Publ. RIMS, Kyoto Uniy.
26 (1990), 819-840

Some Asymptotic Estimates of Transition
Probability Densities for Generalized
Diffusion Processes with Self-similar

Speed Measures

By

Takahiko FuitTa*

§ 1. Introduction

To a non-negative Borel measure dm(x) on an interval with suitable

boundary conditions on the end points, we can associate a generalized differ-

d iand a strong Markov process X on the support
dm(x) dx

of dm generated by the operator A. The measure dm is often called a string
and the process X a generalized diffusion, also a quasi-diffusion or a gap diffusion,

with the speed measure dm(x), cf. [9] for details.

ential operator A=

Let 0>2,>4,>--- be the eigenvalues of A=~—i— 4 and let p(¢, x, y) be

dm(x) dx
the transition probability density of X with respect to dm(x). It was shown by
M.G. Krein [10] and H.P. Mckean-D.B. Ray [12] that

_ 1 -2
(L1) lim —4 — (LS «/ am dx)
wre p? z Jo ' dx .
Also it was shown by S. Watanabe ([9], Appendix 2) that

(12) lim (~21)log p(z, x, ) = ( [ + 8 (x) dx)2

Here in (1.1) and (1.2), ‘Z—"(x) denotes the Radon-Nikodym density of the
X

absolutely continuous part of the measure dm(x). In the case when dm(x) is
singular, therefore, (1.1) implies only that —2, grows faster than »? and (1.2)
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implies only that —log p(¢, x, y) grows slower than ¢! as #—0. Thus one is
naturally lead, in this case, to a problem of finding more exact growth orders of
—2, and —log p(t, x, y).

In the previous paper [3], we obtained an estimate for the growth order of
eigenvalues for generalized differential operators associated with certain self-
similar measures dm(x). Here we follow Hutchinson [S] for relevant notions
on the self-similarity: He defined the self-similarity of sets and measures by
a family of contraction affine maps and succeeded in giving a solid foundation
of the fractal theory of B.B. Mandelbrot [11]. Such self-similar measures
include, even in the one-dimensional case, many interesting examples of singular
measure like the Cantor measure and the de Rham measure.

The main purpose of this paper is to obtain more exact estimates for
—log p(t, x, y) in the case of self-similar measures dm(x). As an application of
our result, we can give an example of some generalized diffusion processes which
do not have Barlow-Perkins type estimates (see [1]). Furthermore, in the last
part of §3, we can have some supplementary remarks on our previous paper
[3] which give some relations between the spectral dimension, the entropy and
the Kolmogoroff dimension.

The author expresses his heartfelt gratitude to Prof. S. Watanabe and
Prof. S. Kotani for their valuable suggestions.

§ 2. Preliminaries

Before proceeding, we have to recall some basic facts on Krein’s spectral
theory of strings (cf. [9] for details).

Take a non-negative Borel measure dm(x) on [0, a] (0<<a< + o) such that
its restriction to [0, b), b<<a, is a Radon measure.

Let ¢(x, 2) and y(x, 2) be continuous solutions of

605 ) = 142 (=) 65, 2) dm(y)

and ¥ ) = x4 | =) v 2 dmey)
for 0<x<a.
Set h(2) = S & _ _im ¥

0 ¢(x’ x)2 zte ¢(x’ 2)

h(2) is called the characteristic funcition of dm and the one-to-one correspondence
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he>m is called Krein’s correspondence. Then, following results are well
known (see [9]):

(Comparison theorem) Let m,, m, be two measures and hy, h, be the correspond-
ing characteristic functions of m,, m, respectively. If m,(x) <my(x) for all x>0,
then h,(2)>hy,(2) holds.

(Kac’s inequality) If h is the characteristic function of m,

1

@1 .
2m ([0, X))+

<h(A)<Lx+ for 2>0,x>0.

1
Am([0, x))

(A corollary to Kac’s inequality) Let u(x) be the inverse function of x m([0, x)).
Then

2.2) %u(i—)ﬁh(l)gZu(%) for 2>0.

§ 3. Self-similar Sets, Self-similar Measures and Eigenvalue Problems

Self-similar sets and self-similar measures are introduced by Hutchinson
[5]. In this section, we first give a brief review of Hutchinson’s setting that is
essentially required to our theory. For simplicity, we state his theory in the
one dimensional case. Let S; (i=1, :--N) be contraction affine maps from [0, 1]
to [0, 1] i.e. Sy(x)=r; x+b; where —1<r,; <1, 0<b,<1, and 0<r;+b,<1.

Definition. A4 compact set K(C[0,1]) is called the self-similar set with
respect to S={S,, -+, Sy} (or simply the S-self similar set) if K= .-q S; K.

Definition. Suppose o=(0,, **+, py) Where p,, -+, 5 < (0, 1) and é 0;=1.
A measure m is called the self-similar measure with respect to S and p (,z;; simply
the (S, p) self-similar measure) if m(A4A)= i} p; m(S7Y(4)) for any Borel set A
(clo, 1D).

Then, by Hutchinson [5], it is known that there exists uniquely the S-self-
similar set which we denote by K(S), and the (S, p) self-similar measure which
we denote by «#(S, o) and that the topological support of «(S, o) coincides with
K(S).

Definition. Given S and o as above, the unigue number s (0<<s<1) such
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N
that 33 (o;|r;| )19 =1 is called the similarity dimension of u(S, p).
i=1

This s is introduced in [3] and describes the asymptotic order of eigenvalues
for generalized second order differential operator associated with m=u(S, p).
Namely we obtained the following results.

For 0< e, ﬂg—;—, 0<a<b<l, consider the following eigenvalue problems

of L=i 4 on [0, 1]:
dm dx

G.1) Lf=1f in (0,1)
£(0) cos a—% fO) sina =0

f) cos p+-2 f1ysin p=0.
dx

Theorem 3.1. ([3]). Let S={S,, :--, Sy} and p=(p,, -, oy) satisfying that
S;10, 11N S;[0, 1]= {one point} or ¢ for i = j.

Consider the eigenvalue problem (3.1) and let 2, be eigenvalues such that
0>2,>2,>2,, --. Then there exists positive constans C,, C, and n, such that

C,nA+Ms —2 < Cyn®*t)Ns  forany n>ny,

where s is the similarity dimension of 1(S, p).

If lim 128 —%s (=t1) exists, this theorem suggests that we may call a=_1_

n>=  logn t—1
€0, 1] the spectral dimension of the measure m. Theorem 3.1. asserts that

d=s.
. - _ X x42
Example (Cantor function). If we take N=2, Sl(x)—?, Sz(x)=T, S=
1 1
S ) S s Z(—s —') )
{S;, Sa¥s 0 )

then K(S) = the triadic Cantor set

and  #(S, p) = the Cantor measure (a probability measure corresponding to
Cantor function).

In this case, s=M (=the Hausdorff dimension of K(S)). Theorem 3.1. im-
plies that 08

Cl nlog6/10g2< _2ﬂ< Cz nlogG/logZ as 1 — oo

where C,, C, are positive constants (see [3], [4], [12]). Similarly, taking f(x)=
rx—+by, -+, fu(x)=rx—+by such that (x) holds i.e. 0<b,<<r-4b,<<b,<r+b,<:-:



GENERALIZED DIFFUSION PROCESSES 823

1 1
<r+by_<by<r+by<l1 and =(_,...,_),
F10n <ON<FTDy and p N

then  K(S) = a generalized Cantor set

and  «(S, o) = a generalized Cantor measure

log L

In this case s = , S0 we see that

log r
C'1 nlog('/lV)/log(llN)< —ln< C2 nlog(’/N)llog(l/-N') as n—> oo

where C, and C, are positive constants.

Example. (de Rham function [13] or Bernoulli trial for unfair coin).
If we take N=2, 5,(9="%, 5,(x ZxTH’ S=1{S, S}, 0=(p, g) (p+q=1, p>0,
9>0, p==q)
then K(S)=1[0, 1]

and  #(S, p) = the de Rham measure (a probability measure corresponding
to the de Rham function F i.e.

F(x) = P(w | Z}l ”?fff’) §x> where X,: {0, 1} valued i.i.d

random variables such that P(X,=1)=p, P(X,=0)=gq. In this case, if @ is the

@ [ ]
unique number such that (l;—) —|—<%> =1 then, s=—%_ and C o< —2,<
— &

C, n* as n— oo for some positive constants C, and C,.

In the rest of this section, we consider the following problem as a supple-
ment to our previous paper [3]: We want to estimate the spectral dimension of
dm by other fractional dimensions from upper and lower sides. First, we
consider a lower estimate. In the de Rham measure case, we obtained that ([3])

3.2) s> —p log, p—q log, g=the entropy of B(p, q)

where B(p, q) is the (p, ¢)-Bernoulli shift. We can prove that (3.2) holds in a
more general situation.

Proposition 3.2. Let X; (i=1,2, ---+- ) be a discrete time Markov chain with
a finite number of states 0, 1, ---, M—1 and consider the random variable X =
i} X; M~ with distribution F: F([0, x]) = P(X < x). Then, it holds that the
i=1
entropy of F < the spectral dimension of F.
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Proof. As a version of Shannon-McMillan theorem, J.R. Kinney [8]
showed the following: There exists a set EC[0, 1] such that (1) F(E)=1, (2)
the Haussdorff dimension of E=e, and (3) if x& E and >0, then

(3.3) lim FE—hx+h) _ gy Fe—h x+h)

540 he-e B0 pote

= + [o o]
where a is the entropy of F(=— X1 p; p;; log p;;), p;; the transition probability
and p; the stationary probability. When xE E, consider

mfl-(e) = F([xs x+E)) s mi(e) = F((x—é', x))

and take corresponding characteristic functions 4%(2), AZ(2) respectively in
Krein’s correspondence. Then, applying (2.2),

(.4) % Ui (%)Shi(z)sz U ( _lll_ )
_%lp(x><h10<2ux_%)

(
oo o1()m (03 (1) =1 e 023 (1) -1,

By (3.3) and (3.5), we have for every positive 9,

i (e3(2)

0 =1lim e
A->oa -
U+(l)
. 1
=lim — .
- 1+%-3
A> 2 Ui(-i—)
Then,
(.6) lim 1 —0.
Aroo 11/(1+u—8) Ui (L)
A
In the same way, we have
G.7) lim 1 =0
Areo Zl/(1+¢—8) Ui(i)
A

Let g\(x, x) be the Green kernel of d;‘;‘- 7;1— with suitable boundary conditions,

X
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i.e. ga(x, y)=S: p(t, x, y) dt where p(t, x, y) is the transition probability density

with respect to F of the corresponding diffusion. Then, it is well known that

(3.8) PNCOE) P —
L1
LAY A 0))
By (3.4) and (3.7), we see that
1 1
(3.9) SEgA(x, X) dF () >~ SE — dF ().

U’;(i\ Ui(i>
A/ A
Seeing (3.6), (3.7) and (3.9), we have for every positive J,

(310)  lim 20+ SE (%, ) dF (%)

2% S i 1 1 1
A>oe
£ +

AV U+a=8) Uz (i) AVA+a=8) 7% (i)
A A

dF (x)

:—.—,—-OO,

On the other hand, the definition of the spectral dimension d and Tauberian
theorem show that

G.11) — 1 im L 10g SE &(x, ) dF(x) .

Then (3.10) and (3.11) imply that for every positive &,

S U
1+a—08 1+4+d

So we have d >a—d for every positive d.
Thus the proof of this proposition is complete. Q.E.D.

Next, we consider an upper estimate. Let K be a compact metric space.
We denote by A(K) the upper Kolmogoroff dimension of K i.e.

R(K) = iim log Ve «
ey 1
log —

3
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where N,=the infimum of the number of e-cover of K.

Proposition 3.3. We take dm=du (S, p) as in Theorem 3.1. Then it holds
that the spectral dimension of dm<h(K(S)).

Proof. By (3.8) and Kac’s inequality, we have for every positive e,

1 1
1 1~ 1 1
+ +
A I 0 et 1 et 1
Am[x, x+e¢) Am[x—e, x)
S S
A m(x_E, x—{—e) '

alx, x) =

<2+

Then we have that

! 1 (! dm(x)
[ este ) dm) e Am)__ )

! dm(x)
o m(x—e, x+¢)

Define a(m) = 1:15 1 log S

For every positive 9, there exists ¢, such that

a(m)+8
Sl __Ms<i> forall 0<e<e,.
o m(x—e, x-+¢) €

1 1 1 a(m)+8
Then, S ax(x, x) dm (x)g2«s—{—7 <——) .
0 3
Taking % = 2 glta(m+s
1 1 \Vte(m)+8)
[ aae 5y amy<4 (L) .
0 22
Then, lim 1 log Sl a\(x, x) dm(x) < SN S .
are log A 0 14a(m)+o
Since ¢ is arbitrary positive, it holds that
1 1 .
(3.12) iLe. d<a(m)

— S —_
14-d 14+a(m)

where d is the spectral dimension of dm. On the otherh and, we take U, (i=1,
<o, N)asa %—cover of K(S). Then we have that
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S dm(x) < % S dm(x)
& m(x—e, x+¢) ~ =i m(x—e, x+¢)
T dm(x)
< =N
<3y
because x& U; implies U; C(x—e, x+¢).
Then a(m) = lim 1 log S _dm(x)
240 log 1 k m(x—e, x-+¢)

the infimum of the number of %-cover of K

< lim
230 1
log —
€
= (K).
Therefore, combining this with (3.12), we have the assertion. Q.E.D.

Remark. 1In the Cantor measure case, a=d=s=Hh.
But, in the de Rham measure case, a<<d=s<A.

§4. Asymptotic Estimates of Transition Probability Densities

In this section, we discuss some asymptotic estimates of transition densities.
First, using Kac’s inequality, we prepare some basic lemmas.

Take positive numbers a, b. Let dm(x) be a bounded measure on (—a, b)

and let L be d ~d— We denote by E%( ) the expectation with respect to
dm(x) dx

the L-generalized diffusion processes on [0, b) starting from x (0<x<<b) with
boundary conditions f(0) cos a—f"(0) sin =0 for some a (0, %] and f(b)=0.

We also denote by E%’( ) the expectation with respect to the L-generalized dif-
fusion processes on (—a, b) starting from x (—a<x<b) with boundary con-

ditions f(—a) cos a'—f'(—a) sin a'=0 for some &' (0, %] and f(b)=0.

Lemma 4.1. Let v ,=inf {t>0]| X,=c} for 0<<c<<b. Then

4.1) ! 1 slé"e-
1-+cot (b - ) Foer
oot e bt o, b))

b, m(—a,0)) 1
S Tm@,5) | 2am(, 5)

+2m((—a, 0))

for every positive 2.
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Proof. First, we prove the first inequality of (4.1). Let

my(x) = my([0, x)) for x<b
my(x) = my((—x, 0)) for x<a

and 4, A, be the corresponding characterestic functions respectively. Let
p.3) = 14| (x=2) 2:0) dm»)

Vi) = 5+ (=) ¥.0) dm ()

oi(x, 2) for 0<x<b
and o(x, 2) =
o (—x,2)  for —a<x<0
, A fi 0<x<b
Yix, 2) = {'/"(x ) or s
—Yr(—x, 2) for —a<x<0.

Then it is well known (see [6]) that, there exists some constants C;, C, such that

EY 2" = Co( A+G v (x Y for x<c.
Cl ¢(ca 'l)+c2 W(Ca 1)

Considering the boundary condition at —a, we have
0 = {C, ¢(—a, )+C, y(—a, )} cos &'— {C, ¢'(—a, )+C, ¥'(—a, A)} sin &’
= {C, pa, )—C, ¥r(a, M} cos &'—{—C, pi(a, H)+C, ¥i(a, D} sina’.

C, _ oila, 2) cos a'+9i(a, ) sin o’

Then : .
C, v¥(a, ) cos a'+v4(a, ) sin

So we have that

1
N+ P (a, 2) cos @' +¢j(a, ) sin @’ 2
7o D+ Yry(a, 2) cos a’+yri(a, ) sin o’ e 2)

1
@,(c, 2)+cot @ yry(c, )

By (4.2), (4.3) and Kac’s inequality, we obtain that

4.2) EY e™¥e —

4.3) E§ e =

, &) cos a’'+¢i(a, ) sin @’
— ¢, )+ e:(a c, A
Ege™e _ a2 Yro(a, 2) cos a'+yri(a, A) sin o’ e 2)

Ey e ,(c, A)+cot @ yr(c, A)
1

- V(e )’
14cot @ L1222 77
oi(c, 2)
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The proof of the first inequality of (4.1) is complete. In the same way, we have

E} e = 1
¢, c,
oi(c, A+ hz( ) ¥i(c, )
and Eg? e = 1
oi(c, 2)
Then Ej e _E’éﬂ e e
Eje™ ™ Eje T
1 ’#1(6', '{)
hz(l) @i(c, 2)
<1 ).
z(z) ‘
Applying Kac’s inequality (2.1) again we obtain the second inequality of (4.1).
Q.E.D.
We also need the following:
Lemma 4.2. If m([0, b))=0, then
1>Efe > 1 for 0<c<b.
142 br((—a, ) +-2
a
Proof. The first inequality is trivial. As for the second,
Eje ™ >Eje™
_ 1
¢, A)+ ()
@i(c, D+ 1, ( 2) (e, 2
_ 1 > 1 ;
1+ 1
hy(2) hy(2)
By Kac’s inequality (2.1) we obtain our lemma. Q.E.D.

Take m=u(S, p) where S={S,, -+-, Sy}, o=C(0,, -**, py) such that S;(x)=
r; x+c;, —1<r;<l for I<i<N. Puttmg S;([0, 1) =[a;, b,], we assume 0<q, <
b<+<ay<by<l1. Let us consider L= d i-generahzed diffusion pro-
dm(x) dx
cess X, on [0, 1] with boundary conditions

f(©0)cos a—f'(0)sine =0 and f(1)cos A+f'(1)sin =0
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for 0<e, /9<%.

Let p(¢, x, y) be the transition probability density of X, with respect to dm.

Theorem 4.3. Take x, y such that 0<x<y<1 and m([x, y])>0. Then,
there exists positive constants C,,, C,, which depend on x, y such that

C t<—logpt,x,»)<C,,t™° as t}O0.
Proof. We denote by E{** the expectation with respect to X, on [g, 1)
starting from p (g < p<<1) with boundary conditions at g

f(@)cos a—f(q)sina =0 for 0< a<% and f(1)=0at1.

By the strong Markov property,

@6)  ER e = BP0 EO® ¢ Q) oo
---E,(&;“) e Moy EI{:(J’,}“) e
— 1 B o Em & R e T B
7 EQ® e
= =,

i=1 Eg:‘-,m) e

X

Here we note that

the topological support of dmC lLVJ S0, 1D)= 6 [a;, b;]
i=1 i=1
ie.

4.7 m((b;, a;4,)) =0 for 1<i<N—1 and
m([0, a;)) = m((by, 1)) = 0.
Combining (4.6) and (4.7) with Lemma 4.1 and Lemma 4.2, we deduce that

there exists nonnegative constants D;, E,, F;, G,, H;, I, J; (1<i<N) such that,
for all 2>0,

i1 iy 1 (a;,®) ,=AT (0,®) ,=AT
4.3 1:11 {I§+7'} :[=:[1 EG™ e Mu>Ef™ e™'
> b4 E@m '”r;-f[ 1 Jﬁx 1
- -—]:1 % ¢ ) i=1 D+1E+£ i=1 G,+2H, ’
H 13 l

Put FQ) = EQ® e, f(2) = ﬁ {1,.+§} and
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=t —f
2 == .
‘=‘D,.+AE'.+F,- = G,+2H,

2

Noting the self-similarity of dm and that [a;, b;]=S;[0, 1], we can conclude
from (4.8) that

O A OESON G ADE

Setting g(A)=—log f(2), g,()=—log £,(2), g,(2)=—Ilog f,(2), we obtain that
49) e+ Ze(eilnl ) =e@ = W+ RN ewilnl .

Take the unique number u (O<u< é—) such that

N
E(Pil"il)u =1.

Then clearly, f} (0;17;1)"#>1 and noting the form of £;(1) and f,(1), we can
i=1
easily deduce that
N N
(4.10) (2 @l ly=1) 224 Yo, 7,1 D=8 ()
N
=—K+ gg(l’il"ilx)

for all 2> 2, where K, and 2,(>1) are suitably chosen positive constants.
Putting k ()=2&)

O we set
Cis= _min kQ),
AE€[minp;|ril,1]
ISISV
C=

max (k)27

AE[minp;lr;l,1]
1ISiSV

From the first inequality of (4.10),
k) =2D < “k (3 1) 22
Q) 2 < 2ol D) k(o 7| D+ (o 7: )2 1) .
Let k,(2)=k(2)+2""2. Then, for all 2>2,(>1),

N

(4.11) k(D)< 23 (o] 7:1) kalo; 1 7; | )< max ky(o;]7;]2) .
i=1 1SiSN

Applying (4.11) successively,
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k(l)Sk(Pi,I"ill"'Pixl"ugl)
for some i, ++-, iy € {1, ---, N} such that
12;12}7 il 1l o1 o pig |71y | A1

This proves k(HLC,, forall 21>4,.

Similarly, we can prove that

k(A)=>C,, forall 2>2,.
Therefore, we obtain the following estimate
4.12) C, "< —log E®® e™™<C,,2* forall 1>3,

where C,; is another positive constant. Seeing the condition m([x, y])>0,
there exists i (1<i<N) such that x<<a,<< y<<b; or a;<<x<<b,<y holds. In the
case that x<<a;<< y<<b;, there exists i, such that

Spouneeeeens 085,080, 1]C[x, y].
n, times

In the case that a;<<x<<b,< y, there exists n, such that

Sy rerreenns oSyoS;[0, 11C[x, y]1.
n, times

In both cases, there exist some S;, -+, S; such that

(4.13) S;,000008, ([0, 1D [x, y1[0, 1] .

Combining (4.12) and (4.13) with Lemma 4.1, we deduce that
Cis ' < —log EQL® e <C,, 2 forall 2>2,

where C, ¢ is another positive constant.
Using de Brujin’s exponential Tauberian theorem (see [2]), there exist some
positive constants C,; and C,, such that

G,y 1700 < —log P,[r,<f]<C,, t ™40
for all small >0 i.e. because of the definition of s,
C < —log P,[r,<t]<C,t™* for all small ¢>0.
Noting that p(, x, y)=S: Pi—s, 3, ) P(s,&ds) and 4: = min p(t—s, 7, 7)>
0, we see that p(¢, x, y)=>A4 P,[r,<t], and hence
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lim —¢* log p(#, x, y)<lim —¢* log P,[z,<1]<C,,.
t30 140

On the other hand, taking c€ K(S) (x<<c<y), then
M: = max p(t—s, ¢, y)<+oo.

0<s<¢

t
Hence, pt, x,y) = S p(t—s, ¢, y) P(r.€ds)<M P [r.<1],
0

ie. lim —¢° log p(¢, x, y)>1lim —¢° log P,[r.<t]>C,, .
Yo 0

T30

This completes the proof. Q.E.D.

If we assume some additional conditions on S and p, we can obtain a
better estimate about p(f, x, y): It seems an interesting generalization of S.
Watanabe’s estimate stated in §1 because of the appearance of the term like a
singular Riemannian metric F (x, ).

We start with some analysis lemma.

Lemma 4.4. Let T be a bounded continuous function from (0, 4 o) to
(0, + o0) satisfying the following functional equation:
T =p, T(q, H+--+p. T, D)
where p; >0, q,>0 such that p,+---+p,=1 and there exists i and j such that

IOg qu’:’Q .
log g;

Then T is a constant function.
Proof. Putting U(Q)=T(e*) (A€ R), we have

(4.14) U(?) = p, U(log ¢,+4)+--++p, U(log g,+13) .
Applying the Fourier transform to (4.14) for a slowly increasing distribution

U(2), we obtain that
f](l) =p, eit log 9, 0’([)+...+p” et log In 0(1‘)

where U() = SR et y)da.

Then 1=p, cos (¢ log g,)+ -+ +p, cos (¢ log g,) on the support of U(¢). Combin-
ing this with the condition on p;, we have that cos (¢ log q,)=---=cos (¢ log q,)
=1 on the support of lA](t). By the assumption on ¢;, we can deduce that the
support of 0(1‘): {0}. Since U is bounded, U(2) must be a constant function.
Q.E.D.
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Theorem 4.5. Assume that there exist p;|r;| and p;|r;| such that

log p; |1;] .
log o; |7;]

Then, if we take x and y as in Theorem 4.3, we have that
—lim ¢ L(t) log p(, %, y) = {E([x, yl**
£30

where L(t) is a positive bounded slowly varying function and Fis the {S, p'}-self-
similar measure with

o' = ((oy [ )74+, we, (o [ Py | )/O+9) .
Proof. Let g(2) be defined as in the proof of Theorem 4.3. Putting
G,(l)=g(chl)) for positive number ¢ (c>¢, where ¢, is a positive constant), G,(4)
is a pos‘o;tive continuous function. Seeing the proof of Theorem 4.3, we can

easily conclude there exists a positive constant C,, such that

o sa
G X <C,, forall 2&I for any

=
43 C

G <

bounded closed interval I. Then applying Helly’s theorem, there exists c,
(¢4 1 +o0) such that G, (2) converges to an increasing function G(2) at every
continuity point of G(2). From (4.9) and Theorem 4.3, we can deduce that
G(2) satisfies the following functional equation.

G = G(o |1 | D)+++G (0,14 D)
that is,

G _ s/ (1+s) SCAIAR) s/(1+s)
S (bl D (pllrll)‘1’(14:s>/1s/(1+s>+"'+("1" lral)

GloylrylA)
( ox I ry ] )s/(1+s) JUZEDN

From Lemma 4.4 and G(1)=1, we can conclude
G() = 25/@+9) |

This shows that every limit point of G,(2) (c—-oo) is the unique function
200+ that is,

lim g(cd) = 25/U+s) |
2 50

Then we see that g(2)=2¥"*+) [(2) where L() is a positive bounded slowly
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varying function.

Consider

=y, 7= —log E{"™ e™"=

E(X) —_)‘l,l,IPm ~—10gE$°'“) e—M'l
_ i —log E{*® e™™s
= e I

If we take x (aq;<x<b,), we can deduce that by Lemma 4.1, Lemma 4.2 and
the self-similarity of dm,

E(x) = lim —logE{® eralrin T
A>toe JslQ+s) L(%)

raes x—a
::AHIP —log EL® e=Palryir TTﬂI (o, 7, 249 Loy |r,]2)
> + 00
(o, [r 1 'l)s/(lﬂ) Lo, || ) 2sl@A+s) L(2)

= Gulnly E(X ‘l‘)
1

In the case of ¢, <x<b,, we have similarly a functional equation for E(x) and

hence deduce that E(x) satisfies the functional equation corresponding to
{S, p'}-self-similar measure. Because of the uniqueness of the solution of such
functional equation, E(x) coincides with F([0, x]) where F is the {S, o'}-self-
similar measure. In the same manner,

_ —log EQ® ==
E(x): )‘1_1’31“ “log EQ ¢*7

satisfies the same functional equation. Therefore, we obtain that

Jim oS AT log B0 ¢ = F(x, ).

By de Brujin’s exponential Tauberian theorem (see [2]), we have that
lim —z° LX) log PJr,<1] = F(x, y)'**
t40

where LY(¢) is an another positive bounded slowly varying function. Then by
the same argument as in the proof of Theorem 4.3 we complete the proof.

Q.E.D.

Remark. 1In the case of de Rham measure, the condition of Theorem 4.5
is satisfied if
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log£
24q.

log L
£5

Using the same method, we can also have a better estimate about an
asymptotic order of eigenvalues of L.

For 0<a, A<=, 0<a<b<1, consider the following eigenvalue problems

d d
L=—" " , b]:
of T on [a, b]

Lf=2f in (a,b)
f(a) cos a-l—if(a) sinae=0
dx

£(B) cos ,9-_;; f®B)sin f=0.

We denote the number of eigenvalues not exceeding 2 by
N, [a, b)) .

We put Noo =N, Nepep=N.

Then the following are well known:

(1) 0N, [a, (D—N(4, [a, D<2.
(@) N, [a, B)<N, (2 [a, NS N, [a, b])
(3) For a<c<bd,
NQ@, [a, (DS N, [a, c)+N(, [c, b))
N, [a, B)=N(, [a, c)+N (@, [c, b)) .

Corollary 4.6. Let S={S,, :-+, Sy} and p=(p,, -+, oy) satisfying that
S;[0, 11N S;[0, 11= {one point} or ¢ for i % j and we assume that there exist p; | r;|
log o;|r;| &Q.
log 0,17 |

Consider the eigenvalue problem (3.1) and let {2,} be eigenvalues such that
0>2,>2,>2;, +-. Then —A,=n"*9sq where s is the similarity dimension of

and p;|r;| such that

m=u(S, p) and a, is a positive bounded slowly varying sequence.
Proof. Noting the self-similarity of dm and that the topological support
N N
of dnC U S,([O; 1])= ) [ai’ bi]s
i=1 i=1
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NG, [0, 1) < N, [a, by)++++NQ, [ay, by))
= N(pllrllls [0, 1])+"'+N(PN|"NHa [0, 1]
J.Y(;{’ [a9 b]) = N(pllrllla [0’ 1])+"'+ﬂ(pzvl"1vua [09 1]) .

Putting N()=N,g(4, [0, 1]), these show that
N N
G+ g N(o; || DS N Cy+ gl N(o;|r: |2

where C, and C, are some constants. Replacing g ((c’;) y 1]\\’,((02))
Theorem 4.5, we can deduce that N(2)=2a¥@+9) L(2) where L(2) is a positive

bounded slowly varying function. Hence we can conclude that —2,=n®+/s q,
where a, is a positive bounded slowly varying sequence. Q.E.D.

in the proof of

As an application of our theorem, we can make some following remarks.

d d
— -diffusio
dm(x) dx a
processes X, with suitable boundary conditions at 0 and 1. Let g,(x, y) be the

Green kernel:

Let dm(x) be the de Rham measure. Let us consider

alx, y) = So e™Mp(t, x,y)dt.

Theorem 3.1 tells us that there exist some positive constants C,z and C,, such
that

1
(4.15) Cos 1100 < (6, %) dm(x) < Cpg 270

where s is the similarity dimension of dm(x) i.e. the number s satisfies that

s/ (1+s) s/(1+s)
£> (i) =1
(5 +(4

Although there exists an estimate like (4.15), we can prove that at every binary
rational point x (i.e. there exists a natural number N such that x= 2 X x;=0
1 =
1+s'
Proposition 4.7. For every binary rational x, there exist some positive con-
stants C, o, C, 1, Such that

or 1), the asymptotic order of g,(x, x) is different from —

Ciao X—II(HM)SgA(x, x)SC4.x1 AT+

where o = min (log, —1—, log, i).
p q
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1

Proof. Let us assume p>q and we put a,=log, —1-, a_=log, —. With-
p

out loss of generality, we may take x—%. Considering m, ()= m([l —~—l— €))

and m_(&)= m([——e —]), we take A,(2) and A_(2) which are characterlstlc

functions to m,., m_ respectlvely in Krein’s correspondence. By (3.8),

@1 a(p2)=

ROMAD)

On the other hand, by the definition of de Rham measure, we see that

q e—log aflog 2£m+(e) S E—log gflog 2
D e-log‘ ?/log Zsm_(e)s E—log pllog 2 .
Since ¢ 27V@+#) is the characteristic function corresponding to dm(x)=d(x")

(0<a<<+ o), we see that from the comparison theorem in §2, there exist some
positive constants C, ;,, C, 3, C, 14 C,;5 such that

4.17) Copa A7V (DK Cyyp A7V
4.13) Coay AVE=I<h (< Cy s 27VEF2
So, (4.16), (4.17) and (4.18) completes the proof. Q.E.D.

Barlow and Perkins [1] proved that there exists some positive constants
Cias> Caxp Cuag and Cyyq such that

|x—y| el

~dgsf2 _
C4.15 [ exp { C4.l7 tll(dw"l)

F<p( x, )
_ X —p | 9wl @u=1)
<Cyuat ™ exp {—Cyy ]——t—l);—(!,::r

where p(t, x, y) is the transition probability density of the Brownian motion on

the Sierpinskii Gasket and d _lo_g_g dw=@.

log 5° log 2

fusion corresponding to a de Rham measure with some boundary conditions

We can show that any dif-

does not satisfy an estimate of this type. Namely, we have:

Proposition 4.8. Let p(t, x, y) be the transition probability density of the de

i )%—-dzﬁ’uszon process with dm=the de Rham
Im(x

measure (0<p<l, p=I=-2—) wzth some boundary conditions.) Then, p(t, x, y) can

Rham diffusion process (i.e.
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not have an estimate of the following type: for every t,>0, there exist some posi-
tive constants C, 5y, Cy 5, Cyqp and C, o, such that
Sfor every (x, y)<[0, 1]1X[0, 1] and every t (0, t,),

8
(4.19) Cuso 1™ exp {—Cua 220y <1, %,7)
8
<CintPexp {—Cip p(x#y)}

where 8, v, 0 are some positive constants and p(x, y) is some metric on [0, 1].

Proof. Assume that (4.19) holds.
Then, substituting x=y in (4.19) and integrating by e~™dt

(4.20) Coo 1< g\(x, X)<Cyppy 2871 forall x.

Integrating this by dm, we have that
1
Cizo lp_lﬁs a\(x, x) dm(x)< Cyp 2871
0

Comparing this with Theorem 3.1, we can conclude that # must be equal to
s
1—l—s'
On the other hand, if x is a binary rational, Proposition 4.7 shows that
there exist some positive constants C,,, and C, ,

(4.21) Con AmHar) L g, x)<Cy 5 AN @)
where a = max (log, i, log, i).
p
(4.20) and (4.21) lead a contradiction. Q.E.D.
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