The Representations of the q-analogue of Brauer's Centralizer Algebras and the Kauffman Polynomial of Links¹

By

Jun Murakami*

§0. Introduction

Let $\mathbb{C}(\alpha, q)$ be the two-variable rational function field over \mathbb{C} with indeterminates α and q. It is shown in [3] and [8] that the Kauffman polynomial of links are associated with a sequence of $\mathbb{C}(\alpha, q)$ -algebras, which are denoted by $C_n(\alpha, q)$ ($n \in \mathbb{N}$). These algebras can be considered as q-analogues of Brauer's algebras $D_n(\beta)$ [4] defined over $\mathbb{C}(\beta)$, where β is an indeterminate. Let G be a group of linear transformations on a vector space V and $\pi^{\otimes n}$ the representation of G on $V^n = V \otimes \cdots \otimes V$, the *n*-th tensor power of V. Let $Z_n(G)$ be the centralizer algebras of $\pi^{\otimes n}$, i.e.

 $Z_n(G) = \{ x \in \operatorname{End} (V^n) | x \pi^{\otimes n}(g) = \pi^{\otimes n}(g) x \quad \text{for all } g \in G \}.$

Let G be the symplectic group Sp_{2m} or the special orthogonal group SO_{2m+1} . Then $Z_n(G)$ is a semisimple quotient of the algebra $D_n(\beta)$. From the results of [3], [5], [8] and [10], we have an analogous result for $C_n(\alpha, q)$. Let g be one of Lie algebras \mathfrak{sp}_{2m} and \mathfrak{so}_{2m+1} of the Lie groups Sp_{2m} and SO_{2m+1} . Let $\hat{\mathscr{U}}(g)$ be the q-analogue of the universal enveloping algebra $\mathscr{U}(g)$ (see e.g. [5]). Then there is an integer r such that the centralizer algebras associated with the vector representation of $\hat{\mathscr{U}}(g)$ are quotients of the algebras $C_n(q^r, q)$.

The aim of the present paper is to construct irreducible representations of $C_n(\alpha, q)$ explicitly. The $\mathbb{C}(\alpha, q)$ -algebra $C_n(\alpha, q)(n \in \mathbb{N})$ with 1 is defined by the following.

Communicated by H. Araki, September 13, 1988. Revised February 5, 1990.

^{*} Department of Mathematics, Osaka University, Toyonaka, Osaka 560, Japan.

¹ This research was supported in part by Yukawa Foundation and Grand-in-Aid for Scientific Research, The Ministry of Education, Science and Culture.

JUN MURAKAMI

$$(0.1) C_1(\alpha, q) = \mathbb{C}(\alpha, q), \\C_n(\alpha, q) = \langle \tau_i, \tau_i^{-1}, \varepsilon_i (1 \le i \le n-1) | \tau_i \tau_{i+1} \tau_i = \tau_{i+1} \tau_i \tau_{i+1}, \\\varepsilon_i \varepsilon_{i+1} \varepsilon_i = \varepsilon_i, \varepsilon_{i+1} \varepsilon_i \varepsilon_{i+1} = \varepsilon_{i+1}, \\\tau_i^{\pm 1} \varepsilon_{i+1} \varepsilon_i = \tau_{i+1}^{\pm 1} \varepsilon_i, \tau_{i+1}^{\pm 1} \varepsilon_i \varepsilon_{i+1} = \tau_i^{\pm 1} \varepsilon_{i+1}, \\\varepsilon_i \varepsilon_{i+1} \tau_i^{\pm 1} = \varepsilon_i \tau_{i+1}^{\pm 1}, \varepsilon_{i+1} \varepsilon_i \tau_{i+1}^{\pm 1} = \varepsilon_{i+1} \tau_i^{\pm 1} (1 \le i \le n-2), \\\tau_i \tau_j = \tau_j \tau_i, \varepsilon_i \tau_j = \tau_j \varepsilon_i, \varepsilon_i \varepsilon_j = \varepsilon_j \varepsilon_i (1 \le i < j-1 \le n-2), \\\tau_i \tau_i^{-1} = \tau_i^{-1} \tau_i = 1, \tau_i \varepsilon_i = \varepsilon_i \tau_i = (-\alpha^2 q)^{-1} \varepsilon_i, \\\tau_i - \tau_i^{-1} = (q - q^{-1})(1 - \varepsilon_i) (1 \le i \le n-1) \rangle (n \ge 2).$$

Note that (0.1) implies that $\varepsilon_i^2 = \left(1 - \frac{\alpha^2 q - \alpha^{-2} q^{-1}}{q - q^{-1}}\right)\varepsilon_i$. Hence the algebra

 $C_n(\alpha, q)$ is a one-parameter deformation of the algebra $D_n(\beta)$. More precisely, $D_n(\beta)$ is the limit $q \to 1$ of $C_n(q^{\beta/2}, q)$. The algebra $D_n(\beta)$ is semisimple and its irreducible representations are classified [3]. Hence its one-parameter deformation $C_n(\alpha, q)$ is semisimple and there is a bijection between the irreducible representations of $C_n(\alpha, q)$ and those of $D_n(\beta)$. Let ρ be an irreducible representation of $C_n(\alpha, q)$. Then the representation matrices of $\rho(\tau_i), \rho(\tau_i^{-1})$ and $\rho(\varepsilon_i)(1 \le i \le n - 1)$ with respect to a certain basis are given in §1. By taking the limit $q \to 1$ of the above matrices, we get the irreducible representations of the algebra $D_n(\beta)$. Our construction is based on [6].

Let B_n denote the braid group on *n*-strings and $\sigma_i(1 \le i \le n-1)$ its standard generators of B_n . Let p_n be the algebra homomorphism from the group ring $\mathbb{C}B_n$ to $C_n(\alpha, q)$ defined by $p_n(\sigma_i^{\pm 1}) = (-\alpha^2 q)^{\mp 1} \tau_i^{\pm 1} (1 \le i \le n$ -1). For $\rho \in C_n(\alpha, q)^{\wedge}$ let χ_{ρ} denote the character of $\rho \circ p_n$. For $b \in B_n$, let \hat{b} denote the closure of b. Let $F(\hat{b})$ denote the Kauffman polynomial of the closed braid \hat{b} of $b \in B_n$ with values in $C_n(\alpha, q)$. Then there are $a_{\rho} \in \mathbb{C}(\alpha, q)$ for $\rho \in C_n(\alpha, q)^{\wedge}$ such that

(0.2)
$$F(\hat{b}) = \sum_{\rho \in C_n(\alpha,q) \wedge} a_\rho \chi_\rho(b) \quad (\text{see [3] and [8]}).$$

We explicitly give the coefficients a_{ρ} in (2.1) and Theorem 2.2. Hence (0.2) can be used to calculate the Kauffman polynomial of closed braids. The representation matrices of $\rho(\tau_i)$ and $\rho(\tau_i^{-1})(1 \le i \le n-1)$ given in §1 are all symmetric. This fact is used to show [9, Theorem 6.2.4], which claims the following. Let ν be a one-dimensional representation of $C_n(\alpha, q)$ and $F^{(r,\nu)}$ a link invariant associated with F and ν introduced in [9, Section 1.5]. Then we have $F^{(r,\nu)}(K) = F^{(r,\nu)}(K')$ for mutant knots K and K'.

I would like to express my thanks to M. Jimbo and T. Miwa who gave me much information about solutions of Yang-Baxter equations, including the result of [6].

936

§1. Construction

Fix a positive integer n. Let

$$\Lambda = \{ (\lambda_1, \lambda_2, \dots) | \lambda_i \ge \lambda_{i+1} \ge 0 \, (i \in \mathbb{N}), \, \lambda_j = 0 \, (j \gg 0) \}.$$

An element of Λ is called a partition. We also use the following notation.

$$\Lambda(n) = \left\{ (\lambda_1, \lambda_2, \dots) \in \Lambda | \sum_{i \in \mathbb{N}} \lambda_i = n - 2j, \, 0 \le j \le \left[\frac{n}{2} \right] \right\}.$$

For two partitions $\lambda = (\lambda_1, \lambda_2, ...)$ and $\lambda' = (\lambda'_1, \lambda'_2, ...)$ in Λ , we denote $\lambda_{1} \lambda'$ if there is $j \in \mathbb{N}$ such that $\lambda_i = \lambda'_i$ for $i \neq j$ and $\lambda_j = \lambda'_j \pm 1$. For a partition $\lambda \in \Lambda(n)$, let

$$\mathcal{P}(\lambda) = \{ P = (\lambda^{(0)}, \, \lambda^{(1)}, \dots, \lambda^{(n)}) | \, \lambda^{(0)} = (0, \, 0, \dots), \, \lambda^{(n)} = \lambda, \\ \lambda^{(i)} \stackrel{\sim}{\to} \lambda^{(i+1)} \text{ for } 0 \le i \le n-1 \}.$$

Let $V_{\lambda} = \bigoplus_{P \in \mathscr{P}(\lambda)} \mathbb{C}(\alpha, q) v_P$, which is a vector space over $\mathbb{C}(\alpha, q)$ with a basis $\{v_P | P \in \mathscr{P}(\lambda)\}$. In this paper, we use the following notations.

$$\{k\} = \frac{q^{k} - q^{-k}}{q - q^{-1}}, \quad \{k; m\} = \frac{\alpha^{m} q^{k} - \alpha^{-m} q^{-k}}{q - q^{-1}}$$

For $v = (v_1, v_2, ..., v_{\ell}, 0, 0, ...) \in \Lambda$, let

$$h_{\nu}(i,j) = \nu_{i} - i - j + \max\{k|\nu_{k} \ge j\} \ (1 \le i \le \ell, \ 1 \le j \le \nu_{i}),$$

$$g_{\nu}(i) = \begin{cases} \frac{\prod_{j=i}^{\nu_{i}+i-1}\{\nu_{i}+\nu_{j}+2-i-j;\ 2\}}{\prod_{j=i}^{\nu_{i}}\{j-i+1;\ 1\}} \ (\nu_{i}+i>\ell), \\ \prod_{j=i}^{\ell}\{\nu_{i}+\nu_{j}+2-i-j;\ 2\} \ (\nu_{i}+i>\ell), \end{cases}$$

$$\mu(i) = \begin{cases} \prod_{j=1}^{l} \{v_i + v_j + 2 - i - j; 2\} \\ \prod_{j=1}^{\nu_i} \{j - i + 1; 1\} \prod_{j=1}^{\ell - \nu_i - i + 1} \{3 - 2i - j; 2\} \end{cases} (\nu_i + i \le \ell), \end{cases}$$

and

(1.1)
$$G_{\nu} = \prod_{i=1}^{\ell} g_{\nu}(i) \left(\prod_{j=1}^{\nu_{i}} \frac{\{j-i; 1\}}{\{h_{\nu}(i, j)+1\}} \right).$$

Fix *i* in $\{1, 2, ..., n-1\}$. We define an element A_i in End (V_{λ}) . We give the matrix of A_i with respect to the basis $\{v_P | P \in \mathscr{P}(\lambda)\}$. Let $P = (\lambda^{(0)}, \lambda^{(1)}, ..., \lambda^{(n)})$ and $Q = (v^{(0)}, v^{(1)}, ..., v^{(n)})$ be elements of $\mathscr{P}(\lambda)$. The elements of the partition $\lambda^{(r)}$ is denoted by $\lambda_1^{(r)}, \lambda_2^{(r)}, ...$ Let ℓ denote the maximal integer satisfying $\lambda_{\ell}^{(i-1)} \neq 0$ and $(\eta_1, ..., \eta_{\ell}, 0, ...) = \lambda^{(i-1)}$. We put

$$\eta(i) = \eta_i - i + 1.$$

Let $A_i v_P = \sum_{Q \in \mathscr{P}(\lambda)} (A_i)_{QP} v_Q$. In the following, δ_1 and δ_2 denote either 1 or -1. If there is an element $j \in \{1, 2, ..., n-1\} \setminus \{i\}$ such that $\lambda^{(j)} \neq v^{(j)}$, then we put

(1.2a)
$$(A_i)_{OP} = 0.$$

From now on, we treat the case that $\lambda^{(j)} = \nu^{(j)}$ for $j \in \{1, 2, ..., n-1\} \setminus \{i\}$. At first we assume that P = Q. If there is an r in N such that $\lambda_r^{(i-1)} = \lambda_r^{(i+1)} \pm 2$, then we put

$$(1.2b) (A_i)_{PP} = q.$$

If $\lambda^{(i-1)} = \lambda^{(i+1)}$, then there is a unique r such that $\lambda_r^{(i-1)} = \lambda_r^{(i)} - \delta_1$. For such P, we put

(1.2c)
$$(A_i)_{PP} = -\frac{\alpha^{-2\delta_1}q^{-2\delta_1\eta(r)-1}}{\{2\delta_1\eta(r)+1; 2\delta_1\}} - \frac{\alpha^{-2\delta_1}q^{-2\delta_1\eta(r)-1}G_{\lambda^{(1)}}}{G_{\lambda^{(1-1)}}\{2\delta_1\eta(r)+1; 2\delta_1\}}$$

If otherwise, there are unique r and s in N such that $r \neq s$, $\lambda_r^{(i-1)} = \lambda_r^{(i)} - \delta_1$ and $\lambda_s^{(i)} = \lambda_s^{(i+1)} - \delta_2$. For such P, we put

(1.2d)
$$(A_i)_{PP} = -\frac{\alpha^{\delta_2 - \delta_1} q^{\delta_2 \eta(s) - \delta_1 \eta(r)}}{\{\delta_1 \eta(r) - \delta_2 \eta(s); \, \delta_1 - \delta_2\}}$$

Now, we assume that $P \neq Q$. If $\lambda^{(i-1)} \neq \lambda^{(i+1)}$, then there are unique r and s in \mathbb{N} such that $r \neq s$ and $\lambda_r^{(i-1)} = \lambda_r^{(i)} - \delta_1$, $\lambda_s^{(i)} = \lambda_s^{(i+1)} - \delta_2$. For such P and Q, we put

(1.2e)
$$(A_i)_{QP} = \frac{\sqrt{\{\delta_1\eta(r) - \delta_2\eta(s) + 1; \delta_1 - \delta_2\}}\{\delta_1\eta(r) - \delta_2\eta(s) - 1; \delta_1 - \delta_2\}}}{\{\delta_1\eta(r) - \delta_2\eta(s); \delta_1 - \delta_2\}}.$$

If $\lambda^{(i-1)} = \lambda^{(i+1)}$ then there are unique r and s in N such that $\lambda_r^{(i-1)} = \lambda_r^{(i)} - \delta_1$ and $v_s^{(i-1)} = v_s^{(i)} - \delta_2$. For such P and Q, we put

(1.2f)
$$(A_i)_{QP} = -\frac{\alpha^{-\delta_1 - \delta_2} q^{-\delta_1 \eta(r) - \delta_2 \eta(s) - 1} \sqrt{G_{\lambda^{(1)}} G_{\nu^{(1)}}}}{G_{\lambda^{(1-1)}} \{\delta_1 \eta(r) + \delta_2 \eta(s) + 1; \delta_1 + \delta_2\}}.$$

The above definition of A_i implies that $(A_i)_{QP} = (A_i)_{PQ}$ for $P, Q \in \mathscr{P}(\lambda)$, in other words, $A_i(1 \le i \le n-1)$ are symmetric matrices. Let $P = (\lambda^{(0)}, \lambda^{(1)}, \dots, \lambda^{(n)})$ and $Q = (v^{(0)}, v^{(1)}, \dots, v^{(n)}) \in \mathscr{P}(\lambda)$ such that $\lambda^{(j)} = v^{(j)}$ for $j \in \{1, 2, \dots, n\} \setminus \{i\}$. By (1.2), the matrix element $(A_i)_{QP}$ does not depend on $\lambda^{(j)}, j \ne i, i \pm 1$. Let $A(\lambda^{(i-1)}, \lambda^{(i)}, v^{(i)}, \lambda^{(i+1)}) = (A_i)_{QP}$. Let $W_m^t \begin{pmatrix} a & b \\ d & c \end{pmatrix} | u \end{pmatrix}$ denote the trigonometric limit of the Boltzmann weight defined in [6] associated with the Lie algebra of Dynkin type $C_m^{(1)}$. In this case, the function [u] used in the definition of the Boltzmann weight in [6] is equal to $2 \sin(\pi u/L)$, where L is an arbitrary nonzero complex parameter. Put $x = \exp(\pi u \sqrt{-1}/L)$. Recall that $W_m^t \begin{pmatrix} a & b \\ d & c \end{pmatrix} u$ is a Laurent polynomial in x and the highest degree of $W_m^t \begin{pmatrix} a & b \\ d & c \end{pmatrix} u$ with respect to x is equal to 2 ((1.5) of [6]). For dominant integral weight a of the simple Lie algebra of Dynkin type C_m given as in Table 1 of [6], let $\lambda(a)$ $= (\lambda_1, \lambda_2, ..., \lambda_n, 0, ...)$ be an element of Λ such that

$$\lambda_i = a_i - n - 1 + i.$$

By comparing the definition of A_i and (1.5) of [6], we have the following.

Lemma 1.4. For dominant integral weights a, b, c and d of the simple Lie algebra of Dynkin type C_m such that $\lambda(a) \underset{1}{\sim} \lambda(b), \lambda(b) \underset{1}{\sim} \lambda(c), \lambda(c) \underset{1}{\sim} \lambda(d)$ and $\lambda(d) \underset{1}{\sim} \lambda(a)$, we have

$$\lim_{u \to \infty} W_m^t \binom{a \ b}{d \ c} - \sqrt{-1} u x^{-2} = \lim_{q \to e^{\sqrt{-1} \pi/L}} \frac{q^{(m+1)} A(\lambda(a), \lambda(b), \lambda(d), \lambda(c))}{\{m+1\} \{1\}^2} \Big|_{\alpha = q^m}$$

where L is the complex parameter used in [6].

Proof. For a dominant integral weight $a = (a_1, a_2, ..., a_m)$, let

$$G'_{a} = \varepsilon(a) \prod_{j=1}^{m} \left[2a_{j} \right] \prod_{1 \le j \le k \le m} \left[a_{j} - a_{k} \right] \left[a_{j} + a_{k} \right] (\varepsilon(a) = \pm 1).$$

Then the above lemma is proved by using the fact that the limit of $G_{\lambda(a)}|_{\alpha=q^m}$ with q to $e^{\sqrt{-1}\pi/L}$ is equal to the trigonometric limit of $\varepsilon(a) G'_{a(v)}(\prod_{1 \le j \le k \le m} [i - k])^{-1} (\prod_{1 \le j \le k \le m} [i + k])^{-1}$. We omit the detail.

The following theorem is the main result of this paper.

Theorem 1.5. Let λ be a partition in $\Lambda(n)$.

- (i) There is a representation (ρ_λ, V_λ) of C_n(α, q) such that the representation matrices of ρ_λ(τ_i) is equal to A_i defined by (1.2).
- (ii) The representation ρ_{λ} is irreducible.
- (iii) Two irreducible representations ρ_{λ} and ρ_{ν} ($\lambda, \nu \in \Lambda(n), \lambda \neq \nu$) are not equivalent.
- (iv) Any irreducible representation of $C_n(\alpha, q)$ is equivalent to one of $(\rho_{\lambda}, V_{\lambda})$ $(\lambda \in \Lambda(n))$.

A similar result holds for the Brauer's algebra $D_n(\beta)$.

Corollary 1.6. Any irreducible representation of $D_n(\beta)$ is a limit of $\rho_{\lambda}|_{\alpha=q^{\beta/2}}$ with $q \to 1$.

In the rest of this section we give proofs of the above theorem and its

corollary. Some combinatorial consideration about partitions shows the following two lemmas.

Lemma 1.7. For $\lambda \in \Lambda(n)$, let v and v' be two elements of $\Lambda(n-1)$ such that $v \simeq \lambda$ and $v' \simeq \lambda$. Then there is $\mu \in \Lambda(n-2)$ such that $\mu \simeq v$ and $\mu \simeq v'$.

Lemma 1.8. For $v \in \Lambda(n)$, let $L(v) = \{\mu \in \Lambda(n-1) | \mu_1 v\}$. For $v_1, v_2 \in \Lambda(n)$ with $n \ge 3$, assume that $L(v_1) = L(v_2)$. Then $v_1 = v_2$.

We use the following to show the relation $E_i^2 = (1 - (\alpha^2 q - \alpha^{-2} q^{-1})(q - q^{-1})^{-1})E_i$.

Lemma 1.9. For $\lambda \in \Lambda$, we have

$$\sum_{\nu \neq \lambda} \frac{G_{\nu}}{G_{\lambda}} = \frac{\alpha^2 q - \alpha^{-2} q^{-1}}{q - q^{-1}} - 1.$$

Proof. It suffices to show in the case $\alpha = q^m$ for infinitely may integers m. Fix an integer $m \ge \sum_{i \in \mathbb{N}} \lambda_i$. We use representation theory of the Lie algebra g of type C_m . Let Δ be a root system corresponding to g and Γ the weight lattice associated with Δ . Fix a simple root system Π in Δ and let Δ_+ be the set of positive roots associated with Π . Let $\psi = \sum_{\mu \in \Delta_+} \mu$. For a g-module V, we denote $m_V(\mu)$ the dimension of the weight space of V corresponding to μ . Let

(1.10)
$$d_q(V) = \sum_{\mu \in \Gamma} m_V(\mu) \, q^{(\psi,\mu)},$$

where (,) is the natural pairing of roots and weights. For $v \in \Lambda$, let V_v be the simple g-module with highest weight corresponding to v as in (1.3). By using the q-analogue of Weyl's character formula ([7], proof of Corollary 8.9), we have

$$(1.11) G_{v} = d_{a}(V_{v}).$$

On the other hand, we know that $\bigoplus_{v_1 \neq \lambda} V_v = V_\lambda \otimes V_{(1,0,0,\ldots)}$, where $V_{(1,0,0,\ldots)}$ is corresponding to the vector representation of g. Hence (1.10) and (1.11) imply $\sum_{v_1 \neq \lambda} G_v = G_\lambda G_{(1,0,0,\ldots)}$. Since $G_{(1,0,0,\ldots)} = 1 - \frac{q^{2m+1} - q^{-2m-1}}{q - q^{-1}}$, we get the statement of the lemma in the case $\alpha = q^m$.

Proof of Theorem 1.5. We first prove the statement (i). Let A'_i be the matrix obtained from A_i by substituting α^{-1} to α and q^{-1} to q. Then Lemma 1.4 and the inversion relation [6, (2.13a)] imply that $A_iA'_i = 1$. Let

(1.12)
$$E_i = -\frac{A_i - A'_i}{q - q^{-1}} + 1.$$

Let $P = (\lambda^{(0)}, \lambda^{(1)}, \dots, \lambda^{(n)})$ and $Q = (\nu^{(0)}, \nu^{(1)}, \dots, \nu^{(n)})$ be two elements of $\mathscr{P}(\lambda)$. Then the matrix element $(E_i)_{QP}$ is given as follows. If there is an element $j \in \{1, 2, \dots, n\} \setminus \{i\}$ such that $\lambda^{(j)} \neq \nu^{(j)}$, then we have

(1.13a)
$$(E_i)_{QP} = 0$$

From now on, we treat the case that $\lambda^{(j)} = v^{(j)}$ for $j \in \{1, 2, ..., n\} \setminus \{i\}$. If $\lambda^{(i-1)} \neq \lambda^{(i+1)}$, then we have

(1.13b)
$$(E_i)_{QP} = 0.$$

If $\lambda^{(i-1)} = \lambda^{(i+1)}$ and $P \neq Q$, then we have

(1.13c)
$$(E_i)_{QP} = -\frac{\sqrt{G_{\lambda^{(1)}}G_{\nu^{(1)}}}}{G_{\lambda^{(r-1)}}}.$$

If $\lambda^{(i-1)} = \lambda^{(i+1)}$ and P = Q, then there is an r in N and $\delta_1 = \pm 1$ such that $\lambda_r^{(i-1)} = \lambda_r^{(i)} - \delta_1$ and we have

(1.13d)
$$(E_i)_{PP} = -\frac{G_{\lambda^{(1)}}}{G_{\lambda^{(1-1)}}}.$$

By using Lemma 1.9, the matrix E_i satisfies

(1.14)
$$E_i^2 = -\left(\frac{\alpha^2 q - \alpha^{-2} q^{-1}}{q - q^{-1}} - 1\right) E_i.$$

We have relations

$$(1.15) E_i E_{i\pm 1} E_i = E_i$$

from $(-1)^3 \frac{\sqrt{G_{\nu_1} G_{\nu_3}}}{G_{\nu_2}} \frac{\sqrt{G_{\nu_2} G_{\nu_2}}}{G_{\nu_3}} \frac{\sqrt{G_{\nu_3} G_{\nu_4}}}{G_{\nu_2}} = -\frac{\sqrt{G_{\nu_1} G_{\nu_4}}}{G_{\nu_2}}$ for $\nu_i \in \Lambda (1 \le i \le 4)$. We have relations

(1.16)
$$A_i A_{i\pm 1} A_i = A_{i\pm 1} A_i A_{i\pm 1}$$

from Lemma 1.4 and the star-triangle relation [6, (2.2)]. Let $P = (\lambda^{(0)}, \lambda^{(1)}, \dots, \lambda^{(n)})$ and $Q = (v^{(0)}, v^{(1)}, \dots, v^{(n)})$ be two elements of $\mathscr{P}(\lambda)$ such that $\lambda^{(j)} = v^{(j)}$ for $j \in \{1, 2, \dots, n\} \setminus \{i\}$. By the definition of A'_i , the matrix element $(A'_i)_{QP}$ is not depend on $\lambda^{(j)}, j \neq i$, $i \pm 1$. Let $A'(\lambda^{(i-1)}, \lambda^{(i)}, v^{(i)}, \lambda^{(i+1)}) = (A'_i)_{QP}$. Then, from [6, (2.12)] and Lemma 1.4, we have

(1.17)
$$A(\lambda^{(i-1)}, \lambda^{(i)}, \nu^{(i)}, \lambda^{(i+1)}) = \sqrt{\frac{G_{\lambda^{(i)}}G_{\nu^{(i)}}}{G_{\lambda^{(i-1)}}G_{\lambda^{(i+1)}}}}A'(\nu^{(i)}, \lambda^{(i-1)}, \lambda^{(i+1)}, \lambda^{(i)}).$$

This formula implies the following relations.

JUN MURAKAMI

(1.18)
$$E_i E_{i\pm 1} A_i = E_i A'_{i\pm 1}, \qquad E_i E_{i\pm 1} A'_i = E_i A_{i\pm 1},$$

$$A_i E_{i\pm 1} E_i = A'_{i\pm 1} E_i, \qquad A'_i E_{i\pm 1} E_i = A_{i\pm 1} E_i.$$

From now on, we determine the eigenvalues of A_i . From (1.2b)-(1.2d), we know that A_i has eigenvalues q and $-q^{-1}$. Hence formula (1.12) implies that A_i has at most two eigenvalues except q and $-q^{-1}$. From (1.14), we know that the remaining eigenvalue is equal to $\alpha^2 q$ or $(-\alpha^2 q)^{-1}$. But we know that there is only one eigenvalue $(-\alpha^2 q)^{-1}$ of A_i except q and $-q^{-1}$, since $\lim_{\alpha\to\infty} \alpha^2 A_i$ is bounded. The above argument implies that A_i acts on $\operatorname{Im} E_i$ by the scalar $(-\alpha^2 q)^{-1}$. Since E_i is a scalar multiple of a projection, we have

(1.19)
$$A_i E_i = (-\alpha^2 q)^{-1} E_i.$$

The above relations (1.14)–(1.16), (1.18) and (1.19) among A_i , A'_i and $E_i(1 \le i \le n-1)$ imply that there is a representation ρ_{λ} of $C_n(\alpha, q)$ with $\rho_{\lambda}(\tau_i) = A_i$, $\rho_{\lambda}(\tau_i^{-1}) = A'_i$ and $\rho_{\lambda}(\varepsilon_i) = E_i$. This proves the part (i) of Theorem 1.5.

From now on, we prove (ii) and (iii) inductively. We identify $C_1(\alpha, q)$ with $C(\alpha, q)$. For n = 2, $\rho_{(2)}(\tau_1) = q$, $\rho_{(11)}(\tau_1) = q^{-1}$ and $\rho_{\phi}(\tau_1) = (-\alpha^2 q)^{-1}$. Hence the statements (ii) and (iii) are satisfied for the case n = 1,2. Now, for $n \ge 3$, assume that $C_{n-1}(\alpha, q)$ satisfies (ii) and (iii). In the following, we identify $C_{n-1}(\alpha, q)$ with the subalgebra of $C_n(\alpha, q)$ generated by $\tau_1^{\pm 1}, \ldots, \tau_{n-2}^{\pm 1}$, $\varepsilon_1, \ldots, \varepsilon_{n-2}$. Let $\lambda \in \Lambda(n)$. Let W_{ν} is the subspace of V_{ν} spanned by the vectors $\{v_{(\mu_0,\mu_1,\ldots,\mu_{n-2},\nu,\lambda)}|(\mu_0,\mu_1,\ldots,\mu_{n-2},\nu,\lambda)\in \mathcal{P}(n)\}$. Then W_{ν} is $C_{n-1}(\alpha, q)$ -invariant and isomorphic to V_{ν} as a $C_{n-1}(\alpha, q)$ -module. Hence, by the induction hypothesis, W_{ν} is an irreducible $C_{n-1}(\alpha, q)$ -module. By the definition of V_{λ} , we have $V_{\lambda} = \bigoplus_{\substack{\nu \in \Lambda(n-1)\\\nu_{\lambda}}} W_{\nu}$. Let U be a $C_n(\alpha, q)$ -submodule of V_{λ} . Then U is also a

 $C_{n-1}(\alpha, q)$ -submodule of V_{λ} . The induction hypothesis says that W_{ν} and $W_{\nu'}$ are not equivalent for distinct ν and ν' in $\Lambda(n-1)$ and so V_{λ} is multiplicity-free as an $C_{n-1}(\alpha, q)$ -module. Hence, for each $\nu \in \Lambda(n-1)$ such that $\nu \simeq \lambda$, $U \cap W_{\lambda} = W_{\lambda}$ or 0. Now, assume that there are ν and ν' in $\Lambda(n-1)$ such that $\nu \simeq \lambda$, $\nu' \simeq \lambda$, $U \cap W_{\nu} = W_{\nu}$ and $U \cap W_{\nu'} = 0$. Lemma 1.7 shows that there is $\mu \in \Lambda(n-2)$ such that $\mu \simeq \nu$ and $\mu \simeq \nu'$. Let $P = (p^{(0)}, p^{(1)}, \dots, p^{(n)})$ and $P' = (p'^{(0)}, p'^{(1)}, \dots, p'^{(n)})$ be elements of $\mathscr{P}(\lambda)$ such that $p^{(i)} = p'^{(i)}$ for $i \neq n-1$, $p^{(n-2)} = \mu$, $p^{(n-1)}$ $= \nu$, $p'^{(n-1)} = \nu'$ and $p^{(n)} = \lambda$. The construction of the representation ρ_{λ} implies that

(1.20)
$$\rho_{\lambda}(\tau_{n-1})v_{P} = A_{PP'}v_{P'} + \cdots$$

with respect to the basis $\{v_Q | Q \in \mathscr{P}(\lambda)\}$ of V_{λ} . Recall that the subspaces W_{ν} and $W_{\nu'}$ are spanned by subsets of $\{v_Q | Q \in \mathscr{P}(\lambda)\}$, $v_p \in W_{\nu}$, $v_{p'} \in W_{\nu'}$ and $A_{PP'} \neq 0$. Since U is a $C_n(\alpha, q)$ -module, $A_{PP'} \neq 0$ contradicts that the assumption $U \cap W_{\nu'} = 0$. Hence, U must be V_{λ} or 0 and so V_{λ} is an irreducible

942

 $C_n(\alpha, q)$ -module. This proves (ii).

With the induction hypothesis, Lemma 1.8 implies that V_{λ_1} and V_{λ_2} are not isomorphic as $C_{n-1}(\alpha, q)$ -modules. Hence V_{λ_1} and V_{λ_2} are not isomorphic as $C_n(\alpha, q)$ -modules. This implies (iii).

We show the last statement (iv). Since the algebra $C_n(\alpha, q)$ is a oneparameter deformation of the Brauer's algebra $D_n(\beta)$, the number of irreducible representations of $C_n(\alpha, q)$ is equal to that of $D_n(\beta)$. The number of the irreducible representations of $D_n(\beta)$ is given, for example, in [12], which coincides with the number of $\mathcal{P}(n)$. Hence the representations constructed above covers the all irreducible representations of $C_n(\alpha, q)$.

Proof of Corollary 1.6. We noted that the limit $q \to 1$ of the algebra $C_n(q^{\beta/2}, q)$ is isomorphic to Brauer's algebra $D_n(\beta)$ in [12]. Let ρ_{λ} be the representation of $C_n(\alpha, q)$ constructed above and $c(\alpha, q)$ a coefficient of the representation matrix $\rho_{\lambda}(\tau_i)$ of a generator $\tau_i (1 \le i \le n-1)$. Then $c(q^{\beta/2}, q)$ has a limit with $q \to 1$ and $c(q^{\beta/2}, q) \ne 0$ if $c(\alpha, q) \ne 0$. Hence we can apply a similar argument of the proof of Theorem 1.5 to the limiting case and we get the corollary.

§2. The Kauffman Polynomial

In this section we give a formula (2.1) for the Kauffman polynomial in terms of the irreducible characters of the algebra $C_n(\alpha, q)$ introduced in the last section. Let α and q be indeterminates. For a positive integer n, let B_n denote the braid group on *n*-strings and $C(\alpha, q)B_n$ the group ring of B_n over the field $C(\alpha, q)$. Let $\sigma_1, \sigma_2, ..., \sigma_{n-1}$ be the standard generators of B_n given as in Figure 1.

Let $p_n: \mathbb{C}(\alpha, q) B_n \to C_n(\alpha, q)$ be the algebra homomorphism defined by $p_n(\sigma_i) = (-\alpha^2 q)^{-1} \tau_i$. For $b \in B_n$, let

(2.1)
$$F_n(b) = \left(1 - \frac{\alpha^2 q - \alpha^{-2} q^{-1}}{q - q^{-1}}\right)^{-1} \sum_{\lambda \in \Lambda(n)} G_\lambda \chi_\lambda(p_n(b)),$$

where χ_{λ} be the character of the irreducible representation ρ_{λ} of the algebra $C_n(\alpha, q)$ introduced in §1.

JUN MURAKAMI

Theorem 2.2. Let b be an n-braid and \hat{b} denote its closure. Let $F(\hat{b}) = F_n(b)$. Then F is the Kauffman polynomial of links (see e.g. [2] and [8]).

Proof. First, we prove that F is an invariant of link isotopy types. To do this, we show that F is constant on a equivalence class of B with respect to the Markov relation. The Markov relation \sim is the equivalence relation of $B = \{(b, n) | b \in B_n\}$ generated by the following.

- (1) For $b_1, b_2 \in B_n$, $(b_1 b_2, n) \sim (b_2 b_1, n)$.
- (2) For $b \in B_n$, $(b, n) \sim (b\sigma_n^{\pm 1}, n + 1)$.

We have $F(\widehat{b_1b_2}) = F(\widehat{b_2b_1})$ for $b_1, b_2 \in B_n$ since F_n is a linear combination of characters $\chi_{\lambda} \circ p_n$ of B_n . We show that $F(\widehat{b}) = F(\widehat{b\sigma_n^{\pm 1}})$ for $b \in B_n$. By using the construction of ρ_{λ} , the above equalities follow from Lemma 2.3 below. Let w(b) denote the exponent sum of b. The regular isotopy invariant L defined by $L(\widehat{b}) = (-\alpha^2 q)^{w(b)} F(\widehat{b})$ satisfies the following relations.

$$L(K_{+}) - L(K_{-}) = (q - q^{-1})(L(K_{0}) - L(K_{\infty})),$$

$$L(K_{\ell^{+}}) = -\alpha^{2} q L(K_{-}), \ L(K_{\ell^{-}}) = (-\alpha^{2} q)^{-1} L(K_{-}), \ L(\bigcirc) = 1,$$

where the K_* are identical except within a ball where they are as in Figure 2. Hence F is equal to the Kauffman polynomial by [8, Section 2].

Lemma 2.3. For λ_1 and λ_2 in Λ such that $\lambda_1 \simeq \lambda_2$, we have

$$\sum_{\lambda_2 \, \widetilde{}_1 \, \lambda_3} \frac{G_{\lambda_3}}{G_{\lambda_2}} A(\lambda_1, \, \lambda_2, \, \lambda_2, \, \lambda_3) = - \, \alpha^2 q.$$

Proof. Let λ_4 be an element of Λ such that $\lambda_4 \sum_{1} \lambda_2$. From (1.19) and $A_i A_i' = 1$, we have $\sum_{\lambda_2 \sum_{1} \lambda_3} \sqrt{G_{\lambda_3} G_{\lambda_4}} G_{\lambda_2}^{-1} A'(\lambda_2, \lambda_3, \lambda_1, \lambda_2) = -\alpha^2 q \sqrt{G_{\lambda_1} G_{\lambda_4}} G_{\lambda_2}^{-1}$ and so we have $\sum_{\lambda_2 \sum_{1} \lambda_3} \sqrt{\frac{G_{\lambda_3}}{G_{\lambda_1}}} A'(\lambda_2, \lambda_3, \lambda_1, \lambda_2) = -\alpha^2 q$. Applying (1.17) to this, we get the statement of the lemma.

References

- [1] Akutsu, Y. and Wadati, M., Knot invariants and the critical statistical systems, J. Phys. Soc. Japan, 56 (1987), 839–842.
- [2] Akutsu, Y., Deguchi, T. and Wadati, M., Exactly solvable models and new link polynomials IV, J. Phys. Soc. Japan, 57, 1173-1185.
- [3] Birman, J. S. and Wenzl, H., Braids, link polynomials and a new algebra, Trans. Amer. Math. Soc., 313 (1989), 249–273.
- [4] Brauer, R., On algebras which are connected with the semisimple continuous groups, Ann. of Math., 38 (1937), 854–872.
- [5] Jimbo, M., A q-difference analogue of U(g) and the Yang-Baxter equation, Lett. Math. Phys., 10 (1985), 63-69.
- [6] Jimbo, M., T. Miwa and M. Okado, Solvable lattice models related to the vector representation of classical Lie algebras, Comm. Math. Phys., 116 (1988), 507-525.
- [7] Lusztig, G., Singularities, character formulas, and a q-analog of weight multiplicities, Asterisque, 101-102 (1983), 208–229.
- [8] Murakami, J., The Kauffman polynomial of links and representation theory, Osaka J. Math., 24 (1987), 745–758.
- [9] , The parallel version of polynomial invariants of links, Osaka J. Math., 26 (1989), 1–55.
- [10] Turaev, T. G., The Yang-Baxter equation and invariants of links, Invent. Math., 92 (1988), 527–553.
- [11] Wenzl, H., Hecke algebra of type A_n and subfactors, Invent. Math., 92 (1988), 349–383.
- [12] , On the structure of Brauer's centralizer algebras, Ann. of Math. (2) 128 (1988), 173–193.