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The Moyal Product and Spectral
Theory for a Class of Infinite
Dimensional Matrices
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Abstract

We study tempered distributions that are multipliers of the Schwartz space relative to the Moyal
product. They form an algebra N under the Moyal product containing the polynomials. The
elements of N are represented as infinite dimensional matrices with certain growth properties of the
entries. The representation transforms the Moyal product into matrix multiplication. Each real
element of N allows a resolvent map with values in tempered distributions and an associated spectral
resolution. This giaes a tool to study distributions associated with symmetric, but not necessarily
self-adjoint operators.
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§1. Introduction and Main Results

Moyal considered in 1949 the problem of describing quantum mechanics in
a semi-classical setting by making use of such classical notions as phase space
and Hamiltonian function. The purpose was to gain a better understanding of

Communicated by H. Araki, August 31, 1987. Revised October 26, 1987.

* Institute of Economics, University of Copenhagen, Studiestraede 6, DK-1455 Copenhagen K,
Denmark
The author is endebted to Joseph C. Vdrilly for pointing out an error in an earlier version.



886 FRANK HANSEN

the relationship between classical and quantized systems. In particular, Moyal
aimed at understanding inherent quantum mechanical behaviour in terms of
classical concepts. He showed that the transition probabilities associated with a
quantum system can be calculated from the classical Hamiltonian by integrating
with respect to a certain measure on phase space. The measure is not positive,
but only real. Nevertheless, it assigns the correct positive probabilities to the
quantum system.

Moyal’s discovery has inspired many authors. The real measure on phase
space induces a non-commutative product of functions on phase space, now
known as the Moyal product. The associated left regular representation
reduced by a certain ideal is equivalent to the Weyl mapping.

The Moyal product is a well-defined composition in both the Schwartz
space and the space of square-integrable functions. These algebras, however,
are far too small to contain observables of physical interest and the associated
spectral theory just becomes a reformulation of the Weyl formalisme.

In order to better exploit Moyal’s basic idea, we must identify algebras
under the Moyal product which are large enough to contain all conceivable
Hamiltonians. The Moyal product of tempered distributions on phase space
may fail to exist in any reasonable sense of the word and even when it does exist,
the product may not be associative.

However, the Moyal product of a tempered distribution with a function in
the Schwartz space does always exist as a tempered distribution. We can
therefore consider the set N of left-multipliers of the Schwartz space. It is an
(associative) algebra under the Moyal product and contains the polynomials
together with many other distributions of physical interest.

We show that N can be realized as an algebra of infinite-dimensional
matrices satisfying certain growth conditions on the entries. This representation
induces a natural topology on N making it a reflexive, nuclear space. It is the
dual space of a certain subalgebra N, that also can be characterized by growth
conditions on the matrix entries. We show that the algebra obtained by
adjoining the unit element to N, is invariant under (Moyal) exponentiation of
even non-real elements.

A real, tempered distribution T'is said to be positive, if T(&° E) > 0 for each
element ¢ of the Schwartz space (the Moyal product is denoted by °). The
associated order structure is an important tool in the construction of the spectral
theory.

Each real element of N allows a resolvent mapping defined on complex
numbers with non-vanishing imaginary part and with values in bounded
tempered distributions. This gives a tool to study distributions associated with
symmetric, but not necessarily self-adjoint operators.

The resolvent distribution allows a spectral decomposition with respect to a
positive measure on the real line with values in positive, idempotent, tempered



THE MoyaAL Probuct 887

distributions. We construct finally for each real element of N a functional
calculus for bounded and measurable functions.

§2. The Moyal Product and Other Preliminaries

Symplectic forms and complex structures.

We shall consider the even-dimensional real vector space E = R?¢, deN. A
symplectic form on E is a bilinear mapping o: E x E— R which is non-
degenerate and antisymmetric. The pair (E, o) is an example of a symplectic
space. A c¢-allowable complex structure on (E, o) is a linear operator J on E
such that

JP=—1,
2.1 o(Ja, Jb) = 0o(a, b) Va, beE,
a(a, Ja) > 0.

Relative to this complex structure, one can introduce a real, positive definite and
symmetric bilinear form s on E by setting

(2.2) s(a, b) = a(a, Jb).
Finally, a positive definite inner product h: E x E - C is defined by setting
(2.3 h(a, b) = s(a, b) + io(a, b).
A linearly independent set {e;, f;}¢-, of vectors in E satisfying
o-(eb ej) = a(fi: f]) = 0
(2.4) ij=1,...,d
U(ei’fj) = 6i,ja
is called a symplectic basis for (E, ¢). If we to a given symplectic basis
{ei, f;}{-, define a linear operator J on E such that
Je, = fi
(2.5 Lj=1,...,d
in =€
then it follows that J is a g-allowable complex structure on (E, g). Conversely,
suppose that such a structure J is given. If we choose a set of vectors {e;}{_,
orthonormal with respect to the inner product h defined in (2.3) and put f; = Je;
for i=1,...,d, then {e;, f;}¢{-; becomes a symplectic basis for (E, o) satisfying

2.5).
We will subsequently assume that a o-allowed complex structure J has been
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fixed and consider the triplet (E, g, J). Explicit coordinates relative to a
symplectic basis satisfying (2.5) will be referred to as canonical variables. We
obtain

d d
v=(p.q). where p=3 pe; and q=} afs

d
(2.6) o, v)=pq —P'9= }, i~ Pid

J(p, 9) =(—q, p),
s(v, v') = o(v, Jv') =pp’ 4+ qq'.

The expressions in (2.6) furthermore constitute an explicit realization of the
various notions introduced in this subsection.

The symplectic Fourier transformation.
We let dv denote the Haar-measure on E = R?¢ and normalize the Haar-
measure such that

@.7) f e V2w gy = 1
E

If we express the measure dv in terms of the explicit coordinates given in (2.6)

above, then we obtain dv = dp, ---dp,dq, --- dq,, where the Lebesgue measure dx

on R is normalized such that an interval of unit length has the measure (2r)~ /2.
The symplectic Fourier transformation F is defined by

(2.8) (F©) =f@) = f o) f(v)dv,
E

and extends with the normalization of Haar-measure given in (2.7) to a self-
adjoint unitary operator on L?(E, dv). In particular, F2 = 1.

The Moyal product.

Let f, g be elements in S(E), the space of Schwartz functions on E. We
define the Moyal product (or twisted product) fog of f and g by setting

2.9) (fog)v) = J

f f()g@")e*" ") dv' dv” veE,
EJVE

where ¢ is the antisymmetric affine function defined by
(2.10) o(a, b, c) =a(a, ¢) + a(c, b) + a(b, a) a, b, ceE.

The twisted convolution of Schwartz functions on E is defined by
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211) fxg=F(Ff°Fy),

and has the explicit form

(2.12) (f x g)(v) = J e 1) f(1) g(v — v)dv’ vekE.
E

Twisted multiplication and twisted convolution are associative compositions in
S(E). Tne Moyal product satisfies

(2.13) feg =g°f

f()g(v)dv.

E

f (fog)(v)dv

Even if only one of the functions in (2.9) belongs to the Schwartz space S(E), the
twisted product can make sense as a function or distribution on E. This is a
major topic in this branch of mathematics and will be addressed later on. At
this point we shall only notice that

(2.14) lof=f.
We state without proof that
(2.15) Ifogll. <2711 fl2llgll2

and refer to [20, Theorem 3.2 (iii)]. Twisted multiplication and twisted
convolution can consequently be extended to continuous compositions in
L*(E, dv).

The two properties expressed in (2.13) imply that the adjoint operator on
L%(E, dv) to twisted multiplication from the left (right) with a function fe L?(E) is
twisted multiplication from the left (right) with the complex conjugate f.

The Gaussian function.

Of special interest in physics is the Gaussian function Q defined by
(2.16) Q) = 2%e~ 120 yeE,

The normalization of Haar-measure made in (2.7) implies that

1/2
2.17) 120, = qu e~ sw) dv> =202,
E

The Gaussian function  receives its prominence by satisfying the following
formula

(2.18) QofoQ =2"YQ|f),2 Vfel?(E, dv).

The proof is somewhat tricky and makes use of a transformation in the complex
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extension C?¢ of E. We leave the proof to the reader and conclude from (2.14)
and (2.18) that Q- Q = Q. The twisted multiplications from left and right with
Q are hence projections on L2(E, dv).

The left regular representation.
We define a representation of L?(E, dv) on the closed left ideal

2.19) Io={f°Q|feL*(E, dv)},
by setting
(2.20) n(flg=fog Vgel,

for every fe LX(E, dv). We notice from (2.13), that n(f) = n(f)* and that 7 is
faithful. Furthermore, the Hilbert-Schmidt norm of n(f) equals 2-%2|| f|, for
every feL*(E, dv), cf. [20, Theorem 3.2 (iii)].

Proposition 2.1. The representation n is irreducible, and the finite rank
operators in B(lg) are exactly the operators of the form m(a), where

(2.21) a= Y &om &, mely, neN.
i=1

Proof. Taking fel, and applying (2.13) and (2.18), we obtain
n(a)f = '21 Siomiof

= .Zl éiogoﬁiofog
(2.22) '

n

= z_d'z (R21(n;° )82 Q2

=273 lNac

and the proof is complete. W

It follows, that the minimal projections in B(Iy) are exactly the operators of
the form n(&<¢&) with Eel, and ||£] =242, We collect a number of useful
identities in the following

Proposition 2.2. Let ¢, ne L*(E, dv), then
F(&xn=(FExn,
Eon=¢ x (Fn),

(F&=(FQ",
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(2.23)
FQ =20,
F¢=¢& Veel,
FE=¢ Veel,,

where E(v) = &(— v), veE.

The proofs are straigtforward and are left to the reader.

§3. The Resolution of the Identity

A Hilbert space of holomorphic functions.

The additive group C? is identified with the additive group R?? by setting
(3.1 z=p+igeC?! for v=(p, qeR?*,

We can thus consider o, s and h to be bilinear forms on C? and obtain the
expressions

a(z, 2’y = Im h(z, Z),
(3.2) s(z, ') = Re h(z, z'),

h(z, z') = zZ'.
In particular, the Gaussian function Q takes the form
(3.3) Q(z) = 2%e™ 12127 ze i,

The Haar-measure dz =dpdq on C? corresponds to the abovementioned
identification. Let A(C? denote the space of holomorphic functions on C* and
set

(G4 H?(C) = {fe A(C“)If [f(2)?Q2(2)* dz < o0}

cd

The vector space H*(C? is a Hilbert space with inner product given by

3-5) (fl9) = j J®) 9(22(2)* dz.
cd

Proposition 3.1. The set of vectors

(3.6) u2) =2""2mN "2 2", n=(ny,..., n) eNS, where

d d
"= [] 2z} and n! = [] n;!,
i=1 =1



892 FRANK HANSEN

is an orthonormal basis for H*(C%.

Proof. The proof is basically found in [1], and we just have to keep track of
the normalization. B

The transformation A.
We define a linear mapping A4: L*(E, dv) > A(C? by setting

(3.7) (A)(z) =271 f ¥ Q(2)¢(2)dz,

Ccd

where ¢ is considered as a function on C? through the identification made in
(3.1).

Lemma 3.2.
(3.8) EoQ = Q(AE) VEeL*(E, dv),
where AL is considered as a function on E, cf. (3.1).

Proof. By making use of the identity
(3.9 Qv — 1) =271Qv)2®V)e",
and (2.23), we obtain

(£°2)() =J e W) Qv — v) dv'

E

=27Q(@) J eI EW) QW)e ) dv’
E

= Q(v)(4¢)(v),
for each (eL?(E, dv) and veE. @

It follows from (3.8) that A is a contraction from L2(E, dv) on H?(CY.

Theorem 3.3. The transformation A is a partial isometry which maps
L*(E, dv) onto H?*(C%. The projection on I, is the initial projection and the
identity operator on H?*(C® is the final projection. The adjoint operator is given
by

(3.10) A*u=uQ VueH*(CY).

Proof. Take éeL?(E, dv), ue H*(C% and make use of the identification in
(3.1) when appropriate. We obtain
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(A¢lw) = J (A0 (2)u(2)2(2)* dz
Cd

=f 274 f 7 Q) &7 dz u(z)Q(2)* dz
cd cd

= (¢|A4%u),,

where

(A*u)(v) = 27Q(v) f e" I y (N Q) dv'
E

= Q(v) J ehh = 1250500 Q (" Yu(v') dv'.
E

The identity
h(v', v) — 1/2s(v/, V') = s(v', v) + io(V', v) — 1/2s(V', V')
= —1/2s(t' — v, v' — v) + 1/25(v, v) + io(V, v),

entails that

(A*u)(v) — ZdJ' e—1/2s(v’—v,v’—v)+ia(v’,v)Q(Ul)u(vl) dU'
E

= j e Q) uW) QW — v)dv
E

= (uQ x Q)(v),
hence
(3.11) A*u = (uR) x Q = uR)- Q.
It thus follows that A* maps H%(CY into I,. Furthermore

°Q
A*A(-Q) = A*<£—Q—) =£0Q.

We have established, that A4 is a partial isometry with I as initial projection, and
that A* acts as multiplication with € when restricted to functions in the final

projection of A. The assertion follows by showing that each of the vectors in
(3.6) belongs to the range of 4. We first notice that

2J (Z)e V¥ e dz’
(o]
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,n—z'lw(z—/)k ’
=2L(z)e =12y X Z¢dz

k=0

k

=2 i Z_f (Z/)n(z—/)ke—lz’|2 dz'
k=0 k! c

2z" 12
== | lZPre ¥ dz
n!
c
= Z"

For n = (n,,..., n))eNJ, we thus obtain

(A 2)(2) = 2"] 7 Q2 ) 2 Q) [] e de

E

d
=27T] 2f e“¥e 15 (n,1) 12 (Z)) dz
i=1

C

d
=27 [T (n) ™22
i=1

= u,(2),

which proves the assertion. M

Matrix units for B([,).

Let {e;, f;}¢-, be a symplectic basis for E satisfying (2.5). We assume
explicite coordinates as in (2.6) and the identification (3.1). It follows that

(3.12) z;=p;+iq; =h(e,v) for i=1,...,d.
We introduce the functions
d
(3.13) a,(v) = ()" 2Q() [ he» V)™, veE,
i=1
for n=(n,,..., n)eN§. We conclude from Theorem 3.3 that {27 %% a,},eng is an
orthonormal basis for I, and put
(3.19 Qym = Gy°a, for n, meNyg.
Theorem 3.4.  The vectors {ym}nmens have each length 2% and constitute an
orthogonal basis for L*(E, dv). Furthermore, they satisfy

(3.15) Gy © Ayt = Oy i A1

Gym = Om,n>
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for n, m, k, IeN: and are mapped by the left regular representation © onto a
system of matrix units for B(lg).

Proof. Proposition 2.1 and equation (2.22) entails that n(a, ) is the matrix
unit mapping 2"%?a,, onto 27%?a, Since the vectors {a,},n¢ are mutually
orthogonal, we have

n(an,m ° ak,l) = 7z(an,m)ﬂ(ak,l)
= 5m,kn(an,l)'

Since = is faithful, the first part of (3.15) follows. The second is a consequence
of (2.13). Next

(Anml A1)z = J an,m(v) ay4(v) dv

E

= J (@, m ° 1) (v) dv

= Op i J Opn,1(v) dv
E

= 6n,k(am!al)2
= 6n,k5m,12d’
which shows that the vectors {a, ,},meng are mutually orthogonal and have

length 292, They generate L*(E, dv) because n(a, ), for n, me Ng, constitute a
full set of matrix units for B(I,) according to Proposition 2.1. M

We shall furthermore notice that

(3.16) Fa,, =(—1)"q

n,m>
p,m = Gy X Qs

for n, meN§, where |n| = n; + --- + n,. This follows readily from Proposition
(2.2).

§4. Distributions as Matrices

Generating the Schwartz space.

We shall in a number of steps relate the vectors g, ,, to the Schwartz space
S(E). Let us to every neN% and k=1,...,d introduce the tupples o,(n),
B(n)eN? defined by
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_ fny, for j# k

() = { n;+1, for j=k
4.1) n;, for j#k

Bi(n); = { 0, for j=k and n, =0

n;—1, for j=k and n, >0
forj=1,...,d.
Lemma 4.1.
da,

4.2) = \/;; Agn) — PxGn>

Opx

oa, .
aq = 1\/ n aﬁk(n) — Gy,

k

for neN$ and k=1,..., d.

Proof. We obtain by direct calculation that

da,(v)
Opy

= (n!)~/? (jl;[k he;, ©)) 7~ (Q(v)hiew v)™)

0
Dk
= (n) "% ( l;[k h(ej, o)) (Q(v)nch(ey, V)™ — p Q(v)h(e,, v)™)

= /M 830 0) = Piy(0).
The other part of the assertion is similarly proven. H

We shall use the symbols p;, q; to denote not only the coordinates of a
vector veE, cf. (2.6), but also the operator acting as multiplication with the
corresponding coordinate function. This is a common and useful, but also
slightly confusing notation. We obtain the following lemma by using (3.16) and
a straighforward calculation.

Lemma 4.2. For n, meN3 and k = 1, ..., d we have the following relations:

aa"’"’-—a x@—i(qa)x a,
apk n 51?1; kYn m >
43) O _ 4 x P (pea) x

0qy 0q,
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pkan,m = Dy X E + a, X pka; s
qkan,m = i Qp X a*m + ay, X gy a_m .

Let V, denote the complex vector space span {a, ,|n, me N3} and let R, : V,
-V, for k=1,...,d be the linear operator defined by

(4.4) Riym=~/m + 10, ,40m Vn, meNS.

If we let S denote the antiunitary operator on L2(E, dv) for which S¢ = & and put
L, = SR, S, then we have

(4-5) Lka,,,m =i/ nk + 1 aak(,,),m Vn, mGNg.

Theorem 4.3. For k=1,...,d, we have

weioia-( 1)
k=3 Dk 9k Fry 24 s

Lo=Y(p +ig— (2 +il
k=5 Dk qx s o4, .

Proof. Taking n, me N and applying the lemmas above, we obtain

)
Op oq) ™"

a . .
— —i(qea,) x a, —ia, x

0Py

=a, X (/my ag,.m — Pi Gy ) — 1(qxa,) X Gy,

day,

+ (pkan) X a_m
0qy

=a, x
—ia, X (= 1y/Magm — Qi Om) + (Pi8n) X Gy

= — (@, X (P +19)am) + (P — 1q)a, X Gy ,

and consequently
i d i d a
Dk — 14, Es Ere nm
=pkanxa_m+anxpka'—iqkanxz;_ianqua;
+ (@ X (P +190am) — (Px — 194)ay X Gy

= z(an X (pk + iqk)am)'



898 FRANK HANSEN

Since

(r + 1q)an(v) = h(ex, v)an(v)

— hey, 0)(m)~2Q() [] ey o)™
j=1

d
= (m!)"12Q() [] hle;, v)*™
j=1

= vV my + 1 amk(m)(v)a

the first statement of the theorem follows. The second is similarly proven. B

Corollary 4.4. For k= 1,...,d, we have

1
pk=§(Lk+RIT+Rk+LIT)s

1
4k=E(Lk+le—Rk—lf),

0o 1
5o = 5 ®RE— L+ LE = R),
k
a 1 .
'a_q‘=2—i(Rk — L, — L + Ry).
[’

Proof. Make use of Theorem 4.3 and reduce the right hand sides. &
For each peZ? and ¢eL?(E, dv), we define

(4.6) 1O =270 Y 1@nml©)21P(1 + npP(1 + m)*2,

n,meNg

where 1 is the d-tupple with 1 as entry on every site. The set
4.7) H, = {£€ L*(E, dv)|r,(¢) < o}
if for peN$ a Hilbert space which is dense in L*(E, dv).

Theorem 4.5. A vector ¢ e L*(E, dv) belongs to the Schwartz space S(E), if
and only if r,(§) < oo for every peN§. That is

4.8) SE) = N H,

The topology on S(E) is the Fréchet topology given by the norms r,, peN§.
Proof. The operators R?, L” defined for every peN§ by
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d d
R? =[] Re, =[] L,
k=1 k=1

and their adjoints leave S(E) invariant according to Theorem 4.3. If we assume
that ¢ e S(E), we thus have RPLP¢ e L2(E, dv) for every pe N4, By making use of
(4.4) and (4.5) to express RPLP¢ in terms of the vectors in the basis, and by
applying Parceval’s formula, we conclude that r,(£) < co. If on the other hand
this condition is assumed for every peN§, then we apply Corollary 4.4 and
express any operator written as a product of powers of the operators p,, g,
0/0p,, 0/0q, in terms of the operators R,, R¥, L,, Lf. Any such operator will
therefore map ¢ into L2(E, dv). It follows that £eS(E). M

The Moyal product as matrix multiplication.
Take £eS(E) with the expansion

(4.9) E=Y tymlnm

n,meNg

The coefficients are given by

(4.10) Uy = 2" YAy mlE); VN, meN.

If the operator n(¢) acts on a vector yel, with expansion
(4.11) n= Y ad, % =2"%aln), VkeNg,

keNg

then we obtain

(4.12) (&

n,meNg

Z an,man,m o( Z “kak)
keNg

Z ( Z an,mam)an'

d d
neNg meNg

The operator n(¢) thus acts as the matrix {a, ,|n, meN§} on the Hilbert space
I,. Tt is a Hilbert-Schmidt operator with Hilbert-Schmidt norm Tr(n(&)*n(£))!/?
=27%2|¢||,. Furthermore, the twisted product of two functions &, neS(E)
with coefficient sets («,,,) and (8,,), cf. (4.10), is given by

(4.13) Eon=Y () %miBrmum

n,meNg keNg

The twisted product of functions in S(E) is thus given by matrix multiplication of
the corresponding coefficient sets. An application of Cauchy-Schwarz inequality
yields
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rp(&om)
) Z., Ui Brml* (1 + n)P(1 + m)?)!7?

n,meNg keNg

4.14)
SO o2+ P+ 020 Y Bl (L + K)72(L + m)?)H2

n,keN, k,meNg

< rp(Orp(m),

for every peNY. We conclude that the Schwartz space S(E) is a topological
algebra under the Moyal product.

Tempered distributions.
Let for every n, meN@ the tempered distribution t,, be defined by

(4.15) tam(&) =271 f @y m(®)E@)dv  VEeS(E).

E
We notice that ¢, ,(¢) = Tr(n(a, ,)7(£)), cf. [20, Theorem 3.2].

Theorem 4.6. Let T be a tempered distribution on E and set
(4.16) Upm = T(ap,) Vn, meNj.
Then there exists a peN§ such that

4.17) Y |tyml*nPm P < c0.

n,meNg
Furthermore, we have that
(4.18) T= Y ymlyms
n,meNg
where the sum converges in the sense of distribution.

Proof. Let n be an arbitrary vector in S(E) with expansion

n= Z ﬁn,man,m'
n,meNg
Since the sum converges in S(E) and TeS'(E), we obtain
(419) T(ﬂ) = z )Bn,m T(an,m) = Z am,nﬂn.m-
n,meNg n,meNg

The family of norms {r,[peN§} defining the topology on S(E) is upward
filtering. There exists consequently a single peN¢ and a positive constant C
such that

IT(m)| < Cry(n) YneH,nS(E).

It follows, that T can be extended by continuity to the Hilbert space H, and
therefore it is represented by a vector in H,. We derive, that the representing
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vector has coefficient set {n~?m~Pa,,}. This implies the condition in
(4.17). Finally, we notice that f,, =t,.(#), and the rest of the theorem
follows.

We have thus transformed the study of tempered distributions on E to the
study of matrices with a growth property for the entries as given by (4.17).

The Schwartz space S(E) can be regarded as a subspace of S’(E), and one
may naturally ask, how this embedding is reflected with regard to the expansion
(4.18). A tempered distribution T is of the form

(4.20) T(n) = Z_df ¢m@)dv  VneS(E),

E

for a ¢eS(E), if and only if the matrix {a,,|n, meNg}, cf. (4.16), defines an
element in H, for every peN§. The function ¢ is then given by

é = Z %y Apym-
n,m

We shall freely use this identification of S(E) with a subspace of S'(E). We
notice that if n(T) is a bounded operator on I, then

(4.21) I T < (T 7). »

for every ¢eS(E). The trace norm || n(¢)||r, = Tr((m(£)*n(&))*?) is finite for every
teS(E), cf. [27].

§5. The Multiplier Algebra

We have so far considered twisted multiplication of functions belonging to
the Schwartz space S(E). We also noticed that the definition of the twisted
product can be extended to functions belonging to L*(E, dv). This is done by
continuity, cf. equation (2.15). It is furthermore possible to define the twisted
product of a tempered distribution with a function in S(E) in a very natural
way. Let T be a tempered distribution on E and let (€ S(E). We define To¢&
and £oT as the tempered distributions given by

(T=&)m) = T(Een),
5.1 VneS(E)
€ T)m) = T(ne2).

Suppose that T is given by an integral kernel fe S(E), then we apply equation
(2.13) and obtain

(5-2) (Te&)(m) = J f@(Eon@dv = f (fo O @n(v)dv,
E E
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€T = f f@)ne&)w)dv = j (€)W (v) dv.
E E
Thus the tempered distributions T ¢ and &o T are given by the integral kernels
fo& and &of respectively.
Proposition 5.1. Let TeS'(E) and £€S(E) have expansions

T= z an,mtn,m9 E= Z :Bn,man,m,

n,meNg n,meNg

¢f. (4.18) and (4.9). The tempered distributions T°¢ and E° T are then given by
the expansions

Toé = Z ( Z %,k ﬁk,m) Ln,ms 60 T= Z ( Z ﬁn,k (xk,m) Lom-

n,meNg keNg n,meNg keNg

Proof. The coeflicients for the tempered distribution T ¢ with respect to
tnm is according to Theorem 4.6 given by

(T &)(am,q) = T(E° ap,n)

= T( Z Br,1 Q1 © G, )

k,leNd

= T(k;g Bie.m%c.n)

= k;g % e Brem-
The other assertion is similarly proven. B

It follows from Proposition 5.1 that
(5.3) bum® Okt = Opictnis
1 tym = Opntim-

Varilly and Gracia-Bondia considered in [33] the set
(54) N ={TeS'(E)|T°¢eS(E) VY¢eS(E)}

of left multipliers. Since S(E) is invariant under complex conjugation it follows,
that N is the set of right multipliers, cf. (2.13). The intersection M = NnN is
the set of twosided multipliers of S(E). We define the twisted product TeS of
elements in T, SeN by setting

(5.5) (T5)(§) =T(S°&) VEeS(E).
The embedding of S(E) in S’(E) is implicitly used, cf. (4.20). The product T° S is
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a tempered distribution, cf. the inequality (5.8). If Te N and ¢, 5, { € S(E), then
we obtain

(To&)em)(l) = (T Q-0
=T(E°(n°0)
=T((Con°0)
= (T (Eom)(©),

which shows that (Te&)on = To(Eoy). If furthermore T, Se N and &, neS(E),
then we make use of this equality and obtain

(T 8)°&)(m) = (TeS)(&on)

=T(S°(E°n)
=T((S<&°n)
= (T (S 9)m),

which implies that

(5.6) (ToS)ol =To(S°&) VT, SeNVEeS(E).

We conclude that the tempered distribution T°S is an element of N.
Furthermore, the property (5.6) implies associativity of the twisted product of
elements in N thus making N an algebra. Finally, we notice that M is an
involutive algebra with twisted product as multiplication and complex
conjugation as involution.

Let T be a tempered distribution and set a,,, = T(a,,,) for n, meN§. We
define

(5.7 LT =( Y loul*(1 + (1 +m)7)12,

meNg

for p, geN§ and notice that the value plus infinity may be attained. L, is for
each p, ge N4 a norm on a subspace of S'(E) which contains S(E).

Theorem 5.2. A tempered distribution T belongs to N, if and only if to each
qeNG there exists a peN§ such that L, (T) < 0.

Proof. Assume that TeS'(E) belongs to N, that is To¢eS(E) for each
£eS(E). We first show that the map

S(E)s¢é> Te(eS(E)

is closeable. Let £, —0 and suppose that To¢& —{, both in the Fréchet
topology on S(E). Since the twisted product is continuous, we conclude that
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(T &)(n) = T(E;°on)— 0 for each neS(E), so { =0. Since S(E) is complete and
metrizable, Banach’s closed graph theorem can be applied. We obtain that the
above map is actually continuous.

Let now gqeN? be given. We may well assume that ¢, >0 for i
=1,...,d. The family of norms {r,|geN%} defining the topology on S(E) is
upward filtering. There exists therefore a single se N% and a positive constant C
such that

1T &) < Cry&) VEeS(E).
Let jeN and set

éj = 2 (1 + n’)_q_san,n'
neNg
In|<j

We notice that &;eS(E) and calculate that

r(&) < ( Z.,(l +n)"2)12 =K <w VjeN.

neNg

Consequently, we obtain that r(T°&) < CK for every jeN. Finally, we
observe that r,(T<¢)— L, (T) for j —» co, where p =25 4+ q. This proves the
necessity of the condition.

We apply Cauchy-Schwarz inequality to prove the converse. Let a,,,
= T(ay,) and B, =27 %a, &), for n, meN§. We obtain for e S(E) that

AT = Y | Y sl (1 + (L +m) ™7

n,meNg keNg

= Y ol R Bl KPR L+ (L 4+ m)

n,meNd keNg
< L, (T)r,(&)%
Consequently,
(5.8) r(T°&) < L, (T)r,(§) VEeS(E).
The condition is thus sufficient.

Corollary 5.3. A tempered distribution T belongs to M, if and only if there
to each qeNy exists a peN§ such that L, (T) < oo and L, (T) < co.

Proof. Let the tempered distribution T be in M and let geN? be
given. Then there exist p’, p”eN§ such that L, (T) < oo and L,. (T) < o
respectively. Choosing pe N§ with p, = max{p;, p/} for i = 1,..., d, we observe
that L, (T) < L, (T) and L, (T) < L,. (T). ®

We can give N a natural topology. Define for each pair p, ge N¢ the
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Hilbert space
(5.9) H(p, q) = {TeS'(E)|L, (T) < co}.
It follows from Theorem 5.2 that
(5.10) N= U Hp 9.
qeNg peNg

This identity induces a locally convex topology upon N making it a complete,
nuclear and reflexive space. A net (T),,; of elements in N is convergent to zero
in this topology, if and only if there to each qeN§ is a peN§ such that
lim,, L, ,(T;) = 0. The inequality (5.8) hence entails that the mapping

N x S(E)>(T, &) —T-LeS(E)
is jointly continuous.

Lemma 54. Let T, S be tempered distributions and take p, q, se Né.  Then
we have

(5.11) L, (ToS) < Ly (T)L,(S).

Proof. Put a,, = T(a,,) and B, = S(a,,,) for every pair n, meN§. We
obtain by Cauchy-Schwarz inequality that

L, (TeS)?

= X 1Y e Beml® (14 (1 +m)7?

n,meNg keNg

'Y ol + k)72 By (1 + K22 + n)2(1 + m)~?

n,meNg keNg

IA

2 () (1 + k)" Z Bl + 0 (1 + n)*(1 + m)~*

n,meNg keNg
= L, o(T)* L, «(S)*,
and the assertion is proved. H

The above lemma shows that N is a topological algebra. Suppose that
(T)ie; and (S));e; are two nets in N converging to zero. We can to a given ge N
choose seN§ such that lim, L, ,(T;) =0, and again choose peN§ such that
lim;; L, (S;) = 0. It then follows from the lemma that lim,; L, (T;°S,) =

Lemma 5.5. Let K be a subspace of finite codimension of a Hilbert space
H. A dense subspace D < H intersects K in a subspace which is dense in K.

Proof. We first prove the assertion when K is of codimension 1. The
general case then follows by repeated application of this result. We therefore
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assume that K = {£|(a|¢) = 0} for some vector ae H. We furthermore choose a
vector deD such that (a|d) = 1. The linear and continuous mapping given by

(&) =< —(ald)d

maps H onto K and hence D into a dense subset of K. The assertion follows by
noticing that @ maps D into itself. &

Proposition 5.6. The elements of M mapped by n into finite rank operators
in B(I,) are exactly the elements of the form

(5.12) a= Y &y &, melpnS(E), neN,
i=1

where the sets of vectors (¢4, ..., &) and (14, ..., n,) are linearly independent. The
representation w is defined in equation (2.20).

Proof. The finite rank operators on I, are according to Proposition 2.1
exactly of the form (5.12) with the vectors &, n,€lg, i=1,...,d. We can in
finite many steps rewrite (5.12) such that both sets of vectors are linearly
independent. If each of the vectors belong to S(E), then so does a. If on the
other hand it is known that ae M, then we consider for each i =1,..., n the
orthogonal complement to span{¢;|j # i} which is of finite codimension. We
can apply Lemma 5.5 to find a feS(E) orthogonal to n; for j#1i, but not
orthogonal to n;. We have that n(a)f = 27 %n;|f),¢&; according to (2.22) and
derive that £,eS(E) for i =1,...,d. Similarly, by considering a, we derive that
n,eSE) fori=1,...,d &

We have in particular proved that every element ae M for which =n(a) is a
finite rank operator on I, belongs to S(E).

We defined the twisted product of a tempered distribution with a Schwartz
function in equation (5.1). If S is a tempered distribution and Te N, then we
can similarly define the twisted product So T by setting

(5.13) (§eT)() = S(T°¢) VEeS(E).

It follows from (5.8) that the linear functional S T defined on S(E) in this way is
continuous and thus a tempered distribution. Furthermore, the mapping

S'(E) x N3(S, T) —S° Te S'(E)

is jointly continuous.
Likewise, if Te N, then the product ToS can be defined by setting

(5.14) (TeS)(§) = 8(-T) VEeS(E).

We obtain that TS is a tempered distribution, and that the product is jointly
continuous in N x S'(E).
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The question of associativity of the Moyal product is not obvious outside

the algebras N and N. In fact, the property may fail to be true. However, we
have the following results.

Proposition 5.7. Let S be a tempered distribution, then

(1) (§°T)eT, =8°(Ty°T;) VTy, T,€N,

) Tyo(T;°8)=(T;°T,)°S VT, T,eN,

() Tio(€eTy)=T,°((°T,) VYT,eNVT,eNVLeS(E),
(4) (Ty°8)°T,=T,°(S°T,;) VT,eNVT,eN.

Proof. We apply definition (5.13) and make use of (5.6) to obtain
((S°Ty)e To)(m) = (S T ) (T, o n)
= 8(T; °(T;°n))
= S8((Ty° T)°n)
= e(Tyre T VneS(E).

The second part follows by taking the complex conjugates. Since ¢o T, € S(E)
and N is an associative algebra, we obtain

(Ty (€ Tp))(n) = Tu((E° Ty)om)
= Ty(E(T;°m))
= ((Tzom)°T1)(©)
= (Tyon)(T; &)
= Ty(n°(Ty<2))
=((Ty° 8 T)m) VneS(E),
which gives the third assertion. Finally,
(T2 °8)° T)(n) = (T S)(Ty o 7)
=S8((Tyon)°Ty)
= 8(Ty°(n°T3))
=(8°T)n°Ty)
=(T;°(S°Ty))(m) VneS(E),
where we have used (3) in the calculation. H
A tempered distribution SeS’(E) is said to be bounded, if the set
{SE-MIE neSE), 1€l < 1, Inl, <1}
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is a bounded subset of the complex plane. The norm | S| of a bounded
distribution § is defined as the radius in the smallest closed disk with center in 0
that contains the above set. Since, according to (5.1),

(5.15) S(&om = (S
=27n|S°¢&), V¢ neSE),

it follows that a tempered distribution S is bounded, if and only if #(S) is a well-
defined bounded operator on I,. The set of bounded distributions is thus an
algebra under the Moyal product.

Take Te N, ¢ L*(E, dv) and let S be a bounded distribution. Notice that
the product TS is well-defined according to (5.14). We define the Moyal
product of T°S and ¢ by setting

(T 8)e &) = (ToS)(&n)
=S8((&emeT)
=8(e(°T)) VYneS(E).

Since the map #—#n°T is continuous from S(E) into itself, and hence in
particular continuous from S(E) into L2*(E, dv), we deduce from (5.15) that
(T>S8)o¢ is a well-defined tempered distribution. We furthermore obtain that

(T 8)>&)(m) = S(o(n°T))
=(8°8)neT)
=(To(S°&)m) VneS(E).

We have thus proved the identity
(5.16) (To8)o & =Te(S°¢),
for TeN, bounded distributions S, and ¢eL3(E, dv).

§6. The Pre-Dual Algebra

Let TeS'(E) be a tempered distribution and suppose that there exists a
peNg such that

(6.1) L, T)< o VgeNs.

We denote by N, the set of all such tempered distributions. It is cleat that N, is
a proper subset of N.

Proposition 6.1. N, is an algebra with twisted product as multiplication. It
is left invariant under symplectic Fourier transformation.
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Proof. 1If a tempered distribution satisfies (6.1) with respect to some peN§,
then it will satisfy the same condition with respect to any p'eN§ with
pi > p;. It therefore follows that N, is a subspace of N. Lemma 5.4 states that

LP:‘I(TO S) < Ls,q(T) Lp,s(s)s

for arbitrary T, SeS'(E). If T, S are in N,, then there exists a pe N§ such that
L,(S) < oo for every seNj. Choosing seN§ such that L, (T) < oo for every
qeN4, we obtain that L, (T°S) < oo for every geN§. The statements of the
proposition now follow readily.

It follows from the definition in (6.1) and (5.9) that

(6.2) N,= U ) H(p, qg).
peNg geNd
Consequently,
(6.3) N, = ng: N,(p), where N,(p) = Q H(p, 9).
peNg 9eNg

Each N,(p) is naturally given the Fréchet topology induced by the upward
filtering set of norms {L,,|qeN§}. Since N,(p) = N,(p') whenever p; < p; for i

=1,..., d, the union N, can be given the limes topology. A functional ¢ on N,
is thus continuous, if and only if there to each peN? exists a geN% and a
constant C such that

(6.4) |90 < CL, (&) VEeN,(p).
We notice that N,(p) <= S'(E) for every peNg.

Theorem 6.2.

(1) Let TeS'(E) and take peN{§. Then Te N,(p) if and only if L, ,(T) <
oo for some qeN.

(2) N is the topological dual of N,.

(3) T°N,(p) = Ny(p) VTeNVpeNg.

Proof. Suppose Te N (p) and put a,,, = T(a,,,) for n, me Né, cf. (4.16) and
(4.19). We choose geN¢ according to equation (6.4) and obtain that

[T < CL, (&) VYEeN,(p).
Hence T is continuous on H(p, q) and thus given by

TQ) = Oupy YEeN(p),

for an neHl(p, q). We set B,,, =2"%a,nln), for n, me N and conclude that
Upn = Bun(l + 1) P(1L + m)? for each n, meN%. Consequently, we have
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LTy = ) loyul*(1 +npP(1 +m)~

n,meNg

Y Bual?(M+m(1 + )7

n,meNg

= “’7 “?I(p,q) < 00.

On the other hand, we have

ITOI=1 ¥ ol

n,meN0

=1 Y (L +mP(L+ n) 72 B, (1 + m)72(1 + m)~P2|
n,meNg

<L, ,(T)L, (&) VYEeN,(p),
for every geN§. We thus conclude that T'is continuous on N, (p) provided that
L, ,(T) is finite for some geN§. This proves part (1) of the theorem. Part (2) is
an immediate consequence of part (1).

Take finally Te N, peN¢ and e N,(p). According to Lemma 5.4 we have

that

LP;‘I(TO é) S Ls,q(T) Lp,s(é) an SGN%'
If we to a given geN§ choose seNj such that L, (T) < oo, then we can
conclude that L, (T°¢) < co. W
Let TeN, satisfy condition (6.1) with respect to peNd. Again applying
Lemma 5.4 we have
(6.5) L,(T°T)<L,,(T)L,,(T) < o0 VqeNg.

That is, the same peNZ can be used for ToT as for T in condition
(6.1). Repetition of this argument yields that

(6.6) Ly (ToY) < L, (T 'L, (T) < o0 VgeNiVneNi.

Theorem 6.3. Let TeN,. Then

© 1
6.7) Y. —(TeeN,.

n=1"ft:

Proof. Let T+#0 satisfy (6.1) with respect to peNd. It follows from
equation (6.6) that

0 1 0 1
baa( B T0S £ i LnaTD
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© 1 L T
= nZ‘1 n! L"vP(T)"_ ' LM(T) = ﬁET;

(exp(L,,,(T)) — 1) < o0,
for each geNj. H
We naturally denote and define the twisted exponential of T by

6.8) xp*(T) =1+ 3 ~(To.

= n!

Theorem 6.3 therefore states that the twisted exponential exp®(7T) of an element
TeN, exists as an element of N and that exp®(T) — 1eN,.

Theorem 6.4. Let TeN, and choose a peN} such that equation (6.1) is
satisfied for every qeN§. If L, (T) <1, then 1 — T has an inverse in the algebra
with unit obtained from N, by adjoining the constant function 1.

Proof. Suppose T#0 and p are chosen as in the assumptions of the
theorem. We define the element

(6.9) 1=Tr =14+ Y (T,
n=1
and applying equation (6.9) we obtain
Loo 3 (TN < 3 Lo (TS 3 LTV Lyy(T)

_ L, (T)
Lp,p(T)(l - Lp,p( T))

< 00,
for each geNg. It follows that (1 — T)°"' — 1eN,. Finally, we observe that
A=T)e(A =Ty '=1=T)(1+ ) (T)) =1,
n=1

and similarly that (1 — T)°"'e(1 - T)=1. H

§7. The Order Structure

For arbitrary tempered distributions TeS'(E), we introduce the real and
imaginary part of T by setting
T+ T T-T
(7.1) ReT= 1T mmr=I=T
2 2i
The real and imaginary parts of T are real, tempered distributions, and T= ReT
+iImT. A tempered distribution SeS’'(E) is said to be positive, if
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(7.2) S(E&) >0 VEieS(E).

If S is real, and S(£° &) = 0 for every ¢eS(E), then we conclude by polarisation
that Sen =0 for every £eS(E), and hence S =0. We can therefore define a
partial order relation < on the real vector space of real, tempered distributions
on E by setting T< S, if S — T is positive.

Lemma 7.1. Let & and n be positive, tempered distributions on E and suppose
that &£ <.

(1) If n is a square-integrable function, then so is &, and | &], < |n].-

(2) neS(E) implies that e S(E).

Proof. The operator n(y) is of the Hilbert-Schmidt class with 2~42|5||, as
Hilbert-Schmidt norm, and 0 < n(¢) < n(). The operator =(&) is hence of the
form an(y)a* with ||a| <1, and

Tr(n(¢)*)'? = Tr(an(n)a*an(n)a*)'
< Tr(an(n)*a*)'/?
= Tr(n(n)a*an(n))'
< Tr(n(n)*)'2.

The first part of the Lemma thus follows from operator theory. If #eS(E), then
it follows that

[ SP2oneSP2 |, =r,n) < o0 VpeNg,
cf. (4.6), where S is defined by

(7.3) S= Y (1+na,,.

neNg
It then follows from (1) that S?/2 o ¢« §P'2 e L2(E, dv) for each pe N% which implies
(2), cf. (4.8). H

Lemma 7.2.

(1) Let & be a positive, tempered distribution belonging to the Schwartz
space S(E). There exists a wuniquely defined, positive, tempered
distribution n in S(E) such that

nen=2¢.

(2) Let & be a real, tempered distribution belonging to the Schwartz space
S(E). There exists positive, tempered distributions ¢, and ¢_ in S(E)
such that ¢ =&, — &_.

(3) span{S(E)cS(E)} = S(E).
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Proof. Let peNY be arbitrary. We observe that
I (S712e g0 §2)| < 2792 | §720 o572
=279y, (&) < o0,

where S is the tempered distribution defined in (7.3). Since the distribution
SPI20 £ §PI2 §5 positive, we have

SP/Z ° 6 ° SP/Z < 2—d/2 rp(é),
and consequently
<274 (&SP,

Let n be the uniquely defined, positive tempered distribution for which (y)?
=n(&). Then n <27 %7 (&)'257 72, and

-2)/4 4 —2)/4 —d/4 2Q—
S(p )/ 1105'(" )/ <2 /rp(é)”S 1_

It follows, that rg,_,),(n) <27 %*r,(&)"?||S™*|,. Since p is arbitrary, we
conclude that ne S(E) which proves (1). We take, in order to prove (2), a real
element ¢ of S(E) and consider |¢| = (¢2)1/2 which according to (1) belongs to
S(E). Possibly by considering the representation n, we conclude that
— &l < €< |€]. The tempered distributions £, and ¢_ defined by

1 1
Co=350e1+8, - =50¢1=9),

are thus positive elements of S(E), and £ = &, — £_. We conclude from (2) that
each Schwartz function on E is a linear combination of at most four elements
from S(E)-S(E). H

The proof of Lemma 7.2 (1) actually shows that the square root is a
continuous mapping of the positive part of the Schwartz space into itself. We
also conclude that the representation = is a continuous mapping of S(E) into the
space of trace-class operators on I, cf. also [27].

We notice from Lemma 7.2 (2) that a positive, tempered distribution on E is
real. However, even when given by a kernel, cf. equation (5.2), the kernel may
not be pointwise positive. We say that a real, tempered distribution T'is strictly
positive, if there exists a positive real number ¢ such that ¢ < T.

Proposition 7.3. Let (T));c; be a downward filtering net of positive, tempered
distributions on E. There exists a positive, tempered distribution T on E such that

T, T.

The net (T))jc; is converging to T in the topology of S'(E).
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Proof. Take ¢&eS(E). The net of positive numbers (TJ-(étvf))jE ;18
downward filtering and hence convergent. By polarisation we conclude that the
net of numbers (T(£°7));; is convergent for each ¢ neS(E). We can
consequently define a linear functional T on S(E), cf. Lemma 7.2 (3), by setting

T(Q) = lim T&) Ve S(E)

The so-defined linear functional T on S(E) is the pointwise limit of a net of
continuous linear functionals. We put

Uy = T(ay,,), and of, = T{(a,, VieJVn, meN§.

Define for keN the projection P, by setting

(7.4) Pi= Y tyn

|nj<k
We consider the linear functionals ¢ and ¢; defined by setting ¢($)
= T(Py°¢°P,), and ¢;(£) = T(P,° ¢ Py) for every (e S(E) and obtain

%y mbnm = ¢ < ¢j = Z ‘x{;,mtn,M'
|n|<k,|m|<k |n|<k,|m|<k
Take jeJ and choose peN§ such that r_,(T;) < co. By applying S”? from the
left and the right hand side in the inequality above and by making use of Lemma
7.1 (1), we conclude that

[ty ml*(1 + 1) "P(1 + m)~P < r_,(T)>?,
|n|<k,|m|<k

for every ke N. This implies the continuity of 7. We furthermore notice that
the net eventually converges pointwise inside a bounded subset of S'(E). Since
S'(E) is the dual space of a Montel space, its topology coincides with the weak
topology on bounded subsets. We hence conclude that the net converges to T
in the topology of S'(E). We finally notice that the net also filters downward to
T B

Lemma 7.4. Let T be a positive, bounded tempered distribution. Then 1
+ T is invertible, and the inverse

1

B =117

is a tempered distribution for which 0 < B(T) < 1. Furthermore,
To(B(T°T)—1)=(B(T°T)— 1)~ T,

for each bounded, tempered distribution T.
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Proof. Let K be a positive constant such that 0 < T< K — 1 and put S
=K ' (K—1—T). Then S satisfies 0<S<K }(K—-1)<1, and the
sequence

A4,= Y 85 neN
k=0

of positive, tempered distributions is increasing and bounded by Y2, K"
(K —1)"= K. The sequence therefore increases to a positive element 4 S'(E)
bounded by the constant K, cf. Proposition 7.3. It follows, that A4 is the inverse
of 1 — S, and that B(T) = K~ '4 is the inverse of K — KS =1+ T. To prove
the latter part of the Theorem, we notice that B(T°T)— 1 is the limit of an
increasing, but bounded sequence of tempered distributions written on the form
p.(Te T), where p, for each neN is a polynomium. The constant terms p,(0) are
converging to zero as n tends to infinity. The assertion now follows by
observing that Top(ToT) = p(TeT)o T for any polynomium p with vanishing
constant term. M@

Theorem 7.5. Let T be a real element of N. The element 1+ T? is
invertible, and the inverse

1

B(T) = 1+ T?

is a tempered distribution for which 0 < B(T?)< 1. Furthermore, T° B(T?)
= B(T?-T.

Proof. We consider the projection P, defined in (7.4) and notice that it is a
Schwartz function. Since Te N, it follows that Te P, Tis a Schwartz function,
in particular it is a positive, bounded distribution. We can thus apply Lemma
74 and conclude that 1+ ToP,°T is invertible with a positive inverse
B(To P, T)eS'(E) bounded by 1. Since (T° P, T), is increasing (towards T?),
we conclude that the sequence (B(T°P,°T)), is decreasing. By applying
Proposition 7.3, we obtain that the sequence decreases to a positive, tempered
distribution B. Observe that

lim B(TePyoT)(Co(1 + T%)=B((1+ T?) VieS(E),

cf. Proposition 7.3. We split 1+ T2 into 1 + TeP,cT+ To(1 — P)° T and

write
B(T°P,oT)(¢e(1+ T?) = 2"’j E(w)dv + (To (1 — Py)e TYB(To Pyo T)< ).

The last term is evaluated by
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[(To(1 = Py)o TYB(Te Pyo T)o&)| = [B(ToProT)(E To(l — PyoT))
< a€oTeo(l —PyoT)llr,

where we have used (4.21). Since To(1 — P,)° T converges to zero in N as k
tends to infinity, we obtain that £oTo(1 — P,)oT converges to zero in
S(E). The embedding of S(E) into trace-class operators on I, is continuous so
that the last term converges to 0 as k tends to infinity. We conclude that

B-(1+T%) = 2“’[ {)dv VEeS(E),
E

hence (1 + T?)°B = 1. By taking the complex conjugate, we obtain that B is
the inverse of 1 + T2 The last part of the statement follows by applying the
equality in Theorem 7.4 to the element P,° T, ke N. We obtain for each ke N
that

(7.5) PkOTO(B(TOPkDT)—‘ 1)=(B(PkoT2°Pk) - 1)°T°Pk.

The factor P, T converges to Tin the topology of N and B(T° P,° T) converges
to B(T?) in S’(E). The joint continuity of the twisted product, cf. (5.14), thus
ensures that the left hand side of equation (7.5) converges to Te(B(T?)— 1) in
S'(E) for k going to infinity. To examine the right hand side, we first evaluate
B(P,° T?° P,) taken in an element of the form £o(1 + T?), where éeS(E). We
split 1 + T2 into 1 + P,oT?c P, + (T? — P,>T?> P,) and obtain

B(PyoT?oP)(¢°(1 4+ T?)
= B(PoT?o P))(lo(1 4+ PoT?oP) + £o(T? — Py o T?0 Py))

- 2‘qu ¢(w)dv + B(P,> T2 P)(E°(T? — P o T Py).
E

The last term is evaluated by
|B(Pyo T? o P)(&°(T? — PyoT?> o PY)| < | (£ °(T? — Pyo T?0 PY) |,

Since P> T?° P, converges to T? in N, it follows, that the last term converges to
zero as k tends to infinity, cf. the argument above. This shows that

(7.6) ,‘lim B(PyoT?oP)(E°(1 + T?) = 2“‘f (w)dv VEeS(E).

® E
Since P,o T?° P, is not increasing towards T2, but merely converging in N, we
cannot argue that the sequence of positive, tempered distributions B(P,° T?¢ P,)
is at all convergent. However, the sequence is bounded by 1 and thus contained
in a weakly compact subset of S'(E). A subnet will hence converge weakly (and
strongly because S'(E) is a Montel space) towards a positive and bounded,
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tempered distribution B'. It follows from (7.6) that (1 + T?)c B’ = 1. By taking
the complex conjugate, we conclude that B’ = B(T?). Finally, we make use of
the joint continuity of the twisted product to conclude that a subnet of the right
hand side of (7.5) tends to (B(T? — 1)° T and the proof is complete.

Suppose that Te N. Since the twisted product of T with an arbitrary L2-
function is well-defined, cf. (5.14), it makes sense to define the domain 2,(T) by
setting

2,(T) = {¢e L*(E, dv)| T~ e L*(E, dv)}.
Choose arbitrary € 9,(T) and neL*(E, dv). We can apply (5.16) and obtain
To(Eon) = (T°&)oneL*(E, dv),
hence 2,(T) is a right ideal of L?(E, dv) containing S(E). We have thus
constructed an extension of the operator n(T) & priory defined only on the
intersection of S(E) with I,. If T is real, then =(T) is a symmetric
operator. The extension, however, may not be, cf. example (8.5).
Proposition 7.6. If TeN is real, then
B(T*)°9,(T) < 2,(T).
Proof. We first notice that
(neB(T?)eT=n°(B(T?)-T)
= n°(T° B(T?)
= (n°T)° B(T?)e L*(E, dv) VneS(E),
cf. Proposition 5.7 (4) and (2). For every £€9,(T) we thus obtain
(Te &) B(T?) = &((n°B(T?)°T)
= &((n°T)°B(T?))
= (B(T?)=&)(n°T)
= (T=(B(T?)°O))n) VneS(E).
That is,
(7.7) B(T?)o(T°&) = To(B(T?)°&) VEeDy(T),
from which the assertion follows. E3

Suppose that TeN is real and take arbitrary neS(E). Then ¢
= B(T?)°ne2,(T), according to Proposition (7.6), and
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1+ T?%e& =1+ T?(B(T?°n)
= (1 + T?)° B(T?)en
=1,
so S(E) = (1 + T*°92,(T). The range of the action by 1 + T2 on 2,(T) is thus
dense in L*(E, dv).
§8. The Resolvent Distribution

Lemma 81. Let TeN be a real distribution and take AeC with
Im A #0. The linear space (T — A)° N, is dense in N,.

Proof. We may without loss of generality assume that A =i. We notice
that (T —i)° N, is a subspace of N, cf. Theorem 6.2. Suppose that it is not
dense. Then there exists, according to Hahn-Banach’s Theorem, a non-zero
element Se N, = N such that

8.1) S(T—1)&) =0 VEeN,.
The twisted product So(7T — i) is an element of N, and
(SA(T—))E) =S(T—-1°8 =0 VEeN,.

Consequently, So(T—1i) =0. We obtain from Theorem 7.5 and Proposition 5.7
(2) that
S=Sc1=S8°(1+ T?-B(T?)

=(Se(1 + T%)°B(T?
= (So(T—1i)°(T +1i)°B(T?
=0.

This is a contradiction. &

Theorem 8.2. Let TeN be a real distribution. There is for each i€ C with
Im 1 #0 a bounded distribution R(T, )€ S'(E) for which

R(T, Ho(T—24)=(T—2)°R(T, ) = 1.
We denote it as the resolvent distribution for T at the point A. It satisfies
R(T, 2) = R(T; A,

IR(T, A)o&ll, < [Im A7 €], VEeS(E),
for each 2eC with Im 4 # 0.

Proof. We first define the resolvent distribution for T at the point i by
setting
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R(T, 1) = B(T?)°(T + i),

cf. Theorem 7.5. The product is a well-defined tempered distribution, cf. (5.13),
and
R(T, i)o(T — 1) = [B(T?)>(T + )] (T — 1)

= B(T?) (T +1)°(T—1)]
= B(T?°(1 + T?)
=1,

cf. Proposition 5.7 (i). In the general case we define

R(T, 1) = 1 R(T—Rel,i>

ImAi Im A

and obtain that R(T, 1)o(T — A)= 1. Since T commutes with B(T?), it follows
that R(T, /) = R(T, 1) and consequently that (T — 1) R(T, A) = 1.
To prove that last part of the statement we first notice that

(B(T?)° T)o& = B(T?)° (T &)e D,(T)

for every ¢eS(E), cf. Propositions 5.7 and 7.6. The square of the distribution
B(T?) T can hence be calculated, and we obtain

(B(T?)°> T)=(B(T?)° T))(&) = B(T*(T>(B(T?)°(T~¢))
= (B(T?*)>(1 — B(T*)(§) V{eS(E).

It follows that R(T,i) is bounded with square (B(T?)eT)? + B(T?)?
=B(TH<1. &

Proposition 8.3. Let TeN be a real distribution. The resolvent equation
(8.3) R(T, ) = R(T, p) = (A — WR(T, w)°R(T, 4)
is valied for any A, ue C\R.
Proof. We obtain by calculation that
(R(T, ) = R(T, w))°(T—2)=1—=R(T, W (T—4)
=1—R(T, )o(T—p— (24— p)
= (4 — WR(T, w.

We can multiply with R(T, 1) from the right, cf. Proposition 7.6, and obtain the
desired result.

Notice that the resolvent equation (8.3) entails that the resolvent
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distributions R(T, 1) and R(T, p) are commuting, bounded elements of S'(E).

Proposition 8.4. Let Te N be a real distribution. The map A R(T, J)(&) is
analytic on C\R for each £eS(E).

Proof. Take 4, {eC with Im 1 #0, and |{| < |Im A|. By making use of
the resolvent equation we obtain

1+ R(TA)R(T, - =R(T, 4 -0+ {R(T, Yo R(T, 4 = {)

R(T, 21— ) — R(T, 4)

= R( A= 0 + (==

= R(T, ).

Since the norm of the left multiplication with R(T, A) on S(E) is bounded by
[Im 4|~ ! it follows that

R(T, -0 =3 (= IPCR(T, Ay

n=0

In particular, we obtain for each £eS(E) that
R(T, 2= 0)(&) = SO(— 1'C"R(T, A" (&)

Since [R(T, 2" (&) < [Im 4|~ "+ D272 (&= &Y2], it follows, that R(T, 4 — ) (¢)
is holomorphic in the open circle {|{| < |Im 4|} and the proof is complete.

Example 8.5.

We set d =1 and define matrix entries by setting

_J 0144 for i=0,
% = 8im1Ai + Oir1,jAivy for i>0,

where S is the Kronecker symbol and (1;)en is a sequence of real numbers. We
consider symmetric matrices of the form

T= Y o;a,;
N
0 4, 0 0 0 0
Ay 0 4, 0 0 0
0 4, 0 4, 0 0
“lo 0 4 0 A4 O

0 0 0 4, O

e
v
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In particular the case where
n o1
lh=nn+1) 2 VneN.
k=1

Since 0 < A, < n(n + 1)r%/6 for every neN, it follows that T is a real element of
N. The range R(T — i) is not dense in L*(E, dv). The condition for a vector
x € I, written on the form

o
X = ZO(_ i)n+1 rnQy
n=

to be orthogonal to R(T — 1) is that

Arry =To,
}“n+1rn+1 = j'nrn—l + Ty Vn > 0.

The solution is uniquely determined by the value of r, and is given by the sequence
r,=ro/(n+ 1), neN,. The analogous condition for the vector xel, to be
orthogonal to the range R(T + 1) is that

j‘lrl = =Ty,
Ay 1Tws1 = Agly_y — 1, VYn>0.
The solution is uniquely determined by the value of vy and is given by the sequence
re=(—1)"ro/(n + 1), neN,.
The resolvent distribution R(T, i) = B(T?)°(T + i) is only unique because we

have defined it explicitely in terms of a certain invers, B(T?), of 1 + T2. If we try
to solve the equation

(14 T?e¢ = a,,
we derive that
1+ }“%)fo + 11/1252 =1
112'260 + (1 + /1% + l%)ﬁz + 1.3/1464 = 0
(8.4) :
j’Zn—lj'ZnéZn—Z + (1 + j’%n + A‘%n+ D2 + /12n+112n+2€2n+2 =0

There is a similar, but homogeneous system of equations for the odd variables
Esnr1- It is obvious that the above system of equations have infinite many
solutions each characterised by the value of &,. To actually find the solutions, we
first notice that

1 + A%n + l§n+1 — '?'Zn-—lj'Zn }"Zn+1’12n+2
2n+ 1 2n —1 2n + 3
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for every neN. By setting

pZn
2n+1’

_ 'IZn—lj'Zn(zn + 1)
"= DA+ 23, 4 A3asr)’

Con=(=1)

v
we obtain that 0 <v, <1 for every neN, and furthermore
1
Po= (1 —vo)p, + 1__1_"}?
P2 =ViPo + (1 — vi)pa

Pan =VuP2n-2 + (1 - vn)p2n+2

For n > 1, we derive that

Vn

Don-2 — P2n = I_—%(Pzn — DP2n-2)
VW Vi1 N .
Tl—v, 11—, l—vl(pz Po)
__ 3 P2 — Po
4in + 1)2602n + 1)6(2n + 2)°
where
LA |
i=11
1t follows that
11 1 1
Pamn=DPo—~ ). VneN.

456+ 1?62 + 1)6Q2i + 2)
The solutions to (8.4) are thus parametrised by the value &, and given by

_ (=1
T+ 1

(=1t 1 1
42n+ 1553+ 1)? 62 + 1)62i + 2)

Eon VneN.

¢o
The first term corresponds to the part of the solution that belongs to the null space
of 1 + T>. We want to calculate &, of the particular solution ¢ = B(T?)°a, and
therefore examine the equation
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(1+ ToPeoT)o¢ = a

for arbitrary keN. This truncates the system of equations (8.4) in the following
way

(1 +2D&o + 41228, =1
Aidolo + (1 + 23+ A3)E; + 34,8, =0

(8.5) Aak—1Aaon—2 + U+ A% + A54s )8 + s 1Azs 28442 =0
’12k+ 1lzk+zfzk + (1 + }'%k+2)€2k+2 =0

52k+4 =0

There is now a unique solution of &, for each value of keN given by

_ 1+ (2k + 2)%(2k + 3)20(2k + 2)?
T 4(k + 1262k + 162k + 2)(1 + 2k + 3)20(2k + 2))
1ecr 1 1
"3 i;o (+ 170020 + 1)0Qi +2)°

<o

We obtain &, of the particular solution &= B(T*)ca, by letting k tend to
infinity. It is given by
6 12 1 1

o= ot I L GT e 6@ 1 D)

Finally we realize that the all the odd variables &,,., vanish for this particular
solution. We can proceed in this way and construct the particular inverse B(T?)
and then the resolvent R(T, 1)

The above example shows that the resolvent distribution cannot simply be
constructed from the operator n(T) — A, because the inverse may not be densely
defined in I,.

§9. Measure and Integration Theory

Positive measures with values in S'(E).

Let (X, &) be a measure space X with a g-algebra . A positive measure
u with values in S’(E) is a countable additive set map

©.1) u: L —S'E),,

mapping the g-algebra & into positive, tempered distributions. The measure is
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said to be a probability measure, if u(X) = 1. The range u(¥) of a probability
measure u is mapped by the representation n into bounded, positive operators
on I,. We shall only be concerned with two measure spaces, the closed interval
[0, 27] and the real line R, both equipped with the system of Borel sets as o-
algebra. We need the following generalization of Helly’s theorem:

Lemma 9.1. The set of probability measures on the interval [0, 21t] with
values in S'(E) is compact in the topology of weak convergence.

Proof. Let (u;);c; be a universal net of probability measures on [0,27] with
values in S'(E). We consider for each £e S(E) and je J the ordinary measure y5
with mass | ¢||3 given by

9.2) H(B) = u(B)E=&) VBeS.

According to Helly’s theorem this net of measures is weakly convergent towards
a positive measure p® on [0, 2n] with total mass [[£]|3. For each positive
continuous function f on [0, 27], we define a quadratic form on S(E) given by

2n

©-3) I, = pi(f) = J f(©)dus(6)

0

= lim 4(f) Ve SE).

The quadratic form is the limit of quadratic forms satisfying the parallelogram
identity and is therefore the diagonal of a positive definite, sesqui-linear
form. Furthermore,

[<EIED sl < sup {f(B)te[0, 2n]} &l VEeS(E).

There exists thus a bounded, tempered distribution u(f) such that

©-4) W& E) = CElE>,
= 11151 w8 VEeS(E).

We have defined a Radon measure u on [0, 2x] with values in S'(E). It is the
weak limit of the net (u),; and maps positive, continuous and bounded
functions into positive, tempered distributions. The Radon measure p satisfies
u(l)=1. We have to show that it is induced by a probability measure on
[0, 2] with values in S’'(E). For each compact K < [0,2%], we denote by #(K)
the set of continuous functions f: [0, 2x]+— [0, 1] for which f(t) = 1 for every ¢
in K. We define

©9.5) w(K) = inf {u(f)| f€€(K)}.
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Since the net of functions in ¥(K) is downward filtering and the corresponding
operators 7(u(f)) are positive and bounded, it follows that u(K) is a well-defined,
positive definite tempered distribution. Let K, and K, be disjoint compact
subsets of [0, 2z]. Since every open set G with K, UK, < G contains disjoint
open subsets G, and G, with K, < G, and K, = G,, it follows that u(K,; UK,)
= w(K,) + w(K,). We have thus defined a finitely additive set function y on the
system of compact subsets of [0, 2n] for which u([0, 2n]) = 1. For each open
set G = [0, 2n], we define

9.6) U4(G) = sup{u(K)|K = G, K compact},

and notice that u,(G) is a positive, tempered distribution bounded by 1. The
essential property for u to satisfy in order to be extendable to a probability
measure on [0, 2x] with values in S'(E) is that

9.7) u(K) = inf{u,(G)|K = G, G open},

for every compact K < [0, 27]. Suppose that (9.7) is not satisfied for some
compact K < [0, 2n]. Then there is a £ S(E) and an ¢ > 0 such that

9.8) p(K) < & + sup {u*(F)|F = G, F compact},

for every open set G = [0, 2n] with K < G. But this contradicts the regularity
of the measure u®. We have thus established (9.7) and can proceed as is usually
done in measure theory to define

9.9) u(B) = inf {1,(G)|B < G open},

for each Borel set B = [0, 27]. We have that u(B)eS'(E) is positive and
bounded. The property (9.7) readily implies that u is a probability measure on
[0, 2n] with values in S'(E).

We are mostly interested in measures on X = [0, 2n] or X = R with values
in S'(E). Such a measure can be constructed from a map f: X—S'(E),
satisfying

(1) x—-f(x)(&) is continuous for every ¢e S(E),

Q) [xf(x)(E-&dx < K|¢||3 VEeS(E) for some constant K.

We set u(B)(&) = [pf(x)(¢)dx for every Be¥, and observe that u is a
bounded measure on X. Since u(B) can be attained as the supremum of an
upward filtering but bounded net of finite sums of elements in S'(E), we can
appeal to Proposition 7.3 and conclude that the measure u takes values in S'(E).

§10. The Spectral Theorem

Proposition 10.1. Let T be a real element of N. The imaginary part of the
resolvent distribution maps the upper half plane {AeC|Im A > 0} into positive,
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tempered distributions. Furthermore
0<ImR(T,) <(ImA)~' VieC, Imi>0.
Proof. Let ImA>0. Theorem 8.2 and the resolvent equation yield that

Im R(T, §) = - (R(T; &) ~ R(T; 7)
= LRy - R D)
2i

= (Im HR(T, 7)° R(T; ).
Consequently, we have
(10.1) (Im R(T, )¢ &) = (m A)|R(T, 2)=¢&|?
< (Im )~ gl
for every element (e S(E). B

Notice the difference between the distribution Im R(T, A) taken in some
vector ¢ and the imaginary part of R(T, A)({). A map z — f(z) defined on a
complex domain and with values in S'(E) is said to be analytic or harmonic, if
the complex function z — f(z)(¢) is analytic or harmonic for each ¢e S(E).

Theorem 10.2. Let u: {zeC||z| < 1} S'(E) be a harmonic map with values
in the positive part of S'(E). There exists a positive measure u on [0, 2n] with
values in S'(E) such that

o 2n 1 — r2
u(re?) = L 14 r2—2rcos(d — ¢) Ap(e),

for 0<r<1 and 6€[0, 2x].

Proof. We first suppose that u(z) = u(re'®) is harmonic in a disk of radius
greater than 1. We may determine a harmonic conjugate v(z) in such a way
that v(0)({) =0 VEeS(E). The map f(z) = u(z) + iv(z) is analytic in a disk of
radius greater than 1 and hence represented by a power series

(102) @)= 3 o

which converges absolutely and uniformly on the circle |z| <1 for every
(e S(E). The real part is thus given by

; 1o ,
(10.3) u@) = u(re?) = co + 5 3, (ce™ + Ge” ",
n=1
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and this function also converges absolutely and uniformly on the circle |z] < 1
for every £eS(E). Integrating the function z = e e~ " y(ei?)(¢) around the
circle |z| =1 for each neZ and £eS(E) gives

2n 2n ©
f e u(e)(E)dg = f (col®) + 5 Y, (@)™ + (@) e dg
0 k=

0

2¢p(¢) for n=0
(10.4) =71 ¢c,(¢) for n>0,
c_,(&) for n < 0.

We insert the values (10.4) in equation (10.3) and notice that the order of
integration and summation can be interchanged for r < 1. This gives the
representation

(10.5) u(re’®)(&) = %j:n 1+ 21 (@09 L = In0=9),m)(619)(2) dob
1 2n 1 _ rz i
- EL 1+ 7% —2rcos(d — @) u(e)(&) dg,

which is valied for r < 1. The measure du(¢) is given by the density (1/27)u(e'?)
with respect to Lebesgue measure on the interval [0, 2z]. The density is
bounded and maps the interval [0, 2x] into positive, tempered
distributions. The function ¢ — (1/2)u(e’®)() is continuous for each
£eS(E). The total mass of the measure is given by

2zn
(10.6) u(0) = LJ u(e®)de.
2n J,

We return now to the general case and assume only that u(z) = u(re®®) is defined
in the open disk |z|] < 1. We consider, for each &¢> 0, the map u,z) =
u((1 + €)~'z) which is positive and harmonic in a disk of radius greater than
1. Each of these maps thus allow the representation (10.5) with respect to the
measure (1/2n)u.(e’). The total mass of this measure is u,(0) = u(0), cf. (10.6),
and is independent of ¢ >0. We can apply Lemma 9.1 to obtain a weak
contact point u for the net of measures ((1/2m)u,(e%)), for ¢ —» 0, and then pass to
a subnet that is weakly converging to u. Since the kernel in (10.5) is continuous,
the integrals with respect to the measures in the subnet converge for r < 1
towards the integral of the kernel with respect to u. Likewise, u,(re'®) converges
to u(rel) for any subnet of ¢ >0, and it follows that

o 2n 1 — 7'2
ulre”) = L T+ 77— 2rcos(@ — ¢) "M@
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for 0<r<1 and 0€[0, 2] &

Corollary 10.3. Let F: {AeC|Im z > 0} S'(E) be an analytic map. If the
imaginary part of F is positive, then there exists a positive measure v on the real
line with values in S'(E) and finite total mass such that

® Jt+1
t— 4

FA)=al+ B+ f dv(t),

where o >0 and B is real.
Proof. We make use of the conformal mappings

1z+1 —1

(10.7) M) =7~ and z(}) = ,1+'

The first maps {zeC||z| < 1} onto {1eC|Im A > 0} and the other is the inverse
transformation. We set

(10.8) f@) = —iF(AMz)) VzeC, |z| <1,
and notice that f is an analytic map with values in S'(E). The real part
(10.9) u(z) =Ref(z) VzeC, |z| <1,

is hence harmonic with values in positive, tempered distributions. We can thus
apply Theorem 10.2 to obtain a positive measure w on [0, 2] with values in
S'(E) such that

o 2n 1—1r2
(10.10) u(re’) = L 1+ 72— 2rcos(6 — ¢) 09),

for 0<r<1 and 6€[0, 2n]. The harmonic conjugate of the integrand is
determined up to an imaginary constant. Since

i 1— 2 %ol _
(10.11) e'¢+z= r2 2irsin(¢p — 6)

W—z 14r*—2rcos(¢p —8)

is analytic, it follows that

n i¢
(10.12) f&)= —ip + J ¢tz S do(#),

where f is a real constant. Let « be the sum of the masses of the measure w in
the points 0 and 27 and let w’ be the measure on ]0, 2xn[ obtained from w by
leaving out these two points. We obtain that

(10.13) f(z)—ozl —if+ f ew dw(¢)
]0,2n[e
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for |z] < 1. By inserting z = z(A) and multiplying by i, we derive that

Acos /2 —sin¢g/2
(10.14) FA)=al+ + J - dw'(¢).
10,21 Asin ¢p/2 + cos ¢/2
We introduce the change of variable t = — cot(¢/2) which carries the circle onto

the real axis, mapping the deleted points ¢ = 0 and ¢ = 2z into infinity and the
measure @' onto a measure v of finite mass on the real line. This transforms
(10.14) into the expression in the corollary. We furthermore notice that f
=ReF(i). H

We shall here notice that the mass which the measure y in Theorem 10.2
puts in the points ¢ = 0 and ¢ = 2x obviously can be freely distributed between
the two points. But this is also the only ambiguity in the definition of u up to
equivalence of measure. That this is so follows by considering the complex
function u(z)(¢ © &) for each £ S(E) and making use of the integral expression in
the theorem. The unicity up to equivalence of the corresponding ordinary
measure pu° except for a possible redistribution of mass between the points ¢ = 0
and ¢ = 2n is well known. The assertion thus follows by polarisation. It also
readily follows that a positive measure on [0, 2z] with values in S’(E) through
the formula in Theorem 10.2 gives rise to a harmonic map on the open unit disk
in the complex plane with values in positive, tempered distributions. The same
remarks apply to the measure v in Corollary 10.3 except that it is uniquely
defined up to equivalence of measure.

Theorem 10.4. Let T be a real element of N. There exists a probability
measure i on the real line with values in S'(E), unique up to equivalence of
measure, such that the resolvent distribution is given by

e

1
R(T,A)=J 5 du) VieC, Im1>0.

Proof. The resolvent distribution maps the complex upper half plane into
S'(E), cf. Theorem 8.2. It is analytic according to Corollary 8.5 and positive, cf.
Proposition 10.1. Hence we can apply Corollary 10.3 to obtain a positive
measure v on the real line with values in S'(E) of finite total mass, a positive
constant o, and a real constant f§ such that

© At+1
t— A

(10.15) R(T, ) = ol + B + j dv(t) VieC, Imi> 0.

— 00
The measure v is unique up to equivalence of measure. Setting 4 =is, s > 0 and
taking the imaginary part, we derive that

(10.16) Im R(Tw, IS) — s 4 f“o S(t2 + 1)

md\’(t) VSER, s> 0.
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The imaginary part of R(T, is) is positive and bounded by s~! according to

Proposition 10.1, so we must conclude that o = 0. We define a positive measure

u on the real line with values in S'(E) by setting du(t) = (t* + 1)dv(t) and obtain
© 2

(10.17) sIm R(T, is) = J t—zﬁdy(t) <1 Vs>0.

— o0

It follows, that the measure p has finite total mass. Furthermore,

® 1
(10.18)  R(T, l):ﬂ-i—J\_m(Z—_—I 21 1>du(t) VieC, Im A # 0.

Again setting 1 = is, s > 0, but this time calculating the real part, we obtain

ts ts

10.1 is) =
(10.19)  sReR(T, is) Sﬁ‘*f_w(rﬂ-z 2 +1

)d,u(t) Vs > 0.

Since — 1 < sReR(T, is) < 1 for every s >0 and the first half of the integral is
bounded uniformly in s, we conclude that

o0

(10.20) = B 1du(t)
Inserting this in (10.18), we obtain
(10.21) R(T, A) = j %du(t) VieC, Im 1> 0.

To prove that p is a probability measure, we first notice that

(10.22) —isR(t,is) =1 — T R(T,is) Vs>0.

It then follows from (4.21) that

(10.23) I(T> R(T, 1)) = |R(T, is)(& > T)|
<s7H[Ee Ty

for every s >0 and ¢eS(E). Consequently

(10.24) lim sR(T; is)(¢° &) =] £3 VEeS(E).
Since
(10.25) sIm R(T, is) = jw 3 _: 5 dut) Vs>0,

we conclude that the measure u® has total mass | & |3 for each £ S(E). Hence u
is a probability measure.
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The support o(T) of the measure u is a closed subset of the real line. We
denote it as the spectrum of T. Let M*(o(T)) denote the set of bounded,
measurable complex functions on o(7T).

Theorem 10.5. Let T be a real element of N, and let u be the measure
associated with T in Theorem 10.4. The map

(10.26) o(f) = j f(®)du(t)
o(T)

is an algebra homomorphism of M*(o(T)) into S'(E).

Proof. The map @ is linear and maps M *(a(T)) into a self-adjoint, weakly
closed subspace of S'(E). Let fe M*(a(T)) be of the form

(10.27) o) = zaﬁ

where A is a finite set and 4;,e C\R for every ie 4. It follows from Theorem
10.4 that

(10.28) O(f) = ), R(T, 4).

€A
We denote by Aq(o(T)) the linear span of functions on the form (10.27) and
notice that it is weakly dense in M *(q¢(T)). An application of the resolvent
equation shows that @(fg) = &(f)P(g) for all functions f, g in Ay(o(T)) from
which the statement follows. B

Let T be a real element of N, and let u be the measure in Theorem
104. For each teR, we set

—

(10.29) E(@t) = f t du(s).

We conclude from Theorem 10.5 that ¢+ E(t) is a spectral function with values
in real, idempotent, tempered distributions (corresponding to projections on
I;). The evolution group associated with T is defined by setting

(10.30) U(t) = exp°(itT)

= J‘ e du(s).
a(T)

It follows, that t+— U(¢) is a group representation of (R, +) into S'(E).
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