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An Integral Representation of Singular
Solutions and Removable Singularities

of Solutions to Linear Partial
Differential Equations

By

Sunao OUCHI*

§ 0. Introduction

Let L(z, dz) be a linear partial differential operator with the order m^l,

whose coefficients are holomorphic in Q= {zeCn+1; |z| <^/?}, and K be a con-
nected nonsingular complex hypersurface in & through the origin z=Q. In

the present paper we treat the equation

(0.1) L(z,0Jii(*)=/(z),

where u(z) may be singular on K, and/(z) is holomorphic in @.

There are two main purposes in this paper. The one is to give an integral
representation of solutions to (0.1) singular on K (Theorem 2.5). The other is

to show that if it(z) has some growth property near K under some conditions

on L(z, c?2), then u(z) is holomorphic at ^(Theorem 1.3), that is, the singularity
on K is removable. The conditions on L(z, 82) are given by means of the

characteristic indices of K and the localization on K defined in [9] and [10]. The

author does not know such a theorem about removable singularities of solutions

to linear partial differential equations as that in this paper. In order to show

Theorem 1.3 we need the detailed analysts of the obtained integral representation

and use theorems about the Laplace transform of functions with asymptotic

expansions with bounds (Theorems 1.7 and 1.9), which are also the results of

this paper.

We make reference to singular solutions to (0.1) in short. As for existence.
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it was studied in [1], [2], [3], [13], [16] and others, where they constructed singular
solutions to noncharacteristic Cauchy problem with singular initial data. The
existence of solutions singular on K was also considered in [4], [11] and [14]
apart from singular Cauchy problems. The condition in [11], given by means
of the principal localization, is less restrictive than those in others.

The integral representation was obtained for operators with decomposable
principal symbol in [6] and [7]. In the present paper we give it for a wider class
of operators and its form is slightly different from that given in [6] and [7].

In §1 we give notations and definitions and state the theorem concerning
removable singularities. We also give results about the relations between the
Laplace transform and functions with asymptotic expansion with bounds. We
don't give here the integral representation. Because it requires further prelimi-
naries. In §2 we give them and the integral representation. Roughly speaking
its kernel function takes the form

(0.2) K(z, A, t") = j exp (-J* 0 w(z, /", J, C) dC .

So construction of representation is that of w(z, t", I, C), which we call also the
kernel function. In §3-§5 we construct w(z, f", A, C) and get the integral
representation of solutions singular on K. In § 6 we show lemmas and prop-
ositions used in the previous sections or required in the following sections. In
§7 we investigate the kernel function w(z, t"9 1, C). We try to analyze its sin-
gularities with respect to <f. The estimates of functions appearing in §3-§7
are given in §9. In §8 we complete the proof of the theorem of removable
singularities (Theorem 1.3), combining the results obtained in the preceding
sections with Theorems 1.7 and 1.9. In §9 we show what are left unproved, in
which the estimates and some lemmas of holomorphic functions needed in
construction of the integral representation are contained. In § 10 we discuss
about functions with asymptotic expansions and give the proofs of Theorems
1.7 and 1.9.

In this paper many constants will appear. So for simplicity we denote
various constants by the same A, B, C, etc.. There will be no confusions.

§ 1. Notations and Definitions

First we give notations. z=(z0, z19 ••• , ZB)=(ZO, z')=(z0, z19 z") is the co-
ordinate of the (?z+l)-dimensional complex space Cn+1 with the norm |z| =max

{|z,|; O^i^n}, while f=(f0, fl9 »., O=(£o> flf £")=(£<>, O is the dual
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variable. dg=(d0, dl9 • • - , dn)=(d0, d19 d")=(dQ, 9')> d*=dldzi is the differentia-
tion. N is the set of natural numbers and Q is the set of rational numbers.
Now let K be a nonsingular complex hypersurface through the origin z=0. We
may choose the coordinate so that K= {z0=0}. Then we can write L(z, dz) in
(0.1) in the form

Here Z^(z, dt) is the homogeneous part of degree k. The integers sk (O^k^m)

are chosen so that Akt8k(z, <f')*0 if Z^(z, f)^0, and we put 5r
&= + °° if Lk(z9 f)

. /N

Now let us give several definitions and notions derived from L(z, d£). Put
A= {(k, sk)&R2; Q^k^m, sk=£ + 00}. We denote the convex hull of A by A.

Let 2 be the lower convex part of the boundary of A9 and A be the vertices of
2. We set 4={(ki9ski); O^/^/}, m=kQ>kl>k2>'">kl^O. If 7=0, 2=
A = {(m, sm)}. Assume 7^1. Then 2 consists of segments 2(i) (1<^"<^/).
The end points of 2(i) are (kf_l9 sk._J and (ki9 ^.) (see Fig. 1.1).

- (/c0, JA,O)

0 fc

Fig. 1.1.

Set

{;;:
max {1, Cv.-̂ m..,-*:,.)} (1 ̂ i^O .

Then there is a p&N such that
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(1.3) +00 == 0Q>Ol>02>'">Op_1>ap = I .

Define for <

(1.4)

Here we mean aQ=l and r0= + °°> From the definition of a{, we have

Lemma 1.1. Suppose sk3p + <x>. Then there are nonnegative
such that

(1-5) fe^

and (k, jjt)eS(Q if and only if fti=0.

The proof of Lemma 1.1 will be given in §6 and we set in the sequel fik=fil
and a=a} for simplicity.

Remark 1.2. In [9] and [10] (see also [12]) characteristic indices were
defined and denoted also by {a{}. In general they are different from those
defined by (1.2). But if we assume some conditions on L(z, d.,), they are
coincident with each other (see Remark 1.4).

For an open set W in CN, W means the universal covering space of W.
We denote by O(W) the set of all holomorphic functions on W and by O(W)
the set of all holomorphic functions on W. Let U be a polydisk in C*+1 with

center r=0. Then \ve set 0(a, b)={z<=(U—{zQ=Q}); #<arg zQ<b} and
U(d)=U(—a, a) (a>0). Hence O(U) is the set of all holomorphic functions
in £/and O(U(a, b)) is the set of all holomorphic functions on the sector U(a, b).
Obviously if b—a>2x, then O(U(a, b)) contains multi-valued functions.

Now, by using these definitions, we can give a theorem about the remov-
ablity of singularity K, which is one of the main results in this paper.

Theorem 13, Assume

'(a) ffl>l9

(1-6) (b) ^ = 0,

,(c) n^U*l.^(Ofz'ff
/)*0.

Let i/(z)e0(£(00)) (^0>ff(l/2r^-i+l)) be a solution to

(1.7) L(Z)dz)u(z)=f(z)t=OW.

Suppose that for any e>Q, there is a Cs>0 such that
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(1.8) |H(*)|^Cfexp(£|z0|-**-i) for

Then u(z)

The proof of Theorem 1.3 is long and completed in §8. As we said in §0,
Theorem 1.3 follows from the integral representation in §2.

Remark 1.4. Let L(z, dz) be an operator satisfying (1.6)-(c). Then {crj-
(l^S*^j?) are coincident with the characteristic indices in [9] and [10], and Ak.
(0, z', £ ') (Q^i^p— 1) are the localizations defined there. So we can state (1.6)
(a)-(c) in other conditions which are invariant under the coordinates trans-
formations.

We give simple examples.

Corollary 1.5. Let

(1.9)

where A(z, dr) is an operator with ord. A(z, d')=m>k and the principal symbol
Am(z, f). Assume Am(Q, z', £')^Q. Then if a solution w(z)e<9(£(00)) to (1.7),
(00>(n/2) (m/k+l)), satisfies for any e>0

(1.10) \u(z)\ ^Cg exp (5 |z0| -*/(.-*>) .

Then w(z)

We have ol=m/(m—k) and o2=\. Hence ri=0i — l=k/(m—k) for L(z, dg)
in (1.9). More concretely let L(z, ^)=(a0)*-(-l)»+*(a1)". Set

(1.11) Wl(z) = exp
o

satisfies L(z, ^2) t/1(z)=0. It holds for u^z) that for any e>0 if zG {z; | arg

., . So the condition ^ 0 > ( + 1 ) is
2 k 2k

essential. wx(z) has the bound li/^z)! ^^ exp C#|z0| "*^«"*)) on {z; |z|<r,
— oo < arg z0< + 00} . The condition (1 . 10) is also essential.

Now let us proceed to give the theorems about functions with asymptotic
expansions. As we said in §0, they will be used to show Theorem 1.3. The
proofs are in § 10. Let u(t) be a continuous function on [A, +00) (A >0) such
that | u(i) | ^ C exp (B \ t \ Y) (r >0). We define the r-Laplace transform A(£) of
u(t) by

(1.12) fi(f) = exp (ft) u(tlf^ rl dt
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which is holomorphic in {£; Re <f< — B}. The inversion formula is given by

fy f<f+*°°
(1.13) u(t) = — \ exp (-

Definition 1.6. FFe soy ?/za? w(^) /KM £/ze r-asymptotic expansion on [A, + oo),

any N*>1

(1.14) KO-Slfc-o^r^^^^^rWr+i)!/!"^

A0Ms on [A, +00),

From the definition \CN\ ^A1R~N r(N/r+l), that is, the coefficients of
the asymptotic expansion have the estimates of Gevrey type- Suppose that u(t)
has the asymptotic expansion (1.14). Then, by using the sequence {ck} (k=Q,

1, — ), define

(U5) s(z)=S

which is holomorphic in {z&C1; \z\<R}. We have for

Theorem 1.7. Assume u(t) has the r-asymptotic expansion (1.14) on

[A, +00). Then the r-Laplace transform $(<f) is holomorphic in ({£ ;
( $[0, JR:Y)} a/7^ zY co'/z be Jwlomorphically extended into {f ; 0< |

any

(1.16)

Now let us consider functions on a sector with asymptotic expansions with

bounds. We set S(a, b)={t^(C^^} ; '\t\ ̂ A, «<arg r<6} (y4>0) and
S(a)=S(-a, a) (a>0).

Definition 1.8. We say that u(t) e 0 (S(a, b)) has the r-asymptotic expansion

(1.17) w(0 — S?r0 c^ r* att= oo in S(a, b) ,

(L18)

« any closed subsectors Sl in S(a9 b).

lfu(t)(=O(S(00)) satisfies, for any e>0
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(1.19) I"(0!^Ceexp(e f |*)(r>0) in

then A(£)e0({£ ; i a rg<?-7r j <r00+7r/2}). We have

Theorem 1.9. Assume u(t)^O(S(0Q)) satisfies (1.19). Then u(t) has the

r-asymptotic expansion

(1.20) u(t) ~ SiTo ck t~
k at 1 = co 7/2 5(^0) ,

if and only if the r-Laplace transform ii(f)e0({f ; 1 arg f — TT | <r00+
7r/2}) saft's-

the following conditions:

M- holomorphically extensible into |f; 0< |f | <c} /or so/?ze c>0 5-0

(1.21) |#(£)| ^M0|log£|

fl«J .F(f )={#(£)—^(fe2*1')}/^* to /7/e convergent power series off1^ at £=0,

(1.22)
X""" ^—"""C^MHBBMM* '̂1''

Moreover //i/(f)e0(•{£; | a r g £ — T T | <r^0+
7r/2}) satisfies all above conditions

and 00>7r/2r+^5 ///e/? w(0 is holomorphic at t=oo.

For functions with asymptotic expansions with Gevrey type we refer to [15],
where ordinary differential equations were treated, and the papers in its
references.

§ 2. Integral Representation

In §2 we show an integral representation of a singular solution u(z)
satisfying (0.1). From now on, we always assume w(z)e0(J2(00)) (00>x),

sm^. 1 and

So ^is characteristic. We may assume that for £'=£'=(!, 0, •• - , 0)

(2.1)' Am.,m@> £A/)=I=0 0«^ 1) •

We try to obtain an integral representation of u(z) as the sum of functions of
the form

' — ( exp (J z0) (log X) dX ( Kh
0(z, Z, t") flj(^, t") dt" ,

(2.2) M]™ f ^
A:J(z, ^, rx/) = \ exp (-r C) wh(z, t", t, C) ^/C, (O^A^-l).
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The path A(^\ T" and C(0), and the functions flJ(J, t") and wh(z, tlr , I, C) are
determined in the following. In order to do so we need some preliminaries,
All the proofs are given in the later sections.

Now let us explain the functions in (2.2) and the paths of integration. The

explanations are divided into 3 parts.

(I) The definitions of 6j(J, t"} and the path A ($). Consider the traces of
1; \z\ ^R}9 to ̂ =0,

(2.3) K*(ZO, z") = (d/dztf u(z09 03 z"), (O^ArgJ.-l

and define

(2.4)

T(ff) (—00<0<0Q—2x) is a path starting at Ite1'̂ *0, going to
rounding the origin once on |/0l=e anci ending at Reie (see Fig 2.1). For

^, t") we have

Lemma 2.1. (a) 6*(J, /x/) w aw entire function of L

(b) For a/ry e>0, rA^re is a Cg>0 such that

(2.5) sup | fljtf, /x/) | ̂  Cf exp (fi M | ) /or a w/fA | arg
1/^lgB

(c) // sup |tt*(r0, Ol ^^4 exp(5|r0I^) (r>0)5 /Ae/i
l'7/I^B

(2.6) sup |flJa/ / /)l^^exp(2(^M|^(1+«) for X with |arg
i/7/i^«

For the inversion formula we set

(2.7) nj(z, z'O = r^. ( exp (az0) dja O (log X) dl
2?r 2 *MOJO

where | ̂ +^ I <^/2 and Aty) is an infinite path starting at ooe**, going around
the origin once and ending at ooef"^+2*> (see Fig 2.2).

Fig. 2.1. Fig. 2.2.
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Lemma 2.2. It holds that

(2.8) i/}(z0, z") = uh(z0, z")+v*(z0, z")

for z0 with 0<arg z0<0+27r, where vg(z0, z")e0{|z0| <R, \z"\ ^R}.

The proofs of Lemma 2.1 and 2.2 are in §6.

(II) Kernel functions w*(z, r", *, C) (0 ̂  A ̂  sw- 1). Each wh(z, t"9 1, C) is
determined so that it satisfies an equation. Let us derive the equation. In

order to do so we derive operators L(z, X, dg) and ~C(z, /I, d29 8$) from L(z, dj.

Firstly L(z, ^, dj is defined as follows :

z, 0J {exp (^z0) ̂ (z, ^)> - exp (^z0) L(z, ^, aj K(z, X) ,

(2.9) L(z, ^5 SJ - L(z, 00+^, 8') = 2r.

,,,(z, a.) = 2 ^*.ife 80 (*7'

Secondly we define X(z, X, 82, d^) from L(z, A, 9,,). From Lemma 1.1 we

have k— i=(\—a) (m—s^+aQn— i}—(l—a) (i—s^—pk. Hence by omitting
^(i-oOOn-O an(i replacing X* by 5^ in (2.9), we set

(2.10) X(z, j, af, 8ff) - 2r.o{2f... r'1-^*-

Thus we attain to the equation wh(z, tn \ X, C) satisfies,

J?(z, A, a., d£ w\z, t", I, C) = 0

for 0^/^J,-1, where |z| ^^' and R'<R^ \ t f \ ̂ R (i^2). We note that
the initial values are singular at C=0. For the existence of wh(z, /I, t", C) we

have

Proposition 2.3. There is a solution wh(z, t" , <*, C) 0/(2.11) which is multi-

valued holomorphic in

Z= {(z,t",X,Q; l ^ l ^ r . ^ l

, ^0> ̂ * and B* are some positive constants, and \w\z, t",

The proof is given in § 5.

(Ill) Integral representation. We can define by Proposition 2.3
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(2.12) K*(z9 1", X) = ( exp (-*«£) wh(z, t", X, C) dC ,
Jew

where C(0)=C(deiQ a1"*) (Q<d<B*, where B* is In Proposition 2.3) is a path
on the circle K^^UI1"* whose starting point is deieXl~* and goes around
once on it. For Kh

e(z, t'f, X), we have

Proposition 2.4. Kh
e(z, t/f, X) (Q<^h^sm—l) are single valued holomorphic

functions with respect to X in B,

(2.13) 3 = {(z, t", X); \z\ :gr, R^\tt\^R (i^2), \X\ ̂  A,} ,

and satisfy

L(z, I, d,) K»e(z, t", X) = exp (-&» X) K'\z, t", X) ,

where

(2.15)

/or X with | arg ^+0 1 0/2, cwrf J^'^(z, ^/x, ̂ ) w holomorphic in 5 and

(2.16) |JT*(z, /7/, ^)| ^^(1+M|)^ for some N>Q .

The proof is given in § 5 except that K*(z, t" , X) is single valued, which
is proved in §9.

Finally I —dt" means | —dt2\ • • •£f t 3 - - - I —dtn. So we
Jr" Jlfal-a Ju3l=^ J !*«l=5

have (2«0"»+1 ( /(///)/n?-2(/|-^) dt"=f(z") for a holomorphic function
Jrx/

Thus we attain to

Theorem 2.5. Assume (2.1)'. TTzen M (z)eO(5 ((?„)) (50>w) satisfying L
(z, dz)w(z)=/(z)eO(.fi) Aa5 a« integral representation in U(6, 0+2ic) (— 80<8
<6a-2x), Z7={zGC"+1; |z|^r} (r<R), of the form

(2.1?) ^) = 2i-

wAere v9(z)^O(U) and

(2.18) «}(z) = T exp (^0) log
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§ 3. Construction of Kerne! Function w(z91", X, C)-(I)

Now we proceed to find a solution to the equation (2.11). We denote

wh(z, t", I, C) by w(z, t", A, C), omitting h. Let us write it again:

'^(z,j,0,,0£)iv(z,fV,o = o,

where

/"2 O\ P(~, 5 A £$ \ ^~\m t^~\k 5-(l-«)(i-St,)-0i./'j3 \m — i T S~ A \1(3.2) -L(z, x, o>2, d^) = 2j*=oi2-jf=s£ ^ * p*(^f)* ^.A^ ^)> •

We construct w(z5 t", A, C) under the condition (2.1)', that is,

(3.3) ^«..*(0» z'> O*0 for | z' | ̂  JRo (^0<^) -

Firstly let us introduce auxilliary functions {/;-(C)} (J^Z) used in [2],

,<o = (-iy -(~{~.1)!
(3.4)

We note an important relation

(3.5)

We try to find w(z, ?", -I, C) of the form

(3.6)
( V(z, t", I, C, r) = 2;r*-i v/z, r", *,

where r is a closed path in r-space which will be determined later. Thus it

becomes the main purpose to obtain equations which determine vp(z, t", A, r)

(p^h—V). Let us give a lemma for calculations.

Lemma 3.1. There are operators L{ti(z, d^ (0:gy'5S/) with ord.Z,|_,-(z, dt)

^j and L°kri(z, dz)=Akii(z, f 0 such that

(3.7) (de)*-' Lkti(z, d,) {v(z)ft(f+r

= 2}.fl{r'-'Li.<(z, 9J v(z)>

The proof is easy, so we omit it. Now we have from Lemma 3.1
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(3.8) _£(z, i, d,, 8S) V(z, t", X, C)

G0(z, J, r, c^) = SLo ffij =5, r (!-->(«-*>-* r'- ^fc I')} ,

where

G/z, J, r, 0.) = SLy-EUax^,/) r I1--*-'*)-* r'-> , -

We have ord. Gy(z, ̂ , r, dz)^j* Hence G0(z, /I, r, dz) is a polynomial of r5 so
we denote it by G0(z, A, r). Set

(3.10) gp(z, t", I, r) = -S5U G/z, ^ r, ^) v,_y(z, f", ^, r) .

We have from (3.8)

(3.11) J7(z, J, 9t, 8ff) F(z, r/x
5 ̂ 5 C)

= S;r*-i..{(?o(z, ^, r) VlK(z, r /x
5 ̂  r)-g,+m(z, t" \ ^ r)} //C+r zx) .

Hence we'll try to determine vp(z, t" , ^, r) (p^h— 1) by the following
equations containing other unknown functions hp(z, t" , /I, r) (p^>h~l):

(3.12),̂  G0(z, ^, r) v^Gr, //7
f /I, r) = A^^z, r/x

5 /I, r) ,

(3.12), G0(z, ^ r) v/z, t", J, r) - gp(z? f
7/, ^, r)+A/z, r/7

3 ^ r) .

We'll define the path r in (3.6) and solve the equations (3.12), in the next
section. {hp(z, t" , ^, r)} are polynomials of T with degree ̂ sm—l and are
chosen so that w(z, t" ', %, C) satisfies the initial conditions in (3.1).

§ 4. Construction of Kernel Function w(z, t", \, Q— (II)

In §4 we define the path r, {v/z, t", I, r)} and {hp(z, t", ^, r)}. Firstly
we define the path r in (3.6). In order to do so, we need a lemma concerning
the roots of G0(z, ^, r)=0 (see (3.9)), which is an algebraic equation of r:

Lemma 4.1. Assume (3.3). Then there are positive constants a, b and AQ

such that if \A\Z>A09 then G0(z, J, r)4=0 on {a<^\T\<^b\l\ l~"} and there exist
exactly sm roots of (70(z, ^ r)=0 in { | r | <a} .

The proof of Lemma 4.1 is given in §6. Lemma 4.1 means that there are
exactly s^-roots which are bounded as |^|-»+oo. The closed path r in r-
space is chosen so that it encloses all the bounded roots of G0(z, ^ r)=0.

Now let us proceed to the determination of F(z, t" ', /I, C, r) in (3.6),
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(4.1) V(z, t", I, f, r)=2;r»_i v/z, t", I, r)//C+r Z]) .

We put v/z, f", ,1, r)=hp(z, t", X, r)=0 for p^h—2. Consider the initial con-
ditions of w(z, t", *, T) in (3.1). We have

(4.2) (9,)' v(z, t", i, <r, r)=s;_i_, {SLotf) 4'2,.(z, *", *, ̂  r'-o- /,_,(c+r z,),
where v<»(z, /", J, T)=(8,)' v(z, t", i, r). We define C,.,(z0> z", f", /i) (0^/^JM

-l)by

(4.3) CM(z0, z", t", X) = *,.,_, 5,>4(2^/)-<"-" nJ-2^-^)-1

• ? JY

±L£Lj—?—?—Z. r* £/ri B
/"« /•_ 1 \ * Z\—\3

We note that C^^, z7/, f7 /
5 ̂ )=0 for p^h-2. If v#_,.(z, f7 / , ̂ , r) (i^l) are

determined, since gp(z, t"9 ^, r) (see (3.10)) contains only v^_z-(z, r/7, X, r) (z'^1),
then Cpfl(z0, z", t", X) are also done. By making use of Cptl(zQ, z", t", X), we
determine hp(z, t", 1, r), which is a polynomial of r with degree^sm—l so that
it satisfies

(4.4) -L( A^g» *"> *> r) r' rfr =
2xi Jv G0(z, ^, r)

for

It follows from Lemma 9.8 in §9-11 that hp(z, t"9 *9 r) satisfying (4.4) uniquely
exists. So we set

(4.5) v,(z, ̂ //, ̂  r) = {gp(z, t", X, r)+hp(z, t", X, r)}/G0(z, X, r) .

Thus vp(z, t" , X, r) and hp(z, t" , X, r) are successively determined. We notice
that vp(z9 t" , X9 r) (p^h—l) have poles as functions of r and the poles are the
zeros of (70(z, X9 r).

Let us check that

(4.6) w(z, t ", ^ C) = -^ ( K(z, /7/, ^ C, r) rfr
2?rz Jy

formally satisfies (3.1). The calculation which we perform below are justified
after obtaining the estimates of vp(z9 t", X, r) and the convergence of
V(z9 t", X, C, r). Assuming |C| >|rz1 | for |z| <r and rer, r being a small
positive constant, we have
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(4.7) -£(z, X, d,, 9f) w(z, t", X, C)

= 7^7 Jr 2£i-i_.{(7o(*, X, r) vp+m(z, t", X, T)-gf+m(z, t", X, r)}

//f+rz,)*

1 f 4-00 //

2w/ Jy *-*-i-* ^+»« s ' ' * i

Here we note that T=—C/zl5 the singular point of log (C+r Zj), is not in the
inside of j. As for the initial values, we have from (4.2)

(4.8) (dy W(z, t", X, 0

^-i-GUO 4'2,.(z, t", X, r) r'-> fp_

It follows from (4.3) and (4,4) that

(4.9) (a,)1 w(z, * ", ̂  C) | gl=Q = -^ S»-i {( v,(z0, 0? ^ ^ 0 r1

2?ri J^

_f g^ r"9 ^9 rj+^^^r) yl

Jt GO(Z,*,T)
l

Thus we conclude that w(z, r/x, ̂ , C) satisfies formally the equation (3,1),

§ 58 Construction of the Integral Representation

In § 5 we show the convergence of F(z, t", A, C, r), construct w(z, t" ', ^, C)
and J^(z, ^/x, /I), by integrating in r and C, and attain to the integral formula,
In order to do so we need the estimates of {vp(z9 t", X, T)\p^h—l}. Before
we give them, let us write again the set 5 ((2.13)), which will often appear in
the sequel:

(5.1) 3 = {(z, t", J); |z| ̂ r, R^t

where we'll make r small and A0 large if necessary.

(I) The convergence of F(z, //x, 1, C, r). We have

Proposition 5,1. For vp(z, t", /I, r) (p^>h— 1) the following estimates hold:
there are A and B such that
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(5.2) | v/z, t". A, r) | £AB* | r | -*-\p+1)! /or (z, r", J,

w/zere Z- {(z, f", J, r); (z, /", ^e^1, a^|r |^&M|^ (see Lemma 4.1).

The proof of Proposition 5.1 is given with other estimates in §9. Now let

us show the convergence of V(z9 t", X, C5 r). Set

(5.3) Fi(z, r", *, C, r) = S;r0{(C+r z^/p!} v,(z, ̂ ", ^, r)

and

(5.4) F2(z, f", ^ C, r) = SJr, {(1 +1/2+ • • • + l/p)/p!>(C+r *,)» v/z, f", I, r) .

Then by noting A— 1 ^ — 1, we have

F(z, t", X, C, r) = : {^(z, r77, ̂ , C, r) log (C+r zj

+ F2(z, r7/, ^5 C, r)+(C+r z,rl v_x(z, r/7
5 ̂ 5 r)} .

We obatin

Lemma 5.2. Vfc, t", t, C, r) (i=l, 2) converge flnc/ | ̂ .(z, f", ^, C, r)|

|-2 in {(z, /'', ^, C, r); (z, f", ^ r)eJT, [C+r zj <^ |r |}.

. From (5.2) we have

| C+r zx n v,(z, f /7, J, r) | /p ! ̂ ^5^+1 1 C+r zx | */ 1 r | ̂ +2. Hence if 1? | C+r zx |
| r | < 1/2, F-(z, f 7/, ̂ , C, r) (f=l, 2) are convergent and estimates hold.

Consequently

Proposition 5.3. F(z, t ", <*, C, r) w holomorphic in

Y= {(z, *", I, C, r); (z, r", *, r)eZ, 0< |C+r zx|

CorolSary 5.4. F(z, r/x, ^, C, r) is holomorphic and

(5.5) IKCz .^^C.^ l^^ l r l - ' a

in {(z, r/7, ̂ , C, r); (z, f", ^ r)eJT, (X- I ^ D I r l > |C| >2|r zj}.

. We have X |r| >|C| + |r zj > |C+rzJ > |C| - |r zj >0 and

|rz1 /C|<l/2inthedomain. So |C+r zir
1^2/|C| and |log(C+r zx)| ^C+

| log C | . The assertion follows easily.

(II) The construction of w(z, t", t, C) and K9(z9 t" , X). We perform

integrating in r. We denote by r(c) the path in r-space which starts at r=c,

goes around once on |r| = |c| and ends at T=C exp(2^i). Set n=r(c)9 a^
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I c| ^bIXI ^ (see Proposition 5.1), and define

(5.6) w(z, t", I, C) = ( V(z9t"9 X, C, r) rfr .
J?i

We can give the proof of Proposition 2.3 by Corollary 5.4.

Proof of Proposition 2.3. Suppose | r | (A — \ z1 \)> | C | >21 r zx | on | r | =
|c|. Then we have \TzjC\<ll2, |C+r zj ^2/|C| and|log (C+r zx)| ^C+
| log C | on | r | = | c |, and w(z1? C)=w(z, r", ̂ , C) is holomorphic in {(z15 C); | z1 \
gr, |c|(^-|z]|)>|C|>2|cz1|}. Changing c in r^rfc) (^ kl ^MT*),
we conclude that w(zl9 C) is holomorphic in {(zl5 C); 2a | Zj | < | C | < b | ̂  |J"*
(4- | Zj |), | Zl | ^ min (r, A/3)} and | w(z15 C) | ̂ A (C+ | C |"x + I log C |). This
implies the assertion of Proposition 2.3.

Next we integrate w(z, t", X, C) in C and construct Ke(z, t", X). Let us recall
the path C(0) in C-space defined in §2-111. It is a path whose stating point is
deie A1'* (0<d<B*) and goes around once on | C | =d | J11~«.

Let us show some part of Proposition 2.4 about Ke(z, t", X).

Proof of Proposition 2.4-(I). From Proposition 2.3 we can define

(5.7) Kfa t", X) = { exp(-r C)w(z, /", ^ CXC .
Jew

Let us deform C(6) to the path C which starts at cfe^^1"*, goes to c^^c^
A*\Zi\\ goes around once on |C| =c1 and goes from c^1^2^ to
^4* being the same as in Proposition 2.3.

Fig. 5.1.

Thus we get, if | arg X+0 \ <n/2,

(5.8) \Ke(z, t", l}\^A\^-^^(c\z^\).

It follows from the method of construction of Ke(z, t", fy and integration by
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parts that

(5.9) L(z, X, dJKJz, t", A)

X, 92, 8f)w(z, t", X, 0<*f+«p(-<fe Wfc t", X)

where \K'(z, t", X)\^A(l+\l\)N for some N>0, and

(dtfKAz, t", X)\,l=0 = j^expt-rcXW*, t", I, -o

= 5M(2ri)-» TL12 C.-z.-r1 ( expt-rorWC
Jew)

= M^o-'"-1' n«:» a,-*,)-1 .
The proof of Proposition 2.4 is not yet completed. The rest of it is in § 9-III.

(Ill) The integral representation. Ke(z, t", X) is determined in (II).
Hereafter we write suffix h again, for example, Kh

g(z, t", X), #*(z) etc.. We set

(5.10) «*(z) = J-( expC^log^^ Kh
g(z,t",X)u"e(l,t"}dt",

where | ̂ +6 \ <n/2 and Q^h^sm—l. Set wfl(z)=2*tt1 «*(*)• Then we have
to show that ue(z) is a desired formula of the solution u(z). We have

(5.11) L(z, 9.)iiJ(z)

= -L ( exp (^z0) log X dX \ L(z, X, dz}Kh
e(z, t" , X)uh

0(t, t")dt"
2m JAM JT"

= ~{ exp (*(*„-&'•)) log X dl \ K'\z, t", X)uh
e(l, t")dt"

2m JAM IT"

It is obvious that fh
e(z) is holomorphic in { | z0 1 <d} n { | z | <r } . We have for

the initial values, by Proposition 2.4,

(5.12) (WOO |2i=0

= (2^/)-(«-1> j^exp(Jz0) log W^ J^^'^Jfe ?", ̂ )UH)fi,*a t")dt

= »It»(2«0-"+1 [ exp (Jzn) log ^ ̂  ( {H *12 C^-^)-1} ̂ , ^O*"
J /i(^) J T"

= ^L \ exp (tej ul(X, z"} log X dX .
2m JAW)
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By Lemma 2.2 we have

(5.13) (W(z0, 0, z") = dlth{(dyu(z0, 0, z'0+v*(z05z")} ,

where v*(z0, z") is holomorphic at z0=z"=0. Therefore we have

L(z,
^ " ' I X/> NIX X N X NN I 1, /A f

I ^tfY^O' ^ ) 1Ui

where the functions in the right hand side of (5.14) are holomorphic at z=0

(or z0=z//=0). Therefore by the uniqueness of the Goursat's problem means

that U(Z)—UB(Z) is holomorphic at z=0 (see § 8 in [6]). So ue(z) is a desired

integral representation of u(z).

§ 6* Miscellaneous Results-(I)

In § 6 we summerize what we need. Some of it was used in the previous

sections and others will be used in the later sections to show estimates and to

deform integration paths. This section is divided into 4 parts. They are

properties of {/#*}, zeros of G0(z5 /I, r), sectors Si (l^i^p—l) and proofs

of Lemmas 2.1 and 2.2.

(I) Properties of {/?!}. We investigate {̂ 1} defined in Lemma 1.1 in

§ 1. We have set a=al and ftk=ftl. Firstly we prove Lemma 1.1.

Proof of Lemma 1.1. If k=ki_l, then we have ^=0. Suppose

Since S is the lower convex part of the boundary of A9 there are hj,^Q} such
that

(6.1) (Ski_^

where /zj^O if k<k^19 and /z|<0 if k>ki_1. We have (1.5), by putting £j=

**(!-«,-) (ki-i-k), and ^j{=0 if and only if (fc, J^eSC/).

We further have

Proposition 6.1. The fallowings hold:

(1) A+Ca-a^^^^+Ca-a^^+^J.
(2) For (fc, j^eSCi), A+(«-«>* = Al.1+(a-al)jjk|-.1, w particular J3k.+

(^-^sk.=pki^-\-(a-at)ski^

Proof. (1) It follows from Lemma LI that (sM—sk)(l—a)+ftk = m—k9

(j.-^^Xl-^+A^^w-^-i and (^.,-^(1-^)+^ = ̂ -^ We
obtain (1) from these equalities. (2) For (k, ^)eS(z), /?i=06 So from (1)
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we have the first equality and, by putting k=k{, we get the second.

(II) Roots of C?0(z, I, r)=0. We study the roots of G0(z, J, r) = 0 (see
(3.9)), which is an algebraic equation of r. Set

KZ, X, r) = Amttm(2, fV-
(6-2) , „,

zr, A, r) =

A

where £'=(1, 0, ••- , 0). We give the condition on G0(z, ^, r)

Some of (6.3)-i (O^i^p— 1) will be assumed in the following lemmas and pro-
positions.

Lemma 6.2. Assume (6.3)-i. 77ze» there are positive constants ai+l, b{ and

A0 such that if \ <* | ̂  A0, then

(6.4) | G0(z, I, r}-X-^AkhSk(z, Or'»i | < | MA^fz, Or\ | /2

on {r; |r=ft,.Ur.--}U{r; |r|

Proof. Let |r| =cp !*•"*. Then from Proposition 6.1 for each term in
G0(z, J, r)

(6.5) | t-^-«w-^Ak>l(

If /=jft and (k, sk)^^(i), thQnp=f!k.+(a—ai)sk.. Hence there is a small c>0
such that

S(*..4)«c,).rn, I ̂ ^*..4fe h \ < I A^^fe O I /4 •

Fix c>0. For each term in {G9(z, *, r)—FJ(z9 I, r)}, /9|>0 or />jjfe. So this
means p>(a~a^sk.+pk.. Therefore there is a large AQ such that for \
and on {^1-^1^1^}',

| G0(z, ^, r)-F,(z, ^, r) | < | r*i r%î (z,

Thus we have (6.4) on { | r | =bs \ A | | ̂ r*} (6f.=c). Next let | r | =c | ̂  | *• +i~*9

we have

where q=Pki+(a— a,-+iK,.+^i+(l— a.+1)(/— ̂ ). Hence for a large c>0 we
have
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c% 1 Atl,,tfz, O I /4 .

Fix c>0. Then in the same way as above there exists a A0 such that for

MI^o
| GQ(z, J, r)-Fl+1(z, J, r) | < | r'n f̂e I') \ /4 .

Thus on {\T\=ai+1\A\*i+i-'a} (|j| :>A0, ai+l=c), we have (6.4). This com-

pletes the proof.

Now we can show Lemma 4.1.

Proof of Lemma 4.L We have from Lemma 6.2

on { | r | =60 1 J 1 l~*} U { | r | =a£ - Hence it follows from the Rouche's Theorem
in the theory of functions of one complex variable that there are sm roots of
GQ(z, A, r)=0 in {r; Ir^aJ and no zeros in {at^ |r| ^feoUl1"*},,

Secondly we study the roots of GQ(z9 A, r)=0 more precisely. We have

Lemma 63. Assume (6.3)-(z'— 1) and (6.3)-z (f=t=0). 7%e equation
^r) =Q has (sk._^—sk^ non zero roots {^/z)^**"*; l^j^^.,^ ^.
roots are zero.

Proof. Set T=7jX'r*. Then, by Proposition 6.1-(2)5

'-*) = r* Stt.^Mwfe'^.-.fe O) >

where p=Pki+(a—ai)ski- Thus F^z, ̂  r)=0 has (s^^s^ non zero roots

.^— ^.} and other roots are zero.

We set

(6.6) N, = {f,f/z); |

Proposition 6»4e Assume (6.3)-(z— 1) ^«rf (6.3)-/ (z=f=0). 1%^ equation

G0(z, 2, T)=O has (Ski-i— sk) n<>n zero roots iritj(zy X); l^j-^Sk^^—s^ such
that for \*\^A0

(6.7) | rs,/z, ^)-f,,Xz) ; V- 1 ̂  | J | -M-r- ,

AQ, A and p being positive constants.

Proof. We choose p>0 so that 0<p(sk._i— sk)<d, J=min{l— a-9 p\

0)}. Put A,(i')={?7; dis(??5 ̂ ,0= Urp}, dis(??, K) being the distance
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from the point TJ to the set K. For 77 e !)„((), there is a C>0 such that

I W'-*) | ̂  C M I ~^(*-"'-)s*rp^-i- V .

We have from (6.5), for

<; c M ] - V-'V-^cs,^ or {ktSk^(i} | j |

Thus it holds for a large 4, that if ?e />„(/) and M| ̂ 4» lF,(z, J, r)|/2>
|G0(z, ^, r)— F.(z, J, r)|. Therefore G0(z, ^, r)=0 has (ski_^—s$ roots in the
inside of ^i"^D^(i) by the Rouche's Theorem.

Hereafter assume /?>!, (6.3)-f for all O^i-^p— 1 and ̂  =0. Set

(6.8) Nfa X) = K/z, ̂ ----; l^j^^.^-^.}

and

(6.9) *,(*) = U ̂ -l~'*' {r ; | r-f w(0) | ̂ *> .

We choose small d, RQ>Q and a large ^i0 so that if \z\ ^R0 and m ^AQ,

(6.10) Ktf)^>KJdl2)i>NJ(z, X), Ki(d)d{T;bi<\T\<ai} (l^i^p-l),

ai and 6£ being those in Lemma 6.2. Define the sets for l^i^p—-!

(6.11) r(0 - {r; 6J^|-r-^ |r| ̂ ^1^*1-1--, r $ ̂  r ̂ .(S)} .

Then we have

Proposition 6.5. Let N(z, X) be the set of all bounded roots of G0(z, X, r)=0
as *-* oo . Then N(z, X) c U ?ll ***~* K^d/2).

We have

Proposition 6.6. For r e r(0

(6.12) |^0(z3^r)|^C|^|-^-i|r|^-i.

Proof. We have on { | r | =£,_! | /I | **- 1~*} by Lemma 6.2

|G0(z, ^ r)| ̂  ir^.^.^.^, Or'*i-i|/2 .

Similarly on { | r | =6f. | ̂  | V} or r e ̂  r 'OKtf) we have
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where p=pkl+(a—ai)sk=ftk._l+(a—ai)sk{^l by Lemma 6.1-(2). Thus apply-
ing the maximal principle of holomorphic functions to r%--iG0(z, A9 r)"

1, we

have I Ts**-iGQ(z, A, r)"1 1 ^ C | #*••-! \ . This means (6. 12).

Proposition 6.7. For T er(z") and l^sk there is an A such that

I 5-(l-*)(J-s.)-/3,rn

(6.13) ,rr / M = A°\GQ(z, ^ r)|

Proo/. We have, on { | r I =6,..! M | V i"->

| ;ra-">(/-**)-fcr'| gC 1 4 1 -(i-

Since (l-«X/

we have [ ^-a-*)(/-**)-P*r' | ̂  c | ̂ -p*.--ir**/-i | .

On the other hand we have

«,to^

Hence we have on { | r | =bi U | ̂ r05} u { -̂*d .̂(<5)}

| ̂ -(i-«)(/-f4)-^ri | ̂  c | ̂ -^.1T'*I_1 1 .

It follows from Proposition 6.6 that on the boundary of r(i)

By the maximal principle of holomorphic functions implies (6.13) holds on r(/)0

(III) Sectors Si (l^i^p—l). In (III) we define sectors {5g-; 1 ^i<^p— 1)
whose vertex is the origin in r-space. We make use of the sectors to prove

Theorem 1.3 in § 8. To define S{ we give two lemmas.

Lemma 6.8. There is an O)Q (\O)Q\ = 1) such that arg(r§%/(0)cy0)=(=7c— nai

(mod 2n)for all l^i ^p—l and l^j^sk._l—sk..

Proof. Set * = {f,fy(0); l^i^p-l, I £j £*>,_-*£, L, = {r^-^>;
r ^0} and L= U fill*,-. 5 is a finite set of nonzero points and L is a finite set
of half lines. So we can find an o>0 ( |G>O | =1) such that o)QBriL=<f>. This
implies the assertion.

It follows from Lemma 6.8 that

Lemma 6.9. There are o^ ( | o^ I = 1) and positive numbers r and s1 such that
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argr,§J.(z, tycoon— nai (mod 2iz)for all \X\^AQ9 \z\<Lr and \o)—o)1\<s1.

Thus we conclude :

Proposition 6.10. There are d, e^O, zl =£0 and for each i (l<^i<^p—l) an
open sector Sf with the vertex 0 in Cl such that

S,3«, = «'<*-*-<> and Sri (-*!*(*)) = * for \Zl-^\<Sl.

(IV) Representation of functions in O(&(0^) (Proofs of Lemmas 2.1 and

2.2). Let w(z)e0(5(0a)) (00>7r), Q={\z\ ^R}. Define for -0Q<0<0Q-2n

(6.14) *,(*, z') = -L f
2m J2m

Then wfl(/l, z') is an entire function of ^ and

(6.15) | #,(J, z') | g Ce exp(e | J | ) for

Lemma 6.11. If sup | w(f0, t')\^A exp (fl | f0 1 "^ (r >0), then
\t'\£R

(6.16) sup | w^, Ol ^^exp(2(5|^|^1^>) for X with |J| ^
I'l^B

Proof. Choose fi=(5|^|"1)1/(1+iy) in the path T(&). Then on | f 0 |=e ,
o^ I +5 Uo l"v=£ M I +^£"Y=2(5 1 X I T)V(i+-y)B So we have (6.16).

Set for

(6.17) wfl(z) = - exp(^z0)wfl(^ z')(log X)di .
27Ti J^W

Then we(z)&O(&(0, 0+2^)) by (6.15). We have the relation between w(z) and

Lemma 6.12. w(z) — we(z) is holomorphic in {z; \z0\<R, \z'\^R}.

Proof. From (6.17) for z0 with | arg ZO+^—TU \ <n\2

(6.18) wfl(z) = -L J exp(^0)(log ̂
27rz JAM

I CooeW f
= ̂  1 exp(/lz0)rf/l \

2?r/ Jo J

2m

Set T/r= — 6 and let arg z0=0+7r and | z0 1 >2^. Then by the definition of T(0\
we have
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0, z')/(tQ-Zo)}dtQ = w(z)-v(z) ,
2m Jne)

where v(z)= — — I {w(f0, z')/(tQ— z0)}dt0 and T*(0) is a path starting at
2m Jr*(0)

ReiQ and going around on the circle \t\ =R once. So v(z) is holomorphic in
{z; | z0 1 < R, \z'\^R}. This completes the proof.

We have Lemma 2.1 from Lemma 6.11 and Lemma 2.2 from Lemma 6.12.

§ ?„ Holomorphic Extension of tie Kernel Function w(z9 t"^ A9 Q

We try to analyze the integral representation in detail. To do so we study

the singularties of the solution w(z, t", t, C)=wh(z, /", Z, C) of (3.1). We will

obtain more precise informations of the integral representation from them, which

yield the results of removable singularities (Theorem 1.3).

Now we always assume

f IK- i Akl.,tt(z, 0 1 6>-i'-(i.o...,«> *<> for | z | ̂  J?0 ,

I ax>l and ̂ .x = 0

through § 7 and § 8. This means p>l and (6.3)-/ hold for all 0<Zi<Zp—I.

Let us recall the definitions of the path r(c) in r-space (see § 5-II) and positive

constants a{ and bi (see Lemma 6.2 and (6.10)). Let us write the sets appear-

ing often in the sequels :

I 8 = {(z, t", X); \z\ £r, R^\tt\^R (i^

(7.2)
Z(0 =

= {(z, f", ^5 r); (z, ^/7
5

0 - {(z, f", ;, C, r); (z, ̂ , ^5 r)eJT(0, 0< |C+rz

2a, | ̂ i--za I < | C I < A,^ | ̂  | "<- 1

w+1= {(z,t"9 1, C); fe ^,

l^i -̂1, for Rtf) see (6.8)-(6.10).

By Proposition 5.3 ¥(z, t"9 A, C, r) is holomorphic in 7c F(l) and we may

assume w(z, t", ^, C) is holomorphic in Z(l) (see Proof of Proposition 2.3 in § 5).

Now that we assume (7.1), we have better results than Proposition 5.3.

Proposition 7.1L (1). The following estimate holds in
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(7.3) | vp(z, t", J, r) | ̂

(2). K(z, t11, A, C, r) is holomorphic in

If we assume (7.3) in X(i), we can show (2) by the same method as in the

proof of Lemma 5.2. The estimate (7.3) is shown § 9. So from Proposition

7.1 we can define, by setting r2=r(^i)>

(7.4) W2(z, t", *, 0 = ( V(z9 t", *, C, r) dr .
J-y2

By repeating the same argument as in the proof of Proposition 2.3 (see § 5-II)

we have

Proposition 1,2. w2(z, t", A, C) is holomorphic in Z'2, Z'2 = {(z, t", X, C);
(z,t",Z)€E3,2b1\z1\<\<;\<b1(A-\z1\)}.

Set Wl(z, t", X, C) - w(z, t", I, C) and

(7.5) wli2(z, t", *, C) =

Then we have

(7.6) Wl(z, r7/, ̂ , C) - wlt2(z, f7/, ̂ , C)+w2(z, r7/
3 ^5 C) in Z^fTz^ .

Since the path (^—7*2) can ^e deformed to the path dK^d), we get

Proposition 7.3. wlt2(z, //7
? ̂ ,

We have defined w,.(z, r/x, ̂ , C) (i=l, 2) and w1>2(z, r", J, C). Let us con-

struct inductively w,-(z, /'', A, C) and wf.ff-+1(z, /7/, ̂  C) (i=l, 2, • • - , />— 1) such that

(7.7) MV^Z, t", ^ 0 = ^-i.,-fe '"> ̂  0+w,(z, /7/, ̂  C) .

By the relation (7.7) we shall get the holomorphic extension of w(z, t", A, C) as a
function of C onto a covering space of

Define rf-=rfo), 2a- 1 ^ | -.—^ | c- 1 ^b{_, \ X \ ̂ -i"05. Assume that w.-.^z,
^, C) is defined and has the form

(7.8) w^z, r/7, J, 0 = [ ^'"'fe ^^ ^ C,
JY.--I

where F^fe f", ^, C, r)- 2Jr*-i v^Cz, /7/, ^5 ̂ (C + rZj) converging in

Y(i- 1) and F1 ,̂ r", J, C, r)=K(z, f'', ̂  C, r). Let us define V\z, t" , X, C, r).
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Set vj(z, /", I, r)=0 for p^h—2 and suppose that i4_/z, t", J, r) (j^l) are

defined so that

vJ_Xz, r, J, r)-v<l}(z, f", J, r)

Set gj(z, f", J, r)=S7=1 G,(z, J, r, 9><_Xz, f", *, r). Then gj(z, /", J, r)-

g;-»(z, */7, ̂ , r)S0({|r| ^*,_, Ml •'-'-•}). We have

Proposition 7.4. TAere exu1^ uniquely a polynomial h'p(z, t", X, r) wif/i

^— 1 SMC/Z f/zaf

f {gr1^ t", X, r)-gfo f^, A, Q+A}-^, ^ ^. r)}r'
Jti C?0(z, ^, r)

^(z, ^ r)

Proof. There exist JA|._ 1 roots of G0(z, ^, r)=0 in the inside of rg- if j ̂  |

yi0. Proposition 7.4 follows from Lemma 9.8 in § 9.

So set

vjfe r/7
? ^5 r) = {gKz, r/7, ^ r)+Ajfe t", ^ r)}/G0(z9 ^ r) .

Since gfa t", ^ r)-g^(z, t", ^ r^+hfa t", *, T)-hr\z, t", I, r)eO({|r|

)* i1: follows from Lemma 9.7 in § 9 that (7.9) means that

vjfe /7/, ^3 ̂ -v^^z, r7/, ^ r)eO({|r| ^ViMI*1-1"*})- For the estimate of
v£(z, r77, ̂ 9 r) we have

Lemma 7.5. It holds that

(7.10) | vj(z, r77, ̂ 5 r)| ^jB*+1|r|-*-2/i! KPI Jf(i) .

We refer the proof of Lemma 7.5 to § 9. By Lemma 7.5 we can show
the convergence of

(7.11) F"(z, r77, ̂ 5 C, r) = S/.V! vi(z, r"9 ^5 r)/,(C+rzO

and get

Proposition 7.6. F'(z, ? 77
? &, C, r) w holomorphic in Y(i).

We define

(7.12) w,(z, r", ^, C) = -L
2?rz

and
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(7.13) w,._M(z, f", 19 O = — ( K'-'fe f", J, C, r)rfr .
27TZ JY.'-i-Y,-

If |C| >|rz1|, since vj(z, f", J, r)-^*, *", ̂  r)
l^-i-r-}), So we

can replace the integrand in (7.12) by V*~\z9 t" ', A, C, r). Then we have in

(7.14) w,(z, ̂ , J, C) = -- V^\29 t", I, C,
2ni J^

Thus

(7.15) w.^Cz, r", ^ 0 = wf._u(z, r^5 ;, 0+— f V*-
2ni JY/

,fe ^7/, ̂  O in Z(

We have

Proposition 7.7. w,._M(z, ^, *, C)e0(Z|._1>|.) onJ w,(z, ^7/, ̂ ,

Thus by using wf._M(z, r/x, ^, C) and wf-(z, ?7/, ^, f)» we can extend

w(z, /x/, A, 0=Wifo ^', ^, C)e(5(Z(l)) holomorphically into Z0,

Z0= {(z, rx/, l, C); (z, r",

in the following way :

(7.16) Wl(z, rx/, ̂ , C) - wli2(z, t", t, C)+w2(z, t", ^ C) in Z

= w1>2(z, /7/, ^ 0+H'2i3fe t", *, 0+w3(z, //7, ^ 0 i

- wli2(z, /", ^5 C)+H'2>3(z, /x/, ;, C)+"-+w,_M(z, r/x, ̂ 5 0
in Zp.l>p .

Summing up the above extension, we have

Theorem 7.8. w(z, f", ^, C) has a holomorphic prolongation by (7.16) as a

function of C to some covering space ZQ of Z0.

We denote this prolonged function also by w(z, t ", /I, C). So in (2.2), the

definition of Kh
B(z9 X, t"), we can deform C(0) homotopically to a path in Z0.

We'll perform it in § 8 to show Theorem 1.3.

§ 8. Removability of Singularities

In this section we assume (7.1) and complete the proof of Theorem 1.3.
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So Propositions in § 6 are available. Sectors {S{} (l^i^p—l) appearing

in this section are those in Proposition 6.10. Set

(8.1) 3' = {(z, r", X);(z, t", X)^S, \z,-z1\<ej- ,

where e^Q and z^O are also those in Proposition 6.10. We always assume

(z, t", X)^3f in this section. In (I)-(II), by using Propositions 6.5 and 6.10

and Theorem 7.8, we decompose KLe(z, t", X). In (III) we decompose u(z) with

the aid of the decomposition of K^(z, t", X). In (IV) we complete the proof

of Theorem 1.3, by using Theorems 1.7 and 1.9.

(I) Deformation of path C(ff). We have constructed Kk
9(z9 t", X) in § 5.

In view of Theorem 7.8 we can deform the path C(0) in the definition of

KQ(Z, t", X) ((5.7)). Firstly let us define some paths in C-space. For a path

C={C(0; O^r^l} and a<=C, aC={aC(t); O^r^l}, Ai is a straight line
which starts at d^e'^^-i X«i-i~* and ends at cf.<T''*"tf*«--*fo>2a{ \ z1 \ >bi \z1\>

di >03 /= 1, 23 -•• , /?—1, dQ = d, d being in (2.12)). Bf is a circle starting at

cf-e"f'**» and enclosing C=0 once.

Fig. 8.1.

Set Ci=Ai+^rttBi—^tiAi (see Fig. 8.1.). The singularities of wh(z, t"9 X, C)

are in the inside of B^. So we have

(8.2) KHz, t", X) = { exp(-rcK(z, t" \ X,
Jcc-*)

We note that in general wft(z, r/7
3 ^, C) is multi-valued, so in (8.2) I •

J^i

S ... d£ 4=00 Let us try to deform the path Bl to another path. We have
-e2*1'̂ !
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Proposition 8.1. The path Bl in (8.2) can be deformed homotopically to B{

containing the path C2 as a subpath, B{= !${(-}-)-}- C2+B{(—\ with the following
properties:

The paths B{(+) and B{(-) are in {d^ \ C | ̂ c,} , (B{(+) U £((-)
£((+) U B{(-) encloses -z.K^d) and

(8.3)
c2

. The singularities of wh(z, th ', X, C) He in —2^(8) or in
Ullli-z^**-*^)} by Theorem 7.8. The latter singularities are in
{C; | C | <a2 \X\ *2~* | zx | } , that is, in the inside of C2. So we can deform ^ so
that ^i(+) and ^i(~) enclose — z^d) and from (—z1K1(d))r\S1=^ (Proposi-
tion 6.10), (Bi/(+)U5((-))n5r

1=0 and (8.3) hold.

The singularities of wh(z, ift ', ^, C) in the inside of C2 are enclosed by
X**~*B29 more precisely, in -z^-^K^d) or in \Jp

q~\ {-z^**-* Kq(8)} C
{C; |£|<03M|*s~*|*il}. We can again deform the path C2=A2+Z*2-*B2+
(—e^A^, not changing A2 and e2rf%, to a path 4,+5£+(— e2*^)^ where B'2
contains C3 as a subpath and the similar results to Proposition 8.1 hold (see
Fig. 8.2.).

Fig. 8.2.

The singularities of wh(z, t", A, C) inside of C2 are in the parts of oblique
lines in Fig. 8.2.

By the repetition of these processes of deformations we have
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Proposition 8.2, The paths Bt(l<^i^p—l) can be deformed homotopically

in Z0 to SI such that

(1) Bl=Vr*Bi(+)+CM+Pr*B'i(-') (Cp=*)9

(2) B'i(+) and Bi(— ) are independent of I and contained in {d^ |C| ^cf}

and {BK+) U #(— )} fl Sf=^9 and it holds that

(8.4)
A *

+ ( -rfC.
J A*'- **{(-)

Thus Proposition 8.2 gives

Proposition 8.3. 77ze kernel function K*L«(z, th \ X) is represented in the fol-
lowing form'.

(8.5) KU(z9 t", X) = Sfci

+ ( -rffl + S f c J T f -rfC+(
J-^A- Jxa!'-a55{(+) JA*.-*^-)

(II) Decomposition of j^ltf(z, ^7/, X). In order to show Theorem 1.3 we
further decompose the paths. For this purpose we need lemmas and pro-
positions about the paths Ai9 B{(+) and !?•(— ).

Proposition 8.4 Let C^Ai and arg X=n. Then there is a c>0 such that

Proof. Since Ai is C(0=(l-0^e"l'^-1^-1

l^. So there is a c>0 with RQ **£^c\t\*! for

Lemma 8.5. Le? C=^*«"*37, y&Sj. Then there exist c,,>0
1^-, — w|<2r/2af. wcA r^ Re ̂ C^^|^|^/(?r ^ w/rA arg X=^.

Proof. Set ^=|^ | g«* and ?= | ? | es'p. Then Re ^C= | ̂ ^ |
Since ??$5g-5 |p+7rag. |<TT— e for some e>0. Hence there is a ^ such that
|^-TT| <n/2ai and cos(a-^+p)>0. Thus if arg ̂ =^,, Re^C^^UI^ for
a c^>0.

The proof of Lemma 8.5 also shows

Lemma 8.6. Suppose that K is a compact set in C1 and K f}Si=(p. If the

diameter of K is sufficiently small, then there are CK>Q and "frK with \^K~~ n\ <
?r/2a. such that Re **CS^ CK \ X | *t holds for r^^Kand X with arg X=^K.
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By Lemma 8.6, we can decompose the path £,•(=!=)•

Proposition 8.7. There are paths Bis and constants -^ifS with \i^ilS—
7C\

7u/2ai and ci s>0 (1 ̂ s^l^, which do not depend on X such that

(1) !?K+)=sI=i^i,fl^«(-)=23f=/;+i5l.f,
(2) Re X*C^ci9,\X\*ifor CeA-.— 5f.ff and X with arg X=^itS.

Let us decompose K^(z, t", X) by using the paths A{ and BitS. Set

(8.6) tfi^z, f", J) = ( ( +[ . )exp(-^CK(
•M; J-e27C%-

(8.7) Kh_«iitS(z, t", X) = ( exp(-J*£K(z, f", J,
J^,(A)

Then we have

(8.8) K^z, t", X) = Sf-KS^Lo Kh_«tiiS(z, t", X)) .

It holds for Kh_^itS(z, f", ^) that

Proposition 8.8. The following estimates hold:

(8.9) |^,M(z, ^, ^ l^^exp^MI^-O /or |arg^-^|<^/23

and

(8.10) | A-i*f|.i0(z, /7/, ̂ )| ̂ A exp(-c|^|050 (c>0) /or ^ with arg J - TT ,

(8.11) l

(8.12) |^f,fi(z, f7/, ̂ )| ̂ ^ exp(-c|*l-0 (00) for X with arg ̂ =^§f .

. (8.9) and (8.11) are obvious. We have (8.10) by Proposition 8.4
and (8.12) by Proposition 8.7.

We remark that (8.11) is valid without the condition of the argument of L

As we said, (z, t", X)^3f are assumed. But the estimates (8.9)-(8.11) are also
valid for (z, t" ', X)^3. The condition (z, t" , fy^3' is required to show (8.12).

(Ill) Decomposition of wl«(z). By using Kh^titS(z, t", X), we divide
wlrf(z) into the sum of wltftt-i5(z). K^(z, t", X) is single valued by Proposition
2.4, and uh^(X, t") is an entire function of X by Lemma 2.1. Hence we have
from (5. 10)
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(8.13) w^z) = {7*'* exp(*z0)d* [ Klt(z, t", X)ul&9 t")dt"+v\z),
jAae'* Jj"

where v*(z) =— { exp (^z0) log X dX ( Kh_«(z, t"\ Z)uh-.«(Z, t")dt"+vi^(z),
2^f J lM=^o *T"

\-*/r—7c\<7u/2, and |^| =J0 Is a path on the circle starting at —AQ=A0e
i<g and

going around once. Set

(8.14) ^ , ,(z) = (°°et* exp(te0)d* ( Kh_« , s(z, rx/, ̂ )ii^, f'7)*77.
jAQet1c JT"

Hence we have in C/(7r)= {zeC11"*"1; 0< |z01 <£r, |z' | ̂ r, | arg z01 <?r}

(8.15) «(z) = S(/u,s)w-*,*,s(z)+v(^) > Kz) = 2*AZ)

and from Proposition 8.8

8090 uh_^titS(z) (1 ̂ s^If) are holomorphically extensible to
and for any 6l with

(8.16) | i^.lff(z) | ̂ ^9l exp (cQl | z0 1 -^) for

In the representation of ufL*iiiS(z) ((8.14)) we can deform the path
of Integration in <l by (8.11). Namely we change ^ In (8.14). In doing so we
have to replace fli^, t"} by ^(/l, r/x) and take another holomorphic function
wj(z) (see Lemmas 2.2 and 6.12). Consequently If 0<argz0<0+27r (—00<0<
0Q—2n\ we have

(8.17) ii^.az) ̂  ^,, exp (^

^ being |^—
Thus we get holomorphic extension of uh-«iiiS(z) and (8.16) from (8.11).

Now we use the decay estimate (8.10) and (8.12) and obtain the asymptotic
expansion of uh_^titS(z). In the representation of n^etitS(z) ((8.17)) we choose

^=^i,s in Proposition 8.8 (^i}Q=^), Then we can show that it has the
asymptotic expansion with respect to z0. Namely,

m Soldi wl*ff-pS(z) (0^j^/f-) have the asymptotic expansion with
bounds with respect to ZQ in {z0; |argz0+^->s— n\ <n/2}3 that is, there are holo-
morphic functions uh^ti)Sin(z

r) (n=Q, 1, •••) in {\z'\^r, \z1—%1\<e£ and con-
stants As and Bs such that

(8.18) I^.L.W-SJL-o1 u1^s,n(z')(z»
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n

Proof. We apply Proposition 10.10 in § 10 to ut*titS(z). The inequalities
(8.10) and (8.12) imply the condition of Proposition 10.10. Hence we have
(8.18).

Since r=rp-i^ri, we can say wl,^^"1, z') has the r-asymptotic expan-
sion with respect to t in n/2< — arg

(IV) Laplace transform of w(z). Now we proceed to complete Theorem
1.3. Here we use the assumption concerning the growth property of u(z). Let
us write it again :

For any e>0 there is a C8>0 such that

(8.19) | u(z) | ̂  Cz exp (e | z0 1 -^-i) in

For simplicity we denote «(z)=w(z0, zl9 •••, ZM) by W(ZQ) and rp~\ by r because
other variables are not important. By setting z0=f~1/v, we have from (8.19)

(8.20)

Define the r-Laplace transform of M(ZO), v(zc) and wt*,,-,s(z0) by

' ii(£) = \ exp (f?X'~1/T)^~1* (fl>C*).

= (+°°exp (St)v(rl^t'ldt (a>CT) .
Ja

(8.21)

where ?r/2< — ̂ -+^l- s<3x/2 (see Proposition 8.10). We have from (8.21) and
T

Proposition 8.10.

Proposition 8.11. (a) ii

By Proposition 8.10 each wi*,,-,,^"1) has the r-asymptotic expansion with
respecte to / in {t&C1; \t\ >C, n/2<— arg t+^iiS<3n/2}- and v(r!) is holo-
morphic at t=o°, v(t~1) = ^n~Q vn(z')t~n. This gives informations of the
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behaviours of wlrf>/>s(<?) and v(<f) near <?=0, that is, by Theorem 1.7 we have

Proposition 8.12. (a) 6l<fl-f4(f) Ms1 £/ze holomorphic prolongation onto

{0<\C\<c} for some 00 such that ̂ h-^
^e|log£| in {£;0<|£|<c, |arg<?|«9}

(8.22)

(b)

(8.23)

Now let us study the relation between w(<f), u^iiiS(f) and i)(f). For this
purpose we employ a limitting method (see (8.25)). Firstly we give

Lemma 8.130 There are <pitS (l<Zi<Zp—!9 O^s <*/,-) such that

(!) 9i.o=° and \9i,s\
<7l:rl2ri far l^s^l;,

(2) */2<fe.>)+^,s<3*/2,
itQ=n and ̂ itS (1 fgs g/f.) ar^ r/205^ in Proposition 8.7.

Proof. Let us note |^-,s— w|<^/2af.. In order that there exist 9f-§5 satis-
fying (1) and (2), it is necessary and sufficient that 3n/2— ̂ i>s>— n/2T; and
K/2ri>n/2—i/ritt. This conditions are satisfied by i/ritS.

Choose i/f.>0 (i=l, 2, • • - ,p— 1) such that \<pi>s((rJr) + ^i)\<^/2 for all
Set

(8.24) ^0 = minfr/2+9,.., »/2-^if; l^i -̂1, l^^/,} >0 .

Let /cg->0 (/=!, 2, "*,p— 1). Then we have

(8.25) fl(f)= lim ( lim -•- (lim

We have from (8.25)

Proposition 8.14. Let \ arg <f — x \ <d0. Then

(8.26) i2(f ) = Sl-o1 Sfci Silo wi,,,,

Let^l. Since |w^§/if(r^)| ^^exp(c6l|r|^ in
^o) by Proposition 8.9, we have

= lim ( lim
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= lim ( lim (-(lim (°°ff '%xp(£f-2fc} *,fV*+^)^ , s(t~
lh}rldt .

Here we use |0>f-iS(rl-i,/r+J'f-)l <x/2 and
^rc/2. Since iih_^titS(t~

lh) is bounded on arg t=y*itS9 we have

(8.27) «i*.,fl(£) - f °°" *'%xp(eo^Ur^)r^ = #.,..(0 .
Ja

This means (8.26).

Combining Proposition 8.14 with Propositions 8.11 and 8.12, we have

Proposition 8.15. w(f)eoHf ; | a rg f— ̂ | <— + r^0
 and if has the

holomorphic prolongation around f = 0, //?#£ is, u(£)^O({0< |f | <<?}) w/Y/2

1 6(£) | ̂ 0 1 log £ | ( | arg £ | < 0)

(8.28) fl(f)

It follows from Proposition 8.15, (8.20) and ^0>7r(l/2r+l) that the con-
ditions in Theorem 1.9 are satisfied. So u(t~1)=u(t~1, z') is holomorphic at
t=oo. This means that u(z) is holomorphic on {z0=Q} in {|z| ^r, [zj— zj<
ej. Hence {zQ=Q} is removable singularity. Thus we complete the proof of
Theorem 1.3.

§ 9. Miscellaneous Results-(II)

In § 9 we show lemmas and propositions used in the previous sections, but
their proofs are not yet given. We give estimates of vp(z, t" , /I, r) and hp(z, t ",
^, r), and existence of hp(z, t" , ^, r) in (I)-(II). For these purposes lemmas
about holomorphic functions are given in (II). By proving that K#(z, A9 r) is
single valued, we complete the proof of Proposition 2.4 in (III).

(I) Estimates. We obtain estimates of vp(z, t" , ^, r) and hp(z, t", /I, r)
by the method of majorant power series. Let A(z)=^ A^z* and B(z)=^] B^z*
be formal power series. Then A(z)<^B(z) means |4J^gjB t f for all multi-
indices a. We state elementary properties of majorant power series without
the proof, which will be often used. For the proof we refer to [3], [5] and [16].

Lemma 9.1. (Wagschal). Let B(s) be a formal power series of one variable

s such that 0(5) >0 and
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(9.1) (R'-s)0(s)>Q.

Then for derivatives, Ou\s)=(d/dsyO(s) (j=09 1, •••) we have

(9.2) (R'

and

(9.3) (RQ

In the following we assume r<Rf<RQ<R1<R9 R^lt^^R (/^2), and

\A\^>A0 and try to obtain estimates of holomorphic functions of z, consider-

ing ^5 T9 1" to be parameters. We set s=z0+z1-\ ----- \-zn and

(9.4) *(*) = (*'-*)-'.

0(s) satisfies the conditions in Lemma 9.1. From Proposition 6.6 we have

Lemma 9.2. Let rer(z). Then

(9.5) (70(z, I, r)-l

Let us note vp(z, t", A, r)=0 for p^h—2 and proceed to obtain estimates

ofv/z,*77, J,r).

Lemma 9.3. Assume for T e r(l) ^wrfy ^ 1

(9.6) Vy(z, f", ^

(9.7) G0(z, ̂ , rr^/z, r/x, ̂ ,

Proof. In view of proposition 6.7 and the definition of Gfa, X, r, #J ((3.9)),

we have

(?0(z, ^, r)-lG/z, ^ r, ^)v^/z, /7/, ^, r)

^A^-s^AB^ | r | -*-

From the definition of gp(z, t", ^ r) (see (3.10)), we have (9.7).

Lemma 9.4. Under the same assumptions as in Lemma 9.3,

(9.8)
G0(z, -l,

Proof. We can choose the circle |r| =60Ul1"a> as tne integration path r«
So (9.8) follows from Lemma 9.3.
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For C,.,(z0, z", t", X) defined by (4.3),

Lemma 9.5. Under the same assumption as in Lemma 9.3,

(9.9) Cptl(zQ9 z", t", X)«ACB*~l 4jjT>| J I (*-1)(>+1-/} 0<*+»(s) .

Proof. We have

vyife* 0, z", f", A, r) | r | '"' C^CI?'-1 1 r | -*-*+' fl^fe) .

Hence, we get in the same way as in Lemma 9.4

( v^.(z0, 0, z", f", J, r) | r | " dr^ACB*-1 \ Ji \ c
Jy

Therefore (9.9) follows from the above estimate and Lemma 9.4.

For hp(z, t", X, T) determined by vp^(z9 t"9 X, T) (/ ̂  1) we have

Lemma 9.6. Let r e r (1). Then

(9.10) hp(z, t", t, r)^ACBp~l \ r | ~*~* \ A \ -

(l)=(a— l)sm.

The existence of hp(z9 t", X, T) and the proof of Lemma 9.6 will be given in
(II) by using Lemma 9.5.

We can show Proposition 7.1.

Proof of Proposition 7.1. It follows from Lemma 9.3 and Lemma 9.6 that

v/z, t", I, r) = {gp(z, t", I, r)+hp(z, t", 19 r)}/G0(z, J, r)

Thus there is an r such that for | z | ^

(9.1 1) | v,(z, r/7, ̂

(II) Lemmas on holomorphic functions. We give some lemmas con-

cerning holomorphic functions and show Lemma 9.6. In (II) we always assume

that /(r) is a holomorphic functions of one variable r in {reC1; \r\<^R},

/(r)=(=0 on | r | =R and the number of zeros of /(r) in { | r | <R} is 5, the multi-

plicity being counted.

Lemma 9.7. Le? g(r) be holomorphic on {\T\<£R} such that

(9.12) [ Z&Tldr = Q for O^l^s-l .
^ J --
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Then g(r)//(r) is holomorphic on { \ r | <: R} . In particular ifg(r) is a polynomial

with degree ^ s— 15 then g(r) = 0.

Proof. Let r.(l<^'<^#) be the distinct zeros of /(r) with the multiplicity

?-i ^i—*9- Hence we have

where g^r) is holomorphic on { [ r | ̂ R} . Put

(9.14) K(0 - exp (rr) Jr = S!-i S

and ^(r)=n?-i(r"-<ri)8|'« Then we have f^d/dt) u(t)=Q and from the assump-
tion (d/dt)j u(Q)=Q for Q^l^s—l. Thus it follows from the uniqueness of the
Cauchy problem of ordinary differential equations that u(t)=Q, that is, Ajjp=0
for all i and p. So g(r)//'(r)=g1(r) is holomorphic on { | r | ̂  J?} . Now assume

g(r)=ft(r)/(r) is a polynomial with degree ^^—1. g(r) has s zeros. Hence

Lemma 9.80 For any complex numbers cl (Q^l^s— 1), rA^re exi^^ uniquely
a polynomial h(r) with degree ^ s—l such that

(9.15) J

Put c=(c0, q, ••-, cfiml)eCfS. Then the linear mapping defined by
(9.15), that is, from the space of all polynomials with degree :g s—l to C\ is
injective by Lemma 9.7. Since the dimensions of these linear spaces are equal,
this linear mapping is surjective.

Lemma 9.9, Let g(r) be a holomorphic function on { \ r \ ̂  R} . Then there
exists uniquely a polynomial h(r) with degree-^ s—l such that (g(^)—h
is holomorphic on { \ T \ ̂  R} ,

T for os'*'-1

Proof. Let h(r) be a polynomial with degree ^ s—l such that

5,, w\T'dr = \J lrl=j?/(r) J lri=je/(r

whose existence and uniqueness follow from Lemma 9.8. By Lemma 9.7 (h(r)
— g(r))//(r) is holomorphic on { | r | g R} .

We apply Lemmas 9.7-9.9 to holomorphic functions of r with holomorphic
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parameters (z, t", X) and we can easily show the existence of hp(z, t", A, r) in §4
and /4(z, t", X, r) in Proposition 7.4.

Now let us proceed to obtain the estimate of hp(z, t", I, r), namely, the
proof of Lemma 9.6. Let G(z, X, T) be a holomorphic function of (z, A, r) in
Ar={(z,^,r)eCr"+1xC1xC1; |z| ^J?0, |r| ^Z>U|8 , M| ̂ 4,}. Weassumethat
there is a ^4=0 such that

(9.16) G(z, t, bts $ = r* G(z, J, /*) ,

and lim G(z, ^ ju)=G(z, oo, /«) exists uniformly in {(z, /i); |z| <^0, |/*| <!}.
x->«»

We also denote by G(z, A, ^) this extension to A=oo. We add assumptions on

(9.17) |G(z,^/i)|^c>0 on 1/11=1,

and (r(z, ^, JM)=O has exactly 5- zeros in {| /« | < 1} for any (z, <*). Consider the
equation

(9.18) ( A(*' ̂ ? r) rj A = Q(z, X) for 0^/^j-l ,
J? G(z, ^, r)

where r is a circle starting at Ws and ending at bA8 e2*1. Assume that Q(z, /I)
is holomorphic in {(z, X); \z\^R0, \A\*>A0} and satisfies

(9.19) c,(z,;o<^)M|8le(j),

where O(s) satisfying the conditions in Lemma 9.1.

Lemma 9.10. There is a unique polynomial h(z, A, T) ofr with degree^s—l
satisfying (9.18) such that for \ T \ ̂ b \ X \ s

(9.20) A(z, *, rX^I? (X) \ X \ ~K~8 0(s) ,

where Al is independent of X and B(X) is that in (9.19).

Proof. Set h(z, /I, r)=2JiJ Ak(z, Z) rk. Then (9.18) is equivalent to the
algebraic equation

) for 0^/^j-l.

By putting r=b^ v, we have

SZ-J ^*(2r, A) (Wa)*+1 \ f* d» = cf(z,
JiH-i G(z, ^,/«)

It follows from Lemma 9.8 that
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J ,.k+l
*/*, , d/i, Q^k, l^s- 1)4=0 .

IH-l G(Z9 &, /l)

From (9.17) there is a c0>0 such that \D(z, X)\ ^c0 in {(z, ̂ ); |z|
4)}. Thus D(z, ̂ CC^o— j)"1. By the Cramer's formula we have ̂ (z,

O(s). Hence, if | r \ ̂ b \ X \ 8, we have A(z, A, r)=2i-o -

Thus we can show Lemma 9.6.

Proof of Lemma 9. 6. From Lemma 9.5, by putting d=l—a and ̂ (^)=
J^ft^l^r8^^ we have CM(z0, z" , I, r)<^J»(^)|^|ai^+«(j). Hence by
Lemma 9.10, by putting G(z, ^, r)=G0(z, /I, r), we have A(z, ̂ ,
| x | -^d)-8 ^^+1)(5) for \T\^b0\t\

8. Therefore, if | r | ̂ b0 \* \ 8, we have
*(z, ^ r)<^JJ*|^|-«w ^(^+1)(5). This implies (9.10).

Thus we complete the proof of Proposition 7.1. We can also show Pro-
position 5.1 in the same way. Because the estimates in Propositions 6.6 and 6.7
and Lemma 9.6 are valid for re {a^ |r| fj&ol^]1"*} under the condition

^.. jo, mo.
By the same method we can obtain Lemma 7.5, the estimate of v^(z? /", <*, r)

in X(i). In that case, instead of Lemma 9.6, we adopt:

Lemma 9.11. Let r e r(z). Then

(9.21) Aj(z, r/x, ^ r)<ACB*-1 \ r \ "P"2 X~^ 6^+1\s) ,

where K®=pk._l+(a-ai_J s^.

The proof of Lemma 9.11 is similar to that of Lemma 9.6.

(Ill) Single valued function Kk
e(z9 t" , /I). In (III) we complete the proof

of Proposition 2.4, by showing that Kh
e(z, th ', X) is single valued, which is not

yet proved. In the following the upper suffix * of a function of /I, for example
/*(/t, •), means it is a single valued holomorphic function of A on {^ ; | ̂  | ^> A0} .
Set vp(l, P)=VP(Z, t", X, £, pXl-«). Then we have

Proposition 9,12. vp(Z, p) has the form

(9.22) v/^p) = ^+2>v*ap).

Let us show (9.22) by induction on p. vk(A, p) = 0 for k^h—2. We need
lemmas.
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Lemma 9.13. Assume vk(X, p) has the form (9.22) for k^p— 1. Then

(9.23) G/z, X, r; SJU^i- = J-"-'-' G?(z, *, p; 0J ,

(9.24) *,(J, p) = SJL, G/z, J, r; SJI^.- vX*> p) = ^+2-*»>gM p) ,

where the coefficients of Gf(z, X, p ; dz) are single valued with respect to X.

Proof. (9.23) and (9.24) follow from (3.9) and (3.10)

For Cptl(z0, z", t", X) denned by (4.3) we have

Lemma 9.14. Under the same assumption as in Lemma 9.13,

(9.25) Ct,,(z0, z", t", X) = *•»-'«> CjUzo, z", t", X) .

Proof. We have v^X, p) ̂ a-»x»-o=/l«(#+2-o v* .^ p^ Hence

If /»*/-!, we have CA/(z0, z", r'7, ̂ )=^«*+1-'> cjT.iW- If /»=/-!, then the as-
sertion is also valid.

Set A/r^A/z, f",J,r)=Si:JXM(J)r*, where 5=jw and ^,*«=,4M

(z, ?",yt). We have

Lemma 9.15. Under the same assumption as in Lemma 9.13,

(9.26) ht(T) \ T.rtl-. = ^-«--

Proof. ht(r) is determined by the equation

Since

• Ct'C A » =
p) *'/V ̂  '

the equation becomes Silo ^/..iW ^~*(A+'~S+1) ^f,;W=^(*"/+1) Cfp/(^). Put

-V«=^+*~s+2)^.*«- Then S*=J^.*W^./W=Q*./W- Hence ^.^)
is a single valued holomorphic function of X. Thus we have (9.26).

Proof of Proposition 9.12. We have (9.22) from Lemmas 9.13 and 9.15 and
vp(z, t", X, r)= {gt(z, t", X, r)+hp(z, t", X, r)}/G0(z, X, r).

Set

(9.27) Ip(X) = exp (-^-0 rfC v,(^, r)//C+r z,) </r .
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For C(0)=C(deie I1"*) see §2-111. Then

Lemma 9.16. IP(X) is a single valued holomorphic function on {2; \2\ ^ AG}.

Proof, Put T=pZ1-«. Then

(9.28) IJX) = \ exp (—2*Q d£ ( vJ2, p^""
Jcce) J?($)

exp (—/

f

JV
exp

Vb) -pA1 aaj

Since

J rfg'0+P*-

o

we have

S frf«f'*+Px,
v^, p^1-*) ^--)<*+«) exp (^ zO rfp I exp (-^) 57^ ! ^ .

7(6) Jo

This means that IP(X) is single valued.

From Proposition 9.12 Kh
e(z9 tf/, X)=*£p~k-i Ip(fy is also single valued with

respect to ^.

§ 10. Function with Asymptotic Expansion

In §10 we consider functions with asymptotic expansions and give the

proofs of Theorems 1.7 and 1.9. Let u(t) be a continuous function on [A, +00)

(A >0) such that | u(t) \<ZCexp(B\t\v)(r >0). We have defined the r-Laplace
transform 6(f) of u(t) by (1.12) and its inversion formula by (1.13) in § 1. Let

us recall the notation S(a, 6)={f eC1; \t\ ^A, a<arg t<b} (A>0) and S(d)

=S(-a9 a) (a>0).
Now suppose that u(t) has the r-asymptotic expansion (1.14),

(10.1) n(0~SKb<*r* on K+oo).

We have \CN\ •^A1R~N F(N/r+l) (see Definition 1.6). By using the sequence

{ck} (fc=0, 1, -), define

00.2, M-
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and

(.0.3) ,.(z) = 2!.._^i_.

We have

Lemma 10.1. (i) g(z) is holomorphic in {\z\<R} and \g(z)\<Al

(i- \ziR\r1.
(ii) Let 0<r<R. Then \ gn(z) \ ̂ Ar \ z/r \ »+l for \ z \ ̂ r and \ g(z)-gn(z) \ ^Ar

Iz/Rl^for \z\^r.

Proof. It follows from the estimates of ck that g(z) is holomorphic in

{\z\<R} and \g(z)\<A,(l~\z/R\rl. Since \gn(z)\ ^A, SI-o|z/«|*. if
z/r\"+1. For \z\<r, \g(z)-gn(z)\ ^A, Sr..+ i|

Set

(10.4) v(r) = f1 exp (-fz) g(z}") dz,

Proposition 10.2. (i) i</)e0(C

(ii) v(t) has the r~asymptotic expansion as /-> oo in S(K/2r), that is, there is an

A(c) such that for t^S(n/2r), t=\t\ el(f>,

(10.5) I v^-SL-o1 ck r* i ̂ A(c) c-^(cos (r^))'^"1 r(N/r+l) \t\~N

holds for each N.

Proof. Obviously v(t)^0(Cl— {0}). Let us show v(t) has the asymptotic
expansion (10.5). We have

(10.6) v(0 = * * +°° exp (-rY z) ̂ .x(z^) Jz
o

P f exp (-^z) {g(z^-gN_1(z^} dz
Jo

!

+00
exp (— ty z) g^_!(z

o
From (ii) in Lemma 10.1, we have

|f* fexp(-^z) {g(z1^)-g^_1(z
1^} dz\

Jo
7""1 r(N/r+l) \t \ ~
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For the third term in the right hand side in (10.6),

<A\f\(+0° | exp (-fz) | I — \N"\dz\<— — -- r(N/r+l)
~ ' ' Jc ' J M c ~~cos(r?) (clh \t | cos (r?

Thus we have

(10.7) | vW-SETo1 ck r* | £A(c) c-»» (cos (r^))"^"1 r(Nlr+i) \t \

Set w(t)=u(t)—v(t). From the assumption on u(t) and Proposition 10.2
w(t)~~Q as f-> + oo on the positive real axis. More precisely \w(t)\<^A(c)

c~n/i r(n/r+l) \t\~n for each n. This implies

Lemma 10.3. The estimate \ w(t)\ ^C(c^)1/2exp (— cty) holds for A<L
+ 00, where C depends only on c.

Proof. By Stirling's formula, we have

| w(t) | ̂ B(c) | c1/y 1 1 -* exp (-njr) (n/

So, if n/r^ct^

Let us investigate the r-Laplace transform $(<f) of u(t) with the asymptotic
expansion (10. 1). Since £ (£)=*(£)+#(£)» we study v (<f ) and w (f ). By Lemma
10.3 we have

Lemma 10.4 #(£) e 0 ( {£ ; Re £< c} ).

On the other hand v (<f ) is represented as follows :

S +°° fc fc p-a(*-Q a(7lt*t\
exp (e r) A I exp (-rz) g(z1/Y) rfz - r - £SLJ Jz .

« Jo Jo z— f

Hence we have

Proposition 10.5. (i) v(f)<E0({f; feC1-^, c]}).

(ii) v(f)e0({feC1;0<|f |<4)and

(10.9) {i)(f)-v(f e2*<)}/2* i = g(e1/Y), e1/Y- | £ | 1/Y g'C-r«^ .

Proo/. From (10.8) we have (i). Since g(z) is holomorphic in {\z\<R},
by deforming the integration path, we have the first assertion in (ii). Let
0<<f <c. Then, considering the holomorphic extension of v(f), we have

I J Z Z— C
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where Z= {z(s); Q<Ls<^l} is a piecewise smooth contour such that z(0)=z(l)=
0, z(l/2)=c, Im z(.s)<0 for 0<O<l/2 and Im z(s)>Q for l/2<j<l (see Fig.
10.1).

0 0

Fig. 10.1. Fig. 10.2.

Remark 10.6. v(<f) is represented for ?7<arg £<7]+2K in the form,

v(e) = *„(£)+a holomorphic function at £ = 0 ,
(10.10)

z—t

This follows from the deformation of the integration path. The holomor-
phic part of v(f) in (10.10) corresponds to the integration from ce* to c in Fig.
10.2. Set

I ce™
exp (-** z) g

0

Then vr,(f) has the r-asymptotic expansion

(10.12) v^O-SJToC,*-* in ^(-

and its r-Laplace transform is *,(f ),

(10.13) *„(£) = f006"" exp (f 0

Thus we obtain for 6(f)=v(e)+w(f), the r-Laplace transform of u(f) with
the asymptotic expansion (10.1),

Proposition 10.7. (i) fl(£) is holomorphic in {£; Re e<c, £ $[0, c)}.

(ii) w(<?) can be holomorphically extended into {<f ; 0< |<f | < c} such that

w(f)e0({77o<^<^}) a/7^ #(£)-0(£ <?**)} fai^gtfVi).

Next consider holomorphic functions on a sector. We have

Proposition 10.8. Lef u(t}<^O(S(6^} and suppose that for any e>0 there is
a CB>0 5wcA that

(10.14) |K(
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Then the fallowings hold\_

(I)
(ii) For any d and £>0 -| u(f) | ^MH>5 exp (a \ £ \) in

{<?; iarg£-7r <rOQ-\~nj2-d, \£\>e}.

(iii) Ifu(t) is bounded on any closed subsector in §(6^, then
| logf| in {f; |argf—n\<r6Q+7t/2—d, 0< |f \<c}.

Proof. By deforming the Integration path In (1.12) in §1 we have (i) and
the estimate in (ii). Let us show (iii). For <?e {f; |argf—^\<r6 0+7u/2—d}
we can choose co such that | arg £+a)—n\ <n/2—d/2 and | o> | <r0Q—d/2. Put-
ting arg t=a), we have

|6(f)| <MS f f^** + (°°ef")|exp (f 0 r1!
\ I J ClStOJ I

Ms{(exp(a|c|)+i^M exp(—cs |f f | ) |

For D(<f) defined by (10.8), the r-Laplace transform of v(t\ we have

Corollary 10090 For any & >0 there is a M0 such that

(10.15) |0(£)|^Me|log£| /« {f; |argf |<®, 0<|

Proof, v^t) in Remark 10.6 has the r-asymptotic expansion in S(—

(?r/2+77)/r5 (^/2— ??)/r). The difference *(£)—*„(£) is holomorphic at e=0. So
the assertion follows from Proposition 10.8-(iii)0

Proof of Theorem 1.7. We can choose c(0<c<^'y) in Proposition 10=7

as close to Ry as possible (see (10.4)). So w(<f) is holomorphic in {<?; Re £<Ry
9

f $ [0, J?Y)> 3 6(f ) e= O( {fTo^lTr^RT- ) and {A(f )-fl(f e2* 0} /2w f-g(^1/v). From
Corollary 10.9 w(<f) has the logarithmic growth at f =0.

Proof of Theorem 1.9. The only if part follows from Theorem 1.7. We
show the conditions in Theorem 1.9 are sufficient. From the assumption,
u-(£ ) has at most the logarithmic growth at f =0. So by the deformation of the
integration path (see Fig. 10.3) the inverse transform is given by

(10.16) „(,) = -. + exp (-

= fv f exp (-f ^ f (f)
Jo
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where

HO 17^
( }

and <p is a constant with x/2<<p<r00+n/2 and 9^

Fig. 10.3.

For r e S(nj2r) we have the r-asymptotic expansion

t** (C exp (-e rY) F(f ) rff - Sfr0 c4 r*Jo

and for any d>0 in {?; | f | ̂ ^r, n!2—<p+d<r arg r<— 7c/2+<p— d}

|j,(0|^wexp(-ca|/n (Ca>0).

Hence if 0Q^7u/2r, since we can choose <p arbitrarily in (rc/2, rOo+nlty, u(f) has
the expansion (1.20). If 00>7r/2r, we can put 9?=7r. We also have, choosing
Q) with | o) + r arg r | <n/2 and | c

(10.18) ii(r) - ^ exp (-
o

Hence we get also the r-asymptotic expansion (1.20). Further assume

0Q>x/2r+7u. Then this means w(te* ')— u(te~**) (| arg £ | <^0— w) has the zero
r-asymptotic expansion at £=oo in S(0Q—7i), that is,

\n(te^i}-u(te-^i)\^AB-N r(N/r+l)\t\'N for any N.

This implies that there is a C-=C(^j)>0 such that for tG§(d1)

(10.19) |fi(te*0-H(te~*OI ̂ A exp(-C|r H .

Since 0Q—7c>7i:/2r, i/(te*0— "(**"* 0 = °- Thus w(0 is single valued in {*; | r | >
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A} and bounded at t=oo. Hence u(t) is holomorphie at t=oo. This com-
pletes the proof of Theorem 1.9.

Finally let us give

Proposition 10e100 Let K(z, ^) be a continuous function defined on {(z, ^)e
Cn+1xC; \z\ fgr, X=X e**9 \A\ ̂  A}, which is holomorphie in z and fulfills
\K(z, X)\^A exp(-eM|*) (c>0, 0«*<1). Then

ooe
(10.20) k(z) = exp (* z0

has the asymptotic expansion with respect to z0 in U={\z\ 5Sr; s/2<arg
3^/2}, f/iaf is,

(10.21) I^-S*-,1 kn(z') (z,)nln\\^

where kn(z')=\im^0 zet,(9/9z0)" k(z) and r =«/(!-«)

Proof. We have

S oopi^J
Aei^ S!.oG) ^* exp (^z0) (9/

Hence if ?r/2<arg z0+v><3^/2, we have

" A:(z) | ̂ A SZ-o (» '/* 0 »•*-" I ^* i exp (-c | ̂  |

a

By the Taylor's formula, we have

where k^z'^lim^^^d/dz^ k(z) and r=a/(l-a).

We can say for k(z) defined by (10.20) that k(t~\ z') has the r-asymptotic
expansion with respect to t in nj2<— arg f+i^<37r/2.
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