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Introduction

Let V be a complex algebraic variety of dimension <2 and its singularity
set Sing F is assumed to be consisted of isolated singular points. Restrict the
Fubini-Study metric of the ambient projective space containing V to the smooth
part F—Sing V. Then the purpose of this paper is to investigate the relation-
ships among various "L2-Dolbeault cohomology groups" defined on the
incomplete Kahler manifold F—Sing V.

As is well-known, if V is nonsingular, the so-called Dolbeault cohomology
groups are defined naively, with no need of care of its metric, by J^'*(F)=Ker
S^/Range dptq~l, where dp'q is the d-operator acting on smooth (p, q)-forms on
F. However, if F is singular and one must consider those cohomology groups
on F—Sing F, the situation changes greatly. That is, the d-operator §*•* is
not permitted to be used so roughly as in the nonsingular case. For example,
the operators d or the exterior derivative d acting on the following forms would
define different kinds of cohomology groups:

(i) the smooth (p, #)-forms on F—Sing F,

(ii) (the maximal domain of d) the square-integrable (p, #)-forms on F—Sing
F whose images by d (in the distribution sense) are also square-integrable,

(iii) (the minimal domain of d) the (/?, #)-forms which belong to the maximal
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domain and can be approximated with respect to the graph norm of d by

smooth (p, #)-forms with compact supports on V— Sing F,

(iv) the (p, #)-forms on V— Sing V which belong to the maximal domain of d

and can be approximated with respect to the graph norm of d by smooth

(p+q)-forms with compact supports on V— Sing F,

and so forth. Excluding (i) which is too naive, the L2-Dolbeault cohomology

groups made from the d-, d- operators with the domains (ii), (iii), (iv) are

studied mainly by Pardon [9], Haskell [4] and the author [7] respectively and
their subtle differences have been becoming clear. In the paper we will study

the relationships mainly among the above cohomology groups, whose precise

definitions are given at Definition 1.1.

§ 1. Some Elementary Properties of the .L2-Dolbeaiilt Cohomology

Let us slightly modify the notations in [9] and [4], which are very useful and
convenient but are somewhat ambiguous for our purpose.

From now on let X be an w-dimensional compact complex manifold.

Though only the cases n=l9 2 are needed in the following sections, we do not

dare to place a restriction on the dimension since the assertions in this section

do not depend on n and it would be rather worth-while to report them for

general n: cf. [9, §3], in which the cases n=l, 2 were treated. Now the positive

semi-definite Hermitian forms h19 h2 on X are called to be quasi-isometric,

denoted by A^ A2» ̂
tnere exists a constant C>0 such that C""1 hl(x)<h2(x)<

Ch^x) holds for all x^X. And a positive semi-definite Hermitian form r is

called pseudo-metric provided:

On each sufficiently small coordinate neighborhood (U, (u}9 • •- , unj) ofX, one

can take holomorphic functions q>l9 -"<pn with r ~~ S*-i dq>k d<Pk> where the
right side is nonsingular outside a set of measure zero.

Then the volume element of 2 dyk dyk is given by dV^= \ det (dpjduj) \2 dU9

where dU is the volume element of the standard metric 2 duk duk. Hence the

pseudo-metric r degenerates along a divisor Dt, defined on the neighborhood

by

which is called the singular divisor of r-
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Now we fix a pseudo-metric r on X and take a union E of hypersurfaces

containing | DY | (=the support of DY). Let <JLl be the sheaf of smooth z-forms

on X, £i{ be the sheaf of locally square-integrable (with respect to r) /-forms on

X and let us define the sheaf SytE by setting, for each open set UdX, <SyiE(U)=

JL^U—E^n-CfcU). Moreover let us define similarly the sheaves JLp-q,X^q,

S^>q
E for (p, #)-forms on X.

Definition 1.1. Decompose the exterior derivative into d=d+d as usual.

(1) Let dp^'qE be the d-operator with the domain <SPi\q
E(X) fl d'1 Sffi^X) and

A

its closure in Xfy*(X) is denoted by B$\q
E.

(2) Set JLp
c'*(X-E)=ia>^Jlp'q(X-E)\a> = Q near E}. Then §p

c-
q

tE de-

notes the closure (in XP^(X)) of the d-operator restricted to JLp-q(X—E) and

§?;?.* denotes its restriction to Jlp-q(X—E) fl dom Sp
c'^iE.

(3) 77?^ q-th cohomology groups of the cochain complexes {dom§^;|},

{dom §?;!}, {domdp
:*E}, {dom 8J;**} are denoted by Hp

f'
q

E(X)=Hp'qE(X(6)\

Hp
:
q

E(X)=Hp'qE(X(d)\ HP3,E(X)=HP3tE(X(d)), Hp
:
q

tE(X) = Hp'qtE(X(d)\ re-

spectively.

(4) Let & be the formal adjoint ofd, that is, &p'«=— *y Qn-p.n-i-q ^. jp.t+i

(X)->,Jlp'q(X\ where % is the complex star operator defined by r* Then we

define the operators S$;i, tf?;L ^?;?l£, $
p

c$tE in the same way as (1)— (3).

(5) Let dp-q
E denote the d-operator with the domain Sty(X) fl d'1 S^E'q(X).

Then, in the same way as (1)~(4), we define the operators d$\9
E9 • •- , d*$iEy the

cohomology groups Hp
l\

q
E(X(d)\ - • • , Hp

c$tE(X(9))9 and the operators &p>q
E, - - - ,

ftp A^c.y.E-

(6) Let d^E be the d-operator with the domain S^tE(X) H d~~l S^E(X). In

the same way as (1)~(4), we also define d$iE, — , d * t y i E , Hi/iE(X)=Hi/tE(X(d))9

(7) Next we define the following "cohomology groups":

Ker rf>+J/X$-«(Ar) n Range d^~l ,

and HPi,qE(X(d)), Hp
c$iE(X(d)\ Hp

c3.E(X(d)) are defined by replacing d,iE with

£I,E> d*c,i.E> dc,i,E> respectively.
(8) Moreover we define the following "harmonic spaces":

= Ker fo n Ker

Ker 9?;?,£ n Ker

and similarly
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are defined. Finally we set

Remark, (a) At (8) all the "A" can be removed, that is, the elements of the

harmonic spaces are all smooth, because of the elliptic regularity theorem.

(b) In the above notations, if E=\Dy\, then it will be omitted: 3^=3^^

g$iff=g£fryi, etc. Also if r is positive definite (i.e., |£y|=0), the subscript r

will be omitted: dp>q, dp
E-q, gf;J, etc.

Now, letting (̂ ;|)*, (d^E)*9 etc. be the adjoint operators of g£ J, d^E9 etc.

with respect to the inner product ( , )Y of -C%'*(X) or U?*(X), we haves by [2]3

A JL A _A.

(5?:t)* = *?:?.* , (SJ:?.*)* = ^;l ,
(1.2) (%)* = *«.*, (8J;?.s)* = %,

$.*)* = *U*. (4v.£)* = ^,£.
Moreover there exist also the following Hodge decompositions :

(1.3) £$>« (X) = Range f1 0 ^?;|(X(S)) 0 Range

- Range a?;?^1 0 Mp$,E(X(d)) 0 Range

(1 .4) X&X) = Range 0 M^E(X(d)} © Range d'e^

= Range rf^^ 0 M\.tytE(X(d)) 0 Range ^§E .

As for (1.3), the similar decomposition holds also for the ^-operators. Next

the argument [1, § 1(A) ̂  (C)] implies

Range d^E n JLi+l(X-E) = Range d^E ,

Range ^iYiJr n JL'+\X-E) = Range ^ja Y ( £ ,

and the similar argument for d implies

Range l?;| n Jlp>«+l(X-E) = Range g*;l,

Range If;?§Jf n o«''f+1(Jr-£) - Range gf;?^ .

The following injections can be gotten because of (1.3) and (1.6):

(17)
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The results similar to (1.6) and (1.7) hold for 3 and d. As a conjecture at (1.7),

both of the right — '-» will be isomorphic: the isomorphism H ytE(X(d)) — ^

HytE(X(d)} has already been verified by Cheeger [1, (1.5)]. Even if the con-

jecture is not settled, we have a useful sufficient condition for all the — '-» at

(1.7) to be isomorphic. That is, if H^q
E(X(d)) and H^tE(X(d)) are finite-

dimensional, then Range d?;!""1 and Range Sp:y~E are respectively closed in
£$-*(X)9 which, combined with (1.3) and (1.6), implies it.

Proposition 1.2. If E is a union of smooth hypersurfaces with normal

crossings and r is nondegenerate (i.e., positive definite), then we have

(1) d^CLd1, d'dd^E , hence d{
E = d{

CtE ,

(2) 5£*c5*-«, 5*'«cS£;|, hence 6p
E

q = d

(3) 0£-*cd*-«, 0*'«C0J;i, hence dp
E-q = 0?

Proof. Since the restriction of a nondegenerate metric on X to X— E is

conical near E9 [I] implies (1). In the following let us prove (2), for which we

have only to review the proof of Pardon [9, Proposition 3.2] with emphasizing

a certain point different from it. First obviously [9, Lemma 3.5] holds for the

general dimension case. That is, put U={u=(ul, • • • , wB)eC| |w f - |<l for any z}5

/c{l,2,- fif},r(e)=U l-6/{MeJ7||ii, |=c, |iiy |^e for any 737=1=1}. Then,
for any nonnegative and square-integrable function /on U—{f[ieJui=0}9 we

have

(1.8) l iminf f fdT(e) = Q.
s->o J r(s)

Now, in order to prove dp
E

>qc:dp'q9 it suffices to verify the following: for the

open set U with E= {£[iel u~Q} , if cyedom dp
E'q and TS=JLn-p'n~l~~q(U), we

have

(
J

o>/\dr.
U JU

Considering further the Stokes' theorem, we have only to prove

(1.9) limf c y A ^ ^ O .
e-M> Jr(s)

Since r is bounded near E9 expressing (o/\T=^f{ d^A-- A^A^A"- A

dUi^hdui+tA'" /\dun, each/- is square-integrable with respect to a nonde-
generate metric. Hence we have
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Jr(s) r(s)

whose right side hasliminf=0 by (1.8). Since the left side of (1.9) exists,
_ A

certainly it must be zero. Next let us prove dp>qc:dp
c'

q
E. Following the same

idea as above, it suffices to prove (1.9) for o>^Jlp'q(U) and redom gj-^-1-*.
Since co is bounded near E in this case, the above proof of (1.9) is applicable
also here,

Remark. In the proof of [4, Proposition 1.17], Haskell showed d°'«c$!!;i

using the fact rf'crfj.jE. It will be difficult, however, to verify general dp'qd

Bp'qE using it.

Corollary 1.3. If E is a union of smooth hypersurfaces with normal crossings
and r is nondegenerate, then -we have the following natural commutative diagram:

Hp'*(X) -^ HpEq(X} «-^- HP'*E(X)'*(X) - HpEq(X} «-- HP'*E(X)

i- ~ I- _ i-«(X) — > HpEq(X) < — #M(jr)

I- f- 1
Mp>q(X) =

Also, for d-operators or d-operators, we have the similar commutative diagrams.

Proof. Proposition 1.2(2) implies

(1.10) d*« C 6p
E

q = dp-q
E C 5J;i = dp

E
q = dp'q .

And it is well-known that we have the isomorphism Mp>q(X) .......... """ > Hp'q(X) ~~ >

Hp'q(X) and they are finite-dimensional. Hence the isomorphism Hp'q(X)~—»
Hp

E
q(X) induced from (1.10) implies the finite dimensionality of Hp

E
q(X) and the

isomorphisms Mp
E

q(X)-^Hp
E>q(X)-^+ Hp

E
q(X): see the remark following

(1 .7). The similar argument implies also Mp
c'

q
E(X) —* Hp-q

E(X) -^Hp'qE(X).

Finally let CV-^X be a holomorphic Hermitian vector bundle and let us
discuss the cohomology groups induced from the S-operator d]£V} acting on
the ^F-valued forms. In the same way as Definition 1.1(1)^(3), we define

and, using the formal adjoint ^[P^]=— ̂ rsq/* d\°(?*] Xr,0^, we define, as in

(4), *?:![<% -, ^AWl Also Mfo(X; O(W)\ -, .#?;?.*(*; 0(Clty are
defined. Then, as in (1.2), we have



L2-DOLBEAULT COHOMOLOGY GROUPS 873

(i.ii) (
For the C^-valued form case, (1.4), (1.6), (1.7) and Proposition 1.2(2) are simi-
larly verified and if E is a union of smooth hypersurfaces with normal crossings
and r is nondegenerate, then we have the natural commutative diagram similar
to Corollary 1.3:

(1.12)

Pardon [9, §3] gave the isomorphism HP«(X; O(CV))--> Hp
E-q(X; O(CV)) with

dim X=2 by considering the resolution of

I-

Final Remark. In the following sections, the arrows — ̂ , - >, etc. among
the cohomology groups always mean the existence of an injective map, a sur-
jective map, etc. which are induced from natural cochain maps.

§ 2. Main Theorems for Singular Surfaces

Let S be a complex algebraic surface with isolated singular points. It
does not need to be normal.

Proposition 2.1. (HsiANG-PATi [5]). There exists a desingularization pi

(X, E)-*(S, Sing S) such that, defining r to be the pullback (by p) of the Fubini-
Study metric of an ambient projectile space containing S, we have,

(0) E= | p-1(Sing S) | is a union of smooth curves "with normal crossings,

(— ) at each smooth point of E, there exists a local coordinate neighborhood

(U, (u9 v)) and I<nl<n2 (integers) such that E= {u=fy on U and

/2 v) d(un* v) ,

(+) at each normal crossing of E, there exists a local coordinate neighbor-

hood (U, (u, v)) and I<n1<n29 I<ml<m2 (integers) such that n-^ m2—
ml «24=0, E= {uv=Q} on U and

2 Vm2) d(uH2 V™*) .

Hence r is a pseudo-metric, which is especially called 'of Hsiang-Pati type'.

Let us fix such a desingularization p: (X, £)-»(£, Sing S). Set E=^ Ei
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(irreducible components), then for each E{ the index (nil9 ni2)=(nl9 n2) is de-

termined according to (— ). At (+) the index of {w=0} is (n19 n2) and that of
{v=0} is (m19 m2). Obviously it does not depend on the choice of the smooth

point of Ef nor of the neighborhood. The singular divisor of the pseudo-metric

r is given by

(2.1) />r = IJfai+*B-l)^

and its local defining function, which therefore determines a nonzero meromor-

phic section of the line bundle [DJ, can be expressed as follows:

( uni+n*-1 : (— )
/O O"\ J

^ ~~

Now, since the Z,2-cohomology groups and the usual L2-Dolbeault cohomology

groups of S— Sing S are naturally equal to Hy(X) and H$>q(X) respectively, let

us study the latter cohomology groups on X.

First, by Pardon [9], Haskell [4] and using the dual argument through *Y,

we get

Theorem 2.2*

"x
ayX

- o (-
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'*(X) -•> Him

t- t-

Combined with the well-known isomorphisms

(2.3) #*.i(JT) -^* ^'••(AT) , jy*-«(

the above theorem implies

Theorem 2.3. ^j /or the L2-Dolbeault cohomology groups appeared at
Theorem 2.2, excepting H2

c\l/(X), we have

^ A

As a conjecture there must exists an isomorphism Hl\y(X) - >H2
c'ty(X) and they

will be of finite dimension, which obviously yields M2
C\](X) > H2

C$(X) at
Theorem 2.2.

Let us next state the relationship among the L2-Dolbeault cohomology

groups made from the J-operators and the ones at Theorem 2.2.

Theorem 2.4.

H0
c-°(X(d)) -> H°-\X(d))

H2-\X(d)) <^- H2-\X(d)} «=- H

i r _ inj'
If '• WO) -^ H»-\(X(d)) -^ H°y-\X(d»
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1=

Here the broken arrows mean the existence of the maps which may not induced
from the cochain complex maps.

Let us make here a brief comment on the cases (p, q)=(l, 0), (1, 2). The
diagrams in the cases are incomplete because both of them are related to the
(15 l)-formse For example, though it seems at first sight that there exists a
natural map from Hl>\X)=Hl

c'*E(X) to Hl
c$(X), it has a subtle problem. That

is, for |>]e£f J;|(X), one can take a sequence <pj(=JLl'0(X— E) with <PJ-*<P and
§9y->0 in Xl>*(X\ Then certainly 9^9 in X\'\X) but we do not know
whether §<pj tends to zero or not in ~£y'\X): see Lemma 4.1. It means that
9 may not define an element of Hl'^X). However, in spite of such a problem,
the author believes that Hl>\X)^Hl

c$(X) holds. If it is true, those diagrams
can be improved.

In [7] we have proved

(2.4) Hi,(X) <* 0 H

if z =1=2. Hence, combined with Theorem 2.4, it implies

e #
e

If the above conjecture is affirmative, then ^fJ;?(Z(5)) can be replaced by JFfJ;

§ 3e Main Theorem for Singular Curves

Let C be a singular algebraic curve and p : (X, E) -» (C, Sing C) be its nor-
malization. At each point p of E9 there exists a local coordinate neighborhood
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(U, w) and an integer m>l such that the pullback r (by P) of the Fubini-Study
metric of an ambient projective space containing C can be expressed as

(3.1) r~dumdum .

Refer to [8] etc. in details. The index mp=m (i.e., the multiplicity of p) does
not depend on the choice of such a neighborhood. The singular divisor of the
pseudo-metric r is given by Dy=^peE(mp— T)p and its local defining function
can be written as a^=um"1.

Theorem 3.1.

In [8] we have proved

(3.2) #
p+9 = i

Hence, in the curve case, the pure Hodge decomposition holds neatly:

(3.3)

§ 4. Proofs of the Theorems In § 2

We use the notations in § 2. On the local coordinate neighborhood
(U, (u, v)) given at Proposition 2.1, we get, by a straightforward computation
(cf. [9, (2.1)~(2.3)]),

Lemma 4.1. Let L2=L2(U, loc) be the space of functions on U which are
locally square-integrable with respect to a nondegenerate metric. Then we have

(L: 0, 0) f<=XQi\U) is equivalent to ayf<=L2,

(L: 0, 1) fdu+gdv^J:%'\U) is equivalent to
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(L: I, 0) fdu+gdv^X\'\U) is equivalent to

(L: 0, 2) kdu/\dv<=X?t'\U) is equivalent to

(L: 2, 0) lduAdv^j:2'°(U) is equivalent to

(L: 1, 1) fdu/\du+gdu/\dv-\-kdv/\du-{-ldv/\dv^Xlyl(U} is equivalent to

2; (+) D

(L: 1, 2) kdu/\duAdv+ldv/\du/\dv^~Cy'2(U) is equivalent to

(L: 2, 1) kdu/\dv/\du-\-ldu/\dv/\dv<=~C2'\U) is equivalent to

(L: 2, 2) kdu/\dv/\du/\dv^X^'2(U) is equivalent to

The lemma obviously implies

Corollary 4.2. Set E

G-yX

As for the cohomology groups induced from the above inclusions, we get the
following. Let us remark Corollary 1.3 and (1.12).

sition 43.

(P° 0 Cf\ f¥®'®(Y"\ === v fT^'^cy^ ==\ ff®>Q(Jf'
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(P: 0, 1) » «

(P: 0, 2)

(P: 1, 0) Hl>\X) -^* #i* W —

(P: 2, 0)+
 2° 2°

(P: 2, 0).

(P: 2, 1)

(P: 2, 2) 7

Proo/. (P: 0, 0), (P: 0, 1) and (P: 0, 2) left-^i are due to Pardon [9,
Corollaries 3.8 and 4.2], which essentially come from the fact H\0D^(D^)=Q.

(P: 0, 2) right— ̂ > is due to the injectivity of the map H2>\X\ <5(—Dy))-*
H2'\X) at (P: 2, 0) and the Serre duality theorem. (P: 2, 0)± are obvious. As

for the injectivity of (P: 2, 1) left «^- : Take a^Jfi^X) with do)=Q and
assume that it gives the zero element of Hz

E'\X)=H2tl(X)9 that is, there is
7j^Jl2E*(X) such that drj= a. Then a) also gives the zero element of H^\X)
because Lemma 4.1 (L: 2, 0) implies T\ e <_^Y'°(^)- Next the surjectivity of

(P: 2, 2) right ^- is due to JL2
y-

2(X) ={«><= S2-\X-E) \ a^co e L2} = {a>£^

S2E\X-E)\a^lco^L2} *^--(Jl2E2®O(-DJj)(X\ where a^&E^L2 means that,
for any sufficiently small open neighborhood U of any point of E, a^lco

belongs to L2(U, loc): see Lemma 4.1. Further HQ>l(X)-^HQ-l(X',

and ^°'°(Jr)->^0 '0(Jr; 0(Dy)) imply H2-l(X)- H2-l(X\ O(-D^) and

#2'2(X)<^#2-2(X; O(-DY)). Now certainly (P: 2, 1) and (P: 2, 2) hold.

Proofs of Theorems 2.2 #«£/ 2.3. First Proposition 4.3 holds even if H is
changed into H. Hence the finite dimensionalities of the cohomology groups
at (2.3) imply that H^(X) for (p, g)=(0, 0), (0, 1), (0, 2), (1, 0), (2, 0), (2, 1),
(2, 2) are of finite dimension. Therefore, by the comment following (1.7), we

have the isomorphisms M$'q(X)-^ Hp
y'

q(X)-^*Hp
y'

q(X) for (p, q) above.
Thus the proof of Theorem 2.3 for H$-q(X) is complete. Next, at [4, Theorem
2.1], essentially Haskell proved the existence of the commutative diagram:

(4.1)
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On the other hand, using the argument similar to the proof of Proposition 1.2,

we get the implications :

(4.2) ac
2;? «— ̂  S2'«[-DJ, §,2;? «— ' S2-«[-DJ .

Let us prove the left implication. Take ^edom d2>q[— Dy}. Then

because of Corollary 4.2. We use the notation in the proof of Proposition 1.2.
For t^edomz?2'9 with supp t^C U, we have, by (1.8),

^— \ flypA*?*?^ = \J# J

— I
J

= ±lim I 9 Afly*7^ = 0 ,

because 93 is bounded on £7 and the (09 1— #)-form a^*^ has the coefficient
belonging to L2(C7, loc). Thus we get (4.2). Since it obviously implies

£o

Ker SJ;? +=- Ker a2'2[-D¥] , Ker S,2;? *=- Ker a2«2[-D?] ,

we have

(4.3) H*&X) & H>-\X; G(-DJ) , H^(X) ^- H*-\X; O(-D,}) .

Now we get Theorem 2.2 and the same one but with H replaced by H because
of Proposition 4.3 and (4.1)^(4.3). The remaining part of Theorem 2.3 can
be induced from Theorem 2.2 for H.

Next we want to prove Theorem 2.4. First [7, § 2(c)] says

#* = #, $!Y = *Y for. , .
Ker d\x = Ker d* , Ker 62

C^ = Ker d* .

Combined with [7, (5.2) and Theorems 1 and 8.6], they imply

(4>5)

H*>«(X(d)} ^- H*e$(X(d)) : p+q = 3 ,

dim H*«(X(d)) = dim H$-*(X(d)) : p+q = 3 .

Proof of Theorem 2.4. It is well-known that the so-called Hodge identities
etc. imply
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(4.6) Ht>«(X}^H

As for the theorem for (p, #)=(0, 0), (2, 2), (0, 1): Obviously the vertical
arrows can be made and Theorem 2.2 and (4.5) guarantee the isomorphicness

of the horizontal arrows. Therefore, by the commutativeness of the diagrams
and (4.6), we get the isomorphicness etc. of the vertical arrows. As for the
case (p9 q)=(29 1): It suffices to show that the map H*f\X)->H?f\X(d)) is
isomorphic. It is trivially surjective and using (4.5), (4.6) and Theorem 2.2, we
have dim H^\X(d))=dim H2'l(X(d))=dim H2'1(X)=dim H2>\X). Thus it is
certainly isomorphic. As for the case (p, #)=(!, 0): Let us first show the
existence of the map Hl

c$(X)-*Hl3(X(dJ). For ^eKer dl
c;»=H l\y(X(dJ) one

can take a sequence <p^Jl\^(X— E) satisfying 9,-->^ and d<pj- »0 in -£y'*(X).
Letting ( , ) be the inner product of _£}»*(X) and applying the Hodge identity
for JIY (X-E)9 we have

Hence d<pj tends to zero in J^(X\ which means that there exists the desired map.
As for its injectivity: We have J2?\X) fl Range rfj§v c X^\X) n Ranged?.
For an element d^<p=d^<p-\-d«i<p of the right side, since dy<p=Q, <p belongs to
Ker B°y'0=H%'0(X)= {constant functions on X} . That is, d°<p=Q, which shows
the injectivity of the map. The proof here guarantees further the injectivity of
the map Hl^\X(d)}-^H^\X). Finally, observing [7, Theorem 2], the case
(p9 $)=(!, 2) is trivial.

§ 5. Proof of the Theorem In § 3

We use the notations in § 3. On the local coordinate neighborhood (C/, u)
given at § 3, we get, by a straightforward computation,

Lemma 5.1. Let L?=L2(U, loc) be the space of locally square-integrable
functions on U as before. Then we have

(L: 0, 0) f^£*-\U) is equivalent to %/eL2,
(L: 0, 1) fdu&-C$-l(U) is equivalent to /GEL2,
(L: 1, 0) fdu^Xly'\U) is equivalent tof<=L2,

(L: 1, 1) fdu/\du^X\'\U} is equivalent to a

The lemma and an easy calculation imply

Corollary 5.2. Set E=\Dy\.
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(0) gMc^go. jc^S ' .

(1) d¥ ^ d1^ *-* Bl
e$ < — - 5H-DV)]

Proof. All the inclusions will be obvious because of Lemma 5.1 and

Proposition 1.2 (2). The inclusion dj;?«-°di;t9[— Dy] can be proved in the same
way as the proof of (4.2).

Proposition 5.3.

OP: 0, 0)

(P: 0, 1) H°-\X)

(P: 1, 0)

(P: I, 1)

Proof. Haskell [4? Theorem 3.1] and Pardon [9? Corollary 5.4] proved

(5.1) H*-#X) -^ H°y'
q(X) -^ HQ>«(X;

Trivially we have Hl\X) - H^X) - H\$(X) ~ Hl-\X; O(-Djft and,
since (5.1) and the dual argument imply dim H1

y'\X)=dim H^X; 0(— />Y)),

we get (P: 1, 0). Similarly we have H$-l(X) <^- Hl
c;*(X) <-=- Hl-\X\ O(-Djf).

(P: 0, 0) first — ̂ is trivial and we have H°>°(X) -^ H°>°(X; O(Djft. Hence,

by the dual argument, we have (P; 1, 1) first < — '-. Finally the surjection

H°C'*(X) turns out to be isomorphic by the isomorphism

Proof of Theorem 3.1, We have di
c-i=di{ because the pseudo-metric r is

conical near E\ see [8, Theorem]. Combined with [8, Corollary 6], it implies

(5.2)

Also in the curve case, (4.6) holds. Now the assertion in the case (p, ?)=(0, 0)
can be obtained using [8, Corollary 5], (5.2), Proposition 5.3 for (p, q)=(Q, 0)
and the commutativeness of the diagram. And it implies the case (p, #)=(!, 1).
The remaining cases (p, q)=(Q, 1), (1, 0) are obtained using (5.2) and Proposition
5.3.
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