Remark to the Ergodic Decomposition of Measures

By

Hiroaki Shimomura*

§1. Introduction

Let (X, \mathfrak{B}, μ) be a measure space and \mathfrak{A} be a sub- σ -field of \mathfrak{B} . A family $\{\mu^x\}_{x\in X}$ of probability measures on \mathfrak{B} , indexed by x is called a system of conditional probabilities with respect to \mathfrak{A} or a disintegration of μ with respect to \mathfrak{A} if it has the following properties, namely

(a) $\forall B \in \mathfrak{B}$, the function $x \mapsto \mu^{x}(B)$ is \mathfrak{A} -measurable and

(b)
$$\forall B \in \mathfrak{B}, \quad \forall A \in \mathfrak{A}, \quad \mu(B \cap A) = \int_A \mu^x(B) d\,\mu(x) \,.$$

In general, disintegrations of μ with respect to \mathfrak{A} do not exist. (See an example in the later discussions.) However, if (X, \mathfrak{B}) is standard (that is, the measurable space (X, \mathfrak{B}) is isomorphic to (Y, \mathfrak{B}_Y) , where Y is a Polish space and \mathfrak{B}_Y is the Borel σ -field of Y), then a disintegration of any probability measures on \mathfrak{B} exists for all \mathfrak{A} ($\subset \mathfrak{B}$). (For example, see [1].) If a disintegration of μ with respect to \mathfrak{A} exists, then for any fixed $A \in \mathfrak{A}$, $\mu^x(A) = \mathfrak{X}_A(x)$ holds for μ -a.e.x, where \mathfrak{X}_A is the indicator function of A. Especially for any fixed $A \in \mathfrak{A}$, $\mu^x(A)$ takes only the values 0 or 1 for μ -a.e.x. A strengthening form of this result is as follows.

(c) For μ -a.e.x, μ^{x} takes only the values 0 or 1 on \mathfrak{A} .

If a disintegration $\{\mu^x\}_{x \in X}$ of μ with respect to \mathfrak{A} satisfies (c), then it is called an ergodic decomposition. The following fact is known for the ergodic decomposition.

Theorem. Let (X, \mathfrak{B}) be a standard space, $\{\mathfrak{A}_n\}$ $(n=1, 2, \cdots)$ be a decreasing

Communicated by S. Matsuura, March 1, 1990. Revised April 9, 1990.

^{*} Department of Mathematics, Fukui University, Fukui 910, Japan.

sequence of countably generated sub- σ -fields of \mathfrak{B} and $\mathfrak{A} = \bigcap_{n=1}^{\infty} \mathfrak{A}_n$. Then for any probability measure μ on \mathfrak{B} , the disintegration of μ with respect to \mathfrak{A} is ergodic.

For the proof, see [2] or [3].

However even in a standard space, taking a suitable sub- σ -field \mathfrak{A} there does exist a probability measure whose disintegration with respect to \mathfrak{A} is non ergodic. The purpose of this note is to give such an example.

§ 2. Examples

Let \mathbb{R}^{∞} be the countable direct product of \mathbb{R} , $\mathfrak{B}(\mathbb{R}^{\infty})$ be the Borel σ -field on \mathbb{R}^{∞} and λ be the standard Lebesgue measure on (0, 1]. Take 0 < s < 1/2, and using indicator function $\chi_{n,k}(\tau)$ of the intervals ((k-1)/n, k/n] $(n=1, 2, \dots, k=1, 2, \dots, n)$ define a map $\phi(\tau) = (\phi_k(\tau))_k$ from (0, 1] to \mathbb{R}^{∞} such that $\phi_k(\tau) = (n^s \chi_{n,k}(\tau)+1)\sqrt{\tau}$, if $h=2^{-1}n(n-1)+k$ $(1 \le k \le n)$. Then,

(1)
$$\int_0^1 \phi_k(\tau)^2 \, d\lambda(\tau) \leq 2(n^{2s}/n+1) \leq 4.$$

Hence for all $a = (a_h)_h \in l^2$, we have

(2)
$$\sum_{k=1}^{\infty} a_k^2 \phi_k^2(\tau) < \infty$$
 for λ -a.e. τ .

However $\{\phi_h(\tau)\}_h$ is not bounded for each $\tau \in (0, 1]$, so

(3)
$$\forall \tau \in (0, 1], \exists b = (b_k)_k \in l^2, s.t., \sum_{k=1}^{\infty} b_k^2 \phi_k^2(\tau) = \infty$$
.

Now let g be the standard Gaussian measure with mean 0 and variance 1 on the usual Borel field $\mathfrak{B}(\mathbb{R})$, $dg(t) = (2\pi t)^{-1/2} \exp(-2^{-1}t^2) dt$ and G be the product measure of g, $G = \prod_{h=1}^{\infty} g$. Using transformations T_{τ} , S_{τ} on \mathbb{R}^{∞} , T_{τ} : $x = (x_h) \in \mathbb{R}^{\infty} \mapsto (\phi_h(\tau) x_h) \in \mathbb{R}^{\infty}$, S_{τ} : $x = (x_h) \in \mathbb{R}^{\infty} \mapsto \sqrt{\tau} (x_h) \in \mathbb{R}^{\infty}$, we put $T_{\tau} G = G^{\tau}$, $S_{\tau} G = G_{\tau}$ and $\mu^{\tau} = 2^{-1}(G^{\tau} + G_{\tau})$. Then since

(4) $\sum_{h=1}^{\infty} a_h^2 x_h^2 < \infty$ holds for G-a.e.x = $(x_h)_h$ if and only if $a = (a_h)_h \in l^2$, we have for the spaces $H_a = \{x = (x_h)_h \in \mathbb{R}^{\infty} | \sum_{h=1}^{\infty} a_h^2 x_h^2 < \infty\}$ indexed by $a = (a_h)_h \in l^2$,

(5) $\mu^{\mathsf{r}}(H_a) = 1$ if $\sum_{k=1}^{\infty} a_k^2 \phi_k^2(\tau) < \infty$, and $\mu^{\mathsf{r}}(H_a) = 1/2$ if $\sum_{k=1}^{\infty} a_k^2 \phi_k^2(\tau) = \infty$.

Next take $\tau \in (0, 1]$ and fix it. Then for each *n* there exists unique $1 \le k_n \le n$

which satisfies $\chi_{n,k_n}(\tau) = 1$. Put $h_n = 2^{-1} n(n-1) + k_n$. Then in virtue of the law of large numbers,

(6)
$$\lim_{n \to \infty} \frac{x_1^2 + \dots + x_{2^{-1} n(n-1)}^2}{2^{-1} n(n-1)} = 1 \quad \text{for } G\text{-a.e.x and}$$

(7)
$$\lim_{n \to \infty} \frac{x_{h_1}^2 + \dots + x_{h_n}^2}{n-1} = 1 \quad \text{for } G\text{-a.e.x.}$$

Consequently, it follows from 2s < 1,

(8)
$$\lim_{n \to \infty} \frac{x_{h_1}^2 + \dots + x_{h_n}^2}{2^{-1} n(n-1)} = 0 \quad \text{for } G^{\tau}\text{-a.e.x}$$

Hence,

(9)
$$\lim_{n \to \infty} \frac{x_1^2 + \dots + x_{2^{-1} n(n-1)}^2}{2^{-1} n(n-1)} = \tau \quad \text{for } G^{\tau}\text{-a.e.x}$$

On the other hand, it is easy to see that

(10)
$$\lim_{n \to \infty} \frac{x_1^2 + \dots + x_{2^{-1} n(n-1)}^2}{2^{-1} n(n-1)} = \tau \quad \text{for } G_{\tau}\text{-a.e.x.}$$

Thus we have,

(11)
$$\lim_{n\to\infty}\frac{x_1^2+\cdots+x_{2^{-1}n(n-1)}^2}{2^{-1}n(n-1)}=\tau \quad \text{for} \quad \mu^{\tau}\text{-a.e.x.}$$

Define $p(x) = \lim_{n \to \infty} \frac{x_1^2 + \dots + x_{2^{-1} n(n-1)}^2}{2^{-1} n(n-1)}$, if the limit exists and p(x) = 0, otherwise. Then it follows from (11) that $p(x) = \tau$ for μ^{τ} -a.e.x and

(12)
$$\mu^{\tau}(p^{-1}(E)) = \chi_{E}(\tau) \text{ holds for all } E \in \mathfrak{B}(\mathbf{R}).$$

Now put $\mu(B) = \int_0^1 \mu^{\tau}(B) d\lambda(\tau)$ for $B \in \mathfrak{B}(\mathbb{R}^\infty)$. Then for all $B \in \mathfrak{B}(\mathbb{R}^\infty)$ and for all $E \in \mathfrak{B}(\mathbb{R})$ we have $\mu(B \cap p^{-1}(E)) = \int_E \mu^{\tau}(B) d\lambda(\tau)$. Especially,

$$(13) p\mu = \lambda$$

and

(14)
$$\mu(B \cap p^{-1}(E)) = \int_{p^{-1}(E)} \mu^{p(x)}(B) \, d\mu(x)$$

Further from (2) and (5) we have $\mu^{\tau}(H_a)=1$ for λ -a.e. τ and therefore $\mu(H_a)=1$. Thus,

(15)
$$\mu(B \cap H_a) = \int_{H_a} \mu^{p(x)}(B) d\mu(x)$$
 for all $B \in \mathfrak{B}(\mathbb{R}^\infty)$ and for all $a = (a_k)_k \in l^2$.

Let \mathfrak{A} be a σ -field generated by $p^{-1}(\mathfrak{B}(\mathbb{R}))$ and H_a $(a \in l^2)$. Then it is easy to see that

(16) for a fixed $B \in \mathfrak{B}(\mathbb{R}^{\infty})$, $\mu^{p(x)}(B)$ is an \mathfrak{A} -measurable function of x and

(17)
$$\mu(B \cap A) = \int_{A} \mu^{p(\mathbf{x})}(B) d\mu(\mathbf{x})$$
 for all $B \in \mathfrak{B}(\mathbb{R}^{\infty})$ and for all $A \in \mathfrak{A}$.

From (16) and (17) it follows that $\{\mu^{p(x)}\}_{x\in\mathbb{R}^{\infty}}$ is the disintegration of μ with respect to \mathfrak{A} . However for any τ there exists $b=(b_h)_h\in l^2$ which has property stated in (3). Consequently, $\mu^{\tau}(H_b)=1/2$ and therefore $\{\mu^{p(x)}\}_{x\in\mathbb{R}^{\infty}}$ is non ergodic decomposition.

Finally we will give a simple example of (X, \mathfrak{B}) on which a probability measure μ does not admit any disintegration with respect to a sub- σ -field \mathfrak{A} .

Let X=[0, 1], and consider a probability measure μ on $\mathfrak{B}([0, 1])$ without atomic part. Let $\mathfrak{A}=\mathfrak{B}([0, 1])$ and let \mathfrak{B} be the σ -field of all μ -measurable sets. Suppose that there would exist some disintegration $\{\mu^x\}_{x\in X}$ of μ . Then for each $A \in \mathfrak{A}, \mu^x(A) = \mathfrak{X}_A(x)$ holds for μ -a.e.x. Since \mathfrak{A} is countably generated, there exists $\mathcal{Q} \in \mathfrak{A}$ with $\mu(\mathcal{Q})=1$ such that $x \in \mathcal{Q}$ implies $\mu^x = \delta_x$ on \mathfrak{A} , where δ_x is the Dirac measure at x. Especially we have $\mu^x(\{x\})=1$ for all $x \in \mathcal{Q}$. Hence it holds $\mu^x = \delta_x$ on \mathfrak{B} for all $x \in \mathcal{Q}$. Take any $B \in \mathfrak{B}$ and put $C = \{x \in \mathbb{R} \mid \mu^x(B) = 1\}$. Then $C \in \mathfrak{A}$ and $C \cap \mathcal{Q} = B \cap \mathcal{Q}$. Thus we have $B \cap \mathcal{Q} \in \mathfrak{A}$ for all $B \in \mathfrak{B}$. By the way the following lemma shows that there exists $N \in \mathfrak{A}$ such that $N \subset \mathcal{Q}$, ${}^*N = \mathfrak{A}$ and $\mu(N) = 0$. It follows from these facts that ${}^*\mathfrak{A} = 2^{\mathfrak{A}}$. But it contradicts to ${}^*\mathfrak{A} = \mathfrak{A}$, since \mathfrak{A} is countably generated.

Lemma. Let μ be a probability measure on $\mathfrak{B}([0, 1])$ without atomic part and Ω be a μ -measurable set with $\mu(\Omega) > 0$. Then there exists Borel subset N of Ω such that $N = \mathfrak{K}$ and $\mu(N) = 0$.

Proof. Without loss of generality we may assume that \mathcal{Q} is a compact subset of [0, 1]. Put $f(t) = \mu(\mathcal{Q})^{-1} \mu(\mathcal{Q} \cap [0, t])$ for $0 \le t \le 1$. By the assumption f is continuous and it is easily checked that

(18) $\mu(\Omega \cap f^{-1}([\alpha, \beta])) = (\beta - \alpha) \mu(\Omega) \quad \text{for } 0 \leq \forall \alpha \leq \forall \beta \leq 1.$

Hence we have

(19)
$$\mu(\mathcal{Q} \cap f^{-1}(E)) = \mu(\mathcal{Q}) \lambda(E) \quad \text{for all} \quad E \in \mathfrak{B}([0, 1]).$$

It follows from (18) that $\mathcal{Q} \cap f^{-1}([\alpha, \beta]) \neq \emptyset$ for $0 \leq \forall \alpha \leq \forall \beta \leq 1$. So using the complete intersection property of compact sets, $\mathcal{Q} \cap f^{-1}(\alpha) \neq \emptyset$ holds for all

 $\alpha \in [0, 1]$. Now take Cantor's ternary set C and put $N = \Omega \cap f^{-1}(C)$. Then $\mu(N) = 0$ holds by (19) and $N = \mathbb{N}$ holds by the above arguments. Q.E.D.

References

- [1] Parthasarathy, K.R., Probability measures on metric spaces, Academic Press, 1967.
- [2] Shimomura, H., Ergodic decomposition of quasi-invariant measures, PUBL. RIMS, Kyoto Univ., 14 (1978), 359-381.
- [3] Schwartz, L., *Lectures on disintegration of measures*, Tata Institute of Fundamental Research, 1976.