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Abstract

We study tempered distributions that are multipliers of the Schwartz space relative to the Moyal
product. They form an algebra N under the Moyal product containing the polynomials. The
elements of N are represented as infinite dimensional matrices with certain growth properties of the
entries. The representation transforms the Moyal product into matrix multiplication. Each real
element of N allows a resolvent map with values in tempered distributions and an associated spectral
resolution. This giaes a tool to study distributions associated with symmetric, but not necessarily
self-adjoint operators.
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§L Introduction and Main Results

Moyal considered in 1949 the problem of describing quantum mechanics in
a semi-classical setting by making use of such classical notions as phase space
and Hamiltonian function. The purpose was to gain a better understanding of
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the relationship between classical and quantized systems. In particular, Moyal
aimed at understanding inherent quantum mechanical behaviour in terms of
classical concepts. He showed that the transition probabilities associated with a
quantum system can be calculated from the classical Hamiltonian by integrating
with respect to a certain measure on phase space. The measure is not positive,
but only real. Nevertheless, it assigns the correct positive probabilities to the
quantum system.

Moyal's discovery has inspired many authors. The real measure on phase
space induces a non-commutative product of functions on phase space, now
known as the Moyal product. The associated left regular representation
reduced by a certain ideal is equivalent to the Weyl mapping.

The Moyal product is a well-defined composition in both the Schwartz
space and the space of square-integrable functions. These algebras, however,
are far too small to contain observables of physical interest and the associated
spectral theory just becomes a reformulation of the Weyl formalisme.

In order to better exploit Moyal's basic idea, we must identify algebras
under the Moyal product which are large enough to contain all conceivable
Hamiltonians. The Moyal product of tempered distributions on phase space
may fail to exist in any reasonable sense of the word and even when it does exist,
the product may not be associative.

However, the Moyal product of a tempered distribution with a function in
the Schwartz space does always exist as a tempered distribution. We can
therefore consider the set N of left-multipliers of the Schwartz space. It is an
(associative) algebra under the Moyal product and contains the polynomials
together with many other distributions of physical interest.

We show that N can be realized as an algebra of infinite-dimensional
matrices satisfying certain growth conditions on the entries. This representation
induces a natural topology on N making it a reflexive, nuclear space. It is the
dual space of a certain subalgebra N% that also can be characterized by growth
conditions on the matrix entries. We show that the algebra obtained by
adjoining the unit element to N+ is invariant under (Moyal) exponentiation of
even non-real elements.

A real, tempered distribution Tis said to be positive, if T(£°£) > 0 for each
element £ of the Schwartz space (the Moyal product is denoted by °). The
associated order structure is an important tool in the construction of the spectral
theory.

Each real element of N allows a resolvent mapping defined on complex
numbers with non-vanishing imaginary part and with values in bounded
tempered distributions. This gives a tool to study distributions associated with
symmetric, but not necessarily self-adjoint operators.

The resolvent distribution allows a spectral decomposition with respect to a
positive measure on the real line with values in positive, idempotent, tempered
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distributions. We construct finally for each real element of JV a functional
calculus for bounded and measurable functions.

§2. The Moyal Product and Other Preliminaries

Symplectk forms and complex structures.

We shall consider the even-dimensional real vector space E = R2d, d e N. A
symplectic form on E is a bilinear mapping a : E x E -> R which is non-
degenerate and antisymmetric. The pair (E, a) is an example of a symplectic
space. A d-allowable complex structure on (E, cr) is a linear operator J on E
such that

J2 = - 1,

(2.1) ff(Ja, Jb) = a(a, b) Va, beE,

a(a, Ja) > 0.

Relative to this complex structure, one can introduce a real, positive definite and
symmetric bilinear form s on E by setting

(2.2) s(a, b) = (j(a, Jb).

Finally, a positive definite inner product h : E x E -> C is defined by setting

(2.3) ft(a, b) = s(a, b) + i<7(a, b).

A linearly independent set {ef,/Jf=1 of vectors in E satisfying

(2.4)

is called a symplectic basis for (E, cr). If we to a given symplectic basis
(eP/Jf=i define a linear operator J on E such that

J e i = f i 9

(2.5) i,j=l,...,d

Jfi = - ei9

then it follows that J is a cr-allowable complex structure on (E, cr). Conversely,
suppose that such a structure J is given. If we choose a set of vectors {ejf= i
orthonormal with respect to the inner product h defined in (2.3) and put/; = Jet

for i= 1, ..., d, then {ef,/Jf=1 becomes a symplectic basis for (E, a) satisfying
(2.5).

We will subsequently assume that a cr-allowed complex structure J has been
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fixed and consider the triplet (E, <r, J). Explicit coordinates relative to a
symplectic basis satisfying (2.5) will be referred to as canonical variables. We
obtain

d d
v = (p, q\ where p = £ pfr and q = £ qjh

(2.6) a(v, vr) = pqf -p'q=
d

s(v, v') = ff(v, Jv') = pp' + qq'.

The expressions in (2.6) furthermore constitute an explicit realization of the
various notions introduced in this subsection.

The symplectic Fourier transformation.

We let dv denote the Haar-measure on E = R2d and normalize the Haar-
measure such that

(2.7) e-1/2s(v>v}dv=l.

If we express the measure dv in terms of the explicit coordinates given in (2.6)
above, then we obtain dv = dp1 •-•dpddq1 --dqd, where the Lebesgue measure dx
on E is normalized such that an interval of unit length has the measure (2n)~l/2.

The symplectic Fourier transformation F is defined by

(2.8) (Ff)(v) = f(v) =

and extends with the normalization of Haar-measure given in (2.7) to a self-
adjoint unitary operator on L2(E, dv). In particular, F2 = 1.

The Moyal product.

Let /, g be elements in S(E), the space of Schwartz functions on E. We
define the Moyal product (or twisted product) /°# of /and g by setting

(2.9) ( f ° g ) ( v ) = \ fWgWeWWdi/dv" veE,
JE JE

where cp is the antisymmetric aifine function defined by

(2.10) q>(a, ft, c) = (r(a, c) 4- cr(c, ft) + <r(ft, a) a, ft, ceE.

The twisted convolution of Schwartz functions on E is defined by
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(2.11) f xg = F(Ff°Fg),

and has the explicit form

(2.12) (/ x g)(v) = f e-{«°-"'>fWg(v - v')dvf

Twisted multiplication and twisted convolution are associative compositions in
S(E). Tne Moyal product satisfies

(2.13) f^g=0°f,

C (f°g)(v)dv= f f(v)g(v)dv.

Even if only one of the functions in (2.9) belongs to the Schwartz space S(E), the
twisted product can make sense as a function or distribution on E. This is a
major topic in this branch of mathematics and will be addressed later on. At
this point we shall only notice that

(2.14) l°/ = /.

We state without proof that

(2.15) Il/00li2<2-d / 2 | | / | |2 | |0 | |2 ,

and refer to [20, Theorem 3.2 (iii)]. Twisted multiplication and twisted
convolution can consequently be extended to continuous compositions in
L2(E, dv).

The two properties expressed in (2.13) imply that the adjoint operator on
L2(E, dv) to twisted multiplication from the left (right) with a f unction /eL2(E) is
twisted multiplication from the left (right) with the complex conjugate /.

The Gaussian function.

Of special interest in physics is the Gaussian function Q defined by

(2.16) Q(v) = 2de~ll2s(v'v) veE.

The normalization of Haar-measure made in (2.7) implies that

a \ l /2
e-

s^dv\ =2dl2.
E /

The Gaussian function Q receives its prominence by satisfying the following
formula

(2.18) QofoQ = 2-d(Q\f)2Q V/eL2(E, <fo).

The proof is somewhat tricky and makes use of a transformation in the complex
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extension C2d of E. We leave the proof to the reader and conclude from (2.14)
and (2.18) that Q°Q = Q. The twisted multiplications from left and right with
Q are hence projections on L2(E, dv).

The left regular representation.

We define a representation of L2(E, dv) on the closed left ideal

(2.19) /12={/ofl|/eL2(E,di;)},

by setting

(2.20) n ( f ) g = f o g

for every /eL2 (E, dv). We notice from (2.13), that n(f) = n(f)* and that n is
faithful. Furthermore, the Hilbert-Schmidt norm of n(f) equals 2~d/2||/||2 for
every /eL2(E, dv), cf. [20, Theorem 3.2 (iii)].

Proposition 2.1. The representation n is irreducible, and the finite rank
operators in B(IQ) are exactly the operators of the form n(a), where

(2.21) a= X ^^fji £, ^e/
i= l

Proof. Taking fela and applying (2.13) and (2.18), we obtain

= I tt°a°ijt°f°a
i=l

(2.22)

1 = 1

and the proof is complete. •

It follows, that the minimal projections in B(In) are exactly the operators of
the form n(l;°£) with ^e/^ and ||^|| =2dl2. We collect a number of useful
identities in the following

Proposition 2.2. Let £, ^eL2(E, dv), then

x n,

= £ X
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(2.23)

where £(v) = £( — t;), ueE.

The proofs are straigtforward and are left to the reader.

§3. The Resolution of the Identity

A Hilbert space of holomorphic functions.

The additive group Cd is identified with the additive group R2d by setting

(3.1) z = p + iqeCd for v = (p, <?)eR2d.

We can thus consider cr, s and h to be bilinear forms on Cd and obtain the
expressions

a(z, z') = Im h(z, z'),

(3.2) s(z, z') = Re fe(z, z'),

fc(z, z') = zV.

In particular, the Gaussian function Q takes the form

(3.3) £(z) = 2d£T1/2|z|2 zeCd.

The Haar-measure dz = dp dq on Cd corresponds to the abovementioned
identification. Let A(Cd) denote the space of holomorphic functions on Cd and
set

(3.4) H2(Cd) = {feA(Cd)\ f \f(z}\2Q(z)2 dz < a)}.
Jcd

The vector space H2(Cd) is a Hilbert space with inner product given by

(3.5) ( f \ g ) = I f ( x ) g ( z ) a ( z f d z .
Jcd

Proposition 3.1. The set of vectors

(3.6) un(z) = 2-d'2(n\ri/2zn, n = (nl9 ..., nd)eNd, where

zn=H zl* and n\ = ]Q «,-!,
i = 1 i = 1
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is an orthonormal basis for H2(Cd).

Proof. The proof is basically found in [1], and we just have to keep track of
the normalization. H

The transformation A.

We define a linear mapping A : L2(E, dv) -> A(Cd) by setting

(3.7)
cd

where £, is considered as a function on Cd through the identification made in
(3.1).

Lemma 3.2.

(3.8) f o f l = fl(Xf) V£eL2(E, dv),

where At; is considered as a function on E, cf. (3.1).

Proof. By making use of the identity

(3.9) Q(v - i/) = 2-*Q(v)0(i/)e«v-v'\

and (2.23), we obtain

JE

= 2~dQ(v) e-'ia(v>v'^(v')Q(v')es(v>v>} dv'
E

for each f e L2(E, di?) and v e E. •

It follows from (3.8) that A is a contraction from L2(E, <fo) on H2(Cd).

Theorem 3.3. The transformation A is a partial isometry which maps
L2(E, dv) onto H2(Cd). The projection on IQ is the initial projection and the
identity operator on H2(Cd) is the final projection. The adjoint operator is given
by

(3.10) A*u = uQ VweH2(C").

Proof. Take £eL2(E, dv), ueH2(Cd) and make use of the identification in
(3.1) when appropriate. We obtain
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= [
Jcd

(AQ(z)u(z)Q(z)2 dz

ez*'Q(zf) W) dz'u(z)Q(z)2 dz
cd

where

= Q(v)
JE

The identity

h(tf, v) - l/2s(v'9 v') = s(i/, v) + i<r(i/, v) -

= — l/2s(vf — v9 v' — v) + l/2s(v, v) + iff(v', v),

entails that

(A*u)(v) = 2d

JE

*-**<"•"">Q(v')u(v')Q(vf - v)dv'
E

= (uQ x Q)(v),

hence

(3.11) A*u = (uQ) x Q = (ufl)oQ.

It thus follows that A* maps H2(Cd) into IQ. Furthermore

We have established, that A is a partial isometry with In as initial projection, and
that A* acts as multiplication with Q when restricted to functions in the final
projection of A. The assertion follows by showing that each of the vectors in
(3.6) belongs to the range of A. We first notice that

2 f (zTe~|2''Vz~'dz'
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fc=0

£ /*

- ? Y z f/vr?- 2 L n (z)(z
k = OK- Jc

-fj^i-.-"
For n = (»!,..., nd)eNo, we thus obtain

(A(unQ))(z) = 2~d I ez*'QW2-
JE

d/2 n 2 f ^
»=i Jc

which proves the assertion. •

Matrix units for B(In).

Let {ei9fi}
d

i=l be a symplectic basis for E satisfying (2.5). We assume
explicite coordinates as in (2.6) and the identification (3.1). It follows that

(3.12) zt = Pi + iqt = h(ei9 v) for i = l , . . . ,d .

We introduce the functions

(3.13) aH(v) = (n\rll20(v)Uh(ei9vr9 f?6E,
i = l

for n = (nl9 ... , wd)eNo. We conclude from Theorem 3.3 that {2~d/2 an}neNd is an
orthonormal basis for In and put

(3.14) an,m = an°am for

Theorem 3.4. T/ze vectors {flw,m}n,m6Nd /zaue eac/z /e«gfr/z 2d/2 and constitute an
orthogonal basis for L2(E, dv). Furthermore, they satisfy

^n,m ^m,HJ
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for n, w, k, /eNo and are mapped by the left regular representation n onto a
system of matrix units for B(In).

Proof. Proposition 2.1 and equation (2.22) entails that n(antm) is the matrix
unit mapping 2~d / 2am onto 2~d/2an. Since the vectors {an}neNd are mutually
orthogonal, we have

Since n is faithful, the first part of (3.15) follows. The second is a consequence
of (2.13). Next

(an,m\ak,l)2 = an,m(V) ak,l(V) aV

JE

= $n,k amtl(v)dv
JE

= <5nfk(flm|fl,)2

which shows that the vectors {fln,m}n,m6Nd are mutually orthogonal and have
length 2d/2. They generate L2(E, di;) because n(anjm), for n, meNo, constitute a
full set of matrix units for B(IQ) according to Proposition 2.1. •

We shall furthermore notice that

(3-16) Fan,m = (-l)Wan,m,

an,m = an
 x a^,

for n, me NO, where \n\ = n± + ••• + nd. This follows readily from Proposition
(2.2).

§4. Distributions as Matrices

Generating the Schwartz space.

We shall in a number of steps relate the vectors an>m to the Schwartz space
S(E). Let us to every rceNo and fc = 1, . . . ,d introduce the tupples afc(n),
j8fc(n)EN0 defined by
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f nj9 for j / k
j ~ [ HJ + 1, for ; = k

(4.1) r np for j / k

f}k(n)j = < 0, for 7 = fe and nk = 0
^ H; - 1, for j = k and nk > 0

for j = 1 , . . . , d.

Lemma 4.1.

(4-2)

for neNd
0 and fe= l , . . . ,d.

Proof. We obtain by direct calculation that

h(ej9 v)nj)-—(Q(v)h(ek, v)"k)
opk

h(ep vD(Q(v)nkh(ek, v)Mn)k - pkQ(v)h(ek, v)"k)

The other part of the assertion is similarly proven. H

We shall use the symbols pi9 qt to denote not only the coordinates of a
vector ueE, cf. (2.6), but also the operator acting as multiplication with the
corresponding coordinate function. This is a common and useful, but also
slightly confusing notation. We obtain the following lemma by using (3.16) and
a straighforward calculation.

Lemma 4.2. For n, raeNo and k = 1,..., d we have the following relations:

dan ~~

(4.3)

= a x
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Pk"n.m = Pk<*n X ~^n + <*n * Pk ̂  ,

«fcfl»,m = Wn X ̂  + an X ̂  O^ .

Let FQ denote the complex vector space span{0n>TO|n, meNg} and let Rk: V0

YO for k = 1, ... , d be the linear operator defined by

(4-4)

If we let S denote the antiunitary operator on L2(E, dv) for which S{ = £ and put
Lfc = SRkS, then we have

(4-5) Lkan,m = jnk+ 1 aak0j)>m Vn, m 6 Nj .

Theorem 4.3. For fc = 1, ... , d,

If . ( d . d
k = ~ \pk + iqk - ^— + i^—

2 \ \dpk dqk

Proof. Taking n, meNg and applying the lemmas above, we obtain

= anx-^- i(qkan) x ~a^ - ian x — ̂  + (pkaj x

- ian x ( - i^na^) - qk ~a^) + (pkan) x

= - (an x (pk + iqk)am) + (pk - iqk)an x am ,

and consequently

d . d

= pkan x ~a^ + fln x pfe o^ - <2kan x ~a^ - an x qk~a

= 2(an x (pk-
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Since

= (ml) 1/2Q(v)Y\

the first statement of the theorem follows. The second is similarly proven.

Corollary 4.4. For k = 1, ... , d, we have

a = ~(^fc ~~ Lk + Lk — Rk),dpk 2

/- = i(Kk*-L fc-Lk* + Kfc).3gk 2i

. Make use of Theorem 4.3 and reduce the right hand sides.

For each peZd and £eL2(E, dv\ we define

(4.6) rp(0 = 2-d( X I(an,mia2|2(l + ^(1 + m)")1/2,
n,wieN$

where 1 is the d-tupple with 1 as entry on every site. The set

(4-7) Hp={£EL2(E,dv)\rp(l;)<ao}

if for peNo a Hilbert space which is dense in L2(E, dv).

Theorem 4.5. A vector £eL2(E, dv) belongs to the Schwartz space S(E), if
and only if rp(^) < oo for every peNd

0. That is

(4.8) S(E) = 0 Hp.
peN^

topology on S(E) is the Frechet topology given by the norms rp,

Proof. The operators Rp, Lp defined for every peNo by
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and their adjoints leave S(E) invariant according to Theorem 4.3. If we assume
that feS(E), we thus have KpZ/£eL2(E, di?) for every peNd

0. By making use of
(4.4) and (4.5) to express RPLP£ in terms of the vectors in the basis, and by
applying Parceval's formula, we conclude that rp(£) < oo. If on the other hand
this condition is assumed for every peNg, then we apply Corollary 4.4 and
express any operator written as a product of powers of the operators pk9 qk,
d/dpk, d/dqk in terms of the operators Rk, R$ , Lfc, Lf. Any such operator will
therefore map f into L2(E, dv). It follows that £eS(E). H

The Moyal product as matrix multiplication.

Take £eS(E) with the expansion

(4-9) £= £ «n,man,m.
n.meN^

The coefficients are given by

(4.10) xn,m = 2-d(an,m\®2 Vn,meNd
0 .

If the operator n(£) acts on a vector r\ e IQ with expansion

then we obtain

(4.12)

The operator n(£) thus acts as the matrix {an>m|n, meNo} on the Hilbert space
In. It is a Hilbert-Schmidt operator with Hilbert-Schmidt norm Tr(7i(^)*7r((^))1/2

= 2~d / 2 | |^i |2 . Furthermore, the twisted product of two functions f, i/65(E)
with coefficient sets (an§J and (jSn,m), cf. (4.10), is given by

(4.13) t°n= Z (Z a».
n,meN keN

The twisted product of functions in S(E) is thus given by matrix multiplication of
the corresponding coefficient sets. An application of Cauchy-Schwarz inequality
yields
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= ( Z I Z an,^t,
n,meN<j fceN<f

(4.14)

fc.meNg

for every peNo. We conclude that the Schwartz space 5(E) is a topological
algebra under the Moyal product.

Tempered distributions.

Let for every n, meNd
Q the tempered distribution tn>m be defined by

(4.15) Htm(Q = 2~d f flll»5(i?)di?
JE

We notice that fn>w(£) = Tr(7r(fln>m)7r(^)), cf. [20, Theorem 3.2].

Theorem 4.6. Let T be a tempered distribution on E and set

(4.16) «».m = T(O V
a peNo such that

(4.17) X KJ2n-*ifT'<oo.
«,weNg

Furthermore, we have that

(4.18) T=

r/ze 5-i/m converges in the sense of distribution.

Proof. Let T/ be an arbitrary vector in S(E) with expansion

Since the sum converges in S(E) and TeS'(E), we obtain

(4.19)

The family of norms {/p|pGNo} defining the topology on S(E) is upward
filtering. There exists consequently a single peN^ and a positive constant C
such that

\T(n)\<Crp(n) ^6HpnS(E).

It follows, that T can be extended by continuity to the Hilbert space Hp and
therefore it is represented by a vector in Hp. We derive, that the representing
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vector has coefficient set {n~pm~patmtn}. This implies the condition in
(4.17). Finally, we notice that jS0jm = tm,„(*/), and the rest of the theorem
follows. H

We have thus transformed the study of tempered distributions on E to the
study of matrices with a growth property for the entries as given by (4.17).

The Schwartz space S(E) can be regarded as a subspace of S'(E), and one
may naturally ask, how this embedding is reflected with regard to the expansion
(4.18). A tempered distribution T is of the form

(4.20)

for a £eS(E), if and only if the matrix {an>m|«, meN0}, cf. (4.16), defines an
element in Hp for every peN0. The function £ is then given by

y V~<

n,m

We shall freely use this identification of 5(E) with a subspace of S'(E). We
notice that if n(T) is a bounded operator on J^, then

(4-21) \T(t;)\<\\n(T)\\\\nmTr,

for every f eS(E). The trace norm || n(£) ||Tr - Tr((7r(£)*7r(£))1/2) is finite for every
£6S(E), cf. [27].

§5. The Multiplier Algebra

We have so far considered twisted multiplication of functions belonging to
the Schwartz space S(E). We also noticed that the definition of the twisted
product can be extended to functions belonging to L2(E, dv). This is done by
continuity, cf. equation (2.15). It is furthermore possible to define the twisted
product of a tempered distribution with a function in S(E) in a very natural
way. Let T be a tempered distribution on E and let £ e S(E). We define T° £
and £ ° T as the tempered distributions given by

(5.1) V»,6S(E)

Suppose that T is given by an integral kernel /e S(E), then we apply equation
(2.13) and obtain

(5.2) (T° flfo) = f /(»)(£ ° ,,)(») do = f (/= 0(t,)i,(t;) dc,
JE JE
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(t>)fo°{)(iO<fo = (t°f)(v)ri(v)dv.
E JE

Thus the tempered distributions T° £ and £ ° T are given by the integral kernels
f°£ and £ °/ respectively.

Proposition 5.1. Let TeS'(E) awd ^ES(E) Aaue expansions

•* 2L ^n,m^«,mJ S / ., Pn,m^n,ra'

c/ (4.18) flwof (4.9). 77ze tempered distributions T°£ and £° T are then given by
the expansions

°T= E (E /»-* **.-)«..
n.meNg fteNgH,meN$ keNfi n,meN$

Proof. The coefficients for the tempered distribution T°^ with respect to
tn>m is according to Theorem 4.6 given by

(T° £)(am „) = T(£ ° am n)

= T(
k,'

= T(]

The other assertion is similarly proven. •

It follows from Proposition 5.1 that

(5-3) tntm° aktl = dmtktntl,

ak,i°tn,m = <5*,nW

Varilly and Gracia-Bondia considered in [33] the set

(5.4) N = {reS'(E)|T°£eS(E) V£

of left multipliers. Since S(E) is invariant under complex conjugation it follows,
that N is the set of right multipliers, cf. (2.13). The intersection M = NftN is
the set of twosided multipliers of S(E). We define the twisted product T° S of
elements in T, SeN by setting

(5.5) (ToS)K)=T(So{) V^

The embedding of S(E) in S'(E) is implicitly used, cf. (4.20). The product T° S is
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a tempered distribution, cf. the inequality (5.8). If TeN and f, 77, £eS(E), then
we obtain

which shows that (r°^)°^ = T°(^o?7). If furthermore T, SeN and £,
then we make use of this equality and obtain

which implies that

(5.6) (ToS)°£ = T°(S°£) VT,

We conclude that the tempered distribution T^S is an element of N.
Furthermore, the property (5.6) implies associativity of the twisted product of
elements in IV thus making N an algebra. Finally, we notice that M is an
involutive algebra with twisted product as multiplication and complex
conjugation as involution.

Let Tbe a tempered distribution and set an>m = T(am>n) for n, meNo- We
define

(5.7) Lptq(T) = ( X |an,J2(l + rif(l + m)-p)112,
n,meN$

for p, q £ NO and notice that the value plus infinity may be attained. Lptq is for
each p, qeNd

0 a norm on a subspace of S'(E) which contains S(E).

Theorem 5.2. A tempered distribution T belongs to N9 if and only if to each
there exists a peN^ such that Lptq(T) < oo.

Proof. Assume that TeS'(E) belongs to N, that is T°£eS(E) for each
We first show that the map

is closeable. Let ^ -> 0 and suppose that T° ̂  -» (, both in the Frechet
topology on S(E). Since the twisted product is continuous, we conclude that
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(T°£i)(ri) = T(£i°ri)-+Q for each *?eS(E), so ( = 0. Since S(E) is complete and
metrizable, Banach's closed graph theorem can be applied. We obtain that the
above map is actually continuous.

Let now q e NQ be given. We may well assume that qt > 0 for i
= 1, . . . ,d. The family of norms {rJgeNo} defining the topology on S(E) is
upward filtering. There exists therefore a single s e NQ and a positive constant C
such that

Let jeN and set

We notice that ^.eS(E) and calculate that

Consequently, we obtain that rq(T°^j)<CK for every j'eN. Finally, we
observe that rg(T° <y -> Lptq(T) for j -* oo, where p = 2s + q. This proves the
necessity of the condition.

We apply Cauchy-Schwarz inequality to prove the converse. Let an m

= T(am,n) and ^m = 2~d(an^)2 for n, meNd
0. We obtain for £eS(E) that'

= E I Z «„,,(! + /c)-p/2 /ft.m(l + k)»<2\2 (1 + n)*(l + m)~'
n,meN<* feeNg

<Lp,,(r)2rp(a2.

Consequently,

(5.8) rq(T* 0 < LM(r)rp(f ) V^ e 5(E).

The condition is thus sufficient. •

Corollary 5,3, A tempered distribution T belongs to M, if and only if there
to each qeNd

0 exists a peN0 such that Lptq(T) < oo and Lpiq(f) < oo.

Proof. Let the tempered distribution T be in M and let geNo be
given. Then there exist p', p"eNo such that Lp.A(T)< oo and Lp^q(T) < oo
respectively. Choosing peNd

0 with pt = max {p;., p"} for f = 1, ... , d, we observe
that LM(T) < Lp,,q(T) and LM(f) < Lp^q(f). •

We can give N a natural topology. Define for each pair p, qeNd
Q the
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Hilbert space

(5.9) H(p, q) = {reS'(E)|LM(T) < oo}.

It follows from Theorem 5.2 that

(5.10) N= H U H(p,q).
qeN* peNg

This identity induces a locally convex topology upon N making it a complete,
nuclear and reflexive space. A net (Ti)iel of elements in N is convergent to zero
in this topology, if and only if there to each geNo is a peNj such that
limfe/Lpig(T£) = 0. The inequality (5.8) hence entails that the mapping

is jointly continuous.

Lemma 5.4. Let T, S be tempered distributions and take p, q, s€Nd
0. Then

we have

(5-11) LM(T°S)<Ls,,,(r)Lp,s(S).

Proof. Put «„,„, = T(am,n) and j5n,m = S(am>B) for every pair n, meN£. We
obtain by Cauchy-Schwarz inequality that

= Z Z °W&,m
2( l +«)"(!+ m)

n,meNg fceNg

= Z I Z «.*(! + *T "2A.»(1 + W
«,meNg fceNg

< Z ( Z i«^i2(i + fc)"s) ( Z i &.
fi.meNg fceNg fceNg

^L^(T)2LP5S(S)2,

and the assertion is proved. •

The above lemma shows that N is a topological algebra. Suppose that
(Ti)ieJ and (St)iel are two nets in N converging to zero. We can to a given geNo
choose seNo such that lim£6/ LSiq(Tt) = 0, and again choose peNo such that
lim^ LptS(Si) = 0. It then follows from the lemma that limfe/ Lp%q(T^S^ = 0.

Lemma 5.5. Let K be a subspace of finite codimension of a Hilbert space
H. A dense subspace D <= H intersects K in a subspace which is dense in K.

Proof. We first prove the assertion when K is of codimension 1. The
general case then follows by repeated application of this result. We therefore
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assume that K = (^|(a|^) = 0} for some vector a EH. We furthermore choose a
vector deD such that (a\d) = 1. The linear and continuous mapping given by

maps H onto K and hence D into a dense subset of K. The assertion follows by
noticing that 0 maps D into itself. •

Proposition 5.6, The elements of M mapped by n into finite rank operators
in B(In) are exactly the elements of the form

(5.12) a= £ St°TJt £„ »fce/nnS(E), neN,
i= l

where the sets of vectors (£19 ... , £„) and (*h , . . . , *?„) are linearly independent. The
representation n is defined in equation (2.20).

Proof. The finite rank operators on In are according to Proposition 2.1
exactly of the form (5.12) with the vectors £f, rjteln, i = 1, ..., d. We can in
finite many steps rewrite (5.12) such that both sets of vectors are linearly
independent. If each of the vectors belong to S(E), then so does a. If on the
other hand it is known that aeM, then we consider for each /= ! , . . . , « the
orthogonal complement to span {<!;_,• |j ^ i} which is of finite codimension. We
can apply Lemma 5.5 to find a /eS(E) orthogonal to r\j for j ^ i, but not
orthogonal to rjt. We have that n(a)f = 2~d(rji\f)2^i according to (2.22) and
derive that ^eS(E) for i= 1, ... , d. Similarly, by considering d, we derive that

for i= l , . . . ,d. H

We have in particular proved that every element aeM for which n(a) is a
finite rank operator on JQ belongs to S(E).

We defined the twisted product of a tempered distribution with a Schwartz
function in equation (5.1). If S is a tempered distribution and TeN, then we
can similarly define the twisted product 5 ° T by setting

(5.13) (S°DK) = S(r°£) V£eS(E).

It follows from (5.8) that the linear functional S° T defined on S(E) in this way is
continuous and thus a tempered distribution. Furthermore, the mapping

S'(E) x AT 3 (S, T)H-»S° TeS'(E)

is jointly continuous.
Likewise, if TeJV, then the product T°S can be defined by setting

(5.14) (T°S)(£) = S(£°T) V£eS(E).

We obtain that T° S is a tempered distribution, and that the product is jointly
continuous in N x S'(E).
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The question of associativity of the Moyal product is not obvious outside
the algebras N and N. In fact, the property may fail to be true. However, we
have the following results.

Proposition 5.7. Let S be a tempered distribution, then

(i) (s°T1)*T2 = s°(Ti*T2) vr1;
(2) T1°(T2oS) = (T1°T2)oS VT\, T2eN,
(3) Tl°(t°T2) = T1°(t°T2) Vr1eNVT2

(4) (T2 °S)°Tl = T2°(S° 7\) VTi e JVVT2 e N.

Proof. We apply definition (5.13) and make use of (5.6) to obtain

= S(I\°(r2 <>»?) )

= s((r1°r2)=i/)
= (S°(T1°T2))(ri) Vi/eS(E).

The second part follows by taking the complex conjugates. Since £°T2e S(E)
and N is an associative algebra, we obtain

which gives the third assertion. Finally,

where we have used (3) in the calculation. •

A tempered distribution SeS'(E) is said to be bounded, if the set
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is a bounded subset of the complex plane. The norm || S \\ of a bounded
distribution S is defined as the radius in the smallest closed disk with center in 0
that contains the above set. Since, according to (5.1),

(5.15) S(t°fft = (S

it follows that a tempered distribution S is bounded, if and only if n(S) is a well-
defined bounded operator on Ia. The set of bounded distributions is thus an
algebra under the Moyal product.

Take TeiV, £eL2(E, dv) and let S be a bounded distribution. Notice that
the product T°S is well-defined according to (5.14). We define the Moyal
product of T°S and £ by setting

Since the map r\ -> rj ° T is continuous from S(E) into itself, and hence in
particular continuous from S(E) into L2(E, dv), we deduce from (5.15) that
(ToS)o£ is a well-defined tempered distribution. We furthermore obtain that

Vi/eS(E).

We have thus proved the identity

(5.16) (To S)o {= r°(S°£),

for TeN, bounded distributions S, and £eL2(E, dv).

§60 The Pre-Dual Algebra

Let reS'(E) be a tempered distribution and suppose that there exists a
such that

(6.1) LM(r)<oo

We denote by N^. the set of all such tempered distributions. It is cleat that N^. is
a proper subset of N.

Proposition 6.1. N^. is an algebra with twisted product as multiplication. It
is left invariant under symplectic Fourier transformation.
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Proof. If a tempered distribution satisfies (6.1) with respect to some peNg,
then it will satisfy the same condition with respect to any p'eNg with
p\ > pt. It therefore follows that N+ is a subspace of N. Lemma 5.4 states that

for arbitrary T, SeS'(E). If T9 S are in N+9 then there exists a peN£ such that
LP,S(S) < oo for every seNo. Choosing seN£ such that Ls>g(T) < oc for every
qeNo, we obtain that Lptq(T°S) < oo for every qeNd

0. The statements of the
proposition now follow readily. 9

It follows from the definition in (6.1) and (5.9) that

(6.2) N+= U 0 H(p,<z).
peNg qeNg

Consequently,

(6.3) IV, = U AT*(P), where A^(p) = f| H(p, «).
peNg ^6Ng

Each A^(p) is naturally given the Frechet topology induced by the upward
filtering set of norms {Lp^\qENd

0}. Since N^(p) £ ^(p') whenever pt < p\ for i
= 1, ... , d, the union N^ can be given the limes topology. A functional 0 on N^
is thus continuous, if and only if there to each peNo exists a geNo and a
constant C such that

(6-4)

We notice that AT^p)' c S'(E) for every

Theorem 6.2.
(1) Let TeS'(E) ourf rofce peN^. Then TeATJp)' z/fl«^ o/i/y if Lqtp(T) <

oo /or some qeNo-
(2) TV w ^/z^ topological dual of N^.
(3) ToN*(p)^N*(

Suppose TeN'^(p) and put an>m = T(am>n) for n, meNd
0, cf. (4.16) and

(4.19). We choose geNo according to equation (6.4) and obtain that

Hence T is continuous on H(p, ^f) and thus given by

for an ^eH(p, <j). We set /^m = 2~d(an?m|i7)2 for n, meNj and conclude that
am,n = ^m>n(l + n)~p(l + m)^ for each n, meNo- Consequently, we have
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= E

On the other hand, we have

for every geNf). We thus conclude that Tis continuous on N+(p) provided that
Lq,p(T) is finite for some geNo. This proves part (1) of the theorem. Part (2) is
an immediate consequence of part (1).

Take finally TEN, peNo and ^eN^(p). According to Lemma 5.4 we have
that

Lp.q(T° 0 < Ls>q(T) LpiM) V0, 5 e Nd
0.

If we to a given ^eNo choose seNo such that LS^(T) < oo, then we can
conclude that Lp}q(T°£) < oo. M

Let TeN* satisfy condition (6.1) with respect to peN£. Again applying
Lemma 5.4 we have

(6.5) Lp,q(T° T) < Lptp(T)Lpiq(T) < oo

That is, the same peN£ can be used for T° T as for T in condition
(6.1). Repetition of this argument yields that

(6.6) LM((T*r) < L^(r)"-1 LM(T)

Theorem 6.3. Let TeN^. Then

(6.7) f l(
n = i

Proof. Let T^O satisfy (6.1) with respect to peNd
0. It follows from

equation (6.6) that
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oo i T (T\
* Z rr Wrr 'Wr) = /^(exp(Lp,p(T)) -!)<«,

„=!«! Lp,p(1)

for each qeNd
0. H

We naturally denote and define the twisted exponential of T by

(6.8) exp°(r) = l + £4(T°)n-
n = i nl

Theorem 6.3 therefore states that the twisted exponential exp°(T) of an element
TeJVj exists as an element of JV and that exp°(T) — leJV+ .

Theorem 6.4. Let TeN^ and choose a peNd
0 such that equation (6.1) is

satisfied for every qENd
0. If Lptp(T) < 1, then 1 — Thas an inverse in the algebra

with unit obtained from N^. by adjoining the constant function 1.

Proof. Suppose T ^ 0 and p are chosen as in the assumptions of the
theorem. We define the element

(6.9) (l-ry^H- £ (To)-,
H = l

and applying equation (6.9) we obtain

n= 1 «=1 «=1

ooOO ,
LP,P(D(1 - LP,P(T))

for each qeN^. It follows that (1 - T)0"1 - leA/*. Finally, we observe that

and similarly that (1 - T)0'1 °(1 - T) = 1.

§7. The Order Structure

For arbitrary tempered distributions TeS"(E), we introduce the real and
imaginary part of Tby setting

T T — T
(7.1) R e r= - - , Imr=-^-.

The real and imaginary parts of T are real, tempered distributions, and T = Re T
+ i Im T. A tempered distribution S e S'(E) is said to be positive, if
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(7.2) S(^)>0 V£

If S is real, and S(£ ° £) = 0 for every £ e 5(E), then we conclude by polarisation
that S ° YI = 0 for every £ e S(E), and hence 5 = 0. We can therefore define a
partial order relation < on the real vector space of real, tempered distributions
on E by setting T < S, if S - T is positive.

Lemma 7.1. Let £ and Y\ be positive, tempered distributions on E and suppose
that £ < rj.

(1) If Y\ is a square-integrable function, then so is £, and ||£||2 ^ II n II 2-
(2) rjeS(E) implies that feS(E).

Proof. The operator rcfo) is of the Hilbert-Schmidt class with 2~d/2 \\rj\\ 2 as
Hilbert- Schmidt norm, and 0 < n(£) < n(rj). The operator n(£,) is hence of the
form an(rj)a* with ||<z|| < 1, and

2*1/2Tr(an(v)2a*)

The first part of the Lemma thus follows from operator theory. If r\ e S(E), then
it follows that

cf. (4.6), where S is defined by

(7.3) S = X (1 + «)«„,„.
«eNg

It then follows from (1) that S"'2 ° £ ° S"'2 e L2(E, dv) for each p e N£ which implies
(2), cf. (4.8). •

Lemma 7.2.

(1) Lef ^ be a positive, tempered distribution belonging to the Schwartz
space S(E). There exists a uniquely defined, positive, tempered
distribution rj in 5(E) such that

rj°r] = £.

(2) Let ^ be a real, tempered distribution belonging to the Schwartz space
S(E). There exists positive, tempered distributions £+ and £_ in S(E)
such that £ = £+—£_.

(3) span{S(E)°S(E)} =
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Proof. Let peNo be arbitrary. We observe that

|| n(Sp/2 o £ o spl2) || < 2~d'2 1| Sp/2 ° £ o Sp/2 || 2

where S is the tempered distribution defined in (7.3). Since the distribution
Spl2°£°Spl2 is positive, we have

and consequently

Let 77 be the uniquely defined, positive tempered distribution for which n(r\}2

= TT({). Then r\ < 2-d/4rp(^)1/2S'p/2, and

It follows, that r(p_2)/2(ri)<2~d/4rp(^
ll2\\S~i\\2. Since p is arbitrary, we

conclude that rjeS(E) which proves (1). We take, in order to prove (2), a real
element ^ of S(E) and consider \£\ = (£2)1/2 which according to (1) belongs to
S(E). Possibly by considering the representation n, we conclude that
— |£| < { < If |. The tempered distributions £+ and £_ defined by

are thus positive elements of S(E), and ^ = ^ + - ^ _ . We conclude from (2) that
each Schwartz function on E is a linear combination of at most four elements
from S(E)°S(E). •

The proof of Lemma 7.2 (1) actually shows that the square root is a
continuous mapping of the positive part of the Schwartz space into itself. We
also conclude that the representation n is a continuous mapping of S(E) into the
space of trace-class operators on In, cf. also [27].

We notice from Lemma 7.2 (2) that a positive, tempered distribution on E is
real. However, even when given by a kernel, cf. equation (5.2), the kernel may
not be pointwise positive. We say that a real, tempered distribution Tis strictly
positive, if there exists a positive real number e such that £ < T.

Proposition 73. Let (Tj)jeJ be a downward filtering net of positive, tempered
distributions on E. There exists a positive, tempered distribution T on E such that

Tj \ T.

The net (Tj)jeJ is converging to T in the topology of S"(E).
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Proof. Take £eS(E). The net of positive numbers (Tj(^^))jeJ is
downward filtering and hence convergent. By polarisation we conclude that the
net of numbers (Tj(£ ° rj))jej is convergent for each £, ?/ e S(E). We can
consequently define a linear functional T on S(E), cf. Lemma 7.2 (3), by setting

The so-defined linear functional T on S(E) is the pointwise limit of a net of
continuous linear functionals. We put

a».m = 7(0, and <m = T/O VjeJVn, meN*.

Define for fceN the projection Pk by setting

(7-4) Pfc = £ t..,.
N<fc

We consider the linear functionals (j> and ^- defined by setting
= T(Pfc°£°Pfe), and 0X0= 7}(Pfc°<!;oP*) for every ^eS(E) and obtain

TakejeJ and choose peNg such that r-p(Tj) < oo. By applying S^2 from the
left and the right hand side in the inequality above and by making use of Lemma
7.1 (1), we conclude that

I K,J2(1 + nrp(l + m)-p < r-p(Tj)2,
\n\<k,\m\<k

for every keN. This implies the continuity of T. We furthermore notice that
the net eventually converges pointwise inside a bounded subset of S"(E). Since
S'(E) is the dual space of a Montel space, its topology coincides with the weak
topology on bounded subsets. We hence conclude that the net converges to T
in the topology of S"(E). We finally notice that the net also filters downward to
r. •

Lemma 7A Let T be a positive, bounded tempered distribution. Then 1
+ T is invertible, and the inverse

B(T)=
1 + T

is a tempered distribution for which 0 < B(T) < 1. Furthermore,

T°(B(f o T)- 1) = (B(T° T)- l)o f,

for each bounded, tempered distribution T.
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Proof. Let K be a positive constant such that 0 < T < K — 1 and put S
= K~l(K-l-T). Then 5 satisfies 0 < S < K ~ l(K - 1) < 1, and the
sequence

An= £S fc, neN
fc = 0

of positive, tempered distributions is increasing and bounded by ££°=0 K~n

(K — l)n = K. The sequence therefore increases to a positive element A e S'(E)
bounded by the constant K, cf. Proposition 7.3. It follows, that A is the inverse
of 1 - S, and that B(T) = K~^A is the inverse of K_ - KS = 1 4- T. To prove
the latter part of the Theorem, we notice that B ( f ° T ) — 1 is the limit of an
increasing, but bounded sequence of tempered distributions written on the form
pn(f° T), where pn for each rceN is a polynomium. The constant terms pn(Q) are
converging to zero as n tends to infinity. The assertion now follows by
observing that T°p(T° T) = p(T° f)° T for any polynomium p with vanishing
constant term. •

Theorem 7.5. Let T be a real element of N. The element 1 + T2 is
invertible, and the inverse

B(T2) =
1 + T2

is a tempered distribution for which 0 < B(T2) < 1. Furthermore, T°B(T2)
= B(T2)°T.

Proof. We consider the projection Pk defined in (7.4) and notice that it is a
Schwartz function. Since TeN, it follows that T°Pk°Tis a Schwartz function,
in particular it is a positive, bounded distribution. We can thus apply Lemma
7.4 and conclude that 1 + T° Pk ° T is invertible with a positive inverse
B(T°Pk° r)eS'(E) bounded by 1. Since (T°Pk°T)k is increasing (towards T2),
we conclude that the sequence (B(T°Pk°T))k is decreasing. By applying
Proposition 7.3, we obtain that the sequence decreases to a positive, tempered
distribution B. Observe that

lim B(T° Pk o T)(£ o (1 + r2)) = B(£ ° (1 + T2)) V£ e S(E),
fc->oo

cf. Proposition 7.3. We split 1 + T2 into 1 + T°P fe° T+ T°(l - Pk)° T and

write

B(T°Pk° r)(f°(i + T2)) = 2~d £(v)dv + (T°(l - Pk)° T)(B(T°Pk° T)°{).

The last term is evaluated by
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|(To(l - Pk)o T)(B(T°Pk° T)° £)| = \B(T°Pk

where we have used (4.21). Since T°(l — Pk) ° T converges to zero in N as k
tends to infinity, we obtain that ^ ° T ° ( 1 — Pk)°T converges to zero in
S(E). The embedding of S(E) into trace-class operators on Ia is continuous so
that the last term converges to 0 as k tends to infinity. We conclude that

hence (1 + T2)°B = 1. By taking the complex conjugate, we obtain that B is
the inverse of 1 + T2. The last part of the statement follows by applying the
equality in Theorem 7.4 to the element Pk ° T, k e N. We obtain for each k e N
that

(7.5) Pko T O ( B ( T * P k ° T ) - l ) = (B(Pko T2°Pk) - 1)o TOP k .

The factor Pk° Tconverges to Tin the topology of N and B(T°Pk° T) converges
to B(T2) in S'(E). The joint continuity of the twisted product, cf. (5.14), thus
ensures that the left hand side of equation (7.5) converges to T°(B(T2)— 1) in
S'(E) for k going to infinity. To examine the right hand side, we first evaluate
B(Pk°T2°Pk) taken in an element of the form £°(1 + T2), where £eS(E). We
split 1 + T2 into 1 + Pk ° T2 ° Pk + (T2 - Pk ° T2 ° Pk) and obtain

The last term is evaluated by

Since Pk°T2° Pk converges to T2 in N, it follows, that the last term converges to
zero as k tends to infinity, cf. the argument above. This shows that

(7.6) lim B(Pk o T2 ° Pfc)(£ ° (1 + T2)) - 2 ~d I £(v) dv V^ e S(E).
fe^°° JE

Since Pk° T2° Pk is not increasing towards T2, but merely converging in N, we
cannot argue that the sequence of positive, tempered distributions B(Pk ° T2 ° Pk)
is at all convergent. However, the sequence is bounded by 1 and thus contained
in a weakly compact subset of S'(E). A subnet will hence converge weakly (and
strongly because S'(E) is a Montel space) towards a positive and bounded,
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tempered distribution B'. It follows from (7.6) that (1 + T2) ° Br = 1. By taking
the complex conjugate, we conclude that B' = B(T2). Finally, we make use of
the joint continuity of the twisted product to conclude that a subnet of the right
hand side of (7.5) tends to (B(T2)— l )°Tand the proof is complete. U

Suppose that TeN. Since the twisted product of Twith an arbitrary L2-
function is well-defined, cf. (5.14), it makes sense to define the domain @2(T) by
setting

, dv)}.

Choose arbitrary £e@2(T) and rjeL2(E, dv). We can apply (5.16) and obtain

, dv),

hence @2(T) is a right ideal of L2(E, dv) containing S(E). We have thus
constructed an extension of the operator n(T) a priory defined only on the
intersection of S(E) with J^. If T is real, then n(T) is a symmetric
operator. The extension, however, may not be, cf. example (8.5).

Proposition 706e If TeN is real, then

Proof. We first notice that

( r j ° B ( T 2 ) ) ° T = r ] ° ( B ( T 2 ) ° T )

= rj°(T°B(T2))

= (r]°T)°B(T2)EL2(E,dv) V^eS(E),

cf. Proposition 5.7 (4) and (2). For every £e®2(r) we thus obtain

= (T°(B(T2)°t))(r,) V^

That is,

(7.7) B(T2) o (To {) = To (B(T2) ° {) V^e ®2(T),

from which the assertion follows. O

Suppose that TeN is real and take arbitrary rjeS(E). Then
= B(T2)°rje@2(T), according to Proposition (7.6), and



918 FRANK HANSEN

T2)°B(T2))°f;

so S(E) c (1 + T2)°^2(T). The range of the action by 1 + T2 on &2(T) is thus
dense in L2(E, <fo).

§8. The Resolvent Distribution

Lemma 8.1. Let TeN be a real distribution and take AeC with
Im A 7^ 0. T/ze //Hear £/?ace (T— A)° AT^ is dense in N%.

Proof. We may without loss of generality assume that A = i. We notice
that (T— i)°A^ is a subspace of JV^, cf. Theorem 6.2. Suppose that it is not
dense. Then there exists, according to Hahn-Banach's Theorem, a non-zero
element S e N = N such that

(8.1)

The twisted product S ° ( T — i) is an element of N, and

Consequently, S°(T— i) = 0. We obtain from Theorem 7.5 and Proposition 5.7
(2) that

S = S°1 =S°((1 + T2)°J5(r2))

= (So(l + T2))°B(T2)

= 0.

This is a contradiction. •

Theorem 8.2. Let Te N be a real distribution. There is for each /I e C with
Im A 7^ 0 a bounded distribution R(T, A)eS'(E) for which

R(T, A)°(T- X) = (T- A)° JR(r, A) = 1.

We denote it as the resolvent distribution for T at the point L It satisfies

R(T, A) = R(T9 A),

/or each A e C vwY/z Im A / 0.

Proof. We first define the resolvent distribution for T at the point i by
setting
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,i) = B(T2)o(T+i),

cf. Theorem 7.5. The product is a well-defined tempered distribution, cf. (5.13),
and

R(T, i)°(T- i)

°(1 + T2)

= 1,

cf. Proposition 5.7 (i). In the general case we define

and obtain that R(T, X)°(T- X)= 1. Since T commutes with B(T2\ it follows

that jR(r, A) = R(T, I) and consequently that (T- X)°R(T, A) = 1.

To prove that last part of the statement we first notice that

(B(T2) ° T) o £ = B(T2) o (To f ) e 92(T)

for every £eS(E), cf. Propositions 5.7 and 7.6. The square of the distribution
jB(r2)°Tcan hence be calculated, and we obtain

((B(T2) o T) o (B(T2) o r))«) - B(T2)(T° (B(T2) o (To Q))

It follows that ^(T, i) is bounded with square (B(T2)oT)2 + B(T2)2

= B(T2) < 1. •

Proposition 83. Let TeAT be a real distribution. The resolvent equation

(8.3) R(T9 X) - R(T, /*) = (A - /i)«(T, /^) ° *(7; A)

w uafec/ /or ««;; A, /x e C\R.

Proof. We obtain by calculation that

, A) - R(T, /i))o(T- A) - 1 - ,R(r5 jx)°(r- A)

= (A -

We can multiply with R(T9 A) from the right, cf. Proposition 7.6, and obtain the
desired result, i!

Notice that the resolvent equation (8.3) entails that the resolvent
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distributions R(T, X) and R(T, $ are commuting, bounded elements of S'(E).

Proposition 8.4. Let TeN be a real distribution. The map Ji\-+R(T9 A)(5) is
analytic on C\R for each feS(E).

Proof. Take A, £eC with Im A ̂  0, and |f| < |Im A|. By making use of
the resolvent equation we obtain

(1 + R(T, X)Q°R(T, A - 0 = R(T, A - Q + ^(T, A)°£(T, A - 0

Since the norm of the left multiplication with R(T, X) on S(E) is bounded by
l l m A I ' 1 it follows that

In particular, we obtain for each ^65(E) that

= Z (- i)"C

Since |K(T, A)" + 1(OI ^ |Im ̂ |-(" + 1)2-d/2 ||(^ Q1/2||2 it follows, that R(r, A - 0(5)
is holomorphic in the open circle {|£| < |Im A|} and the proof is complete. •

Example 8o58

PlT^ set d = 1 0fld *fe/ZHe matrix entries by setting

where 6 is the Kronecker symbol and (AJjeN is a sequence of real numbers. We
consider symmetric matrices of the form

/ 0 A! 0 0 0 0 ». v

A! 0 A2 0 0 0 •••

0 A2 0 A3 0 0 •••

0 0 A3 0 A4 0 •••

0 0 0 A4 0 A5 ...

\; ; ; ; i i /
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In particular the case where

ln = n(n + 1) £ 1 VneN.
fc= 1 &

Smce 0 < kn < n(n + l)n2/6 for every neN, it follows that T is a real element of
N. The range R(T — i) is not dense in L2(E, dv\ The condition for a vector
xela written on the form

x = £(-!)» +',•„«„
n = 0

to be orthogonal to R(T — i) is that

iTi = r0,

n + 1rn + 1 = ^r^i + rn Mn> 0.

77ze solution is uniquely determined by the value of r0 and is given by the sequence
rn = ro/(n+l\ neN0. The analogous condition for the vector xel^ to be
orthogonal to the range R(T+i) is that

Iri = ~ 7*05

B + 1rB + 1 - hnrn-i -rn Vn > 0.

The solution is uniquely determined by the value of r0 and is given by the sequence
rn = (-lTro/(n+l), neN0.

The resolvent distribution R(T, i) = B(T2)°(T 4- i) is only unique because we
have defined it explicitely in terms of a certain invers, B(T2\ ofl + T2. If we try
to solve the equation

(l + T 2)o^ = a05

we derive that

(i + A?KO + V2£2 = i
M^o + (1 + X\ + A|)£2 + A3A4^4 = 0

(8.4) i

^2n-1^2n^2n-2 + (1 + ^2n + ^2n+l)^2n + ^2n+ 1^2n + 2^2n + 2 ~ 0

There is a similar, but homogeneous system of equations for the odd variables
£211+1- It is obvious that the above system of equations have infinite many
solutions each characterised by the value of £0. To actually find the solutions, we
first notice that

* + ^2n ~^~ ̂ 2n+l _ ^2n-l^2n ^2n+1^2n + 2

2n+ 1 ~ In- 1 2rc + 3
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for every neN. By setting

VM =

we obtain that 0 < vn < 1 for every neN, and furthermore

Po = - Vo

4- (1 - vt)p4

For n > 1, we

P2n-2 ~ P2n = ~* lP2n ~~ P2n-2)

-"'-*—— (P2 -Po)

P2 -Po__

4(n + I)2 0(2n + l)0(2n + 2) '

// follows that

solutions to (8.4) are thus parametrised by the value £0

_ (-if f i ( - i f y i i
C2w 2n + 1 Co 4 2n + 1 ilt) (i + I)2 0(2i + l)0(2i + 2)

The first term corresponds to the part of the solution that belongs to the null space
of 1 + T2. We want to calculate £0 of the particular solution £ = B(T2)°aQ and
therefore examine the equation
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for arbitrary k e N. This truncates the system of equations (8.4) in the following
way

+ I1 + ^1 + ^3X2 + ^4*4 = 0

1^2k + 2S2k + 2 = "

= "

There is now a unique solution of £0 for each value of k e N given

1 + (2k + 2)2(2k + 3)20(2fc + 2)2

*° 4(fc + l)20(2/c + l)0(2k + 2)(1 + (2/c + 3)20(2/c + 2))

+ iy _j i
4 ,-tf, (i + I)2 0(2i + l)0(2i + 2)'

fFe obtain ^0 o/ z7ze particular solution £ = B(T2)°a0 by letting k tend to
infinity. It is given by

~n2+ •
1 - 1 1

Finally we realize that the all the odd variables £2n+i vanish for this particular
solution. We can proceed in this way and construct the particular inverse B(T2)
and then the resolvent R(T, i)

The above example shows that the resolvent distribution cannot simply be
constructed from the operator n(T) — /I, because the inverse may not be densely
defined in ln.

§9. Measure and Integration Theory

Positive measures with values in S'(E).

Let (X, &*} be a measure space X with a cr-algebra Sf. A positive measure
\i with values in S"(E) is a countable additive set map

(9.1) M:^^S'(E)+,

mapping the a-algebra £f into positive, tempered distributions. The measure is
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said to be a probability measure, if fj,(X) = 1. The range ^(^) of a probability
measure \JL is mapped by the representation n into bounded, positive operators
on Ia. We shall only be concerned with two measure spaces, the closed interval
[0, 2ft] and the real line R, both equipped with the system of Borel sets as a-
algebra. We need the following generalization of Kelly's theorem:

Lemma 9.1. The set of probability measures on the interval [0, 2ft] with
values in S"(E) is compact in the topology of weak convergence.

Proof. Let (ju^j be a universal net of probability measures on [0,2ft] with
values in S"(E). We consider for each £eS(E) and je J the ordinary measure juj
with mass \\£\\2 given by

(9.2) A$B) = ,*/£)« o0 MBe<f.

According to Kelly's theorem this net of measures is weakly convergent towards
a positive measure \f on [0,2ft] with total mass ||£||i For each positive
continuous function / on [0, 2ft], we define a quadratic form on S(E) given by

(9.3)

The quadratic form is the limit of quadratic forms satisfying the parallelogram
identity and is therefore the diagonal of a positive definite, sesqui-linear
form. Furthermore,

There exists thus a bounded, tempered distribution /*(/) such that

(9.4)

We have defined a Radon measure // on [0, 2ft] with values in S"(E). It is the
weak limit of the net (jLLj)jeJ and maps positive, continuous and bounded
functions into positive, tempered distributions. The Radon measure // satisfies
//(I) = 1. We have to show that it is induced by a probability measure on
[0, 2ft] with values in S"(E). For each compact K ^ [0,2ft], we denote by ^(K)
the set of continuous functions /: [0, 2ft] i— » [0, 1] for which f(t) = 1 for every t
in K. We define

(9.5)
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Since the net of functions in #(K) is downward filtering and the corresponding
operators n(p,(f)) are positive and bounded, it follows that fi(K) is a well-defined,
positive definite tempered distribution. Let K1 and K2 be disjoint compact
subsets of [0, 2ft] . Since every open set G with Kl{]K2aG contains disjoint
open subsets Gt and G2 with K± c Gl and K2 c G2, it follows that ^(K^ (JK2)
= /4&i) + fjL(K2). We have thus defined a finitely additive set function \JL on the
system of compact subsets of [0, 2n~] for which /^([0, 2ft]) = 1. For each open
set G ^ [0, 2ft], we define

(9.6) fjL^(G) = sup {fji(K) \K c G, K compact},

and notice that ^(G) is a positive, tempered distribution bounded by 1. The
essential property for \JL to satisfy in order to be extendable to a probability
measure on [0, 2ft] with values in S'(E) is that

(9.7) n(K) = inf {^(G)\K c G, G open} ,

for every compact K c [0, 2ft]. Suppose that (9.7) is not satisfied for some
compact K ^ [0, 2ft]. Then there is a £eS(E) and an e > 0 such that

(9.8) tf(K) < e + sup {fjf(F)\F a G, F compact},

for every open set G c [0, 2ft] with K ^ G. But this contradicts the regularity
of the measure fjf. We have thus established (9.7) and can proceed as is usually
done in measure theory to define

(9.9) n(B) = mf{nx(G)\B <= G open},

for each Borel set B ^ [0, 2ft]. We have that fji(B)eSf(E) is positive and
bounded. The property (9.7) readily implies that \JL is a probability measure on
[0, 2ft] with values in S'(E). B

We are mostly interested in measures on X = [0, 2ft] or X = E with values
in S"(E). Such a measure can be constructed from a map /: Jf h-»S"(E) +
satisfying

(1) x-»/(x)(<!;) is continuous for every £eS(E),
(2) Sxf(x)(t0Qdx£K\\t\\l V££S(E) for some constant K.
We set fJL(B)(£) = $Bf(x)(£)dx for every BE^, and observe that \JL is a

bounded measure on X. Since /j(B) can be attained as the supremum of an
upward filtering but bounded net of finite sums of elements in S'(E), we can
appeal to Proposition 7.3 and conclude that the measure \JL takes values in S'(E).

§10. The Spectral Theorem

Proposition 10.1. Let T be a real element of N. The imaginary part of the
resolvent distribution maps the upper half plane {/LeC|Im A > 0} into positive,
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tempered distributions. Furthermore

0 < Im R(T9 A) < (Im A)'1 VAeC, Im A > 0.

Proof. Let Im A > 0. Theorem 8.2 and the resolvent equation yield that

Im K(r, X) = l

= 1

Consequently, we have

(10.1) (Im R(T, X)}(t ° f ) = (Im A) || R(T,

for every element ^eS(E). •

Notice the difference between the distribution ImK(T,/l) taken in some
vector £ and the imaginary part of -R(T, A)(£). A map z->/(z) denned on a
complex domain and with values in S'(E) is said to be analytic or harmonic, if
the complex function z->/(z)(£) is analytic or harmonic for each £eS(E).

Theorem 10.2. Ler w: {zeC||z| < l}h->S'(E) be a harmonic map with values
in the positive part of S'(E). There exists a positive measure \i on [0, 2n] with
values in S'(E) such that

1 + r2 - 2r cos(0 - .

0<r <

Proof. We first suppose that w(z) = w(reie) is harmonic in a disk of radius
greater than 1. We may determine a harmonic conjugate v(z) in such a way
that i7(0)(f) = 0 V(JeS(E). The map /(z) = u(z) + iv(z) is analytic in a disk of
radius greater than 1 and hence represented by a power series

(10-2) /(z) = £ cnz",
n = 0

which converges absolutely and uniformly on the circle |z| < 1 for every
f eS(E). The real part is thus given by

(10.3) u(z) = u(reie) = c0 + \ f (cn^ + c;e'^V,
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and this function also converges absolutely and uniformly on the circle |z| < 1
for every £eS(E). Integrating the function z = ein+\-+e~'m*u(e{*)(£) around the
circle |z| = 1 for each weZ and c^eS(E) gives

(10.4) = 7i

0 ^ k = l

2c0(£) for n = 0

c,(0 for n > 0,

c—(£) for R < 0.

We insert the values (10.4) in equation (10.3) and notice that the order of
integration and summation can be interchanged for r < 1. This gives the
representation

(10.5) u(reie)(Q = — (1 + V (eifI<°-*> + tT^^V

which is valied for r < 1. The measure d^((j)) is given by the density (l/2n)u(ei(t>)
with respect to Lebesgue measure on the interval [0, In}. The density is
bounded and maps the interval [0, 2n~\ into positive, tempered
distributions. The function 0 -> (l/2)u(ei4>)(^) is continuous for each
£eS(E). The total mass of the measure is given by

1 f27C

(10.6) u(0) = —\ u(ei(t>)d(t).
o

We return now to the general case and assume only that u(z) = u(reld) is defined
in the open disk |z| < 1. We consider, for each s > 0, the map UE(Z) =
u((l + s)-1z) which is positive and harmonic in a disk of radius greater than
1. Each of these maps thus allow the representation (10.5) with respect to the
measure (l/2n)uE(eie). The total mass of this measure is w£(0) = w(0), cf. (10.6),
and is independent of e > 0. We can apply Lemma 9.1 to obtain a weak
contact point \JL for the net of measures ((l/2n)uE(ei(l)))e for e -> 0, and then pass to
a subnet that is weakly converging to \JL. Since the kernel in (10.5) is continuous,
the integrals with respect to the measures in the subnet converge for r < 1
towards the integral of the kernel with respect to \JL. Likewise, uB(re{Q) converges
to u(re[e) for any subnet of e -» 0, and it follows that
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for 0 < r < 1 and 0e[0, 2rc]. •

Corollary 103. Let F : { A e C | Im z > 0} i-> S'(E) 6e an analytic map. If the
imaginary part of F is positive, then there exists a positive measure v on the real
line with values in S'(E) and finite total mass such that

where a > 0 aw J /? is real.

Proof. We make use of the conformal mappings

(10.7) A(Z) = ! ̂ ±| and Z(A) = ̂ =4 .
1 Z — 1 A ~r 1

The first maps {zeC| z| < 1} onto {/LeC|Im A > 0} and the other is the inverse
transformation. We set

(10.8) f(z)=-iF(A(z)) VzeC, |z| < 1,

and notice that / is an analytic map with values in S'(E). The real part

(10.9) u(z) = Re/(z) VzeC, |z| < 1,

is hence harmonic with values in positive, tempered distributions. We can thus
apply Theorem 10.2 to obtain a positive measure CD on [0, 2n~\ with values in
S'(E) such that

for 0 < r < l and 0£[0,27i]. The harmonic conjugate of the integrand is
determined up to an imaginary constant. Since

e^ + z = l-r2

{ ' J ^ 2

is analytic, it follows that

(10.12) /(Z;
P2n ei4> i

Jo e10-.

where j8 is a real constant. Let a be the sum of the masses of the measure CD in
the points 0 and 2n and let co' be the measure on ]0, 2n\_ obtained from CD by
leaving out these two points. We obtain that

(10.13) /(z) = «i±£ _ 10
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for |z| < 1. By inserting z = z(A) and multiplying by i, we derive that

(10.14)

We introduce the change of variable t=— cot(0/2) which carries the circle onto
the real axis, mapping the deleted points </> = 0 and </> = 2n into infinity and the
measure CD' onto a measure v of finite mass on the real line. This transforms
(10.14) into the expression in the corollary. We furthermore notice that /?
= ReF(i). m

We shall here notice that the mass which the measure \JL in Theorem 10.2
puts in the points 0 = 0 and $ = 2n obviously can be freely distributed between
the two points. But this is also the only ambiguity in the definition of \JL up to
equivalence of measure. That this is so follows by considering the complex
function u(z)(£ ° £) for each £ e S(E) and making use of the integral expression in
the theorem. The unicity up to equivalence of the corresponding ordinary
measure if except for a possible redistribution of mass between the points 0 = 0
and 0 = 2n is well known. The assertion thus follows by polarisation. It also
readily follows that a positive measure on [0, 2n] with values in S'(E) through
the formula in Theorem 10.2 gives rise to a harmonic map on the open unit disk
in the complex plane with values in positive, tempered distributions. The same
remarks apply to the measure v in Corollary 10.3 except that it is uniquely
defined up to equivalence of measure.

Theorem 10.4. Let T be a real element of N. There exists a probability
measure ju on the real line with values in S"(E), unique up to equivalence of
measure, such that the resolvent distribution is given by

R(T, A) = —— dfji(t) VA G C, Im A > 0.
J-oo t - A

Proof. The resolvent distribution maps the complex upper half plane into
S"(E), cf. Theorem 8.2. It is analytic according to Corollary 8.5 and positive, cf.
Proposition 10.1. Hence we can apply Corollary 10.3 to obtain a positive
measure v on the real line with values in S'(E) of finite total mass, a positive
constant a, and a real constant /? such that

(10.15) R(T, A) = od + jB + ^-^-dv(t) VAcC, ImA > 0.
J-oo t - A

The measure v is unique up to equivalence of measure. Setting A = is, s > 0 and
taking the imaginary part, we derive that

f°° s(t
2 + 1)

(10.16) ImR(T9 is) = as + -^ ^dv(t) VSG!, s > 0.
J_m t2 + 52
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The imaginary part of R(T, is) is positive and bounded by s"1 according to
Proposition 10.1, so we must conclude that a = 0. We define a positive measure
\JL on the real line with values in S'(E) by setting d^(t) = (t2 + l)dv(t) and obtain

(10.17) s!mR(T9 is) = -~2 - ^d^(t) < 1 Vs > 0.
J -00 * ' S

It follows, that the measure \JL has finite total mass. Furthermore,

(10.18) R(T9 X) = P + ^ (-^ - -y^-W) VAeC, Im A ̂  0.
J -00 \r ~~ * * ~r L/

Again setting A = is, s > 0, but this time calculating the real part, we obtain

(10.19) s ReR(T, is) = s(} + f °° f - ^(0 Vs > 0.

Since — 1 < sRe,R(r, is) < 1 for every s > 0 and the first half of the integral is
bounded uniformly in s, we conclude that

(10.20) 0 =

Inserting this in (10.18), we obtain

(10.21) ,R(r3 X) = -—~ dn(t) VA 6 C, Im A > 0.
— A-oo

To prove that \JL is a probability measure, we first notice that

(10.22) - isR(t, is) = 1 - T° R(T, is) Vs > 0.

It then follows from (4.21) that

(10.23) | (To ,R(T5 is))(0| = \R(T, i

for every s > 0 and £ 6 S(E). Consequently

(10.24) limsU(T,is)«o|) = i||{||i V^
s-* oo

Since

foo 2

(10.25) sImU(r,is)= ^ - jd^(t) Vs > 0,
J -oo ^ "I" S

we conclude that the measure fjf has total mass || ̂  || \ for each ^ e S(E). Hence \JL
is a probability measure. •
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The support cr(T) of the measure \i is a closed subset of the real line. We
denote it as the spectrum of T. Let Mao((i(T)) denote the set of bounded,
measurable complex functions on c(T\

Theorem 10.5. Let T be a real element of N, and let \i be the measure
associated with T in Theorem 10.4. The map

(10.26) *(/)= f(t)dn(t)
Jff(T)

is an algebra homomorphism of M°°(cr(r)) into S'(E).

Proof. The map 0 is linear and maps M°°(cr(r)) into a self-adjoint, weakly
closed subspace of S'(E). Let /eM°°(o-(r)) be of the form

(10.27)
ieA t — AI

where A is a finite set and A f eC\R for every ieA. It follows from Theorem
10.4 that

(10.28)
ie/i

We denote by A0(a(T)) the linear span of functions on the form (10.27) and
notice that it is weakly dense in M°°(cr(r)). An application of the resolvent
equation shows that &(fg) = 4>(f)<P(g) for all functions /, g in AQ((r(T)) from
which the statement follows. M

Let T be a real element of N, and let u be the measure in Theorem
10.4. For each teR, we set

(10.29) E(t) = di*{s).
J -oo

We conclude from Theorem 10.5 that t\-+E(t) is a spectral function with values
in real, idempotent, tempered distributions (corresponding to projections on
In). The evolution group associated with T is defined by setting

(10.30) U(t) = exp°(itT)

eitsdu(s).
•Mr)

It follows, that t\-+U(t) is a group representation of (R, +) into S"(E).
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