalized diffusion processes which
do not have Barlow-Perkins type estimates (see [1]). Furthermore, in the last
part of §3, we can have some supplementary remarks on our previous paper
[3] which give some relations between the spectral dimension, the entropy and
the Kolmogoroff dimension.

The author expresses his heartfelt gratitude to Prof. S. Watanabe and
Prof. S. Kotani for their valuable suggestions.

§ 2. Preliminaries

Before proceeding, we have to recall some basic facts on Krein's spectral
theory of strings (cf. [9] for details).

Take a non-negative Borel measure dm(x) on [0, a] (0<<z< + oo) such that
its restriction to [0, 6), b<a, is a Radon measure.

Let 0(x, X) and -fr(x, X) be continuous solutions of

0(x, X) = 1-H (x-y) j(x, X) dm(y)
Jo

and VK*, X) = *+* f (x-y) MX, X) dm(y)
Jo

for Q<x<a.

Set

h(X) is called the characteristic funcition of dm and the one-to-one correspondence
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h*-*m is called Kreirfs correspondence. Then, following results are well

known (see [9]) :

(Comparison theorem) Let ml5 m2 be two measures and /?1? h2 be the correspond-

ing characteristic functions of ml9 m2 respectively. If ml(x)<m2(x) for all x>Q,

then htW^h^X) holds.

(Kac's inequality) Ifh is the characteristic function of in,

(2.1) - 1 - -<h(t)<x+ * for

(A corollary to Kac's inequality) Let u(x) be the inverse function of x m([0, x)).

Then

(2.2) u<hW<2u for

§ 3. Self-similar Sets, Self-similar Measures and Eigenvalue Problems

Self-similar sets and self-similar measures are introduced by Hutchinson

[5]. In this section, we first give a brief review of Hutchinson' s setting that is

essentially required to our theory. For simplicity, we state his theory in the

one dimensional case. Let Sf (/=!, ---TV) be contraction affine maps from [0, 1]
to [0, 1] i.e. Si(x)=rix+bi where —l<r f .<l, 0<^.<1, and

Definition. A compact set ^(c[0, 1]) is called the self-similar set with
&

respect to S= {Sly • • - , SN} (or simply the S-self similar set) if K= U S{ K.
1=1

jy
Definition. Suppose p=(pv • • • , PN) where p19 • • • , ̂ ^^(0, 1) and S P,-=l.

»=i
A measure m is called the self-similar measure with respect to S and p (or simply

N

the (S, p) self-similar measure) if m(A)= 2 Pi ̂ (ST\A)) for any Borel set A

(c[0, 1]).

Then, by Hutchinson [5], it is known that there exists uniquely the <S-self-

similar set which we denote by K(S), and the (S, p) self-similar measure which
we denote by ju(S, p) and that the topological support of ju(S, p) coincides with

K(S).

Definition. Given S and p as above, the unique number s ($<s<\) such
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that S (pi\ri\)
s^l+s^=l is called the similarity dimension of u,(S, p).

This s is introduced in [3] and describes the asymptotic order of eigenvalues

for generalized second order differential operator associated with m=ju(S9p).

Namely we obtained the following results.

For 0<a, $<*—, Q<a<b<l, consider the following eigenvalue problems

,
dm ax

(3.1) L/= A/ in (0, 1)

/(O) cos a — — /(O) sin a = 0

/(I) cos /?+~-/(l) sin £ - 0 .

Theorem 3.1. ([3]). Ler 5= {Si, ••- , SN} and p=(p19 — , p^) satisfying that

i [0, 1] n Sy [0, 1] = {owe point} or 0 /or i =|= j.

Consider the eigenvalue problem (3.1) and let Xn be eigenvalues such that
D"' Then there exists positive constans C19 C2 and n0 such (hat

Q «(1+s)/s< - ^ < C2

where s is the similarity dimension of ju(S, p).

If lim °^ ~" n (=t) exists, this theorem suggests that we may call d=,
log n t—l

, 1] the spectral dimension of the measure m. Theorem 3.1. asserts that

Example (Cantor function). If we take N=2, Si(*)=—, S2(x)=±^, S==
j 3

then jS:(5) — the triadic Cantor set

and jj,(S, p) = the Cantor measure (a probability measure corresponding to

Cantor function).

In this case, j=-?i_ (=the Hausdorff dimension of K(S)). Theorem 3.1. im-
plies that lo£ 3

where C15 C2 are positive constants (see [3], [4], [12]). Similarly, taking /1(jc)=

rx+bl9 '"3fN(x)=rx+bN such that (#) holds i.e.
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<r+bN_l<bN<r+bN<l and P=

then K(S) = a generalized Cantor set

and ju (S, p) = a generalized Cantor measure

In this case s = - , so we see that
logr

— *„< C2 ,|io*cr/JO/iogci/Jtt as /i -> oo

where Q and C2 are positive constants.

Example, (de Rham function [13] or Bernoulli trial for unfair coin).

If we take N=2, Si(x)=y, S2(x)=, S={S19 52}, p=(p, q) (p+q=l,p>0,

then K(S) = [0, 1]

and ju(S, p) — the de Rham measure (a probability measure corresponding
to the de Rham function F i.e.

= P/o) I 2 ±J*ZL£X\ where Xn: {0, 1} valued i.i.d
\ n = l 2i '

random variables such that P(Xn= l)=p, P(Xn=Q)=q. In this case, if a is the

( v \* ( a \* &
) ~H ) = ^ then, s= and Cln

l'*<— An<

C2 n11* as «-»oo for some positive constants Q and C2.

In the rest of this section, we consider the following problem as a supple-
ment to our previous paper [3]: We want to estimate the spectral dimension of
dm by other fractional dimensions from upper and lower sides. First, we
consider a lower estimate. In the de Rham measure case, we obtained that ([3])

(3.2) s>—p Iog2p—qIog2 q=the entropy of B(p, q)

where B(p, q) is the (p, g)-Bernoulli shift. We can prove that (3.2) holds in a
more general situation.

Proposition 3.2. Let Xt (/=!, 2, ) be a discrete time Markov chain with
a finite number of states 0, 1, ••• , M— 1 and consider the random variable X=

^XiM~i with distribution F: F([Q, x]) = P(X<x). Then, it holds that the
1=1
entropy of F< the spectral dimension of F.
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Proof. As a version of Shannon-McMillan theorem, J.R. Kinney [8]
showed the following: There exists a set Ed[Q, 1] such that (1) F(E)=19 (2)
the Haussdorff dimension of E=a, and (3) if x^E and e>0, then

(3.3)

where a is the entropy of F(= — 2 Pi Pa log Pij), Pa the transition probability
andpt the stationary probability. When x^E, consider

wi(0 = F([*, *+*)) , ifil(e) = F((x-e, x))

and take corresponding characteristic functions h+(Z), hL(fy respectively in
Krein's correspondence. Then, applying (2.2),

(3.5) E/i(^J^t/i^JJ = l and UL(±

By (3.3) and (3.5), we have for every positive £,

0,. <*HJ))0 = lim
A-***

= lim

U*+ \

1

Then,

(3.6) lim - ? - = 0 .

In the same way, we have

(3.7) lim - l- - = 0 .

Let gx(x, x) be the Green kernel of -- with suitable boundary conditions,
dF dx
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5
00

p(t, x, y) dt where p(t, x, y) is the transition probability density
o

with respect to F of the corresponding diffusion. Then, it is well known that

(3.8) g,(x, x) = -1—L.

By (3.4) and (3.7), we see that

(3.9) g^x)dF(x)> - - - - - - dF(x).
1 . 1

Seeing (3.6), (3.7) and (3.9), we have for every positive d,

(3.10) Jim JVO+.-I) C &(*, x) dF(x)
\-*<*> J £

>\ I te i
+--«) u*J

= +oo.

On the other hand, the definition of the spectral dimension d and Tauberian
theorem show that

(3.11)

Then (3.10) and (3.11) imply that for every positive d,

l+a-d l+d

So we have d>a—d for every positive d.
Thus the proof of this proposition is complete. Q.E.D.

Next, we consider an upper estimate. Let K be a compact metric space.
We denote by h(K) the upper Kolmogoroff dimension of K i.e.
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where JV8=the infimum of the number of e-cover of K.

Proposition 3.3. We take dm=dju(S, p) as in Theorem 3.1. Then it holds
that the spectral dimension ofdm<h(K(SJ).

Proof. By (3.8) and Kac's inequality, we have for every positive e,

„(,, * _ - j -^ - r - *—_| ,

w> i i
m [x, x+ e) X m[x— s, x)

m(x—e9 x+s)

Then we have that

m(x—e,

— 1 f1 dm(x)Define a(m) = Km log \ ^8*o t 1 Jo m(x— s, x
log — v

For every positive d, there exists SQ such that

f1 ^^ < f-1 y(")+* for all
Jo m(x— e, ^:+e) V e /

i i 1/1 \a»C»)+8

gA(jc, x) dm(x)<2e+— — ]
o A \ e /

Taking — = 2 5
1+fl}^>+8,

A

Jo

Then, Om ~— log gx(jf, x) dm(x) <
x-*~ log ^ Jo

Since d is arbitrary positive, it holds that

(3.12) _ _ L < _ ^ 1 _ i.e. d<a(m)
l+d l+a(m)

where d is the spectral dimension of dm. On the otherh and, we take Us (f=ls

•••, JV) as a — cover of ^(5). Then we have that
4
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K m(x—£, x+£) «'=i JUi m(x—£, x+£)

= N

because x^ U{ implies Ufc:(x—£,

Then a (in) = Em —1—log ( ^^
•*o 1 J* m(x-£,Xx+£)

the infimum of the number of — cover of K

,log —
£

Therefore, combining this with (3.12), we have the assertion. Q.E.D.

Remark. In the Cantor measure case, a=d=s=h.
But, in the de Rham measure case, a<d=s<h.

§ 4. Asymptotic Estimates of Transition Probability Densities

In this section, we discuss some asymptotic estimates of transition densities.
First, using Kac's inequality, we prepare some basic lemmas.

Take positive numbers a, b. Let dm(x) be a bounded measure on (—a, b)

and let L be . We denote by E*( ) the expectation with respect to
dm(x) dx

the L-generalized diffusion processes on [0, b) starting from x (Q<x<b) with

boundary conditions/(O) cos a—/'(O) sin a=0 for some ae(0, —] and/(5)=0.

We also denote by E*'( ) the expectation with respect to the L-generalized dif-
fusion processes on (—a, b) starting from x (—a<x<b) with boundary con-

ditions/(—a) cos af—f'(—a) sin a'=0 for some a'e(0, —] ai

Lemma 4.1. Let rc=inf {*>()|Xt=c} for 0<c<b. Then

(4.1)

b_ itt((-a.O)) 1 (( }

a m([0,bj) lamQp, b))

for every positive L
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Proof, First, we prove the first inequality of (4.1). Let

x, 0)) for x<a

and h19 h^ be the corresponding characterestic functions respectively. Let

f*
Jo
f*

I/TAX) = x+ \ (x—y) i/rXy) dmfy)
Jo

{&\(X9 ^) f°r

and tfx9X) = \ f

for 0<x<b
for -a<x<0.

Then it is well known (see [6]) that, there exists some constants Q, C2 such that

^) for

Considering the boundary condition at — a, we have

0 = {Q p(-a, ;t)+C2 \^(-a, X)} cos a'- {Q p'(-c, *)+C2 &'(-a, *)} sin a'

= {C2 92(«, fl-C2 ^(a, ;)> cos a'- {-Ct ?>2(fl, ^)+C2 VK«, W sin «' •

Q = y2(a, X) cos a'+y^(fl, >t) sin a'
Q V'aC0) ^) cos a'-\-T/r'2(a, X) sin a'

So we have that

(4.2) Efe-

9i(c, x)+ 9
f, ,;cos a,, y ;sm g, ^ife

I cos a +^2(0, ^) sm <

(4.3)
a T^J

By (4.2), (4.3) and Kac's inequality, we obtain that

( ^ cos «+?M) sn a' (

"XT' u cos a'+ir'2(a, X) sin «' *
a ̂ (c, /I)
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The proof of the first inequality of (4.1) is complete. In the same way, we have

1

and Elf2> e~xrc =
c> X)

Then
T?<* /,-XT. i?*/2 xj-E° e b E<> e

El e-*' ~ El e'"'

_ l .

Applying Kac's inequality (2.1) again we obtain the second inequality of (4.1).
Q.E.D.

We also need the following :

Lemma 4.2. //m([0, Z>))=0, then

for Q<c<b.
—
a

Proof. The first inequality is trivial. As for the second,

By Kac's inequality (2.1) we obtain our lemma. Q.E.D.

Take m=ii(S9 p) where S={S19 •-, 5^}, p=(pl9 • • - , P^) such that St(x)=
ri x+ci9 — Kr,.< 1 for 1 <f <A^. Putting S,.([0, l])=[a£, 6J, we assume

bl<--<aN<bN<\. Let us consider L= --- generalized diffusion pro-
dm(x) dx

cess Xt on [0, 1] with boundary conditions

/(O) cos a-/'(0) sin a = 0 and /(I) cos ̂  +/'(!) sin ft = 0



830 TAKAHIKO FUJITA

for

Let p(t, x, y) be the transition probability density of Xt with respect to dm.

Theorem 43. Take x9 y such that 0<;t<3;<l and m([x, j])>0. Then,
there exists positive constants C4J, C4 2 which depend on x9 y such that

rs as r | 0 .

Proof. We denote by E(/i<*} the expectation with respect to Xt on [q, 1)
starting from/? (q </?<!) with boundary conditions at q

f(q) cos a-f(q) sin a = 0 for 0<a< — and /(I) = 0 at 1 .

By the strong Markov property,

(4.6) Etf-o e~^ = Etf^ e"^ E%"> e"^ Ei0^ e'^2-

H1=1

Here we note that

N N
the topological support of dmd U $£[0, l])= U [a,-, bt]

i = l i=l

i.e.

(4.7) m ((biy ai+1)) = 0 for 1 < i <N— 1 and

Combining (4.6) and (4.7) with Lemma 4.1 and Lemma 4.2, we deduce that
there exists nonnegative constants Di9 Ei9 Fi9 Giy Hi9 Ii9 J{ (l<i<N) such that,
for all ̂ >0,

(4.8) ft tt+4> ft E*f* e~*1
i=l A i=l

N N

^— JUL flj s AJ.

"'"~"""'̂  x

Put /«) = £^°-a) e~*i, m) = n T/,+4} and
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JT 1 N+I 1
F" II G _j_ 3/7 '

.+li_i=i Gi+*Hi
A

Noting the self-similarity of dm and that [ai9 AJ=Sf
l.[0, 1], we can conclude

from (4.8) that

ft f(Pi \ rt \ V </« </!« fi f(Pi \ rt \ *) .-

Setting g(X)= -log /(^), g1W=-log/1W, ftW=-log/aW, we obtain that

(4.9) g2(X)+ S g(p, | r,- 1 X) > g(X) > gl(X)+ S g(p, I r, 1 X) -

Take the unique number u (0<u< — ) such that

jar
Then clearly, S (/°»k,-|)"/2>l and noting the form of fj(X) and /2(A), we can

1=1
easily deduce that

(4.10) (S(^k,-l)B/2-i)^/2
1=1 1=1

for all ^>^0 where J^ and ^0(>1) are suitably chosen positive constants.

Putting k (*)=, we set
A

C4.3 = min k(X) ,

C 4 4 = max

From the first inequality of (4.10),

*W = ̂ ^ 2 (p.-k.-l)8 k(flt\ri\X)+( s

Let yt1(^)=A:(^)+^-''/2. Then, for all ^^

(4.11)
» = 1

Applying (4.11) successively,
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for some i19 • • - , /M e {1, ° 8 * , Af} such that

min Pil^l^p^r^l
l^'^JP'

This proves £iOO<C4.4 for all

Similarly, we can prove that

fcW>C4.3 for all

Therefore, we obtain the following estimate

(4.12) C4.3^<-log£(
0°'flS)e-XTi<C4.4r for all

where C4>5 is another positive constant. Seeing the condition m([x,
there exists i (l<i<N) such that x<ai<y<bi or ai<x<bi<y holds. In the
case that x<ai<y<bi, there exists ^ such that

In the case that ai<x<bi<yy there exists «2 such that

•V
/f2 times

In both cases, there exist some Sil9 ••- , S/w such that

(4.13) V"-°SJ[0, l])c[^, j]c[0, 1] .

Combining (4.12) and (4.13) with Lemma 4.1, we deduce that

r for all

where C4>6 is another positive constant.
Using de Brujin's exponential Tauberian theorem (see [2]), there exist some

positive constants C4J and C4-2 such that

C4>1

for all small f>0 i.e. because of the definition of s9

C4>1 r"
5< -log P;c[r>,<r]<C4>2 r

5 for all small t>0 .

J t
p(t—s, y, y) PX(T 9^ds) and A\ = minp(t—s, y,

0 0£sf£*
0, we see thatp(t, x, y)>A Px[Ty<Zt]9 and hence



GENERALIZED DIFFUSION PROCESSES 833

lim -ts logp(t, x, j)<lim -ts log Px[Ty<t]<C^2 .
t}Q t$Q

On the other hand, taking c^K(S) (x<c<y), then

M: = maxp(t—s, c,

Hence, p(t, x9 y) = p(t-s, c, y) Px(rc<=ds)<M Px[rc<t] ,
Jo

i.e. lim -ts logp(t, x,y)>lim-ts log Px[rc<t]>C^ .
t$Q tJfQ

This completes the proof. Q-E.D.

If we assume some additional conditions on S and p, we can obtain a
better estimate about p(t, x, y): It seems an interesting generalization of S.
Watanabe's estimate stated in § 1 because of the appearance of the term like a

A

singular Riemannian metric F(x, y).
We start with some analysis lemma.

Lemma 4.4. Let T be a bounded continuous function from (0, + °°) to

(0, +°°) satisfying the following functional equation:

T(X)=plT(qlX)+-+p.T(qnZ)

where pt>Q, qt>0 such that p^ ----- \-pn—\ and there exists i andj such that

log qi

Then T is a constant function.

Proof. Putting U(X)= T(e*) (X e R), we have

(4.14) U(X) =Pl J7Gog qi+X)+...+pu U(log qn

Applying the Fourier transform to (4.14) for a slowly increasing distribution
U(Z), we obtain that

U(t) = Pl elt lo^?i &(t)+...+pu eft Io8q" U(t)

where ti(t) = ( eitK U(X) dl .
JR

Then 1 =Pl cos (t log q^)-{ ----- h/?tt cos (t log qn) on the support of U(t). Combin-
ing this with the condition on/?g-, we have that cos (t log ^1)=---=cos (t log qn)

= 1 on the support of &(t). By the assumption on qi9 we can deduce that the
support of &(t)= {0}. Since U is bounded, U(X) must be a constant function.

Q.E.D.
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Theorem 4,5. Assume that there exist pi \ ri \ and PJ \ r,- \ such that

logpg. |rf|

Then, if we take x and y as in Theorem 4.3, we have that

-lim tsL(t) logp(t, x,y) =

where L(t) is a positive bounded slowly varying function and F is the {S, p} -self-

similar measure with

Proof. Let g(A) be defined as in the proof of Theorem 4.3. Putting

e(fy=- for positive number c (C>CQ where CQ is a positive constant), GC(X)

is a positive continuous function. Seeing the proof of Theorem 4.3, we can
easily conclude there exists a positive constant C4>7 such that

* fora11

Q.3 C

bounded closed interval I. Then applying Helly's theorem, there exists cn

(cn t +°°) such that Gcn(tf converges to an increasing function G(X) at every
continuity point of G(A). From (4.9) and Theorem 4.3, we can deduce that

satisfies the following functional equation.

that is5

From Lemma 4.4 and G(1)=15 we can conclude

This shows that every limit point of GC(Z) (c-> + oo) is the unique function
+s\ that is,

lim

Then we see that g(^)=^ls/(1+s) L(^) where L(/l) is a positive bounded slowly
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varying function.

Consider

If we take ;c (fli<;t<&i), we can deduce that by Lemma 4.1, Lemma 4.2 and

the self-similarity of dm,

-log JEP » e-"i"-i'x Tl- fa | rt | *yP+') Lfa | rt | /Q
0>i I rx | Xy<™ L(Pl \ f l \ X )

In the case of «,•<*<;&,•, we have similarly a functional equation for E(x) and

hence deduce that E(x) satisfies the functional equation corresponding to
{S, p'} -self-similar measure. Because of the uniqueness of the solution of such

— A A

functional equation, E(x) coincides with F([Q, x]) where F is the {S, p'}-self-
similar measure. In the same manner,

£(*): = lim - *" *"*'* "^

satisfies the same functional equation. Therefore, we obtain that

lim -= r^+.) log £(o.-o e-*ry = ([X} D ̂
^+ea L(X)

By de Brujin's exponential Tauberian theorem (see [2]), we have that

lim -ts L\t) log PJr^t] = F([x, ytf+'

where L\i) is an another positive bounded slowly varying function. Then by
the same argument as in the proof of Theorem 4.3 we complete the proof.

Q.E.D.

Remark. In the case of de Rham measure, the condition of Theorem 4.5
is satisfied if
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log

Using the same method, we can also have a better estimate about an
asymptotic order of eigenvalues of L.

For 0<a, fi<—9 0 <a<b<l, consider the following eigenvalue problems

ofL=- — — on [a, b]:
dm dx

Lf=*f in (a,b)

f(a) cos a+—f(d) sin a = 0

f(b) cos fi—-f(b) sin £ = 0 .
dx

We denote the number of eigenvalues not exceeding 4 by

We put N*.o = N,

Then the following are well known:

(1)
(2) N(t, [a, b])<N^(t, [a, b])<N(t, [a, bj)

(3) Fora<c<fe,

Att fe *])<^(^ fe c])+JVa [c, 6])
Att [a, AD^^tt [a, cJ)+N(*9 [c, b]) .

Corollary 46. Let S={S19—,SN}' and p = ( p l 9 — 9 p N ) satisfying that
Si [0, 1] n Sj [0, 1] = {owe pomr} or 0 /or / =)= j and we assume that there exist pi \ ri \

and p. \ r, \ such that Io8 * « l r ' <

Consider the eigenvalue problem (3.1) anrf fer {^w} 6e eigenvalues such that

/l2>^35 • • • • Then —^n=n(1+5^san where s is the similarity dimension of
m=ju(S, p) and an is a positive bounded slowly varying sequence.

Proof. Noting the self-similarity of dm and that the topological support

ofdmd U S,([0, 1])= U
8=1 1=1
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, [0, 1]) < N(t, [a,,

N\rN\*,[0, 1])
> NfaW, [0, l])+-+N(pN\rN\X, [0, 1]) .

Putting N(X)=Nfif(t, [0, 1]), these show that

where Q and C2 are some constants. Replacing ^ — '- by — ̂  — '- in the proof of
g(c) N(c)

Theorem 4.5, we can deduce that N(X)=^l+9) L(X) where L(X) is a positive

bounded slowly varying function. Hence we can conclude that — ̂ n=n(l+s^s an

where an is a positive bounded slowly varying sequence. Q.E.D.

As an application of our theorem, we can make some following remarks.

Let dm(x) be the de Rham measure. Let us consider --- diffusion
dm(x) dx

processes Xt with suitable boundary conditions at 0 and 1. Let gA(x, y) be the
Green kernel:

Theorem 3.1 tells us that there exist some positive constants C4>8 and C4>9 such

that

(4. 15) C4 8 r *1+'> < f g&c, x) dm(x) < C4 9
Jo

where s is the similarity dimension of dm(x) i.e. the number s satisfies that

Although there exists an estimate like (4.15), we can prove that at every binary
jar x

rational point x (i.e. there exists a natural number N such that x= Yl — *- x-=Q
1 i=i2*

or 1), the asymptotic order of gx(x, x) is different from — - .
l+s

Proposition 4.7. For every binary rational x, there exist some positive con-

stants C4<10, C4pll such that

where a = min (Iog2 — , Iog2 — ).
P 9
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Proof, Let us assume p>q and we put a+=log2 —, £K_=log2 —. With-
P <1

out loss of generality, we may take x=—•. Considering m+(e)=m([—5 —+e))
I I ^ 2 2

and mm(e)=m([ s,—]), we take h+(X) and h_{£) which are characteristic

functions to m+, m_ respectively in Krein's correspondence. By (3.8),

On the other hand, by the definition of de Rham measure, we see that

q

Since c^"1/(1+*) is the characteristic function corresponding to dm(x)=d(xe&)
(0<a< + oo)3 we see that from the comparison theorem in §2, there exist some
positive constants C4.12, C4J3, C4.14, C4>15 such that

(4.17) C4J2

(4.18) C4.14

So, (4.16), (4.17) and (4.18) completes the proof. Q.E.D.

Barlow and Perkins [1] proved that there exists some positive constants

Qie* Q.iy> C4.is and C4.19 such that

C4.16 r<+ exp {-C,1

<c r^2exDf c< C4.18 1 exp 1- C4.4.19

where /?(r, x, y) is the transition probability density of the Brownian motion on

the Sierpinskii Gasket and ds=
1-^^, dw=1-^^. We can show that any dif-
log 5 log 2

fusion corresponding to a de Rham measure with some boundary conditions
does not satisfy an estimate of this type. Namely, we have:

Proposition 48. Let p(t, x, y) be the transition probability density of the de

Rham diffusion process (i.e. --- diffusion process with dm=the de Rham
dm(x) dx

measure (0<p< l,p=¥ — ) with some boundary conditions.) Then, p(t9 x, y) can
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not have an estimate of the following type: for every £0>0, there exist some posi-

tive constants C4 20, C4-21, C4 22 and C4i23 such that
for every (x, j)e[0, 1] x [0, 1] and every t e(0, ?0),

(4.19) C4.20 r" exp {-C4.21 ̂ } <p(t, x, y)

p
where fi, r, # are some positive constants and p(x, y) is some metric on [0, 1],

Proof. Assume that (4.19) holds.
Then, substituting x=y in (4.19) and integrating by e"xtdt

(4.20) C^-^g^xKC^-1 for all x.

Integrating this by dm, we have that

*(*> *) dm(x)<C422 tf~l.

Comparing this with Theorem 3.1, we can conclude that J3 must be equal to
s

T+?
On the other hand, if x is a binary rational, Proposition 4.7 shows that

there exist some positive constants C4<24 and C4>25

(4.21) C4.24 rW
+*><gA(*, *)<C4.25

where a = max (Iog2 —, Iog2 —).
P Q

(4.20) and (4.21) lead a contradiction. Q.E.D.
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