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An Integral Representation of Singular
Solutions and Removable Singularities
of Solutions to Linear Partial
Differential Equations

By

Sunao OucHr*

§ 0. Introduction

Let L(z, 8,) be a linear partial differential operator with the order m=1,
whose coefficients are holomorphic in 2= {z&C**!; |z]| <R}, and K be a con-
nected nonsingular complex hypersurface in £ through the origin z=0. In
the present paper we treat the equation

0.1) L(z,8,)u(z) = f(2),

where u(z) may be singular on K, and f(z) is holomorphic in 2.

There are two main purposes in this paper. The one is to give an integral
representation of solutions to (0.1) singular on K (Theorem 2.5). The other is
to show that if u(z) has some growth property near K under some conditions
on L(z, 8,), then u(z) is holomorphic at K (Theorem 1.3), that is, the singularity
on K is removable. The conditions on L(z, 8,) are given by means of the
characteristic indices of K and the localization on K defined in [9] and [10]. The
author does not know such a theorem about removable singularities of solutions
to linear partial differential equations as that in this paper. In order to show
Theorem 1.3 we need the detailed analysis of the obtained integral representation
and use theorems about the Laplace transform of functions with asymptotic
expansions with bounds (Theorems 1.7 and 1.9), which are also the results of
this paper.

We make reference to singular solutions to (0.1) in short. As for existence,
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it was studied in [1], [2], [3], [13], [16] and others, where they constructed singular
solutions to noncharacteristic Cauchy problem with singular initial data. The
existence of solutions singular on K was also considered in [4], [11] and [14]
apart from singular Cauchy problems. The condition in [11], given by means
of the principal localization, is less restrictive than those in others.

The integral representation was obtained for operators with decomposable
principal symbol in [6] and [7]. In the present paper we give it for a wider class
of operators and its form is slightly different from that given in [6] and [7].

In §1 we give notations and definitions and state the theorem concerning
removable singularities. We also give results about the relations between the
Laplace transform and functions with asymptotic expansion with bounds. We
don’t give here the integral representation. Because it requires further prelimi-
naries. In §2 we give them and the integral representation. Roughly speaking
its kernel function takes the form

©0.2) K(z, 2, 1) = S exp (—2* O) w(z, 17, 2, ¢) d< .

So construction of representation is that of w(z, ¢/, 2, £), which we call also the
kernel function. In §3-8§5 we construct w(z, t”, 2, ) and get the integral
representation of solutions singular on K. In §6 we show lemmas and prop-
ositions used in the previous sections or required in the following sections. In
87 we investigate the kernel function w(z, t”, 2, {). We try to analyze its sin-
gularities with respect to ¢. The estimates of functions appearing in §3-§7
are given in §9. In §8 we complete the proof of the theorem of removable
singularities (Theorem 1.3), combining the results obtained in the preceding
sections with Theorems 1.7 and 1.9. In §9 we show what are left unproved, in
which the estimates and some lemmas of holomorphic functions needed in
construction of the integral representation are contained. In §10 we discuss
about functions with asymptotic expansions and give the proofs of Theorems
1.7 and 1.9.

In this paper many constants will appear. So for simplicity we denote
various constants by the same A, B, C, etc.. There will be no confusions.

§ 1. Notations and Definitions

First we give notations. z=(zy, z,, ***, 2,)=(2, 2)=(2y, z;, 2”’) is the co-
ordinate of the (n-+1)-dimensional complex space €**! with the norm |z| =max
{Izil; Oélén}’ while 5=(Eo: El: "t 571):(507 517 5”):@0, 51) is the dual
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variable. 8,=(8y, 8, **+, 8,)=(8y, 8,, 8")=(8,, 8), 8;=0/0z; is the differentia-
tion. N is the set of natural numbers and @ is the set of rational numbers.
Now let K be a nonsingular complex hypersurface through the origin z=0. We
may choose the coordinate so that K= {z,=0}. Then we can write L(z, 8,) in
(0.1) in the form

(1.1) {L@69=EMmh@a%

Ly(z, 8,) = Xi-s, Aui(z, 9) (30)" .

Here L,(z, 8,) is the homogeneous part of degree k. The integers s, (0<k<m)
are chosen so that 4, ,(z, £)=E0 if Ly(z, £)=0, and we put s,=+ o0 if L(z, {)
0.

Now let us give several definitions and notions derived from L(z, 8,). Put
A={(k, s)€R?; 0<k<m, s,==+oo}. We denote the convex hull of 4 by A.
Let 3 be the lower convex part of the boundary of 4, and 4 be the vertices of
3. We set d={(k;, 53,); O0Si<[l}, m=k, >k, >k,>--->k;=0. If [=0, 2=
4={(m, s,)}. Assume /=1. Then = consists of segments =(i) (1=iZl).
The end points of % (i) are (k;_,, s,_,) and (k;, s;) (see Fig. 1.1).

(”1’ Sm) = (km Sku)

%(2)

o - (K2, Skz)
1 l
0 k m
Fig. 1.1.
Set
(1.2) {%=+w’
0; = max {l, ey =S ki —k)p (I=i=]).

Then there is a p& N such that
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13 +00 = 0>0,>0,>->0, >0,=1.
Define for 0<i<p
(1.4) {ai = (0;—1/o; ,

ri=o0,—1.
Here we mean @y=1 and r,=-+oo. From the definition of ¢,, we have

Lemma 1.1. Suppose s,%=+oco. Then there are nonnegative fiEQ (1<
i< p) such that

(1.5) (Sk,._l—sk) (I—a)+pi=k;_,—k,
and (k, s,)E = (i) if and only if gi=0.

The proof of Lemma 1.1 will be given in §6 and we set in the sequel 2,= 5}
and a=a«a, for simplicity.

Remark 1.2. 1In [9] and [10] (see also [12]) characteristic indices were
defined and denoted also by {o;}. In general they are different from those
defined by (1.2). But if we assume some conditions on L(z, 8,), they are
coincident with each other (see Remark 1.4).

For an open set W in C¥, W means the universal covering space of W.
We denote by O(W) the set of all holomorphic functions on W and by O(W)
the set of all holomorphic functions on W. Let U be a polydisk in C*** with
center z=0. Then we set U(a, b)= {ze(i:{}‘o_/:()}); a<arg z,<b} and
U(@)=U(—a, a) (a>0). Hence O(U) is the set of all holomorphic functions
in U and ©(U(a, b)) is the set of all holomorphic functions on the sector U(a, b).
Obviously if 5—a>2z, then @ (U(a, b)) contains multi-valued functions.

Now, by using these definitions, we can give a theorem about the remov-
ablity of singularity K, which is one of the main results in this paper.

Theorem 1.3. Assume
(@ o,>1,
(1.6) (®) s,.,=0,
© IIh Ay, (0, 2, £) 0.

Let u(z)€O(2 (6,)) (6,>=(1/27,_,+1)) be a solution to
()] L(z,8,)u(z) =f(2)€0(2).

Suppose that for any ¢ >0, there is a C,>0 such that
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(1.8) lu(z)| <C.exp (e|z| "-1)  for z&L2(6).
Then u(z)eO(2).

The proof of Theorem 1.3 is long and completed in §8. As we said in §0,
Theorem 1.3 follows from the integral representation in §2.

Remark 1.4. Let L(z, 0,) be an operator satisfying (1.6)-(c). Then {o;}
(1=i=p) are coincident with the characteristic indices in [9] and [10], and 4,,
0, ', &') (0<i= p—1) are the localizations defined there. So we can state (1.6)
(a)-(c) in other conditions which are invariant under the coordinates trans-
formations.

We give simple examples.

Corollary 1.5. Let
(1.9) L(z,8,) = (8p)*+A4(z, 9,
where A(z, 8") is an operator with ord. A(z, 8")=m>k and the principal symbol
A, (z, &"). Assume A,(0, z', £)E0. Then if a solution u(z) = O(2(6,)) to (1.7),
(6,>(%/2) (m/k +-1)), satisfies for any >0
(1.10) |u(2)| < C, exp (¢|z| H»=0) .
Then u(z)=O(2).

We have o,=m/(m—k) and 6,=1. Hence r,=0,—1=k/(m—k) for L(z, 8,)
in (1.9). More concretely let L(z, 8,)=(8,)F—(—1)""¥d))". Set

(1.11) u(z) = S+°° exp (—2 zg—An(z,+-dY) dA, (d>0) .
0

u,(z) satisfies L(z, 8,) u,(z)=0. It holds for u,(z) that for any e >0if z& {z; |arg
zol<_’;-(-”kl+1)—e, |z,|<rg, |u(z)| <C,. So the condition 0(,>% (%+1) is

essential. u,(z) has the bound |u(z)| <Aexp (B|z| #™=®) on {z; |z|<r,
—oo<arg z,<+oo}. The condition (1.10) is also essential.

Now let us proceed to give the theorems about functions with asymptotic
expansions. As we said in §0, they will be used to show Theorem 1.3. The
proofs are in §10. Let u(7) be a continuous function on [4, o) (4 >0) such
that |u(?)| < Cexp (B|t]") (r>0). We define the r-Laplace transform #(¢) of
u(t) by

(1.12) #(E) = S+°° exp ED) u() 171 dt (a>A"),
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which is holomorphic in {£; Re &< —B}. The inversion formula is given by

(1.13) u)) = 1 [ exp(—ema@ de (@<—5).

Definition 1.6. We say that u(t) has the r-asymptotic expansion on[A, + o),
if forany N=1
(1.14) () — S0 ey t™H <4, RN T(Nfr+1)[ 1]
holds on [A, + o).

From the definition |cy| <A, R™¥ I'(N/r-+1), that is, the coefficients of
the asymptotic expansion have the estimates of Gevrey type. Suppose that u(z)
has the asymptotic expansion (1.14). Then, by using the sequence {¢;} (k=0,
1, --2), define

too c, z*
(1.15) g2 = Ek-owg

which is holomorphic in {z€C?; [z|<R}. We have for 4(¢)

Theorem 1.7. Assume u(t) has the r-asymptotic expansion (1.14) on
[A, +o0). Then the r-Laplace transform 0 (€) is holomorphic in ({£; Re é<R?,
[0, R} and it can be_holomorphically extended into {£; 0<<|&| <R} such

D
that &) O ({€; 0< |€| < R"}), for any ©>0 and 0<c<R'
(1.16) [2E)| =M, ollogé| in {&; |arg & <O, 0< |E|<c},
and {0(E)—1(E)} [2m i=g(EV7), where E11= | [V giarE iy

Now let us consider functions on a sector with asymptotic expansions with

~ o~ .
bounds. We set S(a, b)={t(C'—{0}; |t| =4, a<arg t<b} (4>0) and
S(@)=5(—a, a) (@a>0).

Definition 1.8. We say that u(t)E O (S(a, b)) has the r-asymptotic expansion

(1.17) u(t)~iS et att= oo in S(a, b),
if for any N >0
(1.18) |u(t)— 2200 e t7*| <4, BY T'(N[r+-1)| ]|~

holds on any closed subsectors S, in S(a, b).

If u(t) e © (S$(6,)) satisfies, for any >0
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(1.19) ()] = C.exp (1] (r>0) in 50y,
P -
then W&)eO({¢; |arg é—n | <rb,+=/2}). We have

Theorem 1.9. Assume u(t)eO(S(6,)) satisfies (1.19). Then u(t) has the
r-asymptotic expansion

(1.20) Uy~ etk att = oo in S$(6,),

—~ ———
if and only if the r-Laplace transform (&) O ({¢; |arg £ —n | <70,+=/2}) satis-
fies the following conditions:
() is holomorphically extensible into {&; 0< |&]| <<c} for some ¢>0 so that

P e,
wEEO({¢; 0< |l <c}), for any ©>0

- -
(1.21) [(E)| S Mgllog&| in {&; |argé|<O,0< |&|<c},

and F(&)={(&)—t(Ee*™ )} 2z i has the convergent power series of E¥' at £=0,

(1.22) F(&) = 2% o 7T (k[r+1) (J€]'<R) (c=R").
P -
Moreover if (&) ({¢; |largé—n|<rb,+=/2}) satisfies all above conditions

and 0,>r|2r +=, then u(t) is holomorphic at t=co.

For functions with asymptotic expansions with Gevrey type we refer to [15],
where ordinary differential equations were treated, and the papers in its
references.

§2. Integral Representation

In §2 we show an integral representation of a singular solution u(z)
satisfying (0.1). From now on, we always assume u(z)E@(£(6,)) (6,>n),
Sp= 1 and

(2‘1) Am,sm(oy E,) $ 0 .
So K is characteristic. We may assume that for & ’=é’=(1, 0, ---,0)

.1y A0, EVED  (5,21).

We try to obtain an integral representation of u(z) as the sum of functions of
the form

L
2zi

Ki(z, 4, 1") = S P (X O Wiz 1,2, €) dC, Oh=s,—1).
c(e

S exp (4 z;) (log 2) d2 S Kz, 2, 1) 05, £y di”
2.2) ad ™
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The path A(y), T and C(6), and the functions #4(2, ¢”) and w'(z, ¢”, 2, {) are
determined in the following. In order to do so we need some preliminaries.
All the proofs are given in the later sections.

Now let us explain the functions in (2.2) and the paths of integration. The
explanations are divided into 3 parts.

(I) The definitions of #4(4, /) and the path 4(y-). Consider the traces of
U2 €0 (@ (6y), 2={z€C""; |z| =R}, to z,=0,

(2.3) uM(zy, 2) = (8/0z)! u(zy, 0, 2"), (O=h=s,—1),

and define

.4 2hQ, 1) = L S exp (—2 1) w(ty, 1) dty .
2zi J1(0)

T(6) (—6,<6<0,—2x) is a path starting at Re’®*?®), going to ee’**?(0<e<R),
rounding the origin once on |f,|=e¢ and ending at Re* (see Fig 2.1). For
D2, t") we have

Lemma 2.1. (a) 4%, ¢") is an entire function of A.
(b) For any ¢>0, there is a C,>0 such that
(2.5) sup |08, t”)| <C,exp (e|R|) for 2 with |arg 240 | <=/2.

1t”ISR
(©) If sup |uh(ty, t")| <A exp (@t,|™) (r>0), then
1#/|<R

(2.6) sup |84, )| < B exp (2(6|2|HVAN)  for 2 with |arg A4-0| <=2 .
1#|SR

For the inversion formula we set
@7 ul(z, 2") = LS exp (4z,) 242, 1) (log 2) d2
27 i J A
where |0+ | <=z/2 and A(y) is an infinite path starting at coe'¥, going around

the origin once and ending at coe’™** (see Fig 2.2).

et

10
79 Re Rei(®421) A(y) oo ei(h12m)

e N

1,-space A-space

N

Fig. 2.1. Fig. 2.2.
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Lemma 2.2. It holds that

(2.8) ul(zy, 2”7) = uM(zg, 2'")+Vi(2,, 2'7)

Sor zy with 0<arg z,<0-2x, where vi(zy, 2")E0O{|z,| <R, |Z”| <R}.
The proofs of Lemma 2.1 and 2.2 are in §6.

(I1) Kernel functions wh(z, t”, 2, ) (0=<h=<s,—1). Each w(z,t”, 2,¢) is
determined so that it satisfies an equation. Let us derive the equation. In
order to do so we derive operators L(z, 4, 8,) and L(z, 4, 8,, 8;) from L(z, 8,).
Firstly L(z, 4, 8,) is defined as follows:

L(z, 8,) {exp (2z,) K(z, )} = exp (Az)) L(z, 2, 9,) K(z, 2) ,
(29) L(Z, 2, az) = L(Z, 30-{—/1, al) = EZ'=0{E?=3,, zk—i Lk,i(zs az)} >
Lk.i(Z’ 9,) = - ,12+j=-' Ak,l(z’ 9") (k;') (ao)j .

I}
Secondly we define L(z, 2,8,,8;) from L(z,2,8,). From Lemma 1.1 we
have k—i=(1—a) (m—s,)+a(m—i)—(1—a) (i—s;)—pF,. Hence by omitting
A0-a)m=sm) and replacing A* by 9, in (2.9), we set

(2.10) L(z, 2,8, 0;) = 2o {X,, A7 WD D"B (9)mF L, (2, 8,)} .
Thus we attain to the equation wh(z, t”, 2, ¢) satisfies,
L(z,2,0,,0)whz,1",2,{) =0

(al)l W(Z’ t”> X, C) Izl=0 = 61,11(27"- i)-” C—l H?-Z(tz‘__zi)_l ’

for 0=/<s,—1, where |z| <R and R'<R =Z|t,|<R(i=2). We note that
the initial values are singular at {=0. For the existence of w'(z, 2, t”, {) we
have

@2.11)

Proposition 2.3. There is a solution w'(z, t”/, 2, {) of (2.11) which is multi-
valued holomorphic in

Z={z1",40; |z|=n, R=|4| SR (i22), [2] 2 4,,
A*|z | <[{]<B*[2]"7F,

where r (r<R), 4y, A* and B* are some positive constants, and |w"(z, t”/, 2, {)|
SCU+|¢| 7+ |log £|) holds.

The proof is given in §5.

(III) Integral representation. We can define by Proposition 2.3
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@.12) Kz, ", 2) = S o P (IO W, ", 2,0 de
()

where C(6)=C(de?® 2'~%) (0<<d<<B*, where B* is in Proposition 2.3) is a path
on the circle |{|=d|2|"® whose starting point is de’A'~® and goes around
once on it. For K¥(z, ¢, X), we have

Proposition 2.4. Kz, t”,2) O<h<s,—1) are single valued holomorphic
Sfunctions with respect to 2 in 8,

(2.13) E={z1",0; |zl =r R=|LISR ((22), 2] 245},

and satisfy
@.14) L(z,2,8,) Kiz,1”,2) = exp (—de®® 2) K'(z,t", 2),
(8/0z,) Ki(z, 1", 2) = 6, ,(2z i)™+ [I%.2(t;—2)™t (0=<ZI<Zs,—1),
where
2.15) |Kj(z, t”, D] =C2]** exp (c|z | | 2])

for 2 with |arg 246 | <=/2, and K'!(z, t”, 2) is holomorphic in E and
(2.16) | K™z, t”, )| KAQ+|2])Y  for some N>0.

The proof is given in §5 except that Kl(z, t”, 2) is single valued, which
is proved in §9.

Finally S --+dt’” means S

T/ ltal=R

-dtzs ---dts---S «odt,. So we
ltsl=R It,1=R
have (2ni)'”+1$ S@)/T1i-2(t;—2;) dt”’=f(z"") for a holomorphic function
TII
f@").
Thus we attain to
Theorem 2.5. Assume (2.1). Then u(z)e©(£2(6,)) (0,>x) satisfying L

(2, 8) u(z)=f(2)€0O(L2) has an integral representation in U(0, 0-+2x) (—8,<6
<0,—2x), U={zC*"; |z| £r} (r<R), of the form

@17) ) = iz @+
where v(z)O(U) and
@18) W@ =, = ew@zlogada|  Kita 1, a7 dr”,

(16+y|<=/2).
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§3. Construction of Kernel Function w(z, t”/, A, £)~(I)

Now we proceed to find a solution to the equation (2.11). We denote
wh(z, t”, 2, ) by w(z, t”’, 2, {), omitting h. Let us write it again:

L(z,2,08,,0;) w(z, t”,2,{) =0,
(3'1) (al)l W(Z, t”a 1, C) Iq=0=61,h(27ri)_” C_l ?=2(ti—zi)—1 >
for 0ZiZs,—1,

where

(2  L(z2,0, 8y = 2o {Xha;, AW BB )" L, (2, 8,)} -
We construct w(z, ¢/, 2, {) under the condition (2.1)’, that is,

(3.3) Api(0,2,E)£0  for || <R, (R<R).

Firstly let us introduce auxilliary functions {f;({)} (j €Z) used in [2],

£ =—51  foge—(1+124 1)) (j=1),
Qxi) !

3.4) £ = 2%” log ¢,

o=y S e gs-.
We note an important relation
(3.5) (d/d?) f&) = f;-1(L) -

We try to find w(z, t”, 2, {) of the form

w(z, 1, 2, ¢) = 2L Sy Vi, 1", 4, ¢, 1) dr
Tl

V(z,t”,2,¢,7) = 2351 vz, t7, 2, 7) f($Hr zp)

(3.6)

where 7 is a closed path in z-space which will be determined later. Thus it
becomes the main purpose to obtain equations which determine v,(z, t”, 2, 7)
(p=h—1). Let us give a lemma for calculations.

Lemma 3.1. There are operators Lj (z, 8,) (0=<j<i) with ord. L{ (z, 8,)
<jand L} i(z, 8,)=A, (z, £ "y such that
3.7 (8" Ly iz, 8,) {v(2) f({+7 z))}
= 2§=0{"-’"—j L};,;(Z, 9,) v(2)} ﬂ—m+j(c+7 z).

The proof is easy, so we omit it. Now we have from Lemma 3.1
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(3.8 L(z,2,8,,8:)V(z,t", 2,0

= 23Th-1-m {20 Gj(z’ 4, 7,98, vil+m—j(za t”, 2, 7)} f,(C—l—‘L' z),
where
(3.9 { Go(z, 2, %, 9) = o {Sh s, A0t 4, (2, E0)

Giz,2,7,8,) = E;Zn=j{2?=max(sk,j) AT s =By £i=7 [] (2, 8,)} .

We have ord. Gi(z, 4,7, 8,)<j. Hence Gy(z, 2, 7, 3,) is a polynomial of z, so
we denote it by Gy(z, 4, 7). Set

(3.10) gz, 1", 2,7) = =271 Gz, A, 7,8) v,_(z, 1", 2, 7).
We have from (3.8)
(B.11) L(z,2,08,,8;) V(z,t”,2,0)
= Eg:h—l—m {GO(Z9 2, T) vp+m(zs t”3 2, T)_gp+m(zy t,/, 2, 7)} f;;(c"l‘f Zl) .

Hence we’ll try to determine v,(z, t”, 2, ) (p=h—1) by the following
equations containing other unknown functions #,(z, t”, 2, ) (p=h—1):

3.12),_, Gyz, A, t) vzt 4, 0) = hy (2, 7, 2, 7)),
(3.12), Gz, 2, T) vz, 1", 2, 7) = g,(z, 1", 4, ) +-hyz, 1", 2, 1) .

We’ll define the path 7 in (3.6) and solve the equations (3.12), in the next
section. {h,(z, 1", , )} are polynomials of r with degree<s,—1 and are
chosen so that w(z, ¢, 2, ) satisfies the initial conditions in (3.1).

§ 4. Construction of Kernel Function w(z, ¢, A, £)— ()

In §4 we define the path 7, {v,(z, t”/, 4, 7)} and {h,(z, ¢, 2, ©)}. Firstly
we define the path 7 in (3.6). In order to do so, we need a lemma concerning
the roots of Gy(z, 2, ©)=0 (see (3.9)), which is an algebraic equation of z:

Lemma 4.1. Assume (3.3). Then there are positive constants a, b and A,
such that if || =4, then Gz, 2, 7)=£0 on {a< || <b|2|"%} and there exist
exactly s,, roots of G(z, 2, ©)=0in {|v|<a}.

The proof of Lemma 4.1 is given in §6. Lemma 4.1 means that there are
exactly s,-roots which are bounded as |A|—-+oco. The closed path 7 in z-
space is chosen so that it encloses all the bounded roots of Gy(z, 4, r)=0.

Now let us proceed to the determination of V(z, ¢, 2, ¢, ) in (3.6),
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@.1) V(z, t", 2,0, 0)=33 51 vz 17, 4, ) f(CHr z) .

We put v,(z, t”, 2, r)=h,(z, t”, 2, ©)=0 for p<h—2. Consider the initial con-
ditions of w(z, ¢”, 2, z) in (3.1). We have

(4.2) (0)' V(z 1", 2, ¢, 0)=335-1{31o() vi2i(z, 17, 2, ) 77} fo (Ct 7 2),

where vi)(z, 1, 2, 7)=(8,) ¥(z, t"’, 2, 7). We define C, (z,, z”, t”, ) 0<ZI<5s,,
—1) by

(4.3) CD,I(ZO, z’/, t”9 l) = 51,,,_1 6”,’(27;1')—(11—]) H7=2(t,""2,-)—1
— L St 29 e de
T 1 Y

7
S gp(Z, t 9Za T) Tld‘t'}lz -0
Y Gz, 2, 7) t

We note that C, (z,, 2/, t”, 2)=0 for p<h—2. If v,_(z, ", 2, 7) (i=1) are
determined, since g,(z, 1"/, 4, ) (see (3.10)) contains only v,_,(z, ¢, 2, 7) (i=1),
then C, (z,, z”, t”, 2) are also done. By making use of C, ,(z,, z", t”, 2), we
determine /,(z, t”, 2, r), which is a polynomial of = with degree<s,—1 so that
it satisfies

Y7
4.4) %S %r’dr——‘cﬁ,,(zo,z", 0 for 0<I<s,—1.
i Jv Gyz. A, 7

It follows from Lemma 9.8 in §9-II that &,(z, ¢, 2, ) satisfying (4.4) uniquely
exists. So we set

(45) VP(Z, t”s l’ T) = {gp(z7 t”: )‘7 T)_l_hp(Z, t"’ 'la T)}'/GO(Z’ 23 T) .

Thus v,(z, 1, 2, ) and h,(z, t”, 2, ) are successively determined. We notice
that v,(z, t”/, 2, ) (p=h—1) have poles as functions of r and the poles are the
zeros of Gy(z, 2, 7).

Let us check that

(4.6) Wz, 1, 2, €) = J__S V(z ", 2, ¢, 7) dr
2ni Jv

.

2ri

Sv ST vz 1) 4, ) f(C e z) de

formally satisfies (3.1). The calculation which we perform below are justified
after obtaining the estimates of vy(z, t”, 2, r) and the convergence of
V(z, t"”, 2,¢,7). Assuming |{|>|zz| for |z] <r and z&7, r being a small
positive constant, we have
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@47 L(z,2,0,,0) w(z,t", 2,0
27[1 s‘ Zp=h 1—m {Z;'”’U Gj(z: xs T, 63) vp+m—j(z= t,/, l, T)}ﬁ(c+le)df

27” S 2P=h 1-m {Go(z: 4, 7") vp+m(za t’/’ 2, T)_gp+m(za t”a 2, T)}
f{{+rz)dr

=5:E§ Sy S Sictemhyen(z 17, 2,0 f(C+T2) dr = 0.

Here we note that t=—¢/z,, the singular point of log ({7 z)), is not in the
inside of 7. As for the initial values, we have from (4.2)

4.8) (3) w(z,t",2,0)
= 7}55 o1 {3 o(D) V§2u(z, £, 2, 1) Y fo (T z) dr
It follows from (4.3) and (4.4) that

@9) (O w(z ", 2, O)|yyg = ?1_1 2;:,,_1{57 vz 0, 2% 2, €) o de
T

2, t,’a la h ) tlla la N\—n

B Sv at Gor()z:'_/l,ﬂr()z D dr 8,11 0,,(270) ™"
T-2(t;i—2) 7} fp—l(c)

= 0,,,(2ri)™" T T ot —2) ™t

Thus we conclude that w(z, ¢”, 2, ¢) satisfies formally the equation (3.1).

§5. Construction of the Integral Representation

In §5 we show the convergence of V(z, t”, 2, {, ), construct w(z, t”, 2, {)
and K,(z, t”, 2), by integrating in = and ¢, and attain to the integral formula.
In order to do so we need the estimates of {v,(z, t", 2, r); p=h—1}. Before
we give them, let us write again the set & ((2.13)), which will often appear in
the sequel:

(5.1) E={z1",0;|z| =r, R=|;| SR (iZ2), |2 =4,},
where we’ll make r small and 4, large if necessary.
(I) The convergence of V(z, '/, 2, £, 7). We have

Proposition 5.1. For v,(z, t”, 2, t) (p=h—1) the following estimates hold:
there are A and B such that
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(5.2) [vy(z, 1. 2, )| SAB? || 27 p+1)!  for (z,t”,2,7)EX
where X={(z, t”, 2, ©); (z, t”, VEE, a< |7| £b| 2|} (see Lemma 4.1).

The proof of Proposition 5.1 is given with other estimates in §9. Now let
us show the convergence of V(z, t”/, 2, {, 7). Set

(5.3) Viz, 1,2, &, 0) = il +r z)pl} v (2, t7, 2, 1)
and
(5.4) Vyz, 1,2, ¢, ) = {4124 +1p)pH(CH7 2)? vz, 17, 2, 7).
Then by noting A—1=—1, we have
V(z,t",2,¢, 1) = —2-15—! {Vi(z, ", 2, ¢, ) log ({+7 z,)
+ V2, 8", 2, 8 )+ (CHT2) v (2, 17, 2, )}
We obatin

Lemma 5.2. V/(z, t”, 2, ¢, 7) (i=1, 2) converge and |V(z,1", 2, ¢, 7)| <
Blz|2in {(z,t",2,{,7); (z, t", A, D) EX, |[{+1z|<A|z|}.

Proof. From (5.2) we have
[C+7z,|?|v,(2, t7, 2, ©) | [p | S AB?*!| {47 z,|?/| | #*2. Hence if B|{+rz]/
7] <1/2, V(z, t”, 2, {, 7) (i=1, 2) are convergent and estimates hold.

Consequently
Proposition 5.3. V(z, t”, 2, C, 1) is holomorphic in
Y= {(z1t",2,07);@Et", A0€EX,0<|l+trz]|<A|z]}.
Corollary 5.4. V(z, t”, 2, ¢, ) is holomorphic and
(5.5) | V(z, t",2, ¢, 0)| <A %1+ |log ¢ )+B| <] !
in {(z, t",2,¢,7); (z, t”, , 1)EX, (A— |z, |=| > || >2]|7 z}.

Proof. We have A |7|>|C|+|rz] >|{+7z]|>]|{|—]|rz]| >0 and
|7 2,/{|<1/2 in the domain. So |{+72z | '<2/|{]| and |log ({+7z)| =C+
|log ¢|. The assertion follows easily.

(II) The construction of w(z, t”, 2, ) and Kz, t”, ). We perform
integrating in z. We denote by 7(c) the path in z-space which starts at r=c,
goes around once on |7z|=|c| and ends at r=c exp(2z i). Set r;=7(c), a=<
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le| <b|2|"* (see Proposition 5.1), and define

(5.6 W 40 = | V" 460 dr.
1

We can give the proof of Proposition 2.3 by Corollary 5.4.

Proof of Proposition 2.3. Suppose |7]|(4d—|z,|)>|¢|>2|rz]| on |z|=
[c]. Then we have |z z/C|<1/2, |{+72z|=2/|¢]| and|log ({47 z)| =CH+
|log ¢| on |z]=]c]|, and w(z,, O)=w(z, t”, 2, ) is holomorphic in {(z;, {); |z |
<r, |c|(A—]|z])>|¢| >2|cz|}. Changing c in r;=7r(c) (@< |c| Zb|2|7%),
we conclude that w(z, ¢) is holomorphic in {(z,, {); 2a|z,|<|¢| <b|A|*™
(A—1z), |z| =min (r, 4/3)} and |w(z, )| <4(C+ <[ +[log {]). This
implies the assertion of Proposition 2.3.

Next we integrate w(z, ¢/, 2, £) in ¢ and construct K,(z, ¢”/, ). Let us recall
the path C(0) in {-space defined in §2-II1. It is a path whose stating point is
de’® 21~* (0<d< B¥*) and goes around once on | |=d|2|*™.

Let us show some part of Proposition 2.4 about Ky(z, ¢/, 2).

Proof of Proposition 2.4-(I). From Proposition 2.3 we can define
G.7) Ky(z, 1", 2) = S P2 Oz, £, 2, O
c®)

Let us deform C(6) to the path C which starts at de’®2'~%, goes to c,e’(c,>
A*|z]), goes around once on |{|=c, and goes from c, @+ to de!@+*31~2
A* being the same as in Proposition 2.3.

de® 2%
dei(a+21t) 21—04

-
\

Fig. 5.1.

Thus we get, if |arg 40| <=z/2,
(58 [Ko(z, 17, )| <A|2]*4 exp(c]z, 87]) .

It follows from the method of construction of Ky(z, ¢”/, 2) and integration by
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parts that
(5.9) L(z, 2, 8,)Ky(z, t”’, 2)
- Scm exp(— 1)Lz, 2, 8,, (z, 1", 2, O)dC +exp(—de* DK (z, 1, 2)
= exp(—de’* )K'(z, t”, 2),

where |K'(z, t”/, )| £A(1+ | 2|)¥ for some N>0, and
(0 Koz, 1”7, )] 1ymo = S 0SSP (CH @YW, 17, 2, OdL
c(e.

— 0,2y Tita (=2 | exp(—2*0)¢7ac
c
= 0,4 2mi)~ " D ILL, (1;—2)7" .
The proof of Proposition 2.4 is not yet completed. The rest of it is in §9-IIL.

(IIT) The integral representation. Ky(z, ¢/, 2) is determined in (II).
Hereafter we write suffix 4 again, for example, K%z, ", 2), 4ii(z) etc.. We set

(5.10) ug(z)=LS exp(iz,) log ldlS KMz, 1, Dak@, ) de”
2z JA) T

where |y+40|<z/2 and 0<h=<s,—1. Set uy(z)=5' u(z). Then we have
to show that u,(z) is a desired formula of the solution u(z). We have

(.11) Lz, 8 )u4(z)

=L S exp (iz;) log Ad2 S L(z, 2, 8Kz, ", k@, 1)de"
2zi JAw) T

=L S exp ((zo—de™) log 2d2 S K'H(z, ", DakA, )de"”
2zi JA) T

=f42).

It is obvious that f%(z) is holomorphic in {|z,|<d} N {|z]|<r}. We have for
the initial values, by Proposition 2.4,

(5.12) (0)'u4(2) | 110

— Qni)~G-D SM exp (Az;) log 2d2 g @K, 1, )| imolilA, ")t
) TI/

= 0y ,(2mi)™"H SAN’ exp (Az,) log 2d2 S {IL:22(t;—2) "y (A, ¢7)dt”
) T

44

01 S ~ "
_ bt exp(Azy) k2, z”)log AdA.
= 5ot Vacoy p(4z) 452, z) log
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By Lemma 2.2 we have
(5.13) (8)'ul(2y, 0, 2'") = 0,,,{(8) ul(zy, O, 2"")+-V(20:2")} »
where vl(z,, z’) is holomorphic at z;=z"’=0. Therefore we have

L(z, 8,)(u(2)—uy(2)) = f(D)—fo(2), fo(2) = 20z £1(2) ,

(0 (U(2)—ug(2) | 0 = V420 2)  for 0=I<s,—1,

(5.14) {

where the functions in the right hand side of (5.14) are holomorphic at z=0
(or zy=2z""=0). Therefore by the uniqueness of the Goursat’s problem means
that u(z)—u,(z) is holomorphic at z=0 (see §8 in [6]). So u(z) is a desired
integral representation of u(z).

§ 6. Miscellaneous Results~(T)

In § 6 we summerize what we need. Some of it was used in the previous
sections and others will be used in the later sections to show estimates and to
deform integration paths. This section is divided into 4 parts. They are
properties of {8i}, zeros of Gy(z, 2, 7), sectors S; (1<i<p—1) and proofs
of Lemmas 2.1 and 2.2.

() Properties of {8i}. We investigate {fi} defined in Lemma 1.1 in
§1. We have set a=a, and §,=p}. Firstly we prove Lemma 1.1.

Proof of Lemma 1.1. If k=k,_,, then we have g;=0. Suppose k=k;_;.
Since 31 is the lower convex part of the boundary of 4, there are ki@, such
that

(6.1) (Sk;_l_sk)/(ki—l_k)+h£ =0;=(l—a)™,
where 4,>0 if k<k,_,, and hi<O0 if k>k,_,. We have (1.5), by putting gi=
hi(1—a,) (k;_,—k), and pi=0 if and only if (k, s,) € 3] (0).

We further have

Proposition 6.1. The followings hold:

1) ﬂk"l—(a'_ai)sk:ﬂk;-1+(a—ai)sk,-_1+/9;;-

Q) For (k, s E21(), But(a—a)s,=fy,_,+(a—a)s,,_,, in particular B+
(a_ai)sk,-=/9k,--1+(a_ai)sk,-_1'
Proof. (1) It follows from Lemma 1.1 that (s,—s,)(1—a)+8,=m—k,

(sm_sk,-_l)(l—a)_l_ﬂk;_l=m'—ki—1 and (sk,-_l_sk)(l—'ai)‘l_ﬂ;;=ki—1—k' We
obtain (1) from these equalities. (2) For (k, s,)33(i), fi=0. So from (1)
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we have the first equality and, by putting k=k;, we get the second.

(I) Roots of Gy(z, 4, 7)=0. We study the roots of Gz, 4, )=0 (see
(3.9)), which is an algebraic equation of z. Set

62 { Fyz, 2, 7) = 4,,, (z, 4—9')1-‘_»1B A |

Fyz, 2, 7) = DG speznd #Ay 42, €)% (I=isp-1),
where £ '=(1, 0, ---, 0). We give the condition on Gz, 2, 1)
(6.3)-i | Aoy (2 E)|Z6>0  for |z| <R,.

Some of (6.3)-1 (0<i< p—1) will be assumed in the following lemmas and pro-
positions.

Lemma 6.2. Assume (6.3)-i. Then there are positive constants a,,,, b; and
Ay such that if | 2| = A4,, then

(6.4) |Goz, 2, O)—2"Pudy, , (2, E)'n | < | Phidy, (2, E)e'n ]2
on {r; |7|=b;|2]"} U {r; 7] =a;, | 2] %in~"}.

Proof. Let |7]|=c|2]|%®. Then from Proposition 6.1 for each term in
GO(Z’ l’ T)

(6.5) [/I‘ﬂk‘(l-w)(l—s,,)TlAk,I(Z, EA') l — I C'l_PAk'I(Z, EA,) l ,
p = Byt (a—a)s,+Bi+(1—a)l—s) .

If I=s, and (k, sp) €31(), then p=4, +(a—a;)s,.. Hence there is a small ¢>0
such that

E(k,sk)ei(i).kik,-l C”'Ak,sk(z’ &< lcskiAk;,ski(z’ &NN/A.

Fix ¢>0. For each term in {Gy(z, 4, ©)—F(z, 2, ©)}, 8i>0 or I>s,. So this
means p>(a—a;)s;,+f. Therefore there is a large 4, such that for || =4,
and on {|z|=c|A|% %},

| Gylz, 2, ©)—Fi(z, 4, )| <|A~Bm z-’k.-Ak‘.,ski(z, N4 .

Thus we have (6.4) on {|z|=b;|2||% "} (b;=c). Next let |z|=c|a|%+~%,
we have

IZ(I“U)(I—‘k)_pk TlAk,I(Z’ EA’)I = clll_qu'l(Z, é’)l »

where q=ﬂki+(a—ai+1)ski+ﬂ;;—|—(1—a,-ﬂ)(l——s,z). Hence for a large ¢>0 we
have
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Sk spesten, btk CF | Aj o2, €| < | A,y (25 €01 /4

Fix ¢>0. Then in the same way as above there exists a 4, such that for
2] =4,

|Golzs 2, ) —Fipa(, 2 )| < |74y, (2, €)1 4.

Thus on {|r|=a;y,|A|%+17"} (|2| =4y, a;4,=c¢), we have (6.4). This com-
pletes the proof.

Now we can show Lemma 4.1.
Proof of Lemma 4.1. We have from Lemma 6.2
|Go(@s 2 ) Ay (2 €)% | < | Ay, (2, €)n]

on {|z|=by]2|*"*} U {|z| =a}. Hence it follows from the Rouche’s Theorem
in the theory of functions of one complex variable that there are s, roots of
Gyz, 2, ©)=01in {r; |7|<a,} and no zeros in {g, =< |7| =by|2|}"%}.

Secondly we study the roots of G(z, 4, 7)=0 more precisely. We have

Lemma 6.3. Assume (6.3)-(i—1) and (6.3)-i (i#0). The equation
F(z, 2, ) =0 has (s;,_,—s,,) non zero roots {z, @2 1< Sk_,— Skt and
other roots are zero.

Proof. Set t=72%"". Then, by Proposition 6.1-(2),

F‘i(ﬂlwrﬁ) =2"? E(k,sk)ez(i) (ﬂskAk,sk(Z’ E’)) >

where p=p, +(a—a;)s,. Thus Fy(z, 2, ©)=0 has (s;,_,—s;) non zero roots
{z,,2)2%"; 1< j<s,_,—s} and other roots are zero.

We set
(6.6) N, = {2,,2); |2| SRy 1S j <83, —5i} 5

Proposition 6.4. Assume (6.3)-(i—1) and (6.3)-i (i==0). The equation
Gy(z, 2, 7)=0 has (s;,_,—s;,) non zero roots {z; (z, 2); 1=<j=s;,_,—s} such
that for | 2| =4,

6.7 lz',-,j(z, l)——-f-'.,].(z) ,7‘,-‘“"' <A4|2] —p48,-8
Ay, A and p being positive constants.

Proof. We choose p>0 so that 0<o(sy,_,—s5;)<d, d=min {l—a;, £;
(kX2 (@)}, Put D,(0)={y; dis(z, N;)=|2| "}, dis(7, K) being the distance
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from the point 7 to the set K. For n& D,(i), there is a C>0 such that
| #g)| 2 C 2] P~ 0 ki)
We have from (6.5), for n& D, (i)

|Gz, 2, 28%7")—F(z, 4, 74%7%)]
SC AP (S, or apesen | 2] TP
< C| 2] Pat e

Thus it holds for a large 4, that if & D,({) and |2| =4, |Fiz, 2, 7)|/2>
|Go(z, 4, ©)—F(z, 4, 7)|. Therefore Gy(z, 4, 7)=0 has (s;,_,—s;,) roots in the
inside of 2~ D, (i) by the Rouche’s Theorem.

Hereafter assume p>1, (6.3)-i for all 0<i<p—1 and Sg,_,=0. Set

6.8) Nz, ) = {z; j(z, D25 1= j <8y, ,—Si}
and
(6.9) K@) = U e =2, 0)| <0} .

We choose small 8, R,>0 and a large 4, so that if |z] <R, and || = 4,,

(6.10) K,(0)DK[(6/2)DNy(z, 2, K,(0)C {r; b;<<|r|<a;} (1ZiZp-—1),

a; and b; being those in Lemma 6.2. Define the sets for 1</ <p—1

6.11) (@) = {r; b;| A% =S 2| by | 4] %177, c € 25UK0))
Then we have

Proposition 6.5. Let N(z, X) be the set of all bounded roots of Gz, 2, t)=0
as A—oo. Then N(z, ) U%Z] 2" K,(8/2).

We have
Proposition 6.6. For r& (i)
©12) |Gz, 4, D) ZC | 2] “Fhics 2| bt
Proof. We have on {|z|=b;_;|2]|%-1""} by Lemma 6.2
|Gz, 4, )| = |4 Priady,_ sy (2, E)china] 2.
Similarly on {|z|=b;|2|% "} or r€2%~"9K(d) we have

|Gz, &, 7)| =C | 2] 2= C | A| ~Prica| | hies
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where p=pg, +(a—a)s,=pB,_ +(a—a;)s,_, by Lemma 6.1~(2). Thus apply-
ing the maximal principle of holomorphic functions to °%-1Gy(z, 4, 7)™}, we
have |7°%i-1Gy(z, 2, r)"'| < C | Pti-1|. This means (6.12).

Proposition 6.7. For r (i) and | = s, there is an A such that

]1-(1-w)(l—sk)—ﬁkrll <
IGO(Za l’ T)l

(6.13)

Proof. We have, on {|7|=b;_;|2|%-17%}
| A= G=a)=sp)=Pigl | < C | 4| ~O-U=sp=By~1la=a; )
Since  (1—a)(—sp)+Bp+l(a—a;_)
= (1—e;_JU—s)+(@—e;_ )y + B2 By, H(a—a; sy, »
we have |2~W@0=s0=Bigt| < C | 217 Pri-azhi-a |,
On the other hand we have
(1_ai)(l_sk)"l—(a"‘ai)sk‘l_ﬂkg(a_ai)sk_l_ﬂkg/9Iz,-_1+(a—ai)sk,-..1 .
Hence we have on {|z|=b;|4|% "} U {*~*0K,(8)}
| A= Q=@ =sp=Birl | < C | ABrizaz®hioa .
It follows from Proposition 6.6 that on the boundary of z(7)
| A== =sp=Bycd |G (z, 2, 7)| <A

By the maximal principle of holomorphic functions implies (6.13) holds on z(7).

(III) Sectors S; (1<i<p—1). In (III) we define sectors {S;; 1<i<p—1)

whose vertex is the origin in r-space. We make use of the sectors to prove
Theorem 1.3 in § 8. To define S; we give two lemmas.

Lemma 6.8. There is an o, (|w,|=1) such that arg(7; ;(0)w,) £z —ra;
(mod 27) for all 1<i<p—1 and 1< j<s;,_,—5,

Proof. Set B={z;;(0); 1=i=<p—1,1=j=<s,_,—S4}, L;={re™"=;
r=0} and L=U#Z}1L,. Bis a finite set of nonzero points and L is a finite set
of half lines. So we can find an w, (|wy|=1) such that w,BNL=¢. This
implies the assertion.

It follows from Lemma 6.8 that

Lemma 6.9. There are o, (|w,|=1) and positive numbers r and ¢, such that
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arg 7; (z, DoFrz—na; (mod 27) for all |2| =4, |z| =r and |o—w,|<e,.
Thus we conclude:

Proposition 6.10. There are 8, €,>0, 2, =0 and for each i 1Zi<p—1) an
open sector S; with the vertex 0 in C* such that

S;De; = e ™) agnd S,N(—zK@)=¢ for |z;—1|<e.
(IV) Representation of functions in O(£(6,)) (Proofs of Lemmas 2.1 and
2.2). Let w(z)€O@(6y) (6,>r), 2={|z| <R}. Define for —0,<06<,—2z

(6.14) o4, 2) =_175 exp (— At wlty, 2)dt, -
2ri o)

Then We(2, z') is an entire function of 2 and
(6.15) |We(2, 2)| =C.exp(e|d])  for |arga+0|<=z/2.
Lemma 6.11. If |:S/?£e | w(ty, t)]| <A exp(8] 2] ™) (r>0), then
(6.16) |tsl}ls% | We(2, )] < B exp(2(8|2|)VD) for 2 with |2| =1
an_d |arg 240 <m/2.

Proof. Choose e=(8|2]| ™)@ in the path T(f). Then on |[t)| =e¢,
|t,A] +8 12| Y=¢|A| +877=2(8|A|HVEN.  So we have (6.16).

Set for |v+0|<z/2

6.17) we(2) = ﬁ SA(#/) exp (Azy)Wwy(4, z")(log )dA .

Then wy(z) EO(£(6, 6-+2x)) by (6.15). We have the relation between w(z) and
we(2).

Lemma 6.12. w(z)—wg(z) is holomorphic in {z; |z,| <R, |z'| =R}.

Proof. From (6.17) for z, with |arg zy-+¢—r| <z/2

_ 1 1 B ,
(6.18)  wyz) = EL(@ exp (4z;) (log l)dlﬁgm)exp( At)wlty, 2')dt,

coefY
= —L S ¢ exp (Azy)d2 S exp (— Atgw(ty, z')dt, .
2zi Jo T(0)
Set y»=—0 and let arg zy=0-+= and |z,| >2¢. Then by the definition of 7(6),
we have
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w@) =~ |ttt D) zhdty = W@ -2,

where v(z)=——21—.g (){w(t,,, 2)(te—zp)}dt, and T*(6) is a path starting at
7Tl J T*(0

Re'® and going around on the circle |#]=R once. So ¥(z) is holomorphic in

{z; |z, <R, |z'| =R}. This completes the proof.

We have Lemma 2.1 from Lemma 6.11 and Lemma 2.2 from Lemma 6.12.

§7. Holomorphic Extension of the Kernel Function w(z, ¢/, A, £)

We try to analyze the integral representation in detail. To do so we study
the singularties of the solution w(z, t”/, 2, {)=w'(z, t”, 2, {) of (3.1). We will
obtain more precise informations of the integral representation from them, which
yield the results of removable singularities (Theorem 1.3).

Now we always assume

.1 { H{:(l) Ak,-.sk'.(z’ &l §/=8=(1,0,,0) +0 for |z| =R,

0,>1 and 5, =0

through § 7 and §8. This means p>1 and (6.3)~ hold for all 0<i<p—1.
Let us recall the definitions of the path r(c) in z-space (see § 5-II) and positive
constants g; and b; (see Lemma 6.2 and (6.10)). Let us write the sets appear-
ing often in the sequels:

E={z1t",2;|z|=r, R=|4;| SR(E=2), |2 =45},
(@) = {r; b;|A|*7* < | 7| Kby | 2| %i-17%, v 2% K (0)}
X@) = {(z, ", 2, 7); (2, t”, Ve E, (i)},
Y@) = {(z t”, 2, ¢, 7); (z, 17, 2, 1) EX(), 0<|{+7z|<A|7|}
Z@) = {(z ", 2,0); (z, ", HEE,

2a;| 2770z | <| €| <b;y | 2] %-1"(A— |z |)} .
Ziin=A{z1",2,0; (1", HeES,

[C1<b;| | (A—|z]), (& —z, 257K 0)} ,

1=<i<p—1, for K,(5) see (6.8)-(6.10).

By Proposition 5.3 ¥(z, t”, 2, , ) is holomorphic in ¥ C Y(1) and we may
assume w(z, ", 2, €) is holomorphic in Z(1) (see Proof of Proposition 2.3 in § 5).
Now that we assume (7.1), we have better results than Proposition 5.3.

(1.2)

Preposition 7.1. (1). The following estimate holds in X(1):



REMOVABLE SINGULARITIES OF SOLUTIONS 759

(7.3) [v(z, 17, 2, ©)| SAB**|z|27%p!.
Q). Vi(z,t", 2, ¢, t) is holomorphic in Y(1).

If we assume (7.3) in X(1), we can show (2) by the same method as in the
proof of Lemma 5.2. The estimate (7.3) is shown § 9. So from Proposition
7.1 we can define, by setting 7,=7(b,),

(7.4) Wiz, 17,2, &) = S Vi i, 2, ¢, t)de.

Y2
By repeating the same argument as in the proof of Proposition 2.3 (see § 5-1I)
we have

Proposition 7.2. w,(z, t”/, 2, €) is holomorphic in Z4, Z4={(z, t”, 2, 0);
(z, 1", DEE, 2b,| 7| <|C| <b(A— |z}

Set wy(z, t”, 2, ) = w(z, t”’, 2, {) and

(.5) a4 0= Ve a6 0

¥y—="2

Then we have

(7.6)  wilz, 1”7, 2, 0) = wyo(z, 17, 2, O)Fwy(z, 17, 2, () in Z"lﬂ\-ié.

Since the path (7,—7;) can be deformed to the path 8K,(5), we get
Proposition 7.3.  w,,(z, 1", 2, O)EO(Z,.,).

We have defined wi(z, t”, 1, {) (i=1, 2) and w,x(z, t”, 2, {). Let us con-
struct inductively w,(z, t”, 2, {) and w; ;1,(z, t”/, 2, €) (i=1, 2, +++, p—1) such that
(7'7) wi—l(z, t"s ln C) = wi-l,i(z, t”’ l: C)-{-W,{Z, t”7 ’19 C) .

By the relation (7.7) we shall get the holomorphic extension of w(z, t”/, 2, {) as a
function of ¢ onto a covering space of

Zy= {55 €] <bo| 2| A~z ]|), { &~z Ujzt 27* K (9)}.
Define r;=r(c;), 2a;|2|%™ =< |¢;| =b;_,|2|%-17%.  Assume that w,_,(z, ¢/,

2, {) is defined and has the form

(7.8) Wiz, 17, 2, C) = j Vislz, ¢, 4, ¢, O)dr ,

i-1
where Vi7l(z, 1", 2, {, ©) = 3351 v (@ 17, A, ©)f,(¢ +7z) converging in
Y(i—1)and Viz, t”, 2, {, ©)=V(z, ", 2, {, 7). Let us define Vi(z, ¢, 2, ¢, 7).
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Set vi(z, t”/, 2, ©)=0 for p<h—2 and suppose that vi_(z, t”, 2, 7) (j=1) are
defined so that

Vp-i(z, 1, & ©)—v;Zi(2, 17, 2, D)EO0({| 7| <b;_,| 2] %-1}) .

Set gi(z, 1", 2, ©)=337-1 G;(z, 4, 7, B )vj_i(z, t”, 2, 7). Then gi(z, t”, 2, 1)—
gz, v, 2, ©)E0{| | <b;_,| A|%-17*}). We have

Proposition 7.4. There exists uniquely a polynomial hi(z, t”, 2, 7) with
degree<s,._ ,—1 such that

{gj’-l(z, t”, l, T)—g;(Z, tﬂa l’ T)_I_h;:—l(z’ t”’ l’ T)} T’d‘l'
GO(Z, 2, T)

(1.9) Sy,.

i, i
= S Mdr for 0<I<s, —1.
¥ GO(Z, 13 T) .

Proof. There exist s;,_, roots of Gy(z, 4, 7)=0 in the inside of 7; if |1]=
A, Proposition 7.4 follows from Lemma 9.8 in § 9.

So set
vi(z, 1, 2, 1) = {gi(z, t", 2, ©)+hifz, t”, 2, ©)}/Gy(z, 4, 7).

Since gi(z, t”, 2, ©)—g; "z, t”, A, ©)+hi(z, 17, X, D) —h Nz, 7, 2, D)EO{| ]
<b,_,|A|%-17%}), it follows from Lemma 9.7 in §9 that (7.9) means that
vi(z, 1, A, )=V Nz, t7, 2, )EO({|v| £b;-,|A|%-17%}). For the estimate of
vi(z, t”’, 2, ) we have

Lemma 7.5. It holds that
(7.10) |vi(z, ¢, 2, 7)| S AB?* |z | ~272p! in X@).

We refer the proof of Lemma 7.5 to §9. By Lemma 7.5 we can show
the convergence of

(7.11) Vi(z, t”, 2, ¢, v) = 2351 vi(z, t7, 2, ©) f({+7z)
and get
Proposition 7.6. Vi(z, t”, 2, ¢, 7) is holomorphic in Y(i).
We define

(1.12) w,(z, 1, 2, c)=i.s Vi(z, 1, 2, ¢, 7)dz
2zi Jv;

and
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(7.13) Wizt 2, 0) = L S Visi(z, 1, &, ¢, ©)de..

’ 27i -1~
If [C|>]|rz], since vi(z, t”, 2, ©)—vi ™z, t”, 2, D)EO({| 7| <b;_,|A|%-17%}),
Vil(z,t", 2, (1) —Vi(z, ", 2, {, 1) €O ({r; |r| £b;,|2]|%-1%}), So we
can replace the integrand in (7.12) by Vi~Y(z, t”, 2, {, ©). Then we have in
(z, t”, 2, O)eZi—-1) N ZG),

(7.14) wi(z, 1", 4, C) :-1__8 Vil ¢, 2, ¢, D)z .
27i Jy;
Thus
(7.15) W"_I(Z, t”, X, C) = Wi_]’,-(Z, t//, l, C)—!—El__.Jv .Vi—l(Z, t,/, l, (’ T)d‘l'
Tl vY;

. ” 1 . T e—

= w2, 17, 2, O+w,(z, 7, 2, C) in Zi—-1)NZ3).
We have

Proposition 7.7.  w;_, [(z, t', 2, O)€O(Z;_,.)) and wz, 1", 2, {)EO(Z()).
Thus by using w;_,;(z,t”, 2, {) and w;(z, t”, 2, {), we can extend
wiz, 1, 2, O)=w,(z, t”, 2, {)&O(Z(1)) holomorphically into Z,,
Zo = {(Z’ t”’ X’ C); (27 t”, Z)EE, l(|<bollll_“(A—|ZI|), CEE—ZJK}' ’
K= Uz 2 *K,0),
in the following way:
. e’
(7.16)  wy(z, 7, 2, Q) = wy (2, 17, 2, O)+wylz, t”7, 2, () in Z,,NZ(2)
”" ’" ” B S N7
= wy oz, 17, A, )+ wy sz, 17, 2, O)Fwy(z, 17, 2, () in Z,3NZ(3)
= w,5(z, 17, 4, O)Fwy oz, 17, 4, O AW,y , (2, 17, 2, )
inZ,,,.
Summing up the above extension, we have

Theorem 7.8. w(z, t”, 2, {) has a holomorphic prolongation by (7.16) as a
Sfunction of { to some covering space Z, of Z,.

We denote this prolonged function also by w(z, t”/, 4, ). Soin (2.2), the
definition of K%z, 4, ), we can deform C(6) homotopically to a path in Z,
We’ll perform it in § 8 to show Theorem 1.3.

§ 8. Removability of Singularities

In this section we assume (7.1) and complete the proof of Theorem 1.3.
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So Propositions in § 6 are available. Sectors {S;} (1=<i<p—1) appearing
in this section are those in Proposition 6.10. Set

8.1 E = {(zt", )iz t", )EE, |z;—4 | <&},

where ¢,>0 and Z,3=0 are also those in Proposition 6.10. We always assume
(z, ¥/, )€ E’ in this section. In (I)-~(II), by using Propositions 6.5 and 6.10
and Theorem 7.8, we decompose K* (z, t”/, 2). In (III) we decompose u(z) with
the aid of the decomposition of K%,.(z, t”/, 2). In (IV) we complete the proof
of Theorem 1.3, by using Theorems 1.7 and 1.9.

(I) Deformation of path C(). We have constructed K%z, ¢”,2) in § 5.
In view of Theorem 7.8 we can deform the path C() in the definition of
KXz, t”,2) ((5.7)). Firstly let us define some paths in {-space. For a path
C={¢(@); 0=t <1} and acC, aC={al(t); 0=t <1}. A, is a straight line
which starts at d;_;e”"®-12%-1"% and ends at c;e” 2%~ %(c;>2a; |z, | >b;|z,| >
d;>0,i=1,2, -+, p—1, dy=d, d being in (2.12)). B; is a circle starting at
¢;e""* and enclosing {=0 once.

d,_, e ™%i-1 %1%

—e*™i A,

le_d B/,/ ¢; e—ma:‘. lw‘—m
K// ¢ = A 257" Bi—e™i 4,

Fig. 8.1.

Set C,= A;+2%~%B,—e*™ A; (see Fig. 8.1.). The singularities of w*(z, t”/, 2, {)
are in the inside of B;. So we have

®8.2) Kz, 1, 2) =S L, (LW 17, 2, C)dC
[

=L1°..d5+5 ---d{—j—S e dC.

By ~e2% gy

We note that in general w(z, t”/, 2, ) is multi-valued, so in (8.2) S e dC+

41

S ber. o d€=*0. Let us try to deform the path B, to another path. We have
- mA]
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Proposition 8.1. The path B, in (8.2) can be deformed homotopically to B]
containing the path C, as a subpath, B{=B{(+)-+C,+B{(—), with the following
properties:

The paths B{(++) and B{(—) are in {4, |¢| Sc}, (B{(-H) U B{(—) N 5=,
B{(4+)U B{(—) encloses —z,K,(9) and

8.3) SBlexp(—X"C)w”(z, 2, C)dé’=s ---dC—I—S ---dC—I—S . de.

B{(+) (o B{(-)

Proof. The singularities of w'(z, t”,2,¢) lie in —z K,(®) or in
Uszi {—z 2% *K(8)} by Theorem 7.8. The latter singularities are in
{¢; |¢]<a|2|%| 2|}, that is, in the inside of C,. So we can deform B, so
that Bi(+) and B{(—) enclose —z,K,(8) and from (—z,K,(6)) N S;=¢ (Proposi-
tion 6.10), (B{(4+) U Bi{(—)) N S;=¢ and (8.3) hold.

The singularities of w'(z, t”, 2, ¢) in the inside of C, are enclosed by
2%2"*B, more precisely, in —z, A% *K,(8) or in UZZ3{—z 2% *K,(®)} C
{¢; 1¢]<a;]2]|%57%|z,|}. We can again deform the path C,= A,+2% *B,+
(—e™ 4,), not changing A4, and e?4,, to a path A4,+ Bj+(—e*™4,), where B
contains C; as a subpath and the similar results to Proposition 8.1 hold (see
Fig. 8.2.).

d] e %

By =2%2"*Bj(+)+Cy+ 2% *Bj(—)
C2=A2+xw2-¢B2_eZ1tiAz

Fig. 8.2.

The singularities of w(z, t”/, 4, ¢) inside of C, are in the parts of oblique
lines in Fig. 8.2.
By the repetition of these processes of deformations we have
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Proposition 8.2. The paths B(1<i < p—1) can be deformed homotopically
in Z, to B} such that

(1) Bi=2%""Bi(+)+C;s,+2%7" Bi(—) (C,=9),

(2) Bi(+) and B{(—) are independent of 2 and contained in {d;=<|{| <c;}
and {B{(+)U BX—)} N S;=¢, and it holds that

. d(+$ e dC

Cita

€ (. ew(—rowe 7, 2 o = :
A%i~0g, A%i=Ggl(_)

[ e de.
A%i=®pi_)

Thus Proposition 8.2 gives

Proposition 8.3. The kernel function K" (z, t”/, 2) is represented in the fol-
lowing form:

(8.5) Kz, 1", 2) =11 S exp(—2*Owh(z, 1", 2, O)d¢
4

+| o acr s - de} .

wdct] .
j A%~ ®pli(+) A%i=%pl(-)

(II) Decomposition of K% (z,t”,2). In order to show Theorem 1.3 we
further decompose the paths. For this purpose we need lemmas and pro-
positions about the paths 4;, B/(+) and Bi(—).

Proposition 8.4. Let {€A; and arg A==. Then there is a c>0 such that
Re °C=c|A|%.

Proof. Since 4; is {(t)=(1—1)d; e~ i-12%-1"%J-tc;e” "% 2%, (0=t <1),
Re 2%¢=(1—1t)d;| 2| %-1-+1c;|2|%. So there is a ¢>0 with Re 2°¢=c|2|% for
0=r<1.

Lemma 8.5. Let {=2%"%p, nc£S,. Then there exist ¢,>0 and v, with
|y, —x | <=m[2a; such that Re 2*C=c,|2|% for 2 with arg A=+,

Proof. Set 2=|2|e"* and 7=|7|e*. Then Re 2*¢=]|2%75|cos(a; ¥ +p).
Since 7€S;, |o+ma;|<zm—e for some €>0. Hence there is a vy, such that
|Yr,—7| <m[2e; and cos(a;yr,+p)>0. Thus if arg A=y, Re 22¢ =c,||% for
a ¢,>0.

The proof of Lemma 8.5 also shows
Lemma 8.6. Suppose that K is a compact set in C* and KN\ S;=¢. If the

diameter of K is sufficiently small, then there are Cx>0 and yrg with |¥rg—=| <
w/2a; such that Re 2*{ = Cg|2|% holds for n= K and X with arg 2=vg.
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By Lemma 8.6, we can decompose the path B(+4).

Proposition 8.7. There are paths B; , and constants yr; , with |y, —z|<
z/2a; and c; ;>0 (1=s <1I;), which do not depend on 2 such that

I ;
(1) Bi(+)=2Is=1 B, , and Bi(—)=31s=1/+1 B, :
(2) Re2*¢=c; |2|% for {€2%7*B; , and X with arg A=y, .

Let us decompose K* .(z, t”, 2) by using the paths 4; and B; .. Set

B8 Klaunm 1’ D= (| +j ., Yexp (— 1WA, 17, 4, O)E,
-2 g

4;
87 K, ,(z1", 2= S PO, 17, 3, OE
B; () =278, M(l =s=l).

Then we have
(8.8) Kz, 17, ) = (ko Klei iz 17, 2))

It holds for K%, ; (z, ¢/, 2) that

Proposition 8.8. The following estimates hold:
(89 |K .oz t", )| <Aexp(B|2|%-1)  for |argl—=z|<=z/2,
and
(8.10) |K', oz 1”7, )| <Aexp(—c|A|*) (c>0) for 2 withargd ==,
Sor 1<s <,
@11) [Khesla 1, D] SAexp(BI2]%),
(8.12) |K',; (z 1", )| <A exp(—c|a|*%) (c>0) for 2 with arg 2=, ;.

Proof. (8.9) and (8.11) are obvious. We have (8.10) by Proposition 8.4
and (8.12) by Proposition 8.7.

We remark that (8.11) is valid without the condition of the argument of Z.
As we said, (z, ¢/, )€ &’ are assumed. But the estimates (8.9)—(8.11) are also
valid for (z, ¢t”/, )& &. The condition (z, t”/, )€ &’ is required to show (8.12).

(III) Decomposition of u".(z). By using K*.; (z, ", 2), we divide
u® 4(2) into the sum of u*.; (2). K".(z, ¢, 2) is single valued by Proposition
2.4, and @#" (4, t’) is an entire function of 2 by Lemma 2.1. Hence we have
from (5.10)
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(8.13) W)= \"" exp(Az)da\ Kz, t", Dt A, t")dt" +V4(z)
Agei™ o T

where () =~1—. S exp(z,) log 2d2 S K" (z, ", Dt 2, t")dt” +v" o (2),
27i JIal=4, T

|y—=m|<m/2, and |2| =4, is a path on the circle starting at — A,=A,e™ and
going around once. Set

ool
(B14) e = (7o expO)dr | Ko utat, DL, )"
o€’ T/

Hence we have in U(z)= {zC"; 0< |z,| =1, |2/ | 1, |arg z| <=}

(8.15) u(z) = 1,9 Uee,i, (D) +1(2) , ¥(2) = ZMEOU),
and from Proposition 8.8

Proposition 8.9. ", ; (2) (1=<s=<1,) are holomorphically extensible to U(6,)
and for any 6, with 0<<0,<<6,

(8.16) |41, 4(2) | < Ao, €xD (coy| 20| ™) Sfor z€T () .

Proof. In the representation of v, ; (z) ((8.14)) we can deform the path
of integration in 2 by (8.11). Namely we change v in (8.14). In doing so we
have to replace @ ,(2, t”’) by #%2, t") and take another holomorphic function
wh(z) (see Lemmas 2.2 and 6.12). Consequently if 6<arg zy<0-+2r (—8,<0<

6,—2x), we have
coeiP u
GIT) whes @ = 1o ep(agda | Kho (1", Dl " +i@),

¥ being |[0—vyr| <z/2.
Thus we get holomorphic extension of u”, ; (z) and (8.16) from (8.11).

Now we use the decay estimate (8.10) and (8.12) and obtain the asymptotic
expansion of u’.; (z). In the representation of u,; (z) ((8.17)) we choose
Y=y, in Proposition 8.8 (¥;,==). Then we can show that it has the
asymptotic expansion with respect to z,, Namely,

Propesition 8.10. u*,; (z) (0=s<1I,) have the asymptotic expansion with
bounds with respect to z, in {zy; |arg zy+v; ,—=| <=/2}, that is, there are holo-
morphic functions u*, ; ; (2) (n=0, 1, ---) in {|2'| <r, |z,—%,|<e} and con-
stants Ag and By such that

(8.18) Iu’_'_,,,,,-,s(z)—-z,,”:ol u-h-vt,i,s,n(zl)(zo)”l §AsB§V |zo| YT (N[r;+1)
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in {z; 0<|z,| <r, |arg 20+¢i,s_nl<7z/2_6> 2| =r, [2,—2,| <&}

Proof. We apply Proposition 10.10 in § 10 to u*, ; (z). The inequalities
(8.10) and (8.12) imply the condition of Proposition 10.10. Hence we have
(8.18).

Since r=r,_;<r;, we can say ut . (t7% Z') has the r-asymptotic expan-
sion with respect to f in #/2<<—arg t+y; <3z/2.

(IV) Laplace transform of u(z). Now we proceed to complete Theorem
1.3. Here we use the assumption concerning the growth property of u(z). Let
us write it again:

For any >0 there is a C,>0 such that

(3.19) lu(z)| < C, exp (¢] 2| ~"2-1) in 2(6,),
0,>n(1/27 oy 4-1), 7poy = 0,—1.

For simplicity we denote u(z)=u(z,, z,, -+, z,) by u(z,) and r,_, by r because
other variables are not important. By setting z,=¢~%?, we have from (8.19)

(8.20) lu(t=4")| < C,exp(e|t])in {t; |arg 1| <76, || >C"} .

Define the r-Laplace transform of u(z,), ¥(z,) and ", ; (z,) by
a(E) = Sj‘”exp EOu@dr (@>CY).
8.21) §(&) = S:“exp EopeE=idr (@>CY).
ite;(6) = S:oew exp (E)ut . ; (7Y~ dt (a>C),

where z/2<— 2—I—yb,-,s< 3z/2 (see Proposition 8.10). We have from (8.21) and
T

Proposition 8.10.

T
Proposition 8.11. (a) L?(E)EO({E; |arg £ —x| <5+7—00} ,

b) ke FEa e T

( ) u_ ,z,s(f)6@<{f, 2 + 2 T<arg5 T {—T\/j“,s< 2 zr+ 2 })’
R —————

© O EeO0({0< |&]<oo}).

By Proposition 8.10 each u”,; (r™) has the r-asymptotic expansion with
respecte to ¢ in {t&C"; |t|>C, n/2<—arg t+y; <3z/2} and v(¢7?) is holo-
morphic at = oo, V(™) =32 v,(z')t"*. This gives informations of the
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behaviours of #%, ; (£) and #(€) near £=0, that is, by Theorem 1.7 we have

Proposition 8.12. (a) 2., ,(¢) has the holomorphic prolongation onto

i
{0< |&|<c} for some c>0 such that " ; (£)EO({0<|E|<c}), |8e; (6)| =
Agllog & in {€; 0<|&|<c, |arg &| <O} and

(8.22) Do (E) =1k s (EE™) =0T Ul 0w (@) IT (7 +1) ,
(b) For %(¢€), |v(6)] =Ae,0llog &| in {£; 0< €| <c, |arg &| <6}
(8.23) Y(E)—H(Ee™) = a2 v(2)e" T (n]r+1) .

Now let us study the relation between #(£), i@, ; (€) and #(&). For this
purpose we employ a limitting method (see (8.25)). Firstly we give

Lemma 8.13. There are ¢; , 1<i<p—1, 0<s5=<1,) such that
D) @;,0=0and |, | <zr|2r; for 1=s<I,
@ #2<(p;, 1)+ V;,,<37/2,

where Vr; o=7 and Vr; ; (1=s5 =1,) are those in Proposition 8.7.

Proof. Let us note |v; ,—n|<z/2a;. In order that there exist ¢; , satis-
fying (1) and (2), it is necessary and sufficient that 3z/2—vyr; ;>—=/2r; and
z/2r;>n(2—r; .. This conditions are satisfied by ¥ ..

Choose v;>0 (i=1, 2, -+, p—1) such that |, ((r;/7) +v;)| <z/2 for all
1=s=I. Set

(8.24) 0 = min{z/2+9¢; ,, 7/2—@; ;; 1Si<p—1, 1=s <[} >0.
Let £,>0 (i=1, 2, --,p—1). Then we have

(8.25) d(6) — lim ( lim --- (lim S+”exp(5t—2§;} 1Y (YA

£y >0 Ky >0 k>0
We have from (8.25)

Proposition 8.14. Let |argé—n| <<, Then
(8.26) (€)= st Szl Shie it (O)+HH(E).

Proof. Let s=1. Since |ul,; (17"")| <44, exp(ce|t]"") in {|argt|<
76,} (0<<8,<0,) by Proposition 8.9, we have

Ui, (£)
= lim ( lim (- (im j exp (61— 302} &, Tt (67 N)dt)-+)

Kﬁ 1—)0 Kp 2-)0
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P,
= lim ( lim (---(limg ¢ exp (61— 02} &0Vl L (17
Ky 10 Ky p>0 k>0 Jg
Here we use |@; (7; /r+v;)| <z/2 and z/2< —0+¢; <argé—n—+o, <0-+o;
<=/2. Since u*,; (t™¥") is bounded on arg t=g, ,, we have
1'40'.

827)  #.,.(E) = S " exp (€t e (YN AdE = BF, (&) .

ooe
a

This means (8.26).

Combining Proposition 8.14 with Propositions 8.11 and 8.12, we have

N N
Proposition 8.15. L?(E)E@({E; larg é—rx| <—72r—+700}) and it has the
holomorphic prolongation around & =0, that is, 4()eO({0< || <c}) with
|[4(6)| =< A4g|log &| (|arg £| < O) and it holds that

(8.28) A(&)—d(Ee™) = 27, u (2N T (n/7+1)
where u,(2')=33,;, 04", 1,6,0(2)+Vu(2)-

It follows from Proposition 8.15, (8.20) and 6,>=(1/2r+1) that the con-
ditions in Theorem 1.9 are satisfied. So u(¢~)=wu(¢"!, z’) is holomorphic at
t=oc0. This means that u(z) is holomorphic on {z,=0} in {|z| Zr, |z,—2,|<
e}. Hence {z,=0} is removable singularity. Thus we complete the proof of
Theorem 1.3.

§9. Miscellaneous Results-(II)

In §9 we show lemmas and propositions used in the previous sections, but
their proofs are not yet given. We give estimates of v,(z, ¢/, 2, r) and A(z, t”,
2, 7), and existence of k,(z, t”, 2, 7) in (I)-(II). For these purposes lemmas
about holomorphic functions are given in (I). By proving that Kk(z, 2, 7) is
single valued, we complete the proof of Proposition 2.4 in (III).

(I) Estimates. We obtain estimates of v,(z, t”, 4, 7) and h,(z, t”, 2, 7)
by the method of majorant power series. Let A(z)=>] 4,z% and B(z)=>] B,z*
be formal power series. Then A(z)< B(z) means |4,|= B, for all multi-
indices @. We state elementary properties of majorant power series without
the proof, which will be often used. For the proof we refer to [3], [5] and [16].

Lemma 9.1. (Wagschal). Let ©(s) be a formal power series of one variable
s such that ©(s)>0 and
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©.1) (R'—5)8(s)>0 .
Then for derivatives, ©Y)(s)=(d|ds)6(s) (j=0, 1, ---) we have

.2) (R'—5)89W(5)>0, 6UW(s)K R'OY+)(s)
and
9.3 (Ry—s5)"109)(5) K (Ry— R0 (s)(Ry>R’) .

In the following we assume r<R'<R,<R,<R, R <|t;| <R (i=2), and
|2] =4, and try to obtain estimates of holomorphic functions of z, consider-
ing 4, z, t" to be parameters. We set s=z,+z,+--++z, and

.49 0(s) = (R'—s).

0(s) satisfies the conditions in Lemma 9.1. From Proposition 6.6 we have
Lemma 9.2. Let r&x(i). Then

©.5) Gz, 2 )1 A| 2| P | TR (Ry—s) 1

Let us note v,(z, t”, 2, 7)=0 for p<h—2 and proceed to obtain estimates
of vz, t”, 2, 7).

Lemma 9.3. Assume for r&(1) and j =1

9.6) v, i(z, 1", 2, ©) K ABY™F | ¢ | ~pi=2 gr=itl)(s) |
Then
.7 Gy(z, 4, -r)"‘gp(z, t”, 2, ©) L ACB! ™ o] ~#729@+1)(s) .

Proof. In view of proposition 6.7 and the definition of G,(z, 2, 7, 8,) ((3.9)),
we have

GO(Z5 l: T)_IG]-(Z, Z’ 7, az)vp—j(zs t”, l: T)
K A(Ry—5)"LAB?™i | 7| =22 9@+V(5) & ACB?™! |t | ~2-26%+1)(s) ,

From the definition of g,(z, t”, 2, 7) (see (3.10)), we have (9.7).

Lemma 9.4. Under the same assumptions as in Lemma 9.3,

©.8) S M ! dr K ACB?™1 by?| 2| @-D@+1=D) g+1)(s) |
v Gyz, 2, 7)

Proof. We can choose the circle |z|=b,|A|*~* as the integration path 7.
So (9.8) follows from Lemma 9.3.
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For C, ,(z,, 2"/, 1", 2) defined by (4.3),

Lemma 9.5. Under the same assumption as in Lemma 9.3,
9.9 Cy (2o 27, 1", )KL ACB?™  by? | 2| @~D+1-D) flo+1) () |

Proof. We have

v§2:(20, 0, 27, 17, 2, 7) | 2| T ACBY ™Y ¢ | 272+ glet)(s)
Hence, we get in the same way as in Lemma 9.4
Sv V§2:(20, 0, 277, 17, 2, 7) | 7|17  dr K ACB?™| 2| @~D+1=D) pot glo+D)(g) |

Therefore (9.9) follows from the above estimate and Lemma 9.4,

For hy(z, t", 2, ) determined by v,_,(z, t”, , ) (i=1) we have

Lemma 9.6. Let ret (1). Then
9.10) hyz, t”, 2, ) KL ACB?™ 7| 7272| 2| =) g2 +1)()
where £(1)=(a—1) s,,,.

The existence of /1,(z, t”, 2, ) and the proof of Lemma 9.6 will be given in
(II) by using Lemma 9.5.
We can show Proposition 7.1.

Proof of Proposition 7.1. It follows from Lemma 9.3 and Lemma 9.6 that
vz, 1", 2, 1) = {8z, 1", 2, )+ hyz, t", 2, T)} [Gy(z, 4, 7)
K ACB?™ 7| "2 gO+)(5) K AB? [T | 272 g#+1)(s) .
Thus there is an r such that for |z| <r
9.11) lvfz, t”, 2, 7)| SAB?|z|~*"%(p+1)!.

(II) Lemmas on holomorphic functions. We give some lemmas con-
cerning holomorphic functions and show Lemma 9.6. In (II) we always assume
that f(r) is a holomorphic functions of one variable = in {r&C"; |t| <R},
f(z)=0 on |t|=R and the number of zeros of f(z) in {|z| <R} is s, the multi-
plicity being counted.

Lemma 9.7. Let g(t) be holomorphic on {|| <R} such that

g(®) _ _
9.12) quf(—r)r'dz_o for 0<I<s—1.



772 Sunao Oucur
Then g(z)/f (z) is holomorphic on {|t| =R}. In particular if g(z) is a polynomial
with degree < s—1, then g(z)=0.

Proof. Let r(1<i=<q) be the distinct zeros of f(r) with the multiplicity
0;, >3¢.10,=s. Hence we have

9.13 g(‘r)_ 1 i=1 1
©0.13) 50 = s OIS, 2y
where g,(z) is holomorphic on {|r|<R}. Put
— (») - 1
(9.14) u(t)——Sm=chp(tz-)J%dr— - S 1)':1’ exp (7)),

and fy(r)=I1%-:1(r—7;)%. Then we have f(d/dt) u(t)=0 and from the assump-
tion (d/dt)’ u(0)=0 for 0=</<s—1. Thus it follows from the uniqueness of the
Cauchy problem of ordinary differential equations that u(¢)=0, that is, 4, ,=0
for all i and p. So g(z)/f(r)=g,(z) is holomorphic on {|[z| <R}. Now assume
g(r)=g,(z) f(z) is a polynomial with degree <s—1. g(r) has s zeros. Hence

g(z)=0.

Lemma 9.8. For any complex numbers c; (0=1=<s—1), there exists uniquely
a polynomial h(t) with degree =< s—1 such that

1 S (T) -
9.15 dr=c¢ or 0ZI<s—1.
©-19) 27 i dirl= & f(7) po -

Proof. Put c=(c,, ¢}, ***, ¢,;)EC®. Then the linear mapping defined by
(9.15), that is, from the space of all polynomials with degree < s—1 to C°, is
injective by Lemma 9.7. Since the dimensions of these linear spaces are equal,
this linear mapping is surjective.

Lemma 9.9. Let g(c) be a holomorphic function on {|t| <R}. Then there
exists uniquely a polynomial h(z) with degree <s—1 such that (g(t)—h(z))/f(z)
is holomorphic on {|t| =<R}.

Proof. Let h(r) be a polynomial with degree < s—1 such that

g @-ﬂdfz S g~'(—T)'z-’alz- for 0ZI<s—1,
|T|=Rf(1') I-rI=Rf(2')

whose existence and uniqueness follow from Lemma 9.8. By Lemma 9.7 (h(z)
—g(0))/f(z) is holomorphic on {|r|<R}.

We apply Lemmas 9.7-9.9 to holomorphic functions of = with holomorphic
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parameters (z, ¢, 2) and we can easily show the existence of A,(z, t”, 2, 7) in §4
and hi(z, t”/, 2, 7) in Proposition 7.4.

Now let us proceed to obtain the estimate of 4,(z, t”, 2, ), namely, the
proof of Lemma 9.6. Let G(z, 2, r) be a holomorphic function of (z, 4, 7) in
X={(z, 2, 7)EC* X C' X C*; |z| <R, |t| =b|2|3,|2| =4,}. We assume that
there is a £=0 such that
9.16) G(z, 4, b p) = 2% G(z, A, 1),

and lim G(z, 4, u):é(z, oo, u) exists uniformly in {(z, »); |z| <R,, |#| L1}.
A>oo

We also denote by G(z, , #) this extension to A=oc0. We add assumptions on
G(z, 4, 1)

9.17) |Gz, 2, )| =c>0 on |u|=1,

and G(z, 4, #)=0 has exactly s zeros in {|z|< 1} for any (z, 2). Consider the
equation

@A) gz h)  for 0<I<s—
(9.18) SvG(z,l,r)t e —Cfz,8) for 0<I<s—1,

where 7 is a circle starting at b2® and ending at 4% €. Assume that Cy(z, )
is holomorphic in {(z, 2); |z| =Ry, || = 4,} and satisfies

.19 Ci(z, Y<K AB@A)|2]* 6(s),
where 6(s) satisfying the conditions in Lemma 9.1.

Lemma 9.10. There is a unique polynomial h(z, 2, ) of © with degree<s—1
satisfying (9.18) such that for |t| <b|2|®

(9.20) h(z, 2, 7)< 4,B(Q)| 2|72 6(s),
where A, is independent of A and B(2) is that in (9.19).

Proof. Set h(z, 2, t)=23iZ0 Az, ) =*. Then (9.18) is equivalent to the
algebraic equation

k+l
51 ,AS—T——dzc 1) for 0<I<s—I.
izo Az, ) v Gz 4, 7) T iW(z, D) or SIS

By putting =>54% x4, we have

Ek+1
s:lA ’Z blﬁ k+IS Aﬂ—d =C "z bls -—Il-n.
k=0 Az, 2) (b2%) =1 Gz, 4, 1) s (2, 2) (b2°)

1t follows from Lemma 9.8 that
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R+
D(z, 2) = det. S AT G, 0k, I<s—1)=%0.
@ 2) et ( k=1 G(z, 4, &) “ s—D#*

From (9.17) there is a ¢,>0 such that |D(z, )| =¢, in {(z, 2); |z| =R, |A]| =
Ag}. Thus D(z, )"'« C(R,—s)™!. By the Cramer’s formula we have 4,(z, %)
B L CB(A)| 2] 6(s). Hence, if || <b|2|%, we have h(z, 2, 7)=V-s 4,

(2, 2) < ABQ) | 2] 72 6s).

Thus we can show Lemma 9.6.

Proof of Lemma 9.6. From Lemma 9.5, by putting 0=1—a and B(Q)=
Br1pg?| 2| 73D, we have C,;(zy, 2"/, 2, ) K AB(2)| 2|3 6@*1(s). Hence by
Lemma 9.10, by putting G(z, 4, )=G,(z, 4, t), we have A(z, 2, 7)< A4,B(%)
| 2] W= g+)(5) for |r|<b,|2|3. Therefore, if |z]|=<b,|2|3, we have z?+?
h(z, 2, T) K AB?| 2| ~*® §@+1)(s). This implies (9.10).

Thus we complete the proof of Proposition 7.1. We can also show Pro-
position 5.1 in the same way. Because the estimates in Propositions 6.6 and 6.7
and Lemma 9.6 are valid for r€ {g,<|r|<b,|2|'"*} under the condition
A, (0, £)=0.

By the same method we can obtain Lemma 7.5, the estimate of vj(z, t/, 2, 7)
in X({). In that case, instead of Lemma 9.6, we adopt:

Lemma 9.11. Let r&7(i). Then
9.21) hi(z, t”, 2, T) K ACB?™} | ¢ | =272 2=() go+1)(s5) |
where £(i)=pf;,_ +(a—a;_) s,_..

The proof of Lemma 9.11 is similar to that of Lemma 9.6.

(IIT) Single valued function K%z, ¢”, 2). In (III) we complete the proof
of Proposition 2.4, by showing that K’(z, ¢”, 2) is single valued, which is not
yet proved. In the following the upper suffix * of a function of 2, for example
f*(4, +), means it is a single valued holomorphic function of 2 on {2; |2| = 4,}.
Set v,4(2, 0)=v,(z, 1"/, 2, {, pA'"%). Then we have

Proposition 9.12. v,(2, p) has the form
(9.22) V(% 0) = 2D 2, ).

Let us show (9.22) by induction on p. vy(Z, p)=0 for k<h—2. We need
lemmas.
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Lemma 9.13. Assume v,(2, o) has the form (9.22) for k<p—1. Then
9.23) Gz, 2,75 0) | ;o1 = 22U™n) G¥(z, 2, p; 9,) ,
0.24) (4 0) = 31 G,z 4,75 0) | rcpi-a ¥,_5(2, £) = 10¥270) gX(2, ),
where the coefficients of G¥(z, 2, p; 8,) are single valued with respect to A.
Proof. (9.23) and (9.24) follow from (3.9) and (3.10)
For C, (zy, 2, 1", %) defined by (4.3) we have
Lemma 9.14. Under the same assumption as in Lemma 9.13,
9.25) C,i(Zg, 27, 17, 2) = 2= C¥ (2, 27, 17, 2) .
Proof. We have v{2,(2, p) A4~(=D=2%@+2=D y% (2 p). Hence
Cy,i(Zo; 27,17, 2) = 2201170 Fa(A) 0,21 0,42 i)™ T 0(t;—2) "

If p==1—1, we have C, ,(zo, 2/, t”, )=2%@+1"D ¢¥ (2). If p=I—1, then the as-
sertion is also valid.

Set hy(r)=h,(z, 1", 2, 1)=31;20 4,,(2) =%, where s=s,, and 4,,()=4,,
(z,t”,2). We have

Lemma 9.15. Under the same assumption as in Lemma 9.13,
(9_26) hﬁ(‘[) | repAl-® = lw(p'i'-l'z) H;‘(x) .

Proof. h,(z) is determined by the equation

hy (%) o dr —
Syc;;_(r) dr = C, ().

Since

rkt! (1=a) (k+1=s+1) okt —w(htI-s+1) I7%
dr =2 dp = 27eU+i=s+) [1% (2

1Gy(7) ¥ GF(4, p)

the equation becomes 33iZg A, ,(2) A7+ =st) FF (1)=22@~1+D C¥ (). Put
Ay ((RA)=20Fk=s42 41 ,(2). Then 33325 45 x(2) H¥ ()=C¥#,(). Hence 45 4(2)
is a single valued holomorphic function of 2. Thus we have (9.26).

Proof of Proposition 9.12. We have (9.22) from Lemmas 9.13 and 9.15 and
Vvy(z, 17, 2, 7)={g,(z, 1", 2, ©)+hy(z, 1", 2, ©)} |Gy(z, 2, 7).
Set

©2) L@ = Sc(e) exp (—%0) dc | G Y ZERAES

(¢
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For C(6)=C(de*® 2'~*) see §2-III. Then
Lemma 9.16. 1,(2) is a single valued holomorphic function on {2; || = 4.} .

Proof. Put t=pa'"* Then

0.28) I, = Scw exp (—27¢) d¢ S Voh P27 fy(Ct 027 2) 27 dp .

H{©

—_ lz ll—a; - __a -
[, 0 02 B | exp (—2) fC+oR 2 de

deif\1—®

- Sw) Yok pX7) 27 dp S e, SXP (2O {(CHp2 " 2)? pl}dC
21

=P

Since
FEONEL
[ . e (—rO{C+or = zypiydc
=gy,
ds"0+le
= 20 exp (o z) | exp (—20) 2Pt
0
we have

dei®+pg,
L= v, o179 107D exp Qo z)de [ exp (—an) ntlptda.

This means that 7,(2) is single valued.

From Proposition 9.12 K}(z, t”/, })=3332-1 I,() is also single valued with
respect to 4.

§10. Function with Asymptotic Expansion

In 8§10 we consider functions with asymptotic expansions and give the
proofs of Theorems 1.7 and 1.9. Let u(¢) be a continuous function on [4, 4 o)
(4>0) such that |u(r)| <Cexp (B|t|") (r>0). We have defined the r-Laplace
transform 2(€) of u(¢) by (1.12) and its inversion formula by (1.13) in §1. Let
us recall the notation S(a, b)={tC*; |t| =4, a<arg t<b} (4>0) and S(a)
=8(—a, a) (a>0).

Now suppose that u(¢) has the r-asymptotic expansion (1.14),

(10.1) u(t) ~ WS t™ on [4, +0).

We have |cy| L4, RN I'(N/r+1) (see Definition 1.6). By using the sequence
{c;} (k=0, 1, ---), define

too ¢y 2k

(10.2) g(z) = 2% m
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and

_Nwm c 2
(10.3) g.(2) = Xlk-0 W .

We have

Lemma 10.1. (i) g(z) is holomorphic in {|z|<R} and |g(z)| <4,
(1—1z/R])7
(ii) Let 0<r<R. Then |g,(2)| <A, |z/r|"™ for |z| =r and | g(z)—g.(2)| Z A4,
|z/R|** for |z| =r.

Proof. 1t follows from the estimates of ¢, that g(z) is holomorphic in
{lz|<R} and |g(@)|<4,(1—[z/R|)™. Since |g,(2)|=4, Xh-olz/R|%, if
|z12r, |8.2)| S4,12/r|"% For |z|<r, |g()—£,()| S4, Siepus|z|* R
=A4,|z/R|"*.

Set
(10.4) 20 =1 [ exp (—172) () d, 0<eI<R.
0

L —
Proposition 10.2. (i) »(r)eO(C'— {0}).
(i) v(?) has the r-asymptotic expansion as t— oo in S(z/2r), that is, there is an
A(c) such that for t € $(x/27), t=|t]| e,

(10.5)  [v()—30 ¢ t7F] S A(e) ¥ (cos (r)) ¥ I(Nfr+1) |t |V
holds for each N.

. T el
Proof. Obviously v(1)eO(C'—{0}). Let us show v(z) has the asymptotic
expansion (10.5). We have

(10.6) W) = 7 §:°° exp (—172) gy_,(2¥) dz
1 | oxp (—172) (g ¥ —gu s} 2

— S+m exp (—172) gy_(zY") dz .

+oo
By a simple calculation we have ¢? So exp (—1"z) gy (¥ dz=320" ¢, 7R

From (ii) in Lemma 10.1, we have

17§, exp (—172) {g M) —gu )} ]
< AR(e0s (r) ™ T +D)]t] ™.
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For the third term in the right hand side in (10.6),

0 exp (—172) g2 |

¢

o[+ _ Z 5y A I'(N/r+1)
=Alt IS; lexp (=17 2)] | c 1z écos(rqf’) (7| t] cos (V")
Thus we have

(10.7)  [v(6)—200=3 ¢ t7F[ S A(€) ¢ (cos (r@)) M T(N[r+1) [ ¢ 77 .

Set w(t)=u(t)—v(t). From the assumption on u(¢t) and Proposition 10.2
w(t)~0 as t—-+oco on the positive real axis. More precisely |w(t)| =< A4(c)
¢~ I(n/r+1)|t|~* for each n. This implies

Lemma 10.3. The estimate |w(t)| < C(ct?)/? exp (—ct") holds for A<t<
-+ oo, where C depends only on c.

Proof. By Stirling’s formula, we have
[w(t)| < B(c)|c"t| =" exp (—n/r) (n/r)*M V2.
So, if njrZct’<(n+1)/r, |w(E)| S C(ct?)2 exp (—ct).

Let us investigate the 7-Laplace transform 4(£) of u(¢) with the asymptotic
expansion (10.1). Since #(£)="»(&)-+W(€), we study $(¢) and w(€). By Lemma
10.3 we have

Lemma 10.4. Ww(6)eO({¢; Re £<c}).

On the other hand #(£) is represented as follows:

« ¢ ¢ p—a(z— /"
108 @ =" exp | exp (g dr = | CEED g,

Hence we have
Proposition 10.5. (i) $(&)eO0{¢; ceC'—[0, c]}).
P e g
() »(E)e0({tel; 0<|E|<c}) and
(10.9) {P(&)—P(Ee*™ )} [2r i = g(EVY), EVT= | &| VY iemE DY |
Proof. From (10.8) we have (i). Since g(z) is holomorphic in {|z| <R},

by deforming the integration path, we have the first assertion in (ii). Let
0<é<c. Then, considering the holomorphic extension of ¥(£), we have

BEO—IE e mi= L NI gy gem,

2 i z—
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where Z= {z(s); 0<s=<1} is a piecewise smooth contour such that z(0)=z(1)=
0, z(1/2)=c, Im z(5)<<0 for 0<s<1/2 and Im z(s)>0 for 1/2<s<1 (see Fig.
10.1).

Fig. 10.1. Fig. 10.2.
Remark 10.6. $(&) is represented for n<<arg £<7-2= in the form,

$(&) = ¥,(6)+a holomorphic function at &€ = 0,
(10.10)

i ,—a(z—f) 1/
13'11(5) = S:e e—z_%(z*—y) dz.

This follows from the deformation of the integration path. The holomor-
phic part of #(¢) in (10.10) corresponds to the integration from cei” to ¢ in Fig.
10.2. Set

in
(10.11) vy(t) = 17 re exp (—1"z) g(z¥") dz, 0<cY'<R.
0

Then v,(¢) has the r-asymptotic expansion
(10.12) ()~ e t™ in S(—(z/2+7)/r, (x/2—7)/7)

and its y-Laplace transform is 9,(£),

(10.13) §,(8) = X " exp (6 ) w(tV) dt |

ooe”
a

Thus we obtain for £(&)="»(&)+w (&), the r-Laplace transform of () with
the asymptotic expansion (10.1),

Proposition 10.7. (i) (&) is holomorphic in {¢; Re £<c, £€[0, c)}.
(i) 2(&) can be holomorphically extended into {£; 0<|E|<c} such that
P e S
2(E)e0({6;0< [&]<c}) and {0(8)—i (€ &)} 2mi=g (eV7).
Next consider holomorphic functions on a sector. We have

Proposition 10.8. Lez u(t)e O(S(6,)) and suppose that for any >0 there is
a C,>0 such that

(10.14) [u@|=Cexp(c]t]) (r>0).
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Then the followings hold:
o

P
@) 2@)e0¢; |argé—n| <rby+=/2}).
(ii) Forany d and e>0 |4 (6)| <M, sexp (al€]) in
{¢; larg é—=n | <rby+=/2—0, || >e}.
(i) If u(t) is bounded on any closed subsector in $(8,), then |4(&)| <C,;
|log &| in {€; |arg é—=| <rby+x/2—0d, 0< |& | <c}.

Proof. By deforming the integration path in (1.12) in §1 we have (i) and
the estimate in (ii). Let us show (iii). For é< {¢; |arg é—= | <70y+=/2—0}
we can choose » such that |arg é+o—=n|<w/2—0/2 and |w|<<rf,—05/2. Put-
ting arg t=w, we have

@) =84, ([ +{72 ) 1w @ 0 17 141 <

“"exp (—esle t)| ] dt)SC,5llog €] .

oo
ae’®

Ms{(exp(alfl)JrS
For 7 () defined by (10.8), the r-Laplace transform of v(¢), we have
Corollary 10.9. For any 6 >0 there is a Mg such that
(10.15) [P(E)| S Mgllogé| in {£; |arg €| <O, 0< || <c/2} .

Proof. v,(t) in Remark 10.6 has the r-asymptotic expansion in S(—
(=/2+n)/7, (x|2—n)/r). The difference #(&)—v,(£) is holomorphic at £=0. So
the assertion follows from Proposition 10.8-(iii).

Proof of Theorem 1.7. We can choose ¢ (0<c<R") in Proposition 10.7
as close to R” as possible (see (10.4)). So #(¢) is holomorphic in {¢; Re E<RY,
e .

&[0, RN}, 4(6)€O({€; 0< | €| <RY}) and {(é)-1(¢ €¥)} [2n i=g(£¥/"). From
Corollary 10.9 4(¢) has the logarithmic growth at £=0.

Proof of Theorem 1.9. The only if part follows from Theorem 1.7. We
show the conditions in Theorem 1.9 are sufficient. From the assumption,

2(¢) has at most the logarithmic growth at £=0. So by the deformation of the
integration path (see Fig. 10.3) the inverse transform is given by

(10.16)  u() = ;—;l ( SL,_,,-W@JFS
_ Zt_; (Sze n So) exp (—& 17) #(&) dEs54(F)

— So exp (—& 1Y) F(E) de+s,(1) ,

coeilT-¢)

) exp (—¢ M) 0(¢) de

0
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where
F(&) = a(&)—n(& &),
(10.17) _ i ce?mi cogilt—¢)
Sp(t) = Py Sooeicnw) Sc > exp (—E& ") (&) dE

and ¢ is a constant with z/2<<e<rf,+/2 and p=<=

Fig. 10.3.

For t&8(x/2r) we have the r-asymptotic expansion

t“’S exp (—& %) F(€) d& ~ S5 ¢y 17
0
and for any 6 >01in {¢; |t| =4, #/2—o+0<r arg t<—=[2-+¢p—0}

[56(t)| < Ao,5 exp (—c5]2]")  (¢5>0).

Hence if 6,<x/27, since we can choose ¢ arbitrarily in (z/2, 76,+7/2), u(t) has
the expansion (1.20). If 6,>=/2r, we can put p==. We also have, choosing
o with |o+7 arg | <=2 and |o|<rly—=/2,

coef!
0

(10.18) u(ty = S " exp (—€ 17) F(€) d€ .

Hence we get also the r-asymptotic expansion (1.20). Further assume
6y>n/2r +=. Then this means u(te”?)—u(te™*") (|arg t | <,—=) has the zero
r-asymptotic expansion at = oo in §(6,—), that is, for z& S(6,) (0< 8,< 6,—x)

lu(te™)—u(te ™) | <AB™¥ I'(N/r+1)|t]™¥ forany N.
This implies that there is a C=C(6,)>0 such that for t = $(6,)
(10.19) lu(te* ) —u(te=*7)| <A exp (—C|1]") .

Since 0,—= >z/2r, u(te®)—u(te ™ *)=0. Thus u(?) is single valued in {¢; |z| >
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A} and bounded at t=co. Hence u(¢) is holomorphic at t=oco. This com-
pletes the proof of Theorem 1.9.

Finally let us give

Proposition 10.10. Let K(z, ) be a continuous function defined on {(z, H)E
C*XC; |z|Sr,A=2¢", |2| = A}, which is holomorphic in z and fulfills
|K(z, )| <4 exp (—c|2|®) (¢>0, 0<a<1). Then

cogiy
(10.20) k(z) = SA:M exp (4 z,) K(z, %) d
has the asymptotic expansion with respect to z, in U= {|z| Zr; n[2<arg zy-+¢¥ <
3z/2}, that is,
(10.21) [k(2)— 33050 ku(2) (2)"[n! | SABY T (N[r+1)| 2|V ,
where k,(z')=lim, ., ,y(8/02,)" k(2) and r=e/(1—e)

Proof. We have
cogif
(0/02)" k@) = {7 SUt-of6) 2 exp (z0) (4]0 K(z, 2) ..
Hence if z/2<<arg z,+vyr<3x/2, we have

|0/020)" k(@) S A4 Shuo | g (1Y P12 exp (—c | 211 i

<4B" r(l’i’_l> .

a

By the Taylor’s formula, we have
&)~ 38 ko) o't < AR TOELD 2w < 4 P V411201

where k,(z")=1im, o ,e;(8/02,)" k(z) and r=ea/(1—a).

We can say for k(z) defined by (10.20) that k(¢ 7%, z’) has the r-asymptotic
expansion with respect to ¢ in z/2<< —arg t+y<<3z/2.
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