The Representations of the *q*-analogue of Brauer's Centralizer Algebras and the Kauffman Polynomial of Links¹

By

Jun MURAKAMI*

§ 0. Introduction

Let $C(\alpha, q)$ be the two-variable rational function field over C with indeterminates α and q . It is shown in [3] and [8] that the Kauffman polynomial of links are associated with a sequence of $C(\alpha, q)$ -algebras, which are denoted by $C_n(\alpha, q)$ ($n \in \mathbb{N}$). These algebras can be considered as *q*-analogues of Brauer's algebras $D_n(\beta)$ [4] defined over $C(\beta)$, where β is an indeterminate. Let G be a group of linear transformations on a vector space V and $\pi^{\otimes n}$ the representation of G on $V^n = V \otimes \cdots \otimes V$, the *n*-th tensor power of V. Let $Z_n(G)$ be the centralizer algebras of $\pi^{\otimes n}$, i.e.

> $Z_n(G) = \{x \in \text{End}(V^n) | x\pi^{\otimes n}(g) = \pi^{\otimes n}\}$ for all $q \in G$.

Let G be the symplectic group Sp_{2m} or the special orthogonal group SO_{2m+1} . Then $Z_n(G)$ is a semisimple quotient of the algebra $D_n(\beta)$. From the results of [3], [5], [8] and [10], we have an analogous result for $C_n(\alpha, q)$. Let *g* be one of Lie algebras \mathfrak{sp}_{2m} and \mathfrak{so}_{2m+1} of the Lie groups \mathfrak{Sp}_{2m} and SO_{2m+1} . Let $\mathcal{U}(g)$ be the *q*-analogue of the universal enveloping algebra $\mathcal{U}(g)$ (see e.g. $[5]$). Then there is an integer r such that the centralizer algebras associated with the vector representation of $\hat{\mathscr{U}}(g)$ are quotients of the algebras *Cn(q^r , q).*

The aim of the present paper is to construct irreducible representations of $C_n(\alpha, q)$ explicitly. The C(α, q)-algebra $C_n(\alpha, q)(n \in \mathbb{N})$ with 1 is defined by the following.

Communicated by H. Araki, September 13, 1988. Revised February 5, 1990.

Department of Mathematics, Osaka University, Toyonaka, Osaka 560, Japan.

¹ This research was supported in part by Yukawa Foundation and Grand-in-Aid for Scientific Research, The Ministry of Education, Science and Culture.

936 JUN MURAKAMI

$$
(0.1) \t C_1(\alpha, q) = \mathbb{C}(\alpha, q),
$$

\n
$$
C_n(\alpha, q) = \langle \tau_i, \tau_i^{-1}, \varepsilon_i (1 \le i \le n - 1) | \tau_i \tau_{i+1} \tau_i = \tau_{i+1} \tau_i \tau_{i+1},
$$

\n
$$
\varepsilon_i \varepsilon_{i+1} \varepsilon_i = \varepsilon_i, \varepsilon_{i+1} \varepsilon_i \varepsilon_{i+1} = \varepsilon_{i+1},
$$

\n
$$
\tau_i^{\pm 1} \varepsilon_{i+1} \varepsilon_i = \tau_{i+1}^{\mp 1} \varepsilon_i, \tau_{i+1}^{\pm 1} \varepsilon_i \varepsilon_{i+1} = \tau_i^{\mp 1} \varepsilon_{i+1},
$$

\n
$$
\varepsilon_i \varepsilon_{i+1} \tau_i^{\pm 1} = \varepsilon_i \tau_{i+1}^{\mp 1}, \varepsilon_{i+1} \varepsilon_i \tau_{i+1}^{\pm 1} = \varepsilon_{i+1} \tau_i^{\mp 1} \ (1 \le i \le n - 2),
$$

\n
$$
\tau_i \tau_j = \tau_j \tau_i, \varepsilon_i \tau_j = \tau_j \varepsilon_i, \varepsilon_i \varepsilon_j = \varepsilon_j \varepsilon_i \ (1 \le i \le j - 1 \le n - 2),
$$

\n
$$
\tau_i \tau_i^{-1} = \tau_i^{-1} \tau_i = 1, \ \tau_i \varepsilon_i = \varepsilon_i \tau_i = (-\alpha^2 q)^{-1} \varepsilon_i,
$$

\n
$$
\tau_i - \tau_i^{-1} = (q - q^{-1})(1 - \varepsilon_i) \ (1 \le i \le n - 1) \ (n \ge 2).
$$

Note that (0.1) implies that $\varepsilon_i^2 = \left(1 - \frac{\alpha q - \alpha q}{\alpha q - \alpha q}\right) \varepsilon_i$. Hence the algebra

 $C_n(\alpha, q)$ is a one-parameter deformation of the algebra $D_n(\beta)$. More precisely, $D_n(\beta)$ is the limit $q \to 1$ of $C_n(q^{\beta/2}, q)$. The algebra $D_n(\beta)$ is semisimple and its irreducible representations are classified [3]. Hence its one-parameter deformation $C_n(\alpha, q)$ is semisimple and there is a bijection between the irreducible representations of $C_n(\alpha, q)$ and those of $D_n(\beta)$. Let ρ be an irreducible representation of $C_n(\alpha, q)$. Then the representation matrices of $\rho(\tau_i)$, $\rho(\tau_i^{-1})$ and $\rho(\varepsilon)$ (1 $\leq i \leq n - 1$) with respect to a certain basis are given in §1. By taking the limit $q \rightarrow 1$ of the above matrices, we get the irreducible representations of the algebra $D_n(\beta)$. Our construction is based on [6].

Let B_n denote the braid group on *n*-strings and $\sigma_i (1 \le i \le n - 1)$ its standard generators of B_n . Let p_n be the algebra homomorphism from the group ring CB_n to $C_n(\alpha, q)$ defined by $p_n(\sigma_i^{\pm 1}) = (-\alpha^2 q)^{\frac{1}{\tau} 1} \tau_i^{\pm 1} (1 \le i \le n)$ *—* 1). For $\rho \in C_n(\alpha, q)$ let χ_ρ denote the character of $\rho \circ p_n$. For $b \in B_n$, let \hat{b} denote the closure of *b*. Let $F(\hat{b})$ denote the Kauffman polynomial of the closed braid \hat{b} of $b \in B_n$ with values in $C_n(\alpha, q)$. Then there are $a_p \in \mathbb{C}(\alpha, q)$ for $\rho \in C_n(\alpha, q)$ such that

(0.2)
$$
F(\hat{b}) = \sum_{\rho \in C_n(\alpha, q) \wedge} a_{\rho} \chi_{\rho}(b) \quad \text{(see [3] and [8]).}
$$

We explicitly give the coefficients a_p in (2.1) and Theorem 2.2. Hence (0.2) can be used to calculate the Kauffman polynomial of closed braids. The representation matrices of $\rho(\tau_i)$ and $\rho(\tau_i^{-1})(1 \le i \le n - 1)$ given in §1 are all symmetric. This fact is used to show [9, Theorem 6.2.4], which claims the following. Let v be a one-dimensional representation of $C_n(\alpha, q)$ and $F^{(r,\nu)}$ a link invariant associated with F and v introduced in [9, Section 1.5]. Then we have $F^{(r,v)}(K) = F^{(r,v)}(K')$ for mutant knots *K* and *K'*.

^I would like to express my thanks to M. Jimbo and T. Miwa who gave me much information about solutions of Yang-Baxter equations, including the result of $\lceil 6 \rceil$.

§ 1. Construction

Fix a positive integer *n.* Let

$$
\Lambda = \{(\lambda_1, \lambda_2, \ldots) | \lambda_i \ge \lambda_{i+1} \ge 0 \, (i \in \mathbb{N}), \lambda_j = 0 \, (j \gg 0) \}.
$$

An element of Λ is called a partition. We also use the following notation.

$$
\Lambda(n) = \left\{ (\lambda_1, \lambda_2, \ldots) \in \Lambda \mid \sum_{i \in \mathbb{N}} \lambda_i = n - 2j, \ 0 \le j \le \left[\frac{n}{2} \right] \right\}.
$$

For two partitions $\lambda = (\lambda_1, \lambda_2, \ldots)$ and $\lambda' = (\lambda'_1, \lambda'_2, \ldots)$ in Λ , we denote $\lambda \sim \lambda'$ if there is $j \in \mathbb{N}$ such that $\lambda_i = \lambda'_i$ for $i \neq j$ and $\lambda_j = \lambda'_j \pm 1$. For a partition $\lambda \in \Lambda(n)$, let

$$
\mathscr{P}(\lambda) = \{ P = (\lambda^{(0)}, \lambda^{(1)}, \dots, \lambda^{(n)}) | \lambda^{(0)} = (0, 0, \dots), \lambda^{(n)} = \lambda, \lambda^{(i)} \sim \lambda^{(i+1)} \text{ for } 0 \le i \le n-1 \}.
$$

Let $V_{\lambda} = \bigoplus_{P \in \mathscr{P}(\lambda)} C(\alpha, q) v_{P}$, which is a vector space over $C(\alpha, q)$ with a basis $\{v_P | P \in \mathcal{P}(\lambda)\}\$. In this paper, we use the following notations.

$$
\{k\} = \frac{q^k - q^{-k}}{q - q^{-1}}, \quad \{k; m\} = \frac{\alpha^m q^k - \alpha^{-m} q^{-k}}{q - q^{-1}}
$$

For $v = (v_1, v_2, ..., v_\ell, 0, 0, ...) \in A$, let

hv(i,j) = V; — i —7 + max{/c|vfc >_/} (1 < ; < *f,* 1 < j < v;),

$$
g_{\nu}(i) = \left\{\n\begin{array}{c}\n\prod_{j=1}^{\nu_i} \left\{v_i + v_j + 2 - i - j; 2\right\} \\
\prod_{j=1}^{\nu_i} \left\{j - i + 1; 1\right\} \prod_{j=1}^{\ell} \left\{v_i + i + 2 - i - j; 2\right\} (v_i + i \leq \ell),\n\end{array}\n\right.
$$

and

(1.1)
$$
G_{\nu} = \prod_{i=1}^{\ell} g_{\nu}(i) \bigg(\prod_{j=1}^{\nu_i} \frac{\{j-i; 1\}}{\{h_{\nu}(i,j)+1\}} \bigg).
$$

Fix *i* in $\{1, 2, ..., n-1\}$. We define an element A_i in End (V_λ) . We give the matrix of A_i with respect to the basis $\{v_p | P \in \mathcal{P}(\lambda)\}\$. Let $P = (\lambda^{(0)}, \lambda^{(1)}, \ldots, \lambda^{(n)})$ and $Q = (v^{(0)}, v^{(1)}, \ldots, v^{(n)})$ be elements of $\mathcal{P}(\lambda)$. The elements of the partition $\lambda^{(r)}$ is denoted by $\lambda_1^{(r)}$, $\lambda_2^{(r)}$,.... Let ℓ denote the maximal integer satisfying $\lambda_{\ell}^{(i-1)} \neq 0$ and $(\eta_1, ..., \eta_\ell, 0, ...) = \lambda^{(i-1)}$. We put

$$
\eta(i)=\eta_i-i+1.
$$

Let $A_i v_p = \sum_{Q \in \mathcal{P}(\lambda)} (A_i)_{QP} v_Q$. In the following, δ_1 and δ_2 denote either 1 or $- 1$. If there is an element $j \in \{1, 2, ..., n - 1\} \setminus \{i\}$ such that $\lambda^{(j)} \neq \nu^{(j)}$, then we put

$$
(1.2a) \qquad (A_i)_{QP} = 0.
$$

From now on, we treat the case that $\lambda^{(j)} = v^{(j)}$ for $j \in \{1, 2, ..., n-1\} \setminus \{i\}$. At first we assume that $P = Q$. If there is an r in N such that $\lambda_r^{(i-1)} = \lambda_r^{(i+1)} \pm 2$, then we put

$$
(1.2b) \t\t (Ai)PP = q.
$$

If $\lambda^{(i-1)} = \lambda^{(i+1)}$, then there is a unique r such that $\lambda_r^{(i-1)} = \lambda_r^{(i)} - \delta_1$. For such P, we put

$$
(1.2c) \qquad (A_i)_{PP} = -\frac{\alpha^{-2\delta_1}q^{-2\delta_1\eta(r)-1}}{\{2\delta_1\eta(r)+1\,;\,2\delta_1\}} - \frac{\alpha^{-2\delta_1}q^{-2\delta_1\eta(r)-1}G_{\lambda^{(1)}}}{G_{\lambda^{(1-1)}}\{2\delta_1\eta(r)+1\,;\,2\delta_1\}}
$$

If otherwise, there are unique r and s in N such that $r \neq s$, $\lambda_r^{(i-1)} = \lambda_r^{(i)} - \delta_1$ and $\lambda_s^{(i)} = \lambda_s^{(i+1)} - \delta_2$. For such *P*, we put

(1.2d)
$$
(A_i)_{PP} = -\frac{\alpha^{\delta_2 - \delta_1} q^{\delta_2 \eta(s) - \delta_1 \eta(r)}}{\{\delta_1 \eta(r) - \delta_2 \eta(s); \delta_1 - \delta_2\}}
$$

Now, we assume that $P \neq Q$. If $\lambda^{(i-1)} \neq \lambda^{(i+1)}$, then there are unique r and s in N such that $r \neq s$ and $\lambda_r^{(i-1)} = \lambda_r^{(i)} - \delta_1$, $\lambda_s^{(i)} = \lambda_s^{(i+1)} - \delta_2$. For such P and Q, we put

$$
(1.2e) \quad (A_i)_{QP} = \frac{\sqrt{\{\delta_1 \eta(r) - \delta_2 \eta(s) + 1; \delta_1 - \delta_2\} \{\delta_1 \eta(r) - \delta_2 \eta(s) - 1; \delta_1 - \delta_2\}}}{\{\delta_1 \eta(r) - \delta_2 \eta(s); \delta_1 - \delta_2\}}.
$$

If $\lambda^{(i-1)} = \lambda^{(i+1)}$ then there are unique r and s in N such that $\lambda_r^{(i-1)} = \lambda_r^{(i)}$ and $v^{(i-1)}_{s} = v^{(i)}_{s} - \delta_2$. For such *P* and *Q*, we put

$$
(1.2f) \t\t (A_i)_{QP} = -\frac{\alpha^{-\delta_1-\delta_2}q^{-\delta_1\eta(r)-\delta_2\eta(s)-1}\sqrt{G_{\lambda^{(1)}}G_{\nu^{(1)}}}}{G_{\lambda^{(1-1)}}\{\delta_1\eta(r)+\delta_2\eta(s)+1;\,\delta_1+\delta_2\}}.
$$

The above definition of A_i implies that $(A_i)_{QP} = (A_i)_{PQ}$ for $P, Q \in \mathcal{P}(\lambda)$, in other words, $A_i(1 \le i \le n - 1)$ are symmetric matrices. Let $P = (\lambda^{(0)}, \lambda^{(1)}, \ldots, \lambda^{(n)})$ and $Q = (v^{(0)}, v^{(1)}, \ldots, v^{(n)}) \in \mathcal{P}(\lambda)$ such that $\lambda^{(j)} = v^{(j)}$ for $j \in \{1, 2, \ldots, n\} \setminus \{i\}$. By (1.2), the matrix element $(A_i)_{QP}$ does not depend on $\lambda^{(j)}$, $j \neq i$, $i \pm 1$. Let Let $W_m^t \begin{pmatrix} a & b \\ d & c \end{pmatrix} u$ denote the trigonometric limit of the Boltzmann weight defined in [6] associated with the Lie algebra of Dynkin type $C_m^{(1)}$. In this case, the function [u] used in the definition of the Boltzmann weight in [6] is equal to 2 $sin(\pi u/L)$, where L is an arbitrary non-

zero complex parameter. Put $x = \exp(\pi u \sqrt{-1}/L)$. Recall that $W_m^t \begin{pmatrix} a & b \\ d & c \end{pmatrix}$ is a Laurent polynomial in x and the highest degree of $W_n^t\begin{pmatrix} a & b \\ d & c \end{pmatrix}u$ with respect to x is equal to 2 ((1.5) of $[6]$). For dominant integral weight *a* of the simple Lie algebra of Dynkin type C_m given as in Table 1 of [6], let $\lambda(a)$ $=(\lambda_1, \lambda_2, ..., \lambda_n, 0, ...)$ be an element of A such that

$$
\lambda_i = a_i - n - 1 + i.
$$

By comparing the definition of A_i and (1.5) of [6], we have the following.

Lemma **1.4.** *For dominant integral weights* a, *b, c and d of the simple Lie algebra of Dynkin type* C_m *such that* $\lambda(a) \sim \lambda(b)$, $\lambda(b) \sim \lambda(c)$, $\lambda(c) \sim \lambda(d)$ and $\lambda(d) \sim \lambda(a)$, we have

$$
\lim_{u\to\infty}W_{m}^{t}\left(\begin{array}{cc}a & b \\ d & c\end{array}\right)-\sqrt{-1}u\bigg)x^{-2}=\lim_{q\to e^{\sqrt{-1}\pi/L}}\frac{q^{(m+1)}A(\lambda(a),\lambda(b),\lambda(d),\lambda(c))}{\{m+1\}\{1\}^{2}}\bigg|_{\alpha=q^{m}}
$$

where L is the complex parameter used in [6].

Proof. For a dominant integral weight $a = (a_1, a_2, \ldots, a_m)$, let

$$
G'_a = \varepsilon(a) \prod_{j=1}^m \left[2a_j\right] \prod_{1 \leq j < k \leq m} \left[a_j - a_k\right] \left[a_j + a_k\right] \quad (\varepsilon(a) = \pm 1).
$$

Then the above lemma is proved by using the fact that the limit of $G_{\lambda(a)}|_{\alpha=q^m}$ with *q* to $e^{\sqrt{-1}\pi/L}$ is equal to the trigonometric limit of $\varepsilon(a)G'_{a(v)}(\prod_{1\leq j\leq k\leq m}[\tilde{t}^j]$ $(-k!)^{-1}$ ($\prod_{1 \leq j \leq k \leq m} [i+k])^{-1}$. We omit the detail. \blacksquare

The following theorem is the main result of this paper.

Theorem 1.5. Let λ be a partition in $\Lambda(n)$.

- *(i)* There is a representation $(\rho_{\lambda}, V_{\lambda})$ of $C_n(\alpha, q)$ such that the representation *matrices of* $\rho_{\lambda}(\tau_i)$ *is equal to A_i defined by* (1.2).
- (ii) The representation ρ_{λ} is irreducible.
- (iii) Two irreducible representations ρ_{λ} and ρ_{ν} ($\lambda, \nu \in \Lambda(n), \lambda \neq \nu$) are not *equivalent.*
- (iv) Any irreducible representation of $C_n(\alpha, q)$ is equivalent to one of $(\rho_\lambda, V_\lambda)$ $(\lambda \in \Lambda(n)).$

A similar result holds for the Brauer's algebra $D_n(\beta)$.

Corollary 1.6. Any irreducible representation of $D_n(\beta)$ is a limit of $\rho_{\lambda}|_{\alpha=a^{\beta/2}}$ *with* $q \rightarrow 1$.

In the rest of this section we give proofs of the above theorem and its

,

corollary. Some combinatorial consideration about partitions shows the following two lemmas.

Lemma 1.7. For $\lambda \in A(n)$, let v and v' be two elements of $A(n-1)$ such that $v \sim \lambda$ and $v' \sim \lambda$. Then there is $\mu \in A(n-2)$ such that $\mu \sim v$ and $\mu \sim v'$.

Lemma 1.8. For $v \in A(n)$, let $L(v) = { \mu \in A(n-1) | \mu \sim v }$. For $v_1, v_2 \in A(n)$ *with* $n \geq 3$, *assume that* $L(v_1) = L(v_2)$. *Then* $v_1 = v_2$.

We use the following to show the relation $E_i^2 = (1 - (\alpha^2 q - \alpha))$ $^{(-1)^{-1}}$) E_i .

Lemma 1.9. For $\lambda \in \Lambda$, we have

$$
\sum_{v \,\gamma \,\lambda} \frac{G_v}{G_{\lambda}} = \frac{\alpha^2 \, q - \alpha^{-2} \, q^{-1}}{q - q^{-1}} - 1.
$$

Proof. It suffices to show in the case $\alpha = q^m$ for infinitely may integers m. Fix an integer $m \geq \sum_{i \in \mathbb{N}} \lambda_i$. We use representation theory of the Lie algebra g of type C_m . Let Δ be a root system corresponding to g and Γ the weight lattice associated with A. Fix a simple root system Π in Δ and let Δ_+ be the set of positive roots associated with Π . Let $\psi = \sum_{\mu \in \Delta_+} \mu$. For a g-module *V*, we denote $m_V(\mu)$ the dimension of the weight space of *V* corresponding to μ . Let

(1.10)
$$
d_q(V) = \sum_{\mu \in \Gamma} m_V(\mu) q^{(\psi,\mu)},
$$

where (,) is the natural pairing of roots and weights. For $v \in A$, let V_v be the simple g-module with highest weight corresponding to v as in (1.3) . By using the q -analogue of Weyl's character formula ([7], proof of Corollary 8.9), we have

$$
(1.11) \tGv = dq(Vv).
$$

On the other hand, we know that $\bigoplus_{v \in \lambda} V_v = V_\lambda \otimes V_{(1,0,0,...)}$, where $V_{(1,0,0,...)}$ is corresponding to the vector representation of g. Hence (1.10) and (1.11) imply $\sum_{\substack{v \in \lambda \\ v \text{ is a prime, } v \text{ is a prime,}} G_v = G_{\lambda} G_{(1,0,0,...)}$. Since $G_{(1,0,0,...)} = 1 - \frac{q^{2m+1} - q^{-2m-1}}{q - q^{-1}}$ statement of the lemma in the case $\alpha = q^m$.

Proof of Theorem 1.5. We first prove the statement (i). Let A_i be the matrix obtained from A_i by substituting α^{-1} to α and q^{-1} to q . Then Lemma 1.4 and the inversion relation [6, (2.13a)] imply that $A_i A'_i = 1$. Let

(1.12)
$$
E_i = -\frac{A_i - A'_i}{q - q^{-1}} + 1.
$$

Let $P = (\lambda^{(0)}, \lambda^{(1)}, \dots, \lambda^{(n)})$ and $Q = (v^{(0)}, v^{(1)}, \dots, v^{(n)})$ be two elements of $\mathscr{P}(\lambda)$. Then the matrix element $(E_i)_{QP}$ is given as follows. If there is an element $j \in \{1, 2, ..., n\} \setminus \{i\}$ such that $\lambda^{(j)} \neq \nu^{(j)}$, then we have

$$
(1.13a) \t\t\t (E_i)_{QP} = 0.
$$

From now on, we treat the case that $\lambda^{(j)} = v^{(j)}$ for $j \in \{1, 2, ..., n\} \setminus \{i\}$. If) , then we have

$$
(1.13b) \t\t\t (E_i)_{OP} = 0.
$$

If
$$
\lambda^{(i-1)} = \lambda^{(i+1)}
$$
 and $P \neq Q$, then we have
\n(1.13c)
\n
$$
(E_i)_{QP} = -\frac{\sqrt{G_{\lambda^{(i)}} G_{\nu^{(i)}}}}{G_{\lambda^{(i-1)}}}.
$$

If $\lambda^{(i-1)} = \lambda^{(i+1)}$ and $P = Q$, then there is an r in N and $\delta_1 = \pm 1$ such that $\lambda_r^{(i-1)} = \lambda_r^{(i)} - \delta_1$ and we have

(1.13d)
$$
(E_i)_{PP} = -\frac{G_{\lambda^{(1)}}}{G_{\lambda^{(1-1)}}}.
$$

By using Lemma 1.9, the matrix E_i satisfies

(1.14)
$$
E_i^2 = -\left(\frac{\alpha^2 q - \alpha^{-2} q^{-1}}{q - q^{-1}} - 1\right) E_i.
$$

We have relations

$$
(1.15) \t\t\t E_i E_{i\pm 1} E_i = E_i
$$

 $\frac{G_{\nu_1} G_{\nu_4}}{G}$ for $\nu_i \in \Lambda(1 \leq i \leq 4)$. We have relations

$$
(1.16) \t\t A_i A_{i \pm 1} A_i = A_{i \pm 1} A_i A_{i \pm 1}
$$

from Lemma 1.4 and the star-triangle relation [6, (2.2)]. Let *P* $=(\lambda^{(0)}, \lambda^{(1)}, \ldots, \lambda^{(n)})$ and $Q=(\nu^{(0)}, \nu^{(1)}, \ldots, \nu^{(n)})$ be two elements of $\mathscr{P}(\lambda)$ such that $\lambda^{(j)} = v^{(j)}$ for $j \in \{1, 2, ..., n\} \setminus \{i\}.$ By the definition of A'_i , the matrix element $(A_i)_Q$ is not depend on $\lambda^{(i)}$, $j \neq i$, $i \pm 1$. Let $A'(\lambda^{(i-1)}, \lambda^{(i)}, \lambda^{(i+1)})$ $=(A_i')_{\text{OP}}$. Then, from [6, (2.12)] and Lemma 1.4, we have

$$
(1.17) \quad A(\lambda^{(i-1)},\ \lambda^{(i)},\ \nu^{(i)},\ \lambda^{(i+1)}) = \sqrt{\frac{G_{\lambda^{(i)}}G_{\nu^{(i)}}}{G_{\lambda^{(i-1)}}G_{\lambda^{(i+1)}}}}A'(\nu^{(i)},\ \lambda^{(i-1)},\ \lambda^{(i+1)},\ \lambda^{(i)}).
$$

This formula implies the following relations.

942 JUN MURAKAMI

(1.18)
$$
E_i E_{i \pm 1} A_i = E_i A'_{i \pm 1}, \qquad E_i E_{i \pm 1} A'_i = E_i A_{i \pm 1},
$$

$$
A_i E_{i \pm 1} E_i = A'_{i \pm 1} E_i, \qquad A'_i E_{i \pm 1} E_i = A_{i \pm 1} E_i.
$$

From now on, we determine the eigenvalues of A_i . From (1.2b)-(1.2d), we know that A_i has eigenvalues q and $-q^{-1}$. Hence formula (1.12) implies that A_i has at most two eigenvalues except q and $-q^{-1}$. From (1.14), we know that the remaining eigenvalue is equal to $\alpha^2 q$ or $(-\alpha^2 q)^{-1}$. But we know that there is only one eigenvalue $(-\alpha^2 q)^{-1}$ of A_i except q and $-q^{-1}$, since $\lim_{\alpha\to\infty} \alpha^2 A_i$ is bounded. The above argument implies that A_i acts on $\text{Im } E_i$ by the scalar $(-\alpha^2 q)^{-1}$. Since E_i is a scalar multiple of a projection, we have

(1.19)
$$
A_i E_i = (-\alpha^2 q)^{-1} E_i.
$$

The above relations (1.14) – (1.16) , (1.18) and (1.19) among A_i , A'_i and $E_i(1 \le i \le n - 1)$ imply that there is a representation ρ_{λ} of $C_n(\alpha, q)$ with $\rho_{\lambda}(\tau_i)$ $= A_i$, $\rho_{\lambda}(\tau_i^{-1}) = A'_i$ and $\rho_{\lambda}(\varepsilon_i) = E_i$. This proves the part (i) of Theorem 1.5.

From now on, we prove (ii) and (iii) inductively. We identify $C_1(\alpha, q)$ with C(α , q). For $n = 2$, $\rho_{(2)}(\tau_1) = q$, $\rho_{(11)}(\tau_1) = q^{-1}$ and $\rho_{\phi}(\tau_1) = (-\alpha^2 q)^{-1}$. Hence the statements (ii) and (iii) are satisfied for the case $n = 1,2$. Now, for $n \ge 3$, assume that $C_{n-1}(\alpha, q)$ satisfies (ii) and (iii). In the following, we identify $C_{n-1}(\alpha, q)$ with the subalgebra of $C_n(\alpha, q)$ generated by $\tau_1^{\pm 1}, \ldots, \tau_{n-2}^{\pm 1}$, $\varepsilon_1, \ldots, \varepsilon_{n-2}$. Let $\lambda \in \Lambda(n)$. Let W is the subspace of V spanned by the vectors ${\{v_{(\mu_0,\mu_1,...,\mu_{n-2},v,\lambda)} | (\mu_0, \mu_1,...,\mu_{n-2}, v, \lambda) \in \mathscr{P}(n)\}.$ Then W_v is $C_{n-1}(\alpha, q)$ -invariant and isomorphic to V_v as a $C_{n-1}(\alpha, q)$ -module. Hence, by the induction hypothesis, W_v is an irreducible $C_{n-1}(\alpha, q)$ -module. By the definition of V_λ , we have $V_{\lambda} = \bigoplus_{\substack{v \in A(n-1) \\ v \supseteq \lambda}} W_v$. Let U be a $C_n(\alpha, q)$ -submodule of V_{λ} . Then U is also a

 $C_{n-1}(\alpha, q)$ -submodule of V_λ . The induction hypothesis says that W_ν and W_ν are not equivalent for distinct v and v' in $A(n - 1)$ and so V_{λ} is multiplicity-free as an $C_{n-1}(\alpha, q)$ -module. Hence, for each $v \in A(n-1)$ such that $v \sim \lambda$, $U \cap W_\lambda = W_\lambda$ or 0. Now, assume that there are v and v' in $A(n-1)$ such that $v \sim \lambda$, $v' \sim \lambda$, $U \cap W_v = W_v$ and $U \cap W_v' = 0$. Lemma 1.7 shows that there is $\mu \in A(n - 2)$ such that $\mu \sim v$ and $\mu \sim v'$. Let $P = (p^{(0)}, p^{(1)},..., p^{(n)})$ and $P' = (p'^{(0)}, p'^{(1)},..., p'^{(n)})$ be elements of $\mathscr{P}(\lambda)$ such that $p^{(i)} = p'^{(i)}$ for $i \neq n - 1$, $p^{(n-2)} = \mu$, $p^{(n-1)}$ $= v$, $p^{(n-1)} = v'$ and $p^{(n)} = \lambda$. The construction of the representation ρ_{λ} implies that

(1.20)
$$
\rho_{\lambda}(\tau_{n-1})v_{P} = A_{PP'}v_{P'} + \cdots
$$

with respect to the basis $\{v_{\mathcal{O}} | Q \in \mathcal{P}(\lambda)\}$ of V_{λ} . Recall that the subspaces W_{ν} and *W*_{*v*}^{*.*} are spanned by subsets of $\{v_0 | Q \in \mathcal{P}(\lambda)\}$, $v_p \in W_v$, $v_p \in W_v$ and $A_{PP'} \neq 0$. Since *U* is a $C_n(\alpha, q)$ -module, $A_{PP'} \neq 0$ contradicts that the assumption $U \cap W_v' = 0$. Hence, U must be V_λ or 0 and so V_λ is an irreducible

 $C_n(\alpha, q)$ -module. This proves (ii).

With the induction hypothesis, Lemma 1.8 implies that V_{λ_1} and V_{λ_2} are not isomorphic as $C_{n-1}(\alpha, q)$ -modules. Hence V_{λ_1} and V_{λ_2} are not isomorphic as $C_n(\alpha, q)$ -modules. This implies (iii).

We show the last statement (iv). Since the algebra $C_n(\alpha, q)$ is a oneparameter deformation of the Brauer's algebra $D_n(\beta)$, the number of irreducible representations of $C_n(\alpha, q)$ is equal to that of $D_n(\beta)$. The number of the irreducible representations of $D_n(\beta)$ is given, for example, in [12], which coincides with the number of $\mathcal{P}(n)$. Hence the representations constructed above covers the all irreducible representations of $C_n(\alpha, q)$.

Proof of Corollary 1.6. We noted that the limit $q \rightarrow 1$ of the algebra $C_n(q^{\beta/2}, q)$ is isomorphic to Brauer's algebra $D_n(\beta)$ in [12]. Let ρ_{λ} be the representation of $C_n(\alpha, q)$ constructed above and $c(\alpha, q)$ a coefficient of the representation matrix $\rho_{\lambda}(\tau_i)$ of a generator τ_i ($1 \le i \le n-1$). Then $c(q^{\beta/2}, q)$ has a limit with $q \to 1$ and $c(q^{\beta/2}, q) \neq 0$ if $c(\alpha, q) \neq 0$. Hence we can apply a similar argument of the proof of Theorem 1.5 to the limiting case and we get the corollary. •

§2. **The Kauffman Polynomial**

In this section we give a formula (2.1) for the Kauffman polynomial in terms of the irreducible characters of the algebra $C_n(\alpha, q)$ introduced in the last section. Let α and q be indeterminates. For a positive integer n , let B_n denote the braid group on *n*-strings and $C(\alpha, q)B_n$ the group ring of B_n over the field $C(\alpha, q)$. Let $\sigma_1, \sigma_2, \ldots, \sigma_{n-1}$ be the standard generators of B_n given as in Figure 1.

Let p_n : $C(\alpha, q)B_n \to C_n(\alpha, q)$ be the algebra homomorphism defined by $p_n(\sigma_i)$ $= (-\alpha^2 q)^{-1} \tau_i$. For $b \in B_n$, let

(2.1)
$$
F_n(b) = \left(1 - \frac{\alpha^2 q - \alpha^{-2} q^{-1}}{q - q^{-1}}\right)^{-1} \sum_{\lambda \in \Lambda(n)} G_{\lambda} \chi_{\lambda}(p_n(b)),
$$

where χ_{λ} be the character of the irreducible representation ρ_{λ} of the algebra $C_n(\alpha, q)$ introduced in §1.

944 JUN MURAKAMI

Theorem 2.2. Let b be an n-braid and \hat{b} denote its closure. Let $F(\hat{b})$ $F_n(b)$. Then F is the Kauffman polynomial of links (see e.g. [2] and [8]).

Proof. First, we prove that *F* is an invariant of link isotopy types. To do this, we show that *F* is constant on a equivalence class of *B* with respect to the Markov relation. The Markov relation \sim is the equivalence relation of B $=\{(b, n)|b \in B_n\}$ generated by the following.

- (1) For b_1 , $b_2 \in B_n$, $(b_1b_2, n) \sim (b_2b_1, n)$.
- (2) For $b \in B_n$, $(b, n) \sim (b\sigma_n^{\pm 1}, n+1)$.

We have $F(b_1b_2) = F(b_2b_1)$ for $b_1, b_2 \in B_n$ since F_n is a linear combination of characters $\chi_{\lambda} \circ p_n$ of B_n . We show that $F(\hat{b}) = F(\widehat{b \sigma_n^{\pm 1}})$ for $b \in B_n$. By using the construction of ρ_{λ} , the above equalities follow from Lemma 2.3 below. Let $w(b)$ denote the exponent sum of *b.* The regular isotopy invariant *L* defined by *L(b)* $= (-\alpha^2 q)^{w(b)} F(\hat{b})$ satisfies the following relations.

$$
L(K_{+}) - L(K_{-}) = (q - q^{-1})(L(K_{0}) - L(K_{\infty})),
$$

$$
L(K_{\ell+}) = -\alpha^{2} q L(K_{-}), L(K_{\ell-}) = (-\alpha^{2} q)^{-1} L(K_{-}), L(\bigcirc) = 1,
$$

where the K_{\ast} are identical except within a ball where they are as in Figure 2. Hence F is equal to the Kauffman polynomial by $[8, \text{Section 2}].$

Lemma 2.3. For λ_1 and λ_2 in A such that $\lambda_1 \sim \lambda_2$, we have

$$
\sum_{\lambda_2\underset{1}{\sim}\lambda_3}\frac{G_{\lambda_3}}{G_{\lambda_2}}A(\lambda_1,\lambda_2,\lambda_2,\lambda_3)=-\alpha^2q.
$$

Proof. Let λ_4 be an element of A such that $\lambda_4 \sim \lambda_2$. From (1.19) and $A_i A_i' = 1$, we have $\sum_{\lambda_2 \sim \lambda_3} \sqrt{G_{\lambda_3} G_{\lambda_4}} G_{\lambda_2}^{-1} A'(\lambda_2, \lambda_3, \lambda_1, \lambda_2) = -\alpha^2 q \sqrt{G_{\lambda_1} G_{\lambda_4}} G_{\lambda_2}^{-1}$ and so we have $\sum_{\lambda_2 \sim \lambda_3} \sqrt{\frac{G_{\lambda_3}}{G_{\lambda_1}}} A'(\lambda_2, \lambda_3, \lambda_1, \lambda_2) = -\alpha^2 q$. Applying (1.17) to this, we get the statement of the lemma.

References

- [1] Akutsu, Y. and Wadati, M., *Knot invariants and the critical statistical systems, J.* Phys. Soc. Japan, 56 (1987), 839-842.
- [2] Akutsu, Y., Deguchi, T. and Wadati, M., *Exactly solvable models and new link polynomials IV,* J. Phys. Soc. Japan, 57, 1173-1185.
- [3] Birman, J. S. and Wenzl, H., *Braids, link polynomials and a new algebra,* Trans. Amer. Math. Soc., 313 (1989), 249-273.
- [4] Brauer, R., *On algebras which are connected with the semisimple continuous groups,* Ann. of Math., 38 (1937), 854-872.
- $[5]$ Jimbo, M., *A q-difference analogue of* $\mathcal{U}(\mathfrak{g})$ *and the Yang-Baxter equation*, Lett. Math. Phys., 10 (1985), 63-69.
- [6] Jimbo, M., T. Miwa and M. Okado, *Solvable lattice models related to the vector representation of classical Lie algebras,* Comm. Math. Phys., 116 (1988), 507-525.
- [7] Lusztig, G., *Singularities, character formulas, and a q-analog of weight multiplicities,* Asterisque, 101-102 (1983), 208-229.
- [8] Murakami, J., *The Kauffman polynomial of links and representation theory,* Osaka J. Math., 24 (1987), 745-758.
- [9] , *The parallel version of polynomial invariants of links,* Osaka J. Math., 26 (1989), 1-55.
- [10] Turaev, T. G., *The Yang-Baxter equation and invariants of links,* Invent. Math., 92 (1988), 527-553.
- [11] Wenzl, H., *Hecke algebra of type An and subfactors,* Invent. Math., 92 (1988), 349-383.
- [12] , *On the structure of Brauer's centralizer algebras,* Ann. of Math. (2) 128 (1988), 173-193.