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Centralize! Algebras and the

Polynomial of Links1

By
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§ 08 Introduction

Let C(a, q) be the two-variable rational function field over C with
indeterminates a and q. It is shown in [3] and [8] that the Kauffman
polynomial of links are associated with a sequence of C(a, g)-algebras, which are
denoted by Cn(oc, g)(neN). These algebras can be considered as ^-analogues of
Brauer's algebras Dn(/?)[4] defined over C(jS), where /? is an indeterminate. Let
G be a group of linear transformations on a vector space V and n®n the
representation of G on Vn = V® ••• ® V, the n-th tensor power of F. Let Zn(G)
be the centralizer algebras of TT®", i.e.

Zn(G) - {xeEnd(Vn)\xn*n(g) = n®n(g)x for all geG}.

Let G be the symplectic group Sp2m or the special orthogonal group
S02m + i. Then Zn(G) is a semisimple quotient of the algebra /)„(/?). From the
results of [3], [5], [8] and [10], we have an analogous result for Cn(a, 4). Let
Q be one of Lie algebras sp2m and so2m + 1 of the Lie groups Sp2m and
S02m+1. Let $(g) be the ^-analogue of the universal enveloping algebra *(g)
(see e.g. [5]). Then there is an integer r such that the centralizer algebras
associated with the vector representation of <^(g) are quotients of the algebras
Cn(q

r, q).
The aim of the present paper is to construct irreducible representations of

CB(a, q) explicitly. The C(a, ^-algebra Cn(a, q)(neN) with 1 is defined by the
following.
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(0.1) C1(x,q) = C(*,q),

CB(a, q) = <T f , V
1, fii(l < i < w - l)

_ T p
— Ti fci+l5

fiifif+iTi*1 = e^Vi, fii + ifii^1! = fii+i**1 (1 < i < n - 2),

TfTj- = TjTj , e^T,. = TjGi, 8^ = 8^ (I < i < j - 1 < H - 2),

^r1 = V1^ = 1, tfr = Wi = (- a2^)"1^,

T, - tf1 = (q ~ q~l)(l - Si) (l<i<n- 1)> (n > 2).

Note that (0.1) implies that e2 = [ 1 -— — ^-— p — )e £ . Hence the algebra

Cn(a, g) is a one-parameter deformation of the algebra Dn(/f). More precisely,
Dn(j8) is the limit q -> 1 of Cn(q

pl2, q). The algebra Dn(j8) is semisimple and its
irreducible representations are classified [3]. Hence its one-parameter defor-
mation CB(a, #) is semisimple and there is a bijection between the irreducible
representations of Cn(a, g) and those of Dn(P). Let p be an irreducible
representation of Cw(a, q). Then the representation matrices of pCrJ, p^"1) and
p(fif)(l < i < w — 1) with respect to a certain basis are given in §1. By taking
the limit q -> 1 of the above matrices, we get the irreducible representations of
the algebra £)„(/?). Our construction is based on [6].

Let Bn denote the braid group on n-strings and 0^(1 < i < n — 1) its
standard generators of Bn. Let pn be the algebra homomorphism from the
group ring CBn to Cn(a, q) defined by pn(af1) = (-a2qyli:f1(i<i<n^
— 1). For peCn(a, q)* let #p denote the character of p°pn. For beBn, let £
denote the closure of b. Let F(6) denote the Kauffman polynomial of the closed
braid b of beBn with values in Cn(a, q). Then there are apeC(a, q) for
peCn(a, g)A such that

(0.2) F(«)= X W&) (see [3] and [8]).
peCn(a,g)A

We explicitly give the coefficients ap in (2.1) and Theorem 2.2. Hence (0.2) can
be used to calculate the Kauffman polynomial of closed braids. The
representation matrices of pfo) and p(ij~1)(l < i < n — 1) given in §1 are all
symmetric. This fact is used to show [9, Theorem 6.2.4], which claims the
following. Let v be a one-dimensional representation of Cn(a, q) and F°"'v) a link
invariant associated with F and v introduced in [9, Section 1.5]. Then we have
F(r>v)(K) = F(r>v}(K') for mutant knots K and K' .

I would like to express my thanks to M. Jimbo and T. Miwa who gave me
much information about solutions of Yang-Baxter equations, including the result
of [6].
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§ 1. Construction

Fix a positive integer n. Let

A = {(A1? A 2 , . . . ) |A; > A f + 1 > O(iGN), A,. - 0(7 » 0)}.

An element of A is called a partition. We also use the following notation.

A(n) = (A1? A 2 5 . . . )e^ £ Af = n - 2/, 0 < 7 < .
I ^N L 2 J J

For two partitions A = (A l 5 A 2 , . . . ) and A7 = (A^, A 2 , . . . ) in /I, we denote A ̂ A' if
there is jeN such that At- = A/ for i ^j and A7- = Aj ± 1. For a partition Aeyi(n),
let

^(A) = {P = (A(0), A (1)
5...,/l (" ))|A (0) - (0, 0,...), A("} - A,

A ( 0 -A ( i + 1 ) for 0< i<n- I} .

Let Vx = ©p6^(A)C(a, ^)^F, which is a vector space over C(a, q) with a basis
{vP\P e&(X)}. In this paper, we use the following notations.

For v = (v l 5 v 2 , . . . ,v ( , 0, 0,...)eA, let

hv(i,j) = V; — i —7 + max{/c|vfc >_/} (1 < ; < f, 1 < j < v;),

ffv(0 = [;=,{v, + vJ + 2 - i - j ;2}

and

Fix i in {1, 2,...,n — 1}. We define an element Af in End(l^). We give the
matrix of A{ with respect to the basis {uP|Pe^(A)}. Let P = (/l(0), A ( 1 ) , . . . ,A ( W ) )
and g = (v(0), v (1),..., v(n)) be elements of ^(/l). The elements of the partition l(r}

is denoted by k([\ A (
2

r ) , . . . . Let / denote the maximal integer satisfying /t (g~1 } / 0
and (J?1,...,^,0,...) = A(i-1). We put

rj(i) = rji -i+1.
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Let AtvP = ^Q^(^(^QPVQ- I*1 th6 following, dl and 52 denote either 1 or
- 1. If there is an element je{l, 2,...,n - !}\{i} such that A0>) ̂  vu), then we
put

(1.2a) (^ = 0.

From now on, we treat the case that A(J) = v(7) for je{l,2,...,n — !}\{i}. At
first we assume that P = Q. If there is an r in N such that /IjT1} = A? + 1) ± 2,
then we put

(1.2b) (A-)PP = q.

If ^-D = A(< + 1), then there is a unique r such that tif'l) = A<£) - (5^ For such
P, we put

If otherwise, there are unique r and s in N such that r ^ s, ^~1} = A*0 — dl and
A<<> = A<' + 1) - 82. For such P, we put

Now, we assume that P ^ Q. If A ( i~1} ^ A ( i+1), then there are unique r and s in
N such that r ̂  s and Xjf-v = tip - dl9 tip = ̂ i + 1) - <52. For such P and Q,
we put

If Ip-v = A(f + 1) then there are unique r and s in N such that $~l) = tip -
and v^~1} = vj° — 52. For such P and g, we put

(At)QP=~JQP

The above definition of At implies that (A^QP = (A^PQ for F, ge^(A), in other
words, AI(\ < i < n — 1) are symmetric matrices. Let F = (A(0), A (1 ) , . . . ,A (n )) and
Q = (v(0), v(1),...,v(n))e^(A) such that W> = v<J> for je{l, 2,...,w}\{i}. By (1.2),
the matrix element (A^QP does not depend on AU), j ^ z, i ± 1. Let

u, - " u denote the trigonometric
d c J

limit of the Boltzmann weight defined in [6] associated with the Lie algebra of
Dynkin type C(^\ In this case, the function [u] used in the definition of the
Boltzmann weight in [6] is equal to 2 sinfatt/L), where L is an arbitrary non-
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a b
zero complex parameter. Put x = exp(7rwx/— 1/L). Recall that

\d c
b ^

is a Laurent polynomial in x and the highest degree of u with respect
c

to x is equal to 2 ((1.5) of [6]). For dominant integral weight a of the simple
Lie algebra of Dynkin type Cm given as in Table 1 of [6], let l(d)
= (A l 5 /l^,...,/^, 0, ...) be an element of A such that

(1.3) ^ - at - n - 1 + i.

By comparing the definition of At and (1.5) of [6], we have the following.

Lemma 1.4. For dominant integral weights a, b, c and d of the simple Lie
algebra of Dynkin type Cm such that A (a) ~ A (ft), A (ft) ~ A(c), A(c)

~ /I (a), we

lim Wn

a b
lim

c

where L is the complex parameter used in [6].

Proof. For a dominant integral weight a = (al9

G'a = e(fl) [I [2flj] I! [fl; - «J [^ + flJ (e(a) = ± 1).
7=1 l<j<k<m

Then the above lemma is proved by using the fact that the limit of GA(fl)|a=^w

with q to e^~lnlL is equal to the trigonometric limit of &(a)G'a(y)(\\i<j<k<m[i
- kir1 (I\i<j<K<m[i + fc])'1- We omit the detail. •

The following theorem is the main result of this paper.

Theorem 1.5. Let A be a partition in A(n).
( i ) There is a representation (pA, V^ of Cn(a, q) such that the representation

matrices of PA(T{) is equal to A{ defined by (1.2).
(ii) The representation pA is irreducible.
(iii) Two irreducible representations pA and pv (/I, veA(n), A / v) are «0J

equivalent.
(iv) y4«y irreducible representation of Cn(ct, q) is equivalent to one of (pA, V^

A similar result holds for the Brauer's algebra Dn(f$).

Corollary 1.6. Any irreducible representation of Dn(f$) is a limit of pA |a=^/2
with q^> I.

In the rest of this section we give proofs of the above theorem and its
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corollary. Some combinatorial consideration about partitions shows the
following two lemmas.

Lemma 1.7. For AeA(n), let v and v' be two elements of A(n ~ 1) such that
v ~ A and V ~ L Then there is ^eA(n — 2) such that ^ ~ v and \JL ~ v' .

Lemma 1.8. For veA(n), let L(v) = {^eA(n — l)|/x ~ v}. For vl9 v2eA(ri)
with n>3, assume that L(vx) = L(v2). 77ze« v1 = v2.

We use the following to show the relation E2 = (1 — (a2g —

-T1)^.
Lemma 1.9. For he A, we have

Gv a2g-q-V1

Proof. It suffices to show in the case oc = qm for infinitely may integers
m. Fix an integer m>J] f e N A £ . We use representation theory of the Lie
algebra g of type Cm. Let A be a root system corresponding to g and F the
weight lattice associated with A. Fix a simple root system U in A and let A+ be
the set of positive roots associated with 17. Let \l/ = XMe4+ /J. For a g-module
V, we denote mK(^) the dimension of the weight space of V corresponding to
fi. Let

(1.10) dq(V)=ZmvM4(M>
ner

where ( , ) is the natural pairing of roots and weights. For veA, let Vv be the
simple g-module with highest weight corresponding to v as in (1.3). By using
the ^-analogue of Weyl's character formula ([7], proof of Corollary 8.9), we
have

(1.11) Gv = dq(Vv).

On the other hand, we know that 0 V ~ A K = ^® KI,O,O,. . . )» where Pfi i0.o,...) ^s

corresponding to the vector representation of g. Hence (1.10) and (1.11) imply
2m+ 1 _ a — 2m- 1

v A G v = G A G l 0 0 . . . . Since G l 0 0 . . . = 1( l i0 i0i...) = -- q-q~l - '
statement of the lemma in the case a = qm. M

Proof of Theorem 1.5. We first prove the statement (i). Let A- be the
matrix obtained from At by substituting a"1 to a and q~l to q. Then Lemma
1.4 and the inversion relation [6, (2.13a)] imply that A^ = 1. Let

(U2, £ | = _ + 1 .
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Let P = (A(0), A(1), . . . , Aw) and Q = (v(0), v(1), . . . , v(n)) be two elements of
^(A). Then the matrix element (E^QP is given as follows. If there is an element
je{l, 2,...,n}\{i} such that l(j) + v(j\ then we have

(U3a) (E^or = 0.

From now on, we treat the case that AU) = vu) for je{l, 2,...,n}\{i}. If
), then we have

(Et)QP = 0.

If AC'-D = A<< + 1> and P ^ g, then we have

n iv^ (F} V ^A(o Gv^)
(i.i = -- -

If fl-u = l( i+D and P = Q, then there is an r in N and §1 = ± 1 such that
A[I'~1) = ^)-51 and we have

(1.13d)

By using Lemma 1.9, the matrix £f satisfies

(1.14)

We have relations

(1.15)

G - G - f o r v i e ^ ( l < i < 4 ) . We
u , .-have relations

(1.16) AiAi±1Ai = Ai±lAiAi±l

from Lemma 1.4 and the star-triangle relation [6, (2.2)]. Let P
= (A(0), A (1 ) , . . . , A(n)) and g = (v(0), v (1 ),...,v (n )) be two elements of ^(A) such that
A(J>) = vu) for je{l, 2,...,«}\{f}. By the definition of ^-, the matrix element
(^;)QP is not depend on Wj^i, i ± 1. Let ^'(^~1}

5 ^ vw, A(i + 1))
= (^OQP- Then, from [6, (2.12)] and Lemma 1.4, we have

(1.17)

This formula implies the following relations.
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EiEi±1At = EtA'i±l9 EiE^Ai = EtAi±l9

(1.18)
AiEi±iEi = A-±1Eiy A'iEi±lEi = Ai±lEt.

From now on, we determine the eigenvalues of At. From (1.2b)-(1.2d), we know
that Ai has eigenvalues q and — q'1. Hence formula (1.12) implies that Ai has
at most two eigenvalues except q and — q'1. From (1.14), we know that the
remaining eigenvalue is equal to %2q or (— a2^)"1. But we know that there is
only one eigenvalue (— a2^)"1 of At except q and — g"1, since Mm a_^Q Oa2y4 I- is
bounded. The above argument implies that At acts on Im£f by the scalar
(— QL2q)~l. Since Et is a scalar multiple of a projection, we have

(1.19) ^^(-a^r1^-

The above relations (1.14)-(1.16), (1.18) and (1.19) among Ai9 A- and
Et(l <i<n — l) imply that there is a representation pA of Cn(a, q) with pA(rf)
= Ai9 Px(^1) = A- and pA(e£) = Et. This proves the part (i) of Theorem 1.5.

From now on, we prove (ii) and (iii) inductively. We identify C1(a, q) with
C(a, g). For n = 2, p(2)(Ti) = 4, P(ii)(?i) = 4'1 and p^rj = (- a2^)"1. Hence
the statements (ii) and (iii) are satisfied for the case n = 1,2. Now, for n > 3,
assume that Cn_1(a, q) satisfies (ii) and (iii). In the following, we identify
Cn _ ! (a, g) with the subalgebra of Cn (a, q) generated by if1,..., 1^-2 »
e !,...,£„_ 2 . Let Aeyl(n). Let P^ is the subspace of Vv spanned by the vectors
{iW,,i ..... ̂ - 2 , v ,A) l (Mo> M i , - - .,^-2, v, A)e^(n)}. Then H{ is Cn_i(a, ̂ -invariant
and isomorphic to Vv as a Cn_1(a, ̂ )-module. Hence, by the induction
hypothesis, Wv is an irreducible Cll_1(a, ̂ -module. By the definition of V^ we
have P^ = ®veA(n-1} Wv. Let [7 be a Cw(a, g)-submodule of Vx. Then 17 is also a

v ~ A

Cw_x(a, g)-submodule of V^. The induction hypothesis says that Wv and Wv, are
not equivalent for distinct v and v' in A(n — 1) and so P^ is multiplicity-free as an
Cn_1(a, ^)-module. Hence, for each veA(n— 1) such that v~ / i , UnW^= W^

or 0. Now, assume that there are v and v' in A(n — 1) such that v ~ /I, v' ~ A,
C7 n Wv = Wv and 17 n Wv' = 0. Lemma 1.7 shows that there is ^eA(n - 2) such
that fi^v and ^-v'. Let P = (p(0), p(1),...,p(w)) and F = (p'(0), X(1),...5p'(n))
be elements of ^(A) such that p(£) = p'(i} for i / n - 1, p("~2) = /*, p^"^
= v, p^""1) = v' and p(n) = L The construction of the representation pA implies
that

(1.20) PA(TB-I)I>P = ^pp'V H- -••

with respect to the basis {vQ\Qe^(X)} of V^. Recall that the subspaces Wv and
Wv. are spanned by subsets of {vQ\Qe0*(X)}9 vpeWv,vp,eWv, and
APp, =£ 0. Since U is a Cn(a, g)-module, -4pp' =£ 0 contradicts that the
assumption U n Wv' = 0. Hence, L/ must be V^ or 0 and so V^ is an irreducible
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Cw(a, g)-module. This proves (ii).
With the induction hypothesis, Lemma 1.8 implies that V^ and V^2 are not

isomorphic as Q.^a, g)-modules. Hence VXl and V^2 are not isomorphic as
Cn(a, ^-modules. This implies (iii).

We show the last statement (iv). Since the algebra Cn(oc, q) is a one-
parameter deformation of the Brauer's algebra Dn(j8), the number of irreducible
representations of Cn(a, q) is equal to that of Dn(($). The number of the
irreducible representations of Dn(f$) is given, for example, in [12], which
coincides with the number of ^(n). Hence the representations constructed
above covers the all irreducible representations of Cn(a, q). M

Proof of Corollary 1.6. We noted that the limit q -> 1 of the algebra
Q(^/2> <?) is isomorphic to Brauer's algebra Dn(f$) in [12]. Let pA be the
representation of Cn(oc, q) constructed above and c(oc, q) a coefficient of the
representation matrix pA(ti) of a generator i{(l < i < n — 1). Then c(qp/2, q) has
a limit with q -> 1 and c(<//2, q) ̂  0 if c(a, q) / 0. Hence we can apply a similar
argument of the proof of Theorem 1.5 to the limiting case and we get the
corollary. •

§2. The Kauffman Polynomial

In this section we give a formula (2.1) for the Kauffman polynomial in terms
of the irreducible characters of the algebra Cn(a, q) introduced in the last section.
Let a and q be indeterminates. For a positive integer n, let Bn denote the braid
group on n-strings and C(a, q)Bn the group ring of Bn over the field C(a, q).
Let cr l5 o-2 , . . . ,a>

n_1 be the standard generators of Bn given as in Figure 1.

G.i

1 i-l i i+1 i+2 n
Figure 1

Let pn\ C(a, q)Bn -> Cn(a, q) be the algebra homomorphism defined by
= (-x2q)-^ii. For ft6Bn, let

(2.1) Fm(b) = ̂ -~-*q_q_?

where ^ be the character of the irreducible representation pA of the algebra
Cn(a, q) introduced in § 1.
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Theorem 2.2. Let b be an n-braid and b denote its closure. Let F(b)
= Fn(b). Then F is the Kauffman polynomial of links (see e.g. [2] and [8]).

Proof. First, we prove that F is an invariant of link isotopy types. To do
this, we show that F is constant on a equivalence class of B with respect to the
Markov relation. The Markov relation ~ is the equivalence relation of B
= {(b, n)\beBn} generated by the following.

(1) For bl,b2eBn,(blb29n)~(b2bl9n).

(2) For beBn,(b,n)~(b<r*l
9n+l).

We have F(blb2) = F(b2b1) for bl9 b2eBn since Fn is a linear combination of
characters x*°Pn of Bn. We show that F(b) = Ftya^1) for beBn. By using the
construction of pA, the above equalities follow from Lemma 2.3 below. Let w(b)
denote the exponent sum of b. The regular isotopy invariant L defined by L(b)
= (— a2q)w(b}F(b) satisfies the following relations.

L(K+) - L(K.) = (q- q~l)(L(K0) - L(K J),

L(Ke+)= -*2qL(K^ L ( K s _ ) = (-x2q)-1L(K^ L(Q) =

where the K% are identical except within a ball where they are as in Figure
2. Hence F is equal to the Kauffman polynomial by [8, Section 2]. •

KQ+ K n
Figure 2

Lemma 2.3. For Ax and A2 in A such that Al ~ A2, w^ /z«i;^

115 A2, A2, A3) = -a2q.
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Proof. Let A4 be an element of A such that A4 ~ A2- From (1.19) and

AiA'i = 1, we have E^^xA^^ G^1 A'(12, A3, /i l3 A2) = — oc2(jv/GAlGA4 G^1

and so we have X^-Aa ~^~^'(^2^ ^3? ̂ i> ^2) = — aV Applying (1.17) to this,

we get the statement of the lemma. •
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