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The Structure of a
-Algebra to the

By

Keith C. HANNABUSS,* and Winfried R. E. WEISS,**

The representation theory of a class of algebras associated to certain graded Lie groups is
investigated. To a group whose even part is central is associated a natural involutive algebra all of
whose ^representations factor through a quotient algebra of continuous Clifford algebra-valued
fields. The irreducible representations of crossed products of the algebra by a Lie algebra, such as
the super-Poincare group, are then constructed by Takesaki's method. It is then shown that they
may also be constructed by RieffeFs C*-algebraic induction. Tensor product decompositions are
briefly discussed.

In this paper we shall show how the theory of induced representations of
C*-algebras, [1], [2], [3], can be used to construct the irreducible
representations of the super-Poincare group. This is directly comparable to the
Wigner-Mackey theory for the ordinary Poincare group, [4], [5].

We shall work with the semi-direct product of a group L and a graded Lie
algebra, n = n0 © n1? whose even subalgebra, n0 is central in n and is the Lie
algebra of a vector group JV0. In the case of the super-Poincare group, Lis the
Lorentz covering group SL(2, C) and n is the supertranslations, which we shall
describe in more detail in the next section.

Although the structure of the supertranslations is most transparent in the
Lie algebras, the global group-theoretic structure is needed for the inducing
construction. This suggests that the representations should be considered as
Harish-Chandra modules on which both N0 and n act in a compatible way. (So
that the action of n0 is the derivative of the action of N0.) In fact, for the
algebraic inducing we shall not directly consider the action of N0, but rather that
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of its convolution algebra of Schwartz functions, ^(N0). The Schwartz
functions are an obvious choice since they allow us both to perform harmonic
analysis using the Fourier transform and to obtain an action of n0 by
differentiation. To be precise, we define for Xen0, aE^(NQ}, veN0,

The supertranslations will be incorporated through the (complex) universal
enveloping algebra ^f(n).

Both ^(n) and ^(N0) can be equipped with involutions. On ^(N0) we
have the natural involution

a*(v) = a(— v).

For ^(n) matters are a little more delicate and will be examined in more detail
in the next section. The involution will play a crucial role both in determining
the structure of the algebra and in picking out the physically important
representations.

In order that a representation M of the *-algebra <^(n) (x) ̂ (N0) describe
compatible representations of n and N0 we shall require that

M(AX (x) a) = M(A (x) X. a), A e *(n), X E n03

Any representation satisfying this requirement clearly vanishes on the subspace

We shall show in Section 3 that / is actually a *-ideal, so that compatible
representations are lifted from the quotient *-algebra <%(n) (x) £f(N0)/L We
shall then show that the involution is only becomes compatible with a C*
structure when we pass to another quotient which is isomorphic to a pre-C*-
algebra of continuous fields.

Once these structural results have been established the representation theory
is described in Section 4. Then in Section 5 we construct the ^representations
of the crossed product of the *-algebra by L using the algebraic generalisation of
Mackey's method due to Takesaki, [2]. In Section 6 a more fully algebraic
method is used to induce irreducible representations from representations of
17(2). Ar09 thus tightening the analogy with the Poincare group. Finally in
Section 7 the reduction of tensor products of irreducible representations is
sketched.

The authors are indebted to the referee for suggesting a number of stylistic
and notational improvements.
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§2. Space-time Supertranslations

Although the general theory does not depend on the detailed structure of
(N0, n) it is useful to bear the physical supertranslations in mind. There one
takes N0 to be the additive group E4. Its Lie algebra n0 is also isomorphic to
R4, and it is taken to have vanishing Lie bracket with the whole of n. The dual
group N0 and dual space ng (with which it can be identified using the dual of the
exponential map) are also copies of R4, on which we have the Minkowski inner
product

£ = (£0, <*!, £2, £3), r\ = (rio, f i l 9 r i 2 9 *73)eno- We nave chosen the sign for this
product so that the Clifford algebra Cliff (rig, g), generated by elements y(^) such
that

has a real irreducible representation on the four-dimensional space of Majorana
spinors. We denote this representation space by n^

It is well-known that nt can be equipped with a symplectic form c such that

c(A, y(£)B) = - c(y(®A, B) = c(B,

A,Benl9 £en§. (In matrix form one takes c(A, B) = - A*y°B where y°
= y(l, 0, 0, 0). Since the representation is irreducible c is unique up to scalar
multiples.)

The symmetry of the above expression in A and B allows us to define the
Lie bracket in n such that if A, Benl9 then \_A, B~] is the unique element of n0

with

tdA, B]) = 2c(A, y(QB),

for all £ in nj. (In matrix notation the j-th component of \_A, B~] is
— 2(Aty°yjB), which is the form used by physicists.) Since n0 is, by definition,
central the Jacobi identity is automatic.

For future reference we note the following consequence of our definitions.

Proposition 2.1. If c is normalised so that c(A, y°A) > 0, for all A (as
happens with the physicists' convention) then c(A, y(£)A) is non-negative for all A in
nx if and only if £, is timelike or lightlike and £0 > 0. When £, is forward-pointing
and timelike the quadratic form is positive definite; when £ is forward-pointing and
lightlike the quadratic form is positive semi-definite of rank two.

Proof. Clearly the quadratic form c(A, y(^)A) = — c(A, yQyQy(£)A) is non-
negative if and only if the operator — y°y(£) is non-negative with respect to the
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inner product A B-»c(A, y°B) on n^ Now

so the eigenvalues of — y°y(^) are £0 ± y / C i + + 3 ? an^ the positivity
condition follows immediately. It also follows that when £ is forward-pointing
timelike all four eigenvalues are positive and so the form is positive definite.

In fact, since y0y(£) + £0 = 2~1[y°, y(£)], its trace must vanish and each
possible eigenvalue must appear twice. This immediately tells us that when £ is
lightlike two eigenvalues vanish and the rank is two.

Finally we consider the involution. For unitary representations we want
the elements of the even subalgebra n0 to be represented by i times self- adjoint
operators. Since [n1? nj a n0, this suggests that nt should be represented by
exp(f7c/4) times self-adjoint operators so that the appropriate involution on its
complexification is

where A denotes the natural conjugation in the complexification. Rearranging
this we obtain

A* = - iA.

This is then extended to an anti-automorphism on ^f(n). We note that, up to
sign this is the only involution consistent with the other data.

§3o The C*- Algebra off Continuous

We start by proving the result promised in the introduction:

Lemma 3.1. The linear span I of {AX (x) a — A (g) (X. a) : A e ̂ (n), X e n0,
is a * -ideal in

Proof. For B (x) be^(n) (x) ̂ (JV0) we have

(AX (x) a - A (x) (X. a))(B (x) b) = (AXB (g) ab - AB (x) (X. a)b).

Now n0 is central in n so XB = EX, and also by definition X. (ab) = (X. a)b, so

(AX ®a-A®(X. a))(B (x) b) = (ABX (g) ab - AB (x) X. (ab)) el.

Similarly (B (x) b)(AX ®a-A®(X.a))z I. Finally,

(AX (g) a - A (x) (X. a))* = (X*A* (x) a* - A* (g) (X a)*)

= ( - JT4* (x) a* + X* (g) (X. a*))

(g) a* - ^* (g) (X. a*)) e I,
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using the centrality of n0 once more.

Remark. By induction we may replace the coset (AX1 . . . X k ( x ) a) + I by
A (S)(xi ...Xk).a + ! f°r anY Xl9..., Xken0. Since <%(n) ^ ^(n^ (§) ^(n0) as a
vector space (by the Poincare-Birkhoff-Witt Theorem), we see that as vector
spaces

where ^(r^) denotes the exterior algebra of n1.

We introduced the convolution algebra ^(N0) to facilitate comparison with
standard group representation theory, but for further analysis it is useful to
Fourier transform this. We shall identify N0 with n0 and N0 with rtg using the
exponential map, and write

&(£)=

where £(x) denotes the natural pairing between duals. It is well-known that the
Fourier transform provides an isomorphism between the convolution algebra
y(N0) and the algebra £f(N0) = «^(nj) of Schwartz functions under pointwise
multiplication. Using the relation

we may identify ^(n) (x) &*(N0) with ^(n) (x) ̂ (n*) which is factored out by the
ideal I generated by the relation

As a vector space this is clearly isomorphic to A(n^) (x) £f(n$). We shall
abbreviate the notation by writing a instead of (1 (x) a).

Lemma 32, The element A® a in tft(n) (x) ̂ (nj) with the above relation is
of the form

(A ® d)(^) =

for a suitable A^eA^n^. For A, Benly we have

Proof. Let a and b be nowhere vanishing Schwartz functions. Then the
identities

(A (x) fl)(£)6(f ) = (A (x) fl&)(Q = (A (x) i)K)a(Q

show that ^ = a(^)~1(^4 0 a)(£) is independent of the particular choice of
a. We therefore have
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(A (x) d)^) = a(S)At.

Multiplication by a general Schwartz function / shows that this identity is valid
even when a is allowed to have zeroes.

Finally we note that when A and B are in n1 so are A% and B%, and

= it(lA, B-]).

This result tells us that the quotient algebra WfaJ (x) &(N0)/i looks like an
algebra of fields over ng in which the fibre at £ is a Clifford algebra. This can
be made more precise when we consider the involution as well. Before we can
state the results we need a little more notation. Let us introduce

0, AenJ,

|7T0
+ = 0}.

For £eno the quadratic form £([A, A]) is positive and the Clifford algebra,
C{ of nl factored out by the radical has a natural C*-norm which for Aenl is
given by

Theorem 33, Any *-homomorphism from %(n] (x) £f(NQ) to a C*-algebra
must factor through the pre-C*- algebra of continuous Clifford algebra-valued fields
over UQ .

Remark. By a pre-C*-algebra of fields we mean one satisfying the first
three conditions in [6] Ch. 10, but which requires completion to obtain the
fourth.

Proof. For Aer^ we have, by definition,

A]).

For any homomorphism to a C*-algebra this must map to a non-negative
element. This means that only when £ in n^ can we obtain non-zero
elements. The homomorphism therefore factors through ^(n) (x) ̂ (nj" )//. The
same Identity shows that elements of n1 which He In the radical of the quadratic
form also map to 0 and the result now follows.

We shall denote the resulting quotient algebra of fields by ^(n, N0). It
may be given the usual C* norm
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Since, apart from an occasional choice of sign (as for the involution) all the
constructions have been canonical it seems that this is the most natural C*-
algebra to associate to the super-translation subgroup.

There are other ways of arriving at the same structure. One of the most
elegant is to exploit the natural conditional expectation P : ^(n) -> ̂ (n0). This
is uniquely characterised by the following conditions:

( i ) P vanishes on the odd part of ^(n);
( ii ) P(AX) = P(A)X, A G *(n), X e n0 ;
(iii) P(A*) = P(A)*, Ae<%(n).

We may then provide ^(n) (x) ̂ (N0) with the inner product :

<(X (x) a\ (B (x) fc)>
"0

The radical of this inner product clearly contains all functions which vanish on
n^ as well as /, since

f-<G4 (x) a), (BX (x) b - B (x) Xb)y = d ((P(A*BX) - P(A*B)X)Vf = 0.
J

The radical also contains the other elements by which it is necessary to factor
out to obtain a C*-algebra. One can actually uncover further structure by this
method, but since it will play no further role we leave the matter with that
observation.

§4 Representation Theory of the Supertranslation Algebra

It is now a straightforward matter to find the irreducible ^representations
of the algebra «5^(n, N0).

Theorem 4.1. For ^en^ let T^ be an irreducible representation of the
Clifford algebra C^. Then

defines an irreducible * -representation of 5^(n, N0). Conversely every non-
degenerate irreducible * -representation is of this form.

Proof. We shall start with the converse. The subalgebra 1 (
c <^(n) (x) ^(N0) projects onto a central subalgebra of ^(n, N0). By Schur's
Lemma this subalgebra must be represented by scalars in any irreducible
representation, and it is known that the only non-zero *-homomorphisms from
&*(N0) to C take the form a -> a(£). For a map to be induced on the quotient
subalgebra of ^(n, JV0) we require ^ e n g . Now if M^ is any irreducible *-
representation of ^(n, N0) whose restriction to this central subalgebra is given
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by £, then one shows as in the proof of Lemma 3.2 that

is a representation of C^ whose irreducibility is forced by that of M5. It is, on
the other hand, easy to see that M^A (x) a) = TJA^)d(^) does always define an
irreducible * -representation so that the proof is complete.

Remark. If Q is the Clifford algebra of an even dimensional space then
there is a unique irreducible representation T§. It follows from Proposition 2.1
that this is the case for the supertranslations. For odd-dimensional Clifford
algebras there are two inequivalent irreducibles, determined by the eigenvalue of
the central element. This can be made to depend continuously of £.

Corollary 4.20 Every non-degenerate irreducible ^-representation of
) y(N0) takes the form

for some ^HQ .

Proof. Since a ^representation is a homomorphism into a C*-algebra it
must factorise through ^(n, N0).

Corollary 4.3. The C*-algebra obtained by completing ^(n, N0) with respect
to the norm defined after Theorem 3.3 is of type I.

Proof. According to the theorem the dual of ^(n, N0) is either n^ or a
double cover of n^, according to whether the Clifford algebra is even or odd
dimensional. In either case this is smooth. The result therefore follows by
Glimm's Theorem, [7].

Remark. The above results refer to ungraded representations. When
considering graded representations one notes that whenever a quotient has been
taken the ideal by which we factored out was invariant under the grading
operator. (The grading operator takes the value — 1 on odd terms and + 1 on
even terms.) This means that the gradings on ^T(n) (x) y(N0), on ^(n, N0) and
on the Clifford algebra C% are all consistent. Thus we obtain the graded
irreducibles simply by taking T% to be a graded irreducible representation of
G£. The graded irreducibles of an even-dimensional C% can be represented on
the ungraded space but there are two inequivalent ways of introducing a
grading. (The easiest way to see this is to note that the grading operator
anticommutes with the generators of Q and has square 1. Together the grading
operator and Q generate the Clifford algebra of a space of one higher
dimension, which, being odd-dimensional, has two inequivalent irreducibles.) In
the case of odd-dimensional Clifford algebras the two inequivalent ungraded
irreducibles combine into a single graded irreducible.
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§5, The Super-Poincare Group and Its C*-Algebra

By assumption the group L acts as automorphisms of n and of N0. It
therefore acts on the algebra °ll(n) (x) ̂ (N0) in a natural way. (The action on
N0 being equivalent under the exponential map to that on n0 is linear so that we
can define an action on ^(N0) by

or equivalently on ^(nj) by

for AeL, where (/T1 £)(*;) = £(A,v).) The action clearly leaves the ideal /
invariant and also respects the * operation so that it will pass to the quotients
and provide automorphisms of ^(n, N0). We may therefore form the C*-
crossed product ^(n, N0) K L where 5^(n, N0) is the C*-algebra obtained by
completing ^(n, N0). (When L is the Lorentz covering group and n is the
supertranslation algebra the C*-crossed product is the C*-algebra which we
associate with the super- Poincare group.) We are now in a position to apply
Takesaki's theory of induced ^representations of C* -crossed products, [2].

First we need some notation. For £ e UQ we let L^ be the subgroup of L
which stabilises the equivalence class of the representation M% of
^(n, JV0). That is, L^ consists of those AeLfo r which there exists a unitary
operator D(X) such that

M5(J, a) = D(A)M4(a)D(A)-1, ae^(n, N0).

(As a matter of fact L^ injects into the spin group which is a subgroup of the
invertible elements in C% and D is just the composition of this injection with
M^.) By a standard argument the irreducibility of M^ means that A -» D(/l)
defines a projective representation of L^. If we assume that H2(L, T) = 0, as
happens for when L = 5L(2, C) then the multiplier is trivial and we may as well
assume that D is an ordinary representation.

Theorem 5.1. Suppose that the action of L on N0 is smooth and that
H2(L, T) = 0. Let E be an irreducible unitary representation of L%> so that
(D (x) £)(A)(M^(a) (x) 1)(D (x) £)(A)~ x - (M£L a) (g) 1) for a e ^(n, JV0). Then the
covariant * -representation of ^(n, N0) ix L induced from the covariant *-
representation (M^ (g) 1, D (x) £) o/ ^/ze C*-crossed product ^(n, AT0) ix L^ w
irreducible. Conversely, every irreducible * -representation of ^(n, AT0) K L w o/
//zw /^rm, a«J rwo 5-wc/z representations are equivalent if and only if the gs lie on
the same L- orbit and the E's are conjugate.

Proof. Theorem 4.1 and Corollary 4.3 have already told us that ^(n, AT0)
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is of type I and that its dual is essentially N0. The assumption that L acts
smoothly on JV0 is therefore all we need to be able to apply Takesaki's Theorem
6.1, [2]. Clearly (M^ (x) 1, D (x) E) is an irreducible covariant representation of
^(n, N0) K L£ and so induces an irreducible covariant representation of
y(n, NQ) ix L. On the other hand any primary representation of 5^(n, N0)
which is quasi-equivalent to M% has the form M§ (x) 1. If (M5 (x) 1, F) forms a
covariant representation of «9"(n, JV0) K L^ then F^XZ^/l)"1 (x) 1) /lei^ com-
mutes with M^(a) (g) 1, ae^(n, JV0) and so takes the form 1 (x) £(/l). In other
words F = (D (x) E), and if (M^ (x) 1, D (x) E) is irreducible then so is
E. Takesaki's Theorem tells us that every irreducible representation of
y (n, NQ) K L is induced from such a covariant representation.

Remarks. 1. It is easy to see that a grading may also be induced if one
wishes to work with graded representations. (The trick of regarding the grading
operator as enlarging the Clifford algebra is again useful here.)
2. One readily checks from the covariance relation for the crossed product that
the derivative of the induced representation furnishes a representation of the
super-Poincare Lie algebra.

In the case of the super-Poincare group we know that any timelike £ can be
Lorentz transformed to the form (m, 0, 0, 0) on the same orbit. Since the
Clifford algebra has only one irreducible representation up to equivalence the
isotropy subgroup of (m, 0, 0, 0) must be SU(2). In fact if we give nl the
complex structure defined by y° then nt ^ C2 and SU(2) acts naturally. The
representation which implements the equivalence on the Clifford algebra
representation is therefore the graded exterior algebra A(D1/2) ^ D° 0D1/2 0
D°. If we take E = Dj for the other representation then D 0 E ^
(D°0D1/2 0D°)(x)D^ D- /0D-' '+ 1 / 20/)- /~1 / 20Z) J ' . We must therefore
induce (M(mj0)050) (g) 1, Dj 0 Dj+1/2 0 Dj~1/2 0 Dj) to obtain an irreducible.
(These are called the massive irreducibles.)

Similarly when £ is lightlike it is on the same orbit as (1, 0, 0, 1), whose
isotropy subgroup is the solvable group of upper triangular matrices.

We have now shown that the irreducible covariant representations of
c5^(n? N0) K L are induced from covariant representations of ^(n, N0) K L^. In
this section we shall show how these can in turn be induced by Rieffel's algebraic
method, [1], [3]. We shall do this just for the super-Poincare group itself,
where N0 is the Minkowski translation group and n1 the Majorana spinors.

The first step is to notice that for timelike £ the representation M^ of Q can
be algebraically induced. We first consider the group 17(1) acting on ni by
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Since these are orthogonal transformations each induces an automorphism of
C%. Since even dimensional C% is simple and each of these automorphisms is
inner, implemented by say, R^(t)eC^ Thus C5 can be regarded as a left Cr

right [/(l)-bimodule. There is, moreover, a conditional expectation from C§ to

where Trs denotes the canonical supertrace, so any representation [i of [/(I) can
be induced to give a representation of C% by Rieffel's procedure. (Equivalently
one may use the procedure of [3] using the operator-valued inner product

<4, By = (n(t)P(A*B)(t)dt.)
J

If n(t) is chosen to be the lowest possible weight (e~lt with the usual
conventions), then the induced representation is the irreducible M^. (This is
because ^jj,(t)R^(t)dt is then a rank one projection.)

Before moving on to the general case we note that the action of KE!^
commutes with y(£) and gives rise to an inner automorphism of Q implemented
by d^K) which commutes with R^(t). (In the notation of Section 5 the
representation D(K) = M^(8^(K)).)

We now extend this idea to the C*-crossed product ^(n, JV0) ix L. We
recall that this may be considered as a completion of the algebra of continuous
functions of compact support from L to £f(n. N0). These may also be regarded
as function on Lx N0, and we shall write them as a(A, £).

Theorem 6.1. For £, = (m, 0, 0, 0) and a representation E of SU(2) the *-
representation induced algebraically using the operator-valued inner product

a, j8ey(n, NQ) x L is irreducible, and every massive irreducible * -representation is
equivalent to one of this form.

Proof. The integration over t gives M^ whilst the integration over K gives
the inner product needed for inducing from 5^(n, NQ) IK L^ viewed algebraically
([1], Theorem 5.12), so that overall we recover the same irreducible as
before. In some ways this makes the analogy with the Wigner-Mackey
construction of the Poincare irreducibles even stronger.

§70 Tensor Products of Irreducible Representations

In this section we shall just outline how one can decompose the tensor
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product of two massive irreducible graded representations of the super-Poincare
group. We denoe by (§) the graded tensor product of two graded algebras, [8],
[9].

Let E1 and E2 be two representations of L^ and M\, M\ graded
representations of Q. Using Takesaki's Theorem 7.1, [2], we may restrict the
Induced covariant representation ind(£Ai^, D (x) £x) 0 ind(£M|, D (x) E2) of
(«9"(n, N0) (g) ̂ (n, N0), L(x) L) to (^(n, JV0) (g) ̂ (n, JV0), L) where Lis regarded
as the diagonal subgroup of L x L. Just as for the Poincare group the double
cosets of L\ (L x L )/(L^ x L5) are in one-one correspondence with those of

and the restricted representation decomposes as

, (D (x) EJ (g) (D (g) £2)
A}^.

To achieve further reduction we must note that ^(n, N0) has a natural Hopf
algebra structure with comultiplication 6(A (x) d)(^9 rf) = a(£ + rj)(A^ (g) 1
+ 1 (g) ,4^). (Compare [8] Theorem 1.6.) Writing Y\ = !£, we may restrict the
representation ^M\ (x) r\M* of ^(n, JV0) (g) ̂ (n, JV0) to the diagonal subalgebra
(5«9*(n, JV0). This gives

(A (g) a) —> a(£ + i7)(M^(^^) (g) 1 + 1 (g) M^A,)).

This cannot be irreducible for dimensional reasons, but is a sum of four
irreducibles. Combining this with Takesaki's direct integral one obtains an
explicit expression for the tensor product of graded Irreducible representations of
the super-Poincare group.
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