
PubL RIMS, Kyoto Univ.
26 (1990), 947-965

Support Theorem for Diffusion Processes
on Hilbert Spaces

By

Shigeki AIDA*

§ 1. Introduction

In this paper we will prove a support theorem for infinite dimensional
diffusion processes on Hilbert spaces. In finite dimensional cases we have a
celebrated Stroock-Varadhan's theory ([1], [2]). We briefly review their
theory. (See §2 for the below notation.)

Let X(t) (0 ̂  t ^ T) be the diffusion process governed by the following
stochastic differential equation (abbreviation, SDE).

(1) dX(t) = a(X(t))-dw(t) + b(X(t))dt

X(t) = x

where oeCl(Rn -> Rn (x) Rm\ beCl(Rn^>Rn\ and w(t) is an m-dimensional
Brownian motion. The notation -dw(t) denotes the Stratonovich stochastic
differential. The problem is to determine the topological support of the
diffusion measure Px of X(t) which is a probability measure on Cx([0, T], Rn)
endowed with the uniform convergence topology. To prove the support
theorem they first used the approximation theorem in the following. Let £(•, h)
be the solution of the following ordinary differential equation (ODE),

(2) {(t, fc) = *(£(*, h))h(t) + b($(t, h))

£(0, x) = x

where ft is a piecewise smooth function from [0, T] to Rm with ft(0) = 0 and let

T
a -

T

Then £(•, wk) converges to X(t, w) uniformly as fc->oo a.s., which yields
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Supp(PJ c &„ where ¥x = {£(•, fc)|feeCj([0, T], £)}. The closure Is taken
with respect to the uniform convergence topology.

To prove the converse inclusion &x c Supp(Fx) they considered the
conditional probability P*6th:= P(\\X(-9 w) - £(-, h)\\T > e| | |w - h\\T < d) where e

> 0, 6 > 0, and h e Cg([0, T], Rm) and they showed lim PE
dh = 0, for every e > 0

(5-»0

and heCt([Q, T], Rm). Since P(|| w - h\\T < d) > 0 for arbitrary d > 0 and
fee/fj([0, T]5 Rm), it implies that £(-, /z)eSupp(PJ. Consequently, <?x

= Supp(PJ holds.
In this formulation of the support theorem it should be noted that (1) is a

Stratonovich's SDE. Stroock-Varadhan's procedure is not always valid, since
the Stratonovich correction term (the difference between the Stratonovich
integral and the ltd integral) diverges in general in infinite dimensional
spaces. H. Doss [8] obtained the following sufficient condition under which the
strong solution X ( - , w) is continuous with respect to the uniform convergence
topology of the Wiener space.

Theorem (H. Doss [8]). Let aeC$(E9 L(B, E)) and beCl(E, E). Assume
further that

(3) Do-(x)(flr(x)fc1)(h2) = Do(x)(a(x)h2)hl for every hl9 h2eH.

Let £ be the solution of the following ODE.

fo x, h) = a({(t, h))h(t) - traceDa(c^, h))(a(t(t, h)) + 6(«t, h))

£(0,x,fe) = x fcGCj([0, T],B).

Then £: Co([0, T], B) -> C([0, T], E) is continuous with respect to the uniform
convergence topology 0/C0([0, T], B). Let us denote the continuous extension of
this mapping by the same notation £, and denote by X the strong solution of the
following SDE.

dX(t) = <r(X(t))dW(t) + b(X(t))dt

X(0) = x.

Then X(t, x, W) = £(t, x, W).

Consequently Stroock-Varadhan's support theorem holds under (3) in infinite
dimensional cases. However, we think that this result is too restrictive, since an
important point of Stroock-Varadhan's support theorem is that the Wiener
functional X is not necessarily continuous, but is controlled by the ODE. In
the present paper we will first assert that Stroock-Varadhan's arguments for the
support theorem are valid even in infinite dimensional cases if one give a certain
definition to the Stratonovich correction term quite well. Next, we will prove
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that if the diffusion generator is nondegenerate in a certain sense, then the
support is the total space whether the Stratonovich correction term diverges or
not.

The content of this paper is organized as follows. In §2 we will prepare
some notions and several lemmas. In §3 we will prove our main theorem
(Theorem 1), and in particular we will show the following:

Corollary 1. Let X(t) be the solution of the following SDE, and let Px denote
the distribution of X(t) on C([0, T], E).

dX(t) = a(X(t))dW(t) + b(X(t))dt (0 ̂  t g T)

X(Q)=x.

Assume that
(1) <reC£(£, ̂ (H, £)), and beCl(E, E),
(2) (a) Da E CLip(E, jff(H (x) E, E)) or

(b) aeCt(E,L(B,E)) holds.

Then -traceDa(x)((j(x)) is well-defined, and

where ^x = {£(-, fe)|/ieCj([0, T], H)}, and £ is the solution of the following
ODE:

fa h) = a(S(t, h))h(t) + b(t(t, h)) - ^tmccDa(X(t))cr(X(t))

5(0, h) = x,

and the closure is taken with respect to the topology of C([0, T], E).

In §4 we will prove a support theorem for nondegenerate diffusions. In §5
we will give several examples of SDE of which Stratonovich correction terms
diverge, and discuss the support of them. In the last section we will prove the
support theorem for stochastic flows, noting that stochastic flows are regarded as
diffusion processes on a diffeomorphism group (Elworthy [7]).

Let (/z, H, B) be an abstract Wiener space, i.e. B is a real separable Banach
space and H is a real separable Hilbert space continuous and densely embedded
in B and \i is a Gaussian measure such that for any weB* (dual space of E\

exp(zB<z, u)B*)ii(dz) = expf - -\\u\\2
H\ where weB* c H* - H. See H. H.

B V ^ /
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Kuo[4].
Let W(t) be an J%-standard Wiener process on B defined on a complete

probability space (Q, J% P) with a right continuous filtration {^t}- F°r a

Banach space X, || ||x denotes its norm. We will often use || || instead of || \\x if
there is no confusion.

Throughout this paper, we will use the following notation. For any
Banach spaces X and 7, L(X, Y) denotes the set of all bounded linear operators
from X to Y and || ||L(x,y) denotes the uniform operator norm. For any
separable Hilbert spaces X and Y, jf(X, Y) denotes the set of all Hilbert-
Schmidt operators from X to Y. || \\^(X,Y) denotes the Hilbert-Schmidt norm,
and we use the notation J^(X) if X = Y.

We will define function spaces. In the below definitions, X and Y stand for
Banach spaces.

Let Cl(X, Y) denote the Banach space consisting of all fc-times continuously
Frechet differentiate maps from X to Y such that their derivatives are bounded
up to the k-th order with the uniform convergence topology up to the k-th
derivative. Let CLip(X, Y) denote the set of all Lipschitz continuous functions
from X to Y. Let C"([0, T], X) denote the Banach space consisting of all
continuously n-times Frechet differentiate functions from [0, T] to X with the

«
norm || ||r given by ||/||r= sup £ l l / ( f c )Mllx- In particular, we denote by

C"([Q, T], X) a subset of Cn([0, T], X) with/(0) = x, where xeX. Hereafter E
stands for a real separable Hilbert space.

We recall the definition of Ito's stochastic differential equations on Hilbert
spaces. (See e.g. K. Ito [5], D. A. Dawson [6], H. H. Kuo [4]) Let <re
CLip(E, jf(H, E)) and beCLip(E, E), and let us consider the following SDE.

(2) dX(t) = ff(X(t))dW(t) + b(X(t))dt

Here a(X(t))dW(t) is the Ito stochastic differential. By usual method of Picard's
succesive approximation, we can solve (2). To define a Storatonovich type SDE,
we have to consider a correction term.

Definition 2,1. Let oECLip(E, jf?(H9 E)) satisfying that o(x}heCl(E, E) for
every heH. For a complete orthonormal system (c.o.n.s.){ei}i^l in H, we say
that a belongs to a class Sf if the following conditions are satisfied.
(I) There exists K > 0 such that

II^,/W- Vn
aJ(y)\\E^K\\x-y\\E for every n^l and every x, yeE,

where V*oJ(x):=^ Da(x)(a(x)ei)(ei).
£ 1 = 1

(II) lim Vn
ffj(x) exists for every xeE.
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We denote the limit by Vaif(x). Then we see that V0tf e CLip(E, E). We will say

VaJ is the Stratonovich correction term and denote VaJ by -traceDo-(x)(<j(x)) if

for every c. o. n. s. /, a e Sf and VaJ coincide with one another.

Remark (1) Note that VaJ depends on the order of /={ej?i1. (2) We
should notice that VGj is not well-defined even if creL(£, ffl (H, E)) in general
(See Ex. 1 in § 5).

Lemma 2.1. Let GECl(E, JJf(H, E)). If aeSf for every c.o.n.s. f, then
Vaj coincide with one another.

Proof. It follows immediately from the following fact for the bounded
linear operator: Let AeL(E) and assume that for every c. o. n. s. {et}i9

oo

£ (Aeh et) converges, then A is uniquely decomposed to the following.
i = l

A = A1 + A2,

where A1 is a bounded self adjoint operator of trace class and A2 is a bounded
skew symmetric operator. This is proved by taking A1 = (A + A*)/ 2, A2 =
(A — A*)/2, where A* is adjoint of A and by using the fact in Reed-Simon [11]
p. 218, 26.

Let X be a 1 -dimensional ^rsemimartingale. If Y is a semimartingale, one

fcan define Stratonovich integral Y(t) • dX(t) as well as finite dimensional cases.

Definition! 2,2, Let X be a 1 -dimensional J^rsemimartingale, let 7 be as
follows.

Y(t) = 7(0) + ri(s)dW(s) + i(s)ds
Jo Jo

where rf(t) is an ^-adapted J^(H9 £)-valued process with

o

and i(t) is an ^^-adapted £-valued process with

U T -i
\\i(t)\\dt\«x>.

3 J

It is easy to see that the following stochastic integral is well-defined.

Y(t) • dX(t) := lim I y J ' + 1 J (X(tj+ J - X(tj>) a.s.
\A\-O j= i
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where A is a partition of [0, t] i.e. 0 < tl < t2 < ••• < tn = t, and

\A\ = max(t i + 1 - tt).
1 gtgn

Then we have

Lemma 2,2, Let Y be the same as in Definition 2.3, and set wl(t)
= (W(t),eja. Then

Y(s)-dwi(s) = \ Y(s)dwl(s) + \ I
o Jo ^ Jo

where rjt(s) =

Lemma 2.3. Let X be the solution of (2), and assume a e Sf. Then

g(Xs)-dwi(s) = twi(,
o

j(x):= 0(x)ei9 w£(s) = (FF(s)5 ej, and {et} =/.

Proof. It is immediate from the It 6 formula (see Elworthy [7]).

Remark. Let a(x)ej = Ff(x). Then the SDE (2) is rewritten in the following
form.

(2)' dXt=

We will use this form in the proof of Theorem 1.

In the rest of this section we summarize the basic facts which is used to prove
Theorem 1 (see Stroock-Varadhan [1], [2] and Ikeda-Watanabe [10]).

Lemma 2.4 Let w be a d~ dimensional Brownian motion with w(0) = 0.
Then P(\\ w||r < 8) - Cx exp(- C2T/S2) (d -»0) where Cl5 C2 (>0 ) are

constants. Here f^t) ~/2(t) (t -> 0) m^aw5 lim/1(t)//2(t) = 1.
-

Lemma 2.50 L^r w = (w1? w2) (w(0) = 0) te a two dimensional Brownian
motion, and set rjl'j(t) = JQ wl(s) • dwj(s). Then for every e > 0 d > 0

;> e| || w || r ^ d) ̂  C3 expl — - 1 — ) where C3, C4( > 0) are absolute constants
V W T J

and P('\-) stands for the conditional probability.
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We need the following estimate to prove Theorem 1.

Lemma 2,6, Let us consider the following continuous L2-martingale M(t) on
Hilbert space E:

M(t)= <r(s, co)dW(s)
Jo

where cr(s, co) is a J^(H, E) valued 2F ̂ optional process such that

Ikfo «)lljf(H,£) ^ K a'S' f°r & G>).

Then

P(\\M\\T ^R)^A e x p - ,

where A, B are absolute constants.

Proof. It is sufficient to prove the lemma when R = 1. By the ltd formula
we have

||M(0||2 = 2 f ((7(5)* M(S),
Jo

where d(s)* is adjoint of a(s).

Note that P(n ̂  ||M||r ^ n + 1)

<P( n2 - K2T< 2 (<j(s)*M(s)3 ^P^(s))H ^ (n + I)
o II r

^ P 2 (ff(s)* M(s A T), dW(s)) ^n2 - K2T
o

2 - 2 2

r i n4

L~ 8K^'(nT

Here T = inf{t ^ 0| ||M(t)|| > n + 1}.

P(||M||r ^ 1) = f F(n ̂  ||M
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1
p exP"

47, / i
1 — exp —

32K2T.

Hence P(||M||r ^ 1) ̂  8 exp( — ——^—), which Implies that Lemma 2.6 holds
V 32 .K. Ty

with ^ = 8, 5 = 1/32.

§3o Proof of the Male Theorem

Theorem 1. Let X be the solution of the following SDE, and let Px be the
distribution of X(t) on C([0, T]? E).

dX(t) = ff(X(t))dW(t) + b(X(t))dt

X(0) = x.

Assume that
(1) a E CLip(E, JT(H, E))9 and b e CftE, E).
(2) there exists a c.o.n.s f = {et} of H such that the following (a) or (b) are

satisfied:
(a) (j(xK.eC5

4(E, E),
(b) there exists At€J^(E9 E) and ^£eC|(£, E) such that a(x)ei = cp^AiX).
(3) for the same c. o. n. s. /, ae Sf holds.

Then,

Supp(Px) = &„

where ¥x = {£(-, fc)|/i6Cj([0, T], E)} and £ is the solution of the following ODE:

t(t, h) = a(£(t, h))h(t) + b(t(t, h)) - Kffi/«(t, h))

^(0, h) = x.

The closure is taken with respect to the topology of C([05 T], E).

Proof. The proof of Supp(PJ c <fx is immediate from the approximation
theorem. We omit the proof since it is essentially the same as Elworthy[7]
p. 104. We will prove the opposite direction by adopting Stroock-Varadhan's
method. Without loss of generality we may assume that a e Cb(E, jjf(H, E)),
and Vffif e Cb(E, E). We first claim the following.

Lemma 3.1. For an h = (fc'WX^ieC^CO, T\, t\ we set
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Note that Px,hn ^ a probability measure on C([0, T], E). Then

(1) lim Pd
Xjhn = P°,hn holds weakly for each n ^ 1, where P®,hn is a probalility

d—*Q

measure on C([0, T], £) induced by the solution Xn^h(t) of the following SDE.

i=l j=n+l

X(0) = x.

(2) Let X^jt be the solution of the following ODE.

X(t) = £ Vt(X(t))V(t) + {b((t)) - VaJ(X(t))}
i=l

X(0) = x.

Then lim £[||XBfc - X = 0.

Using Lemma 3.1 we can complete the proof of Theorem 1. Because, by

Lemma 3.1 lim Pd
Xthn = P°)ftri

 and ^m Px,hn = ^x^ h hold weakly, where 6Xoo h is
(5~»0 n n n~> CO ' n co, oo,

the Dirac measure at X^^ and Supp(P^ftn) c Supp(PJC), we have Supp((5Xoo h)
c: Supp(PJ which implies X^ heSupp(Px). To prove Lemma 3.1 (1), we need
the following lemma.

Lemma 32. For every R > 0 , 0 < 5 < 1, a>l

_ >
JO JO T

where Ca is a constant which is independent of R and 6.

Proof. By the Cameron-Martin formula we may assume h = 0. First
we prove the lemma under the condition (a) of Theorem 1. By applying
Lemma 2.3, we have

7 = 1 Jo

- I DVi(X(s)){b(X(s))-Vfftf(X(s))}^i(5)ds.
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Further applying Lemma 2.3 repeatedly, we get

Vi(X(s))-dwi(s) = lPi(s)wi(s)+ £ Qtj(s)riU(s) + £
O 7=1 j,k=l

o j=i j , t=i

(w'(s)<Pu(s) + t »7u(s)!Pr
Uilt(s))dw*(s)+ f £

O J=l Jo m=l

= /! + /2 + /3 + /4.

Here ij'JW = f0w£(s)-dwj'(s), and F£, Qij9 Rijik, ^ Pitj and yliM are E- valued
bounded continuous JVstochastic processes involving Vj (j ^ 1) and up to their
fourth derivatives. @Lj and FUjfc are E-valued continuous J^rstochastic

00 00

processes such that ^ (ll^u^lli + Z H ^,j,/c(s)|ll) ^ C < oo, where C > 0 is
fc=« + i ' j = i

a constant independent of CD.

where amtitjik, bmtitj are bounded continuous J^r-stochastic processes. By
Lemma 2.4 and Lemma 2.5 and the martingale inequality we have easily that for
every J^ > 0, every 6 (0 < 5 < 1) and every a > 1,

Therefore we need only to prove the following. For every R > 0 and 6 (0 < d
f C \

< 1) jPa , n ( | | / 4 | r :>K)^Cexp -—-R , where C and C'(>0) are constants
\ d J

independent of R and d.

( I Ih i j I l r^
''



ON THE SUPPORT OF OO-DIM. DIFFUSIONS 957

R VI—=—
jR86C) J

A exp
P| T\JR58CJ J _ / R.

+ C4 exp -—-

where A, 5, C and Q are constants independent of K and 6. At last inequality
we used Lemma 2.4, Lemma 2.5 and Lemma 2.6. This completes the proof of
Lemma 3.2 under the assumption (a) of Theorem 1.

Next we prove the lemma under the condition (b) of Theorem 1. We need the
following lemma.

Lemma 3.3. Let (/j, If, B) be an abstract Wiener space. Let us denote
C'b(H, X)B:= {/eCr

b(#, X)\ there exists afeCr
b(B, X) such thatf\H=f] (r ^ 1).

For every /eC r
b(H , X)B there exists a sequence {fm}™=1 eC£°(H, X) such that

lim fm=f with respect to the topology of Cr
b~

l(H, X).
m—> ao

This can be proven by using molifier as well as finite dimensional cases. See
H. H. Kuo[4] p. 146 Theorem 6.1.

Proof of Lemma 3.2 under the condition (b). By combining the similar
argument to Stroock-Varadhan [1] p. 351, and the above proof, we need only to
prove the following. For every i and j, there exists {U?tj}?=1eCj?(E, E) such
that

lim U?j = D^(x)(7j(x)) in the topology of C£(E, E).

To prove this we notice that Vt satisfies the assumption of Lemma 3.3. Set Et

= ((Ker ̂ f)1, ( , )i) 0 (Ker Ai9 ( , )£) where 0 stands for the direct sum of

Hilbert spaces and (•, • )f = (^-, ^4r) and the closure is taken with respect to this
norm. Then a natural Hilbert-Schmidt embedding i: E -»E t exists. By
Minlos-Sazonov's theorem, (E, Et) with Gaussian measure p, is an abstract
Wiener space. Clearly Vt(x) = (p^A^eCKE^ E). This implies that Vt satisfies
the assumption of Lemma 3.3 with respect to an abstract Wiener space (JLL, E, Et)
with r = 2, which completes the proof.

Now we are in position to prove Lemma 3.1.

Proof of Lemma 3.1. By Lemma 3.2

2
| £ I
L *=1 JO i=l o

Vi(X(s))hi(s)ds
T.

Note that

= 0.
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X(t) - Xnth(t) =
i = l J O

+ £ f
i = l J O

{U«if(X(s))-Un
a,f(Xn,h(s))}ds,

o

where t/Jj/(x):= fc(x) — V"tf(x). By a standard argument we have

- *M y s £«.

;o

Using Gronwall inequality we get Lemma 3.1 (1).

(2) It also follows from the Gronwall inequality, so we will omit the proof.

Remark. It would be plausible that Theorem 1 holds under the condition
that VtEC^(E, E) in place of (2), since under this condition the approximation
theorem still holds, so Supp (Px) g M follows. If one can prove that a family of
the probability measure {Pd

x,hn}d>o is tight, one can prove the support theorem
under this condition by the above method.

Next we will prove Corollary 1.

Proof, (a) Let / = {et} be an arbitrary c. o. n. s. of H.

m m

\\fDa(x)(ff(x)ei)(ei)\\^ ]

^ | |Da(x)(-)(Pm - Pn) ||i(flsEi£) || ff(x)(Pn - Pm

where Pn denotes the projection on the linear span of [ei}
ll==1. Thus we have

n

lim Y Da(x)(a(x)ei)(ei) exists. This implies the well-definedness of trace
n - » o o £ = 1

Da(x)(a(x)) by Lemma 2.1. By the similar argument (also by using Lipschitz
continuity of Da) we have easily that there exists K ( > 0) for arbitrary n
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I! £ Da(x)(a(x)eMej - I Da(y)(a(y)ei)(ei)\\ £K\\x-y\\
i=l i=l

which implies aeSf.
(b) We will freely use the standard facts in measure theory on Banach spaces
(H. H. Kuo [4]). For any c.o.n.s. /= {et} of H,

lim t Dff(x)(ff(x)ej(ej = lim f Da(x)(a(x)Pnz)(Pnz)iJL(dz)
- -

= Da(x)(<r(x)z)(z)iJL(dz)
JB

where Pn is the same as of (a), and at the last equality we used the following
results:
(I) Da(x)(a(x)-)(-) is bounded bilinear form on B x B

(II) \\z\\B, \\Pnz\\BeIf(B, dp)(p ^ 1) and lim f \\Pnz - z\\*Bn(dz) = 0
n~*™JB

(c.f. H. H. Kuo [4], p. 82, Theorem 4.5 for (II)).
By similar arguments we have

|| £ Da(x)(a(x)ei)(ei) - f Da(y)(cr(y)ei)(ei)\\

^ K\\x-y\\E\\Pnz\\2
Bv(dz),

JB

which completes the proof.

§4 Support Theorem for Nondegenerate Diffusions

In this section, we will prove a support theorem for non-degenerate
diffusions. We will first give the following definition.

Definition 4.1. Let treC(£, Jf(H, £)). We say that a is nondegenerate if
the following condition is satisfied.
(C) There exists a dense subspace F of £ such that

F c Im<j(x) for all xeE.

When a satisfies the assumption (C) with F, we will say that a is nondegenerate
with respect to F.

Theorem 2. Let X(t) be the solution of the following SDE.
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(1) dX(t) = ff(X(t))dW(t) + b(X(t))dt (Q^t^T)

X(0) = x.

Assume that a satisfies the conditions (1) and (2) in Theorem 1 and a is
nonde generate, then

Supp(Px) = Cx([0, T], £).

Proof. Without loss of generality, we may assume a e Cb(E, Jtf(H, E)). Let
a be nondegenerate with respect to F. Let Qn be the finite dimensional
projection onto the subspace £„, where {En} is increasing subspaces of F such

that (J En = E and let {Pn}n = i be the increasing sequence of finite dimensional
n

projections of H such that Pn -» IH strongly. First we will show the following
claim.

(Claim) Let XKtm(t) be the solution of the following SDE.

dXn.n(t) = an(Xn^t))-dWM+^n(Xn,M}dWn(t)

(X^m(t)} - 2b(X n,m(t))} dt

Here an(x) = ff(x)Pn, en(x) = a(x)(I - PJ,

Wn(f) = Pn W(t\ Wn(t) = W(t) - Wn(t).

Then two diffusion measures P"'m induced by Xn^m and Px are mutually
absolutely continuous. We will prove the claim. One can take a increasing
sequence {£/}_,- of compact subsets of E such that

(*) let i"'m denote the first exit time from Kj of X or Xn,m, then Mm r"'m = oo
j-»oo

P-a.s.
Comparing (1) with (2), we know that (2) has an extra drift term

^Qm{trDan(x)(on(x)} — 2b(x)}. By using the nondegeneracy of a, we see that

there exists neighborhood V j of Kj (jeN) and C\ vector field Vj on E such that

= -Qm{trDan(x)(an(x))-b(x)} on Uj. Therefore by the Girsanov

formula and (*), we get the claim. By the claim we have Supp of Xn^m = Supp
of X. Letting m -> oo, we get from the Gronwall inequality argument

lim
m-+ oo

where Xn is the solution of the following SDE.
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dXn(t) = an(Xn(t))-dWn(t) + an(Xn(t))dWn(t)

Xn(0) = x.

Clearly Support of Xn c Support of X.

By a similar argument of Lemma 3.2, we can prove the following.

5 0
? on(Xn(s))'dWn(s}- I* an(Xn(s))hn(s)ds\ 1 = 0.
Jo Jo IU

By the same argument as the proof of Lemma 3.1 (2) we have £(t, /z)eSupp(Px),
where £(£, h) is the solution of the following ODE.

fo h) = ff(t(t, h))h(t) h e Cg>([0, Tl H)

£(0, h) = x.

This completes the proof.

§ 5o Examples

In this section, we will discuss below three examples. For Example 1,
Theorem 1 and Theorem 2 are not applicable. For Example 2, Theorem 1 is
not applicable but Theorem 2 is applicable. For Example 3, Theorem 1 and
Theorem 2 are not applicable but we can characterize its support. Hereafter we
set E = H = /2. Therefore every Hilbert- Schmidt operator is canonically
identified with a matrix of which matrix elements are square summable. We
here restrict ourselves to the following SDE.

dX(t) = ak(X(t))dW(t) (k = 1, 2, 3)

where ak(x) is chosen in the below examples respectively.

Example 1. Let cp be a bijective map from Z2+ = {(i, j)eZ2 |z, j ^ 1} onto
N. Associated with cp, we define a bounded linear operator a1 : H -> ^f(H) as
follows ;

00

(fliMOO).- = Z Xvdjyj-j = i
We can calculate its Stratonovich correction term easily.

r o

if *,= i

*- o J

i then
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z-th component of ^(x) is - £ *<^(U)J)-2j=i

Clearly, this quantity diverges for every x in a dense subset of /2 converges in
another dense subset. Also for any other c. o.n. s., the Stratonovich correction
term diverges in a dense subset and converges in another dense
subset. Therefore our theorems are not applicable. It is interesting problem to
determine the support of this diffusion process. But we do not know how to
characterize the support at present.

Example 2, Let

a2(x) =

0

where {AJ^e/2. In this case, for (ejf (see Example 1)

0

0

Therefore the Stratonovich correction term diverges in general. But if Af ̂  0 for
every i, then by Theorem 2 the support is total space. This example is due to
S. Kusuoka.

Example 30 Let us consider a variation of the above Example 2 as follows:

0

AI
0

where

If ]£ A; converges, we have the following characterization of Px.

Supp(Px) = &„ where ^x = {{(-, /i)|/ieC?([0, T], *f2)}
*

^(t9 ft) = ^ Aj el + 5] A f / i
l(t)^i-ri + x.
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In general cases though our theorem is not applicable, we can see its support in
the following way.

Lemma 5.1. Let E be a normed space, and let {X^f=l be E-valued
CO

independent random variables. If S:= ^ Xt converges in L1 sence, we have

Supp(S) = H U Mn , where Mn = £ Supp(Xt), and Supp(S) and Supp(X^
m= 1 n=m i= 1

denote the topological support of the image measures of S and X{ respectively.

00 00

Proof. Supp(S) £ fl U Mn is clear. We will prove the opposite direc-
m= 1 n=m

00 OO

tion. Let x e f) U Mn . For every £ > 0, there exists n0 e N such that
m= 1 n=m

oo

^[ Z ll^il l^] = e- % ^ assumption of x, there exists xf e Supp(JQ
i = no

n

(i = 1, 2, ••• n, n ^ n0) such that || £ xf — x|| ^ e. Since {A'J are independent,
i= l

we have

El\\S-x\\E\Z\\Xi-xi\\E<e]

i= 1 i=l i = w+ 1 i= 1

This implies xeSupp(S).

We will return to Example 3. The solution of (1) has the following explicit
solution. This is used in characterization of (*).

where AT,(t) = (^(t), e;),

where y£(r) = -li(wi(t)
2 - t)e1 + ̂ i(t)ei + l. Therefore by Lemma 4.1, we can

characterize the support of X(t) as follows :

Supp(*(-))= 0 U MB,
m =1 « = m
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where Mn = {£"(•, /z)|/ieCJ([09 T]5 R
n)} and

i=i (2 l l

We will apply our theorem to stochastic flows. We refer to Elworthy [7],
Le Jan-Watanabe [9] about stochastic flows. In particular we use the notation
of Elworthy [7].

Theorem 30 Let M be a compact manifold of dimension d. Let {Kj£L0 be
vector fields on M satisfying the following conditions

(1) V^HS^2(TM) (i ^ 1) and

(2)

where s ^ 1 + -d. Let cp(t) be the stochastic flow on @S(M) governed by the

following SDE.

dX(t, x, co) = £ Vi(X(t, x, (D))-dw'(t) + V0(X(t, x, a>))dt
i = l

Z(0, x, co) = x.

Let P be the probability of <p(t) on C([0, T]5^
S(M)). Then Supp(P) = &x, where

\Q, T]5 <?2)} and £(•, ft) is ^ JO/M^OW of the following ODE:

r, A, x) = f ^Kfe ^ ^)MO + ^oKfc ^ x))

^(0, x, fc) = x.

The closure is taken with respect to the topology of C([0, T],

Proof. We will show how to apply our theorem. First we will prove the
theorem under the condition that VteHs+4(TM) (i ^ 1). By Elworthy [7], <p(t)
is the solution of the following SDE on

(*) dX(t) = ((RX(tr) - K) • dW(t) + V0(X(t))dt

X(0) = id.9

where J^ is the right translation, and (R)^. is derivation of R, and F0(
= (*0)* Fo? and K is a Hilbert- Schmidt operator on ^(HS + 2(TM)) such that Ket

= Vt (i ^ 1). By the same reason as (b) of Corollary 1 we can write down a
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Stratonovlch's SDE (*) according to stochastic flow cp(t). Applying Theorem 1
to (*), we get Theorem 3 under the ff s + 4 condition. Next we relax the
condition JJS+4 to Hs + 2. There exists a sequence of C°° vector fields U" (i ^ 1)

such that lim [/" = Vt in HS+2(TM), which implies Vi can be approximated by

the elements°of C*(T2ts(M)) in C2(T@S(M)\ where Vt:= (R)^. Therefore by
the same argument as Theorem 1 (b), we get Theorem 3.

The author is grateful to Professor T. Shiga and Professor M. Motoo for
their hearty encouragements and valuable comments. The author is also
grateful to Professor S. Kusuoka for fruitful discussions.
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