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Holomorphic and Singular Solutions
of Nonlinear Singular First Order

Partial Differential Equations

By

Raymond GERARD* and Hidetoshi TAHARA**

Introduction

In this paper we will discuss the following types of nonlinear singular first
order partial differential equations:

du
(E) t- =

where (t, x)eCtxCn
x, x = (xl9...,xn), = ( 5 . . . , - , F(t,x,u,v) is a

OX \ (JX-^ O^n /

function defined in a polydisk A centered at the origin of Ct x C" x Cu x C",
and u = ( U I , . . . , U B ) . Our assumption is as follows:

(Aj) F(t, x, u, v) is holomorphic in A,
(A2) F(0, x, 0, 0) = 0 in A^

dF
(A3) ^(0, x, 0, 0) - 0 in AQ for i = !,...,«,

OVi

where A0 = Af}{t = Q, u = 0 and v = 0}.
The purpose of this paper is to study the following:

Problem, Investigate the structure of holomorphic and singular solutions
of (E).

The most typical model of our equation (E) is the following ordinary
differential equation
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(0.1) t^=f(t,u), f(0, 0) = 0

which was first studied by Briot-Bouquet [2] . Nowadays it is called the Briot-
Bouquet equation and the structure of solutions of (0.1) near the origin of Ct is
well-known (see Hille [6], Hukuhara-Kimura-Matuda [8], Kimura [9], Gerard
[5] etc.). In particular, when

is in a generic position, we know the following:

Tftieoremo Assume that f ( t , u) is a holomorphic function defined near the
origin of Ct x CM. Then we have:

(I) (Holomorphic solutions). If p$N*( = {1, 2, 3,...}), the equation (0.1) has
a unique solution u0(t) holomorphic near the origin of Ct satisfying M0(0) — 0.

(II) (Singular solutions). If p^N*u{aeR; a ^ 0}, the general solution u(t)
of (0.1) near the origin of Ct is given by

(0.2) u(t) = cf + alt0t + I ^,/W,
i + j^2

where ceC is arbitrary, the coefficients a^-eC are uniquely determined by the
equation (0.1), and the series

is a convergent power series in {t, w). The holomorphic solution uQ(t) in (I) is
given by the case c = 0.

Is it possible to generalize these results (I) and (II) to our partial differential
equations ? What kinds of series appear in the expansion of singular solutions of
(E)?

In order to answer these questions, let us make clear the meaning of our
"singular solutions". Denote by:
-C\{0} the universal covering space of C\{0};
-S0 the sector in C\{0} defined by {teCyfo}; |argt| < 0};
-S(e(s)) = {teC\{0}; 0 < t\ < e(argt)} for some positive-valued function e(s)

defined and continuous on Ms;
-D(d) ={xeCn;\xi\<6j=l...,n};
- C {x} the ring of germs of holomorphic functions at the origin of C" .

rf (9+. 0+ is the set of all functions u(t, x) satisfying the
following conditions (i) and (ii):

(i) u(t, x) is holomorphic in S(e(s)) x D(S) for some e(s) and 5 > 0;
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(ii) there is an a > 0 such that for any 9 > 0 and any compact subset K
of D(5)

max u(t, x)\ = 0(|f| f l)

as t tends to zero in Se.

Note that ^(s) = sa, a > 0, is a particular form of a function satisfying the
following properties:

0/0 A/(s)GC°((0, oo)),
> 0 and jj,(s) is increasing in se(0, oo),

of 0int. 0int is the set of all functions u(t, x) satisfying the
following conditions (i) and (ii):

(i) u(t, x) is holomorphic in S(e(s)) x D(5) for some 8(5) and d > 0;
(ii) there is a function ju(s) satisfying (ju^, (jU2), (MS) sucri tnat for any 0 > 0

and any compact subset K of D(d)

max|ii(t,x)| = 0(0(1*1))

as t tends to zero in Se.

In this paper we will employ the space $+ or 0int as a framework of
singular solutions. Clearly, we have (9 + c 0int.

Put

aF
(0.3) p(x) = —(0,x,0,0).

ow

Then we can state our main theorem as follows:

ale Theorem. Assume (AJ, (A2), (A3) and p(0)^N*. Then we have:
(I) (Holomorphic solutions). The equation (E) has a unique solution uQ(t, x)

holomorphic near the origin of Ct x C" satisfying w0(0? x) = 0.
(II) (Singular solutions). Denote by <9*+ [resp. 5^int] the set of all (9 +-

solutions [resp. (^fat-solutions'] of (E). Then:

.
int {u0}u{U((p)',Q%<p(x)eC{x}}9 when Rep(0)>0,

where UQ is the holomorphic solution in (I), and U(cp) is an (9 ̂ -solution of (E)
having the expansion of the following form
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f u(<p) = E MX)** +
] i ^ 1 ;

^ <PO,1,0(*) = <?(*)•

Note that our result is consistent with the one for (0.1). To see this, we

have only to recall that (0.1) is transformed into the equation I t-—p )w
\ ot J

= 0 under the relation

j, — w i n * i V n fiwJ
U — w T M I , 0 * - ' Z_j ui,jL w

and therefore in (0.2) the condition u(t)eS+ is equivalent to the condition
ctpe(9+ (see Hukuhara-Kimura-Matuda [8]).

Thus, our equation (E) is quite similar to the Briot-Bouquet equation (0.1)
not only in the form of the equation but also in the structure of solutions, and
therefore the following definition will be reasonable:

Definition. If (E) satisfies (At), (A2) and (A3), we say that (E) is of Briot-
Bouquet type with respect to t. Then, the holomorphic function p(x) defined by
(0.3) is called the characteristic exponent function of (E).

The paper is organized as follows. In § 1 we will show the existence and
uniqueness of holomorphic solutions, in §2 we will construct a family of singular
solutions U(cp) in G + , and in §3 we will discuss the uniqueness of 0int-
solutions. Using the results obtained in § 1 ~ § 3, in § 4 we will give a proof of
Main Theorem. Some remarks will be stated in §5.

Throughout this paper we write N = {0, 1, 2,...} and N* = N\{0}
= {1,2,3,...}.

This joint work began during the stay of the second author at the
University of Strasbourg (France) and was finished during the stay of the first
author at Kyushu University in Fukuoka (Japan).

§1. Holomorphic Solutions

In this section we will study holomorphic solutions of nonliear partial
differential equations of the form:

where p(x) and a(x) are holomorphic functions defined in a polydisk D centered
at the origin of C", and

G2(x)(t, z, X0, X19...,XJ =
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in which the coefficients {ap,qt<x(x)}p+q + \a\z2 are holomorphic in D and

I^WaMI ^Ap,q^

moreover the power series

|G 2 | ( t ,z ,X)= X AP.**tP*x*
p + q+\a\^2

is convergent near the origin of C, x Cz x C£+ * .
A holomorphic solution of (EJ means in this section a solution H(£, x)

holomorphic near the origin of C, x C" satisfying w(0, x) = 0, and a formal
solution of (EJ means a formal power series solution of the form

whose coefficients {wm(x)}m^1 are holomorphic in a same disk centered at the
origin of C".

Then we have:

Theorem 1. (1) Each formal solution of (EJ is convergent.
(2) If p(0)^N*, (Ej) /za^ a unique formal solution which gives a unique

holomorphic solution u(t, x) satisfying u(0, x) = 0.

Note that the assertion (I) of Main Theorem easily follows from (2) of
Theorem 1.

Proof. The assumption p(0)^N* implies easily that (Ej) has a unique
formal solution of the form

Moreover, um(x) (for m ^ 1) is determined by the following recursive formula:

1 - p(x)

and for m^.2

(1.1) um(x) = -m - p(x)

Hence, if p(0)^N*, this formula shows the unicity of the formal solution
and the unicity of a holomorphic solution if it does exist.
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To prove the assertion (2) of Theorem 1, we have only to prove the
convergence of this formal solution. From now we write

We will make use of

Lemma 1. If a function u(x) holomorphic in DR satisfies

C
|wWI = (R _ ry

 on DrforO<r< R,

then we have

:, t !i on Drfor 0 < r < R, i= l,...,n
- / O y \ P + 1 " J 7 3

(where e is the real number such that loge = 1).

For the proof, see Hormander [7, Lemma 5.1.3],

Proof of the convergence of the formal solution

(1.2) Z «mWr.

First we assume p(0)^N*. Then by taking R sufficiently small we may assume:

2) all the um(x) are holomorphic in D#;
3) we have in DR

^M
MX) 1^4

|m — p(x)| ^ crm, m = 1, 2, 3, ____

Consider now the following analytic equation

By the implicit function theorem, this equation has a unique holomorphic
solution of the form

(1-3) Y= £ Ym(r)f,
m ^ l

and 7m(r) (for m ^ 1) is determined by the following recursive formula:
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and for m ̂  2

(1.4) *Yn = -l—
K-r

Moreover by induction on m we can see that Ym(r) is expressed in the form

with constants C1 = A and Cm ^ 0 (for m ̂  2).
Let us show that this power series (1.3) is a majorant power series for the

formal solution (1.2). To do so, it is sufficient to prove the following
inequalities for all m:

(1.6)m \um(x)\ ^ |miU*)l ^ Yn(r) on Dr for 0 < r < R;

(1-7), on Dr for 0 < r < R, i = l,...,n.

Since Y± = A, the case m = 1 is clear from the definition of A. We will prove
the general case by induction on m.

Let m ^ 2. Suppose that (l.6)p and (1.7)p are already known for all p
< m. Then from (1.1) and (1.4) we have

(1.8) \um(x)\

1
\m - p(x)

fmi ! M I | , |2w2!, . . .5 | (m- l)wm-!l, |w 1 | , . . . , |w m _ 1 | ,

= /ml ^lJ ^ 2 J - - - J

_ _ F
~ r

crm

*-q + |a| ^
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which yields (1.6)m. Since Ym(r) has the form (1.5), the above inequality (1.8) is
written as

and therefore by Lemma 1 we obtain

•(x)
dxt "•«•"">•

for 0 < r < R, i = 1,..., n

which implies (1.7)m.
Thus, by summing up we have obtained the convergence of the formal

solution (1.2) under the assumption

Now assume that p(0) = lceN*. Then the equation for uk(x) takes the
form

(1.9) (k-p(x))uk(x)=fku1(x)92u2(x),...,(k- l)ttk_i(x), M1(x) , . . . ,w f c_1(x) ,

dut duk_1 d u k _ l f
)p + q + \a\^

When p(x)^k and if (E^ has a formal solution, (1.9) implies that uk(x) is
determined uniquely. When p(x) = k and if (EJ has a formal solution, we must
have from (1.9)

0= / f c ( WiM, 2M 2 (*) , . . . , ( fc- IJ l l fc - iW, M 1 ( x ) , . . . , U k _ 1

on DR

which implies that wk(x) can be taken arbitrarily. Moreover, if wk(x) satisfies
(1.6)k and (1.7)kJ the proof given before can be applied and the, formal solution is
convergent. Hence, to have the convergence of the formal solution we have
only to notice the following fact: for a given wk(x) we can modify

{Ap,q,i}P+q+\*\*k so that (1-6)* and (l-7)k are satisfied.
Thus, the proof of Theorem 1 is completed.

Denote by C{x}[[f]]0 the ring of formal power series of the form
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I um(x)f
m ^ l

whose coefficients um(x) are all holomorphic in a same disk centered at the origin
of C", and by C{x}{t}0 the subring of convergent series.

Definition 1. An operator

is called singular regular, if and only if

tteC{x}[|Y|]o and DuEC{x}{t}0 imply uGC{x}{t}0.

Then we have:

CoroIlaryB The operator

du du du
t-j-, w>^— » - - - » T ~, at a*! a%,

w singular regular.

Remark 1. Theorem 1 is not true for a partial differential equation
containing higher derivatives with respect to x. For example, let us consider

(1.10) f t p \u = h t—j' P i§ constant and

the equation (1.10) has the following formal solution

(2m -2)1 tm

u(t,x)=

which clearly diverges.

Remark 2. (1) When p(0) = keN* and p(x) ^ k hold and if (EJ has a
formal solution, then Theorem 1 gives a unique holomorphic solution.

(2) When p(x) = keN* holds near the origin of C" and if (Ex) has a formal
solution, then Theorem 1 gives a family of holomorphic solutions depending on
the arbitrary function uk(x).

For some other results on the existence of holomorphic solutions for
nonlinear partial differential equations, see Bengel-Gerard [1] and Gerard [3, 4].

§2. Singular Solutions

In this section we will construct a family of singular solutions in & + of
nonlinear partial differential equations of the form :
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(E2) f t - - p ( x ) ) u = ta(x) + G2(x)U u, |̂ ,...,|̂  ),
V dt ) \ dx1 dxj

where p(x) and a(x) are holomorphic functions defined in a poly disk D centered
at the origin of C", and

(2.1) G2(x)(t, X09 X19...9XJ = ^ a
p + \a\^2

in which the coefficients {ap^(x)}p+l^^2 are holomorphic in D and

|flp,a(x)| ^^p,a;
moreover the power series

| G2 1(*,*)= X ^P,a^
a

p+|a |^2

is convergent near the origin of Ct x C£+1.
Note that (E2) is a particular form of (EJ. Therefore, from Theorem 1 we

know the following: if p(0)^N*3 the equation (E2) has a unique holomorphic
solution u(t, x) satisfying u(0, x) = 0.

Now, let us find singular solutions of (E2) of the form

(2.2) u(t, x) = w(t, tp(x\ x, logt)

with

w( f l f t29 x9y)= X wmi>m2(x, y)tTtT-
mi +W.2 ^ 1

To do so, we put tl9t2 and y as follows:

(2.3) tl =t,t2 = tp(x} and y = log*.

Then, under the relations (2.2) and (2.3) we have

du dw , , dw 5w
t_ = tl_ + /,wta- + -,
du dw dp(x) dw
^- = T- + -p— 3>*2T~~> f = 1"-"n-
CXf OXj 6/X^ ^t2

Therefore, in order that w(t, x) given by (2.2) is a solution of (E2) the function
w(t l 5 t2, x, y) must be a solution of

(E'2) t + p M - p M +

dw
tl9 W,
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Proposition 1. (1) If the condition

ml + p(x)(m2 - 1)^0 on Dr
( ' } for ^(m l 5m2)eN2 \{(050),

is satisfied, (E'2) has a formal solution of the form

where <Po,i,o(x) ^ arbitrary, and all the other coefficients wm(x), <jP m i j m 2 > k(x) fl^e
uniquely determined by <Po,i,oM- V 9o,i,o(x) *s holomorphic in Dr, then all the
coefficients wm(x), (pmijm2,k(x) are also holomorphic in Dr.

(2) If p(0)^N* and Rep(0)>0, then the formal solution given in (1) is
convergent on a region of the form

{(*!, £2, x, y)eC x C x C" x C; |t! < e, |t2| < e,

Ij;^ < e, |>;2t2| < e awd \xt < r (i = !,...,«)}

s > 0 a^ r > 0 (depending on (p0,i,o)-

Before the proof, let us present some preparatory discussions.
First we note that under the relation

w(t l 5 t29 x,y)= X wmiima(x, y)^1^2

mi +wt2^ 1

the equation (E2) is equivalent to a recursive family of equations as follows:

(2.5)

(2.6) (

and for mt + m2 ^ 2

(2.7) U 1 +p(x)(m 2 - l ) + — Jwm i ,m 2

= /»,.»,( KJ-}i<mi,J.<m2 ,

i+ j ^mi +m2 — 1

Next let us consider the operator
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d
Lmi,m2 = m1+ p(x)(m2 - 1) + — .

Denote by Cr{x} the ring of all holomorphic functions in Dr9 and by PTO>r{x}[j]
the set of all polynomials ^™=0<Pi(x)yl of degree m in y with coefficients (pt(x)
belonging to Cr {x} . Then, if the condition (2.4) is satisfied, we can easily see the
following properties 1) and 2):

2) for any (ml9 m2)eN2\{(0, 0), (0, 1)} and meN the operator

is invertible.

In order to estimate the operator norm of the inverse of L m i > m 2 : Pm,r{x}[y']
Pm,r{x}[y], for cp(x)ECr{x} we define the norm \\q>\\r by

(2.8)
XGUf

and for w(x, y) = "£™=0(pi(x)yiePmtr{x}[_y] we define the norm [|w||M by

l|w||M= £ II?, ||, A'.
i = 0

Then we have:

Lemma 20 If the condition

\m1 + p(x)(m2 — 1)1 ^ a(mv + m2) on Dr

for any(ml9m2)E^2\{(090)9(09l)}

is satisfied for some a > 0, we have the following properties 1) and 2) for any
(m l5 m2)eN2\{(0, 0), (0, 1)} and meN:

1) Lm i > m 2 : Pm,r{x}[y~] — * Pm,r{x}[y] is an invertible operator;
2) for any w(x, }>) e -Pm,r {*} [j;]

m2
j + m2)

Proof. 1) is clear. Put w(x, y) = J^=0q>l(x)ylePmf{x}[y]. Then, 2) is
verified by the following:

X 1^ + p(m2 -
i = 0 i = 0
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' 4- ^~ —/H! + m2j ^

This lemma guarantees that the same argument as in § 1 can be also applied
to (E2).

Proof of Proposition 1. The existence of a formal solution of the form

(2-9) +?>/""

with

(2 10) » . o o . r rx, m ̂  ,
lwm i i m 2ePm i + 2m2_2ir{x}[>], mi + m2 ̂  1 and m2 ̂  1

is a consequence of (2.5), (2.6), (2.7) and 1) of Lemma 2.
Let us show the convergence of the formal solution (2.9) with (2.10). The

assumptions p(0)^N* and Rep(0)>0 imply that

\m1 + p(x)(m2 — 1)1 ^ cr(m1 + m2) on DR

for any (m l5 m2)eN2\{(0, 0), (0, 1)}

is satisfied for some a > 0 and R > 0. Choosing R > 0 sufficiently small, we
may assume:

1) 0<K < 1;
2) wmj0eCK{x}, m^ 1;
3) wmi>m2(x, y)6Pmi + 2m2_2iR{x}|>], mx +w2 ^ 1 and m2 ̂  1;
4) we have the following estimates:

S Al9 I =
R

^A2, i =

II —

Consider now the following analytic equation

2 2 1 l 2 2
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The implicit function theorem tells us that this equation has a unique
holomorphic solution of the form

(2.11) Y=
mi

Moreover it is easy to see that the coefficients Ymijm2(r, X) has the form

c o\
^ ;

with C1§0(A) = AI, Co.iW = A2 and Cmitm2(X) ^ 0 (for m1 + m2 ^ 2). Hence, by
induction on (m l5 m2) we can see in the same way as in §1 that the following
inequalities hold for any (m l5 m2)eN2\{(0, 0)}, 0 < r < R and A > (4/<j):

H w m i i m 2 | | r f A ^ rmi,m2(r, A),

dp
i,m2(r, A),

This implies that the power series Fin (2.11) is a majorant series for the formal
solution (2.9).

If we fix r and /I as above, by the convergence of 7 we have

M 2\{(0, 0)}

for some M > 0 and e > 0. Therefore, if x| ^ r and A ̂  1, by denoting rf(y)
= max{l? |j;|} we have

^ I \\wmi,m2\\r,l(fi(y)ri+2m2\t1r\t2mi +m2^ 1

M
^ I ^T^(i(y)Mr(n(y)2\t2\r

2

mi +m2^ 1 £

which converges for any (t l5 t2,3;) satisfying ?/(}^)|til < e and f/(j;)2 t2l < £- This
proves (2) of Proposition 1.

Summing up, we have

Theorem 2, If p(0)^N* and Rep(O) > 0, the equation (E2) Aos a family of
(S+-solutions of the form
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(2.12) !«,(*)*' + £ 9t,j,k(x)tl+M'^ogtf,
i^l i + 2j^k + 2

7^1

where (p0,i,o(x)6C{x} can be taken arbitrarily, and all the coefficients
ut(x), q>ijjk(x) are holomorphic in a same disk centered at the origin of C";
moreover the solution (2.12) is uniquely determined by <p0,i,oeC{x}. If we take
9o,i,o = OeC{x}, the above 0 + -solution is reduced to the unique holomorphic
solution of (E2).

Proof. Let

be a holomorphic solution of (E2) obtained in Proposition 1. Then, by the
assumption Rep(O) > 0 and (2) of Proposition 1 we can easily see that the series

i > 1 i + 2 j > k + 2
J i l

is convergent in 5+ and therefore it gives an 0+ -solution of (E2).
Since the existence of the unique holomorphic solution of (E2) is already

known, to complete the proof of Theorem 2 it is sufficient to prove that the
formal solution of (E2) of the form (2.12) is uniquely determined by cp0 sl >0eC{x}.

Let u(t, x) be a formal solution of (E2) of the form

(2.13) u(t, x) = X

where ut(x), (pijik(x)ECr{x}. When p(x) is not a constant function in C{x} or
when p(x) = constant £Q, then any finite subset of

is linearly independent over the ring Cr{x} as a family of functions and therefore
all the coefficients u^x), (piJik(x)eCr{x} of the formal solution u(t, x) are
uniquely determined by (p0,i,oM-

When p(x) = constant eQ, p(x) is expressed as p(x) = p/q for some
p, ^feN* satisfying (p, q) = I. Since p(0)^N* is assumed, we have q
^ 2. Then, u(t, x) in (2.13) can be rewritten in the form

(2.14) u(t, x) --

where i//pi0(x) = <Po,i,o(x)- Since u(t, x) is a formal solution of (E2) with
p(x) = p/q and since any finite subset of {^(logt)k; / + k ^ 1} is linearly
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independent over the ring Cr{x}, an easy calculation shows that logarithmic
terms do not appear in the formal solution of the form (2.14) and therefore
u(t, x) is expressed as

(2.15) u(t, x) = Z *KoM^-

Thus, if we rewrite u(t, x) into the form (2.15) as above, we can conclude that all
the coefficients i//itQ(x) are uniquely determined by *t/pto(x) = <Po,i ,oW-

Thus, the proof of Theorem 2 is completed.

§3= Uniqueness of the Solution

In this section we will discuss the uniqueness of the 0int-solution of the
equation (E2).

As is proved in Theorem 2, we already know the following uniqueness
result: if p(0)^N* and Rep(O) > 0, if u^t, x)e(9+ and u2(t, x)e0 + are solutions
of (E2) having the expansion of the form

n 1} u (t *} — Y u^Mt1 -4- V coW (x\ti+jp
I -J . -LJI Ltrl\i« .A/l — / vii I A > / £ - |^ / U/i j i v l . A / l i <^ ' P^ 3 ' L~t I \ / /_< T- I , J , JC \ /

t^l i + 2j^k + 2

with u\p)(x), q>$ik(x)eCr{x} for some r > 0, and if <p$lt0(x) = (p(o,\,0(x) holds in
Cr{x}, then we have u1(t, x) = u2(t, x) in &+.

The purpose of this section is to remove the assumption that up(t, x) has an
expansion of the form (3.1).

Theorem 3. Let u^t, x)e^ int and u2(t, x)e@int be solutions of(E2). Then:
(1) For any a < Rep(O) we have t~a(ul — u2)E@+.
(2) If t~b(u1 - u2)e5int holds for some b ^ Rep(O), we have u±(t, x)

- u2(t, x) in 0int.

Proof. Let u^ed^ and w2e^ i n t be two solutions of (E2). Set w = (u1

— u2)e@-ini. Then w(t, x) is a solution of

,n^ ( s , \ * , ^ ^ . / ^dw

(3.2) t— - p(x) \w = A0(t, x)w + X Ai(t> x)^
\ Ot J j=i OXi

with

C1 dG2 f dw du2 dw du2

J 0 z \ 1 1 n n

i = 0, !,...,»,
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where G2(x)(t, X0, X1,...,Xn) is as in (2.1). Since w and u2 belong to 0int, from
(2.1) we have A&, x)e(5int, i = 0, !,...,«. Therefore, by the definition of 0int

there are £(5), R > 0 and //(s) satisfying (/jj, (fj,2)9 (fi3) such that for i = 0, l , . . . ,n
we have:

1) Afa x) is holomorphic in S(e(s)) x DK;
2) for any 0 > 0 there are 5 > 0 and M > 0 such that

(3-3)

holds for any teSe(5) = {teSe; 0 < \t\ <; d}\ in addition, by (/x3) we
may assume

f'V(s) -R
Jo~TdS<3M'

Take any 9 > 0 and fix it. Let R > 0, /j(s), M > 0 and 5 > 0 be as
above. For tQeSe(8) we write

L(t0, (5) = (t; t = st0, 0 < s ^ 5/|t0|}.

Lemma 3. Let Q < R2 < R1 < R be such that R2 + (R/3) < Rl and Rl

+ (R/3)<R. Then:
(I) For any (t0, x°)ESe(5) x DRl the equation

j = --t(A1(t,x(t)),...,An(t,

\ x(t0) = x°

has a unique holomorphic solution x(t) defined near L(tQ, 6) such that x(t)eDR

holds for any teL(t0, 5) and that x(t) converges to some point in DR as t tends to
zero in L(t0, <5).

(2) Denote by x(t; r0, x°) the unique solution of (3.4) and put

F(t0, x°) = {(t, x(t; t0, x0)); tEL(t0 , 5)}.

Then we have for any t0eSe(d)

U F(t0,x°)^L(t0,d)xDR2.
x°eDRl

To see this, we have only to notice the conditions R1 + (R/3) < R, R2

+ (R/3) < R! and the following fact: for any teL(t0, 5) we have

M
R

ds < —.
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By using this lemma we can investigate the behavior of w(t, x(t)) as t tends
to zero in L(tQ9 d). In fact, if we put

W(t) = w(f, x(f, t0, x°))9 teL(t09 6)

for (t0, x°)eSe(d) x DRl, by (3.2) and (3.4) we have

dW
(3.5) t— - (p(x(t)) + A0(t, x(t)))W= 0

with x(t) = x(t; £0, x°) and therefore by integrating (3.5) we obtain

Now let us prove (1) of Theorem 3. Take any a<Rep(G). We may
assume that

a + e < Re p(x) on DR

holds for some e > 0. Then, by (3.3) and (3.6) we have for any teL(t0,8)
satisfying \t\^\t0\

x exp - -^-
L Ji*i/ifoi

Hence, by putting f0 = 5eiri, \r\\^ d/2 and by using (2) of Lemma 3 we obtain for
any (t,x)eSe/2(8) x DR2

M I — ds
L Jo s J

x max |w(5e", x)|.

This implies that t~awe@+ holds, since 9 > 0 is taken arbitrarily. Thus, (1) of
Theorem 3 is proved.

Next let us prove (2) of Theorem 3. Assume that t~~bw = t~b(u1 — u2)e@ini

holds for some fe^Rep(O). Then, by the definition of 0int we see the
following : if R > 0 is sufficiently small, we have

(3.7) max|f~*w(t, x)| = o(l) as t tends to zero in Se
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for any 0 > 0.

When b > Rep(O) or when b = Rep(x), we may assume that

b ^ Rep(x) on DR.

Then by (3.6) and (3.7) we have

t, x(t-9

U
r\ V U// 7

—— — ds
\t\l\to\ S

= 0(1), as t tends to zero in L(t0, (5),

and therefore we obtain w(£0, x°) = 0. This implies that w = 0 in 0int, since
(t0, x°)eSe(d) x DRl is taken arbitrarily.

When b = Rep(O) and b ^ Rep(x) hold, we can find an JceC" sufficiently
close to the origin such that b > Rep(x) holds. Then by the above discussion
we have w(t, x) = 0 on Se(5) x {x; x — x| ^ R} for sufficiently small R
> 0. Hence, we can obtain w = 0 in ^int, since w is a holomorphic function.

Thus, (2) of Theorem 3 is also proved.

§4 Proof of Main Theorem

Assume that (E) satisfies the conditions (Ax), (A2) and (A3) in the
introduction. Then, (E) can be rewritten into an equation of the form
(E2). Therefore, we already know the following results.

(Ci)(by Theorem 1). If p(0)^N*, the equation (E) has a unique
holomorphic solution u0(t, x) satisfying uQ(Q, x) = 0.

(C2)(by Theorem 2). If p(0)^N* and Rep(O) > 0, for any <p(x)eC{x} the
equation (E) has a unique 0 + -solution U(q>)(t, x) having the expansion of the
following form:

C V(<p) = E u&Y + X VijA^ i+2m+2

where all the coefficients Mf(x), <pijtk(x) are holomorphic in a same disk centered
at the origin of C". If we take cp = OeC{x}, U(cp)(t, x) is reduced to the unique
holomorphic solution u0 in (Cx).

(C3)(by a calculation). If p(0)^N* and Rep(O) > 0, if b > 0 satisfies

Rep(O) < b < min{2Rep(0), Rep(O) + 1},
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and if a solution u(t, x)e@ini of (E) is expressed in the form

then the coefficients {^(x); 1 ̂  i ^ b} are uniquely determined by the equation
(E) and they are independent of cp(x).

Now, denote by ^ + [resp. 5^int] the set of all & + -solutions [resp. 0int-
solutions] of (E). If p(0)^N*, by (Q) and (C2) we have

(42) ^1 -Zj int + when Rep(0)>0.

Hence, to complete the proof of Main Theorem it is sufficient to prove the
following proposition.

Proposition 2, Assume (AJ, (A2) and (A3). Let w0, 17 ((59)
above. Then :

(1) Tf Rep(O) ^ 0 and we^ int, we Aat;e u = UQ in 5int.
(2) // p (0) ̂  N* , Re p (0) > 0 and u e ̂ int , we ca« ̂ w^/ a <p (x) e C {x} .swc/z

in 0n .

Proof. First let us show (1). Assume Rep(O) ^ 0 and ue5^int. Then, by
putting b = 0 we have t~b(u — u0) = (u — w0)e^ int and Rep(O) ^ b. Hence, by
(2) of Theorem 3 we obtain u = u0 in 0int.

Next let us show (2). Assume p(0)^N*9 Rep(O) > 0 and ue^int. Set w
= (u — w0)6^ int. Since u and u0 are solutions of (E), w satisfies the following
equation

with

(4-3) /(, x) = Ft , X ,W + u0,- + -- Ft , x, u0 ,

Take 0 < a < b such that

(4.4) a < Rep(O) < b < min {2a, a + 1}.

Then, by (1) of Theorem 3 we have t~aw = t~a(u — u0)eG+ and therefore by
(4.3) we obtain t~bfe&+. It is easy to see that W(t, x) defined by

f1

W(t,X)= s ~ p ( x ) ~ l f ( s t , x ) d s
Jo
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s
satisfies t~bWe&+ and I t- — p(x)\W=f. Hence, by solving the equation

t -- p(x) )(w — W) = 0 we can see that w — W is expressed in the form
dt

(w-

for some (p(x)eC{x}. Thus, by summing up we obtain

rb(u(t, x) - u0(t, x) - cp(x)tp(x)) = rb

On the other hand, if we use the same cp(x) as above, by (4.1) and (4.4) we
have

t-b(U(q>)(t,x)- £ «,(*)*' - p ( x ) f M ) G 0 + .
l^ i^b

Hence, by (C3) we have t~b(u — U(<p))E®+ and therefore by (2) of Theorem
3 we obtain u = U(cp) in 0+ .

Thus, by (4.2) and Proposition 2 we can easily obtain Main Theorem.
See also Tahara [10, 11].

In this paper, we restricted ourselves to the study of singular solutions in (9 +

or 0int. But, there seems to be a possibility that (E) has singular solutions
which do not belong to the class $ int, as is seen in the following example.

Let us consider

.. du du
(5.1) 'aT'"-^'

where (t, x)eC2 and peC is constant. By the separation of variables we can
easily see that (5.1) has a family of singular solutions of "meromorphic type" as
follows:

pt"(ax + b)

7^ '̂
aX + b

—-, when p = 0,
c — a log t

where a, b, c E C are arbitrary. Note that in the case Re p ^ 0 and a ^ 0 the
solution M f l )6 )C does not belong to the class 0int.
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