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Masaharu KUSUDA*

§ 1. Introduction

Let (A, G, a) be a C*-dynamical system, namely a triple consisting of a C*-
algebra A, a locally compact group G and a homomorphism a from G into the
automorphism group of A such that G3t-+ oct(x)EA is continuous for each x in
A. Now assume that the C*-algebra A is unital. Then the set of a-invariant
states of A, denoted by SG, forms a weak* compact convex subset in the state
space of A, and each extremal point in SG is called an ergodic state (occasionally,
G-ergodic state or oc-ergodic state). When we attempt to decompose an a-
invariant state into ergodic states, it is most important to investigate the
existence and uniqueness of the decomposition, and in order to carry out such
investigation we need to require some "abelianness" of C* -dynamical systems, in
particular, of invariant states. Now denote by (nv, u

9, H^, <^) the GNS
covariant representation associated with an a-invariant state <p, that is, n^ is a
representation of A on the Hilbert space Hv with the canonical cyclic vector <^
and u9 is a strongly continuous unitary representation of G on Hv defined by

«?KW)^ = ^(«tM)^
for xeA and teG. Note that

for all xeA and all teG. Given an a-invariant state cp, it is well-known that
there is a bijective correspondence between the orthogonal measures, over the
state space of A, with barycenter cp which satisfy the invariance condition with
respect to G and the abelian von Neumann subalgebras of {n<p(A)(}u%}f (see [1]
or [9] for the details). This fact plays a fundamental role in decomposition
theory of invariant states. In fact, the above correspondence allows us to
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connect a few kinds of "abelianness" conditions of invariant states with
decompositions, such as the ergodic decomposition or the subcentral decompo-
sition of invariant states. Now recall that an a-invariant state cp is said to be G-
abelian if, for each x, y in A and w^-in variant vector £ in H^,

where the infimum is taken over all x' in the convex hull of {<x,t(x)\teG}. Then
G-abelianness of cp yields abelianness of {^(,4)11 wg}' and the corresponding
maximal measure with barycenter cp is uniquely determined. This implies that
the notion of G-abelianness is most suitable for carrying out the ergodic
decomposition (see [1] or [9] for the details). Recall also that an a-invariant
state (p is said to be G-central if, for each x, y in A, z in n^A)' and i^-invariant
vector £ in H,

where the infimum is taken over all x' in the convex hull of {at(x)\teG}. Then
G-centrality of cp implies G-abelianness of cp and yields that

n9(A)f fl tig' - n9(AY f] n^A)' n ug' -

Thus the corresponding maximal measure is subcentral. This implies that the
notion of G-centrality is most suitable for carrying out the subcentral
decomposition of invariant states (see [1] for the details).

Though we have so far concentrated on the problem of decomposing an
invariant state into ergodic states, we now turn our attention to decomposing an
a-invariant state, in particular an ergodic state, into states which are not
necessarily a-invariant. More precisely, we restrict G to locally compact abelian
groups and consider the decomposition into almost periodic states. Here note
that a state \f/ of A is said to be almost periodic if, for each x in A, the function
G3t ->\l/(at(x)) is the uniform limit of a family of finite linear combinations of
characters of G (cf. [1] or [2]). In the almost periodic decomposition, the
notion corresponding to G-abelianness in the ergodic decomposition was
originated by [6], explicitly introduced by [1] and is called Gr-abelianness,
which is defined as follows. For given x in A and y in the dual group G of G,
let Con(ya(x)) denote the convex hull of «t, y>a,(x)|teG}. Then an a-
in variant state cp is said to be Gr~abelian if, for all x, ye A, yeG, and wg-almost
periodic vectors

where the infimum is taken over all x' in Con(ya(x)). It is well-known that Gr-
abelianness characterizes uniqueness of maximal measures, over the state space
of A, which are supported by an appropriate class of almost periodic states (see
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[1, 4.3.41]).

In this paper, we introduce the notion corresponding to G-centrality in
order to consider the subcentral decomposition into almost periodic states, and
we shall refer to such notion not as Gr-centrality but as G-centrality of almost
periodic type (occasionally, almost periodic G-centrality) in order to emphasize
"almost periodicity".

Section 2 is devoted to the preliminaries to establish our main results given
in Section 3. More precisely, for a G-central state of almost periodic type, we
describe some results corresponding to the spectral results in Gr-abelian case [1,
4.3.30-31].

In Section 3, we shall give some necessary and sufficient conditions for an
invariant state to be a G-central state of almost periodic type. In particular, we
shall show that, an invariant state cp is a G-central state of almost periodic type
if

n9(A)f fl {pj = n9(A)" n n9(A)' 0 {Ptp}'

and {p(pn(p(A)p(p}" is abelian, where p^ is the projection from H9 onto the
subspace of wg-almost periodic vectors. Conversely, we shall also prove that if
the canonical cyclic vector ^ is separating for n^A)", almost periodic G-
centrality of <p then yields the above equality and abelianness of {p(p7c(p(A)p(p}

ff.

§2. Almost Periodic C7-Centrality

Let (A, G, a) be a C*-dynamical system. Throughout this paper, we
assume that a locally compact group G is always abelian. We denote by G the
dual group of G. We generally use additive notation for group operations of
G. But for brevity we shall occasionally use multiplicative notation, i.e., y±y2 in
place of y1 + y2 and y~1 in place of — y. Let cp be an a-invariant state of A and
(7^, M*, Hv, ^) be the GNS covariant representation associated with <p. Then
the spectral decomposition of uv is given by

u=

where dP^ denotes the projection-valued measure on G. For simplicity, we use
the notation

Then the point spectrum a(uv) of u9 is defined by

and this definition implies that yecr(w<p) if and only if there exists a non-zero
eigenvector r\y in Hv such that
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for all t in G. Define the projection p^ on H9 by

<P
yeG

and we refer to pvHv as the subspace of u* -almost periodic vectors.
We obtain the group of automorphisms a of n^A)" by the canonical

extension

for all x in 7cv(>4)" and t in G.
For each y in G, we define a unitary representation yu* of G on H9 by

for all t in G. Similarly, we define a family of bijective linear maps ya of A by

for all x in ,4 and t in G.

We are now in a position to introduce the notion of a G-central state of
almost periodic type.

Definition 2.1. An a-invariant state cp is said to be a G-central state of
almost periodic type if for each x, y eA, z en^A)' , yeG and ^rjep^H^, the
following is satisfied:

where x' runs over Con(ya(x)).

We remark that a G-central state of almost periodic type is always a G-
central state. But the converse is false in general (see Example 3.15).

Since G is amenable, there exists an invariant mean m on G. We can
rephrase the definition of almost periodic G-centrality by using an invariant
mean m as follows.

Proposition 2020 Let (A, G, a) be a C*''-dynamical system, where G is a
locally compact abelian group. Let cp be an a-invariant state of A. Then the
following conditions (l)-(3) are equivalent:

(1) cp is a G-central state of almost periodic type.
(2) ro((7r^([ya(x), j;])z<^)) = 0 for all x, ytA, zenv(A)r, yeG and all

£, rfepyHy and for some invariant mean m on G.

(3) Pv(y\)n9(*)p9(y\ - 7)^60^,^2) = P9(y\)n



G-CENTRAL STATES 1005

for all x, ye A, zen^A)' and y, yl9 y2eG.

This proposition corresponds to [1, Proposition 4.3.30] in Gr-abelian case
and the proofs are almost similar. Hence it is left to the reader to check the
details.

In statement (3) of Proposition 2.2, put y1 = y and y2 = 0. Then we have
the following lemma from the modification of the proof of [1, Theorem 4.3.31

Lemma 2.3. Let (A, G, a) be a C*-dynamical system, where G is a locally
compact abelian group. Assume that a G-central state of almost periodic type cp
is a-ergodic. Let y be an element in ^(u9) and let x be an element in n9(A)" with
P9(y)x£<p ^ 0- Then, for finite subsets {y£} in n9(A}" and {zj in n9(A)', we have

Theorem 2.4. Let (A, G, a) be a C*-dynamical system, where G is a locally
compact abelian group. Assume that a G-central state of almost periodic type q>
on A is a-ergodic.

(1) For yEo(u9), there exist a unit vector r\y in H9 and a unitary element vy

in n9(A)" r\n9(Af such that

<t, yy ny, at(vy) = <£, 7) vy

for all t in G. Moreover, rjy and vy are uniquely determined up to scalar multiples
of modulas one.

(2) The point spectrum a^) of u9 is a subgroup of G. Let N 'v denote the
annihilator of a(u9). Then we have

{vy\yea(u«}}" = n^A)' K{P(p}' = n9(A)f^n(p(A)^{P(p}'

d n<p(A)" n nv(A)f n {eNq}' = n^A)" n n9(Ay n «»/,

where p9 is the projection on the subspace spanned by u^-almost periodic vectors
and eNc(> is the projection onto the subspace of u% ̂ -invariant vectors.

This is shown in the same way as [1, Theorem 4.3.31] by using Lemma
2.3. The details are left to the reader.

We have just obtained that if an a-ergodic state cp of A is a G-central state
of almost periodic type, then we have

Conversely, it would be very interesting to consider the question whether every
a-ergodic state cp satisfying the above formula is always a G-central state of
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almost periodic type. But we can not expect the affirmative answer to this
question in general. In fact, we will give a counterexample in the next section
(see Example 3.15). In the case where cp is not necessarily oc-ergodic, we will
describe some conditions equivalent to the condition that (p be a G-central state
of almost periodic type or to the above formula under some assumption, in
Theorem 3.9, Corollaries 3.10-3.11 and Propositions 3.12-3.13.

Note here that if a G-central state cp is factorial, then it is ergodic. In fact,
an a-invariant factorial state is always centrally ergodic. It therefore follows
from [1, Theorem 4.3.14] that <p is ergodic.

Corollary 2,5= Let (A, G, a) be as in Theorem 2.4 and let (p be a G-central
state of almost periodic type on A. Assume that cp is factorial. Then o(u9}
consists only of the identity of G.

Proof. Since cp is factorial, the center of nv(A)" is trivial. Hence, the
above theorem shows that {i^lyea^)}" consists only of scalars, which implies
that at(Vy) = vy for all t in G. We thus obtain that <£, y> = 1 for all t in G, and
therefore 7 = 0. Q.E.D.

Remark 2,6, Assume that a G-central state of almost periodic type cp is
TY^-ergodic. Then (p is also G-ergodic. In this case, it follows from Theorem
2.4 and A/^-ergodicity that {vy\y£a(u*)}" consists only of scalars. Thus, we
obtain the same conclusion as in the above corollary.

§3o Some Conditions Equivalent to Almost Periodic frCentrafiity

Let (A, G, a) be a C*-dynamical system with a locally compact abelian
group G and let cp be an a-invariant state of A. Using the invariant mean m on
G in Proposition 2.2, we define a linear map Qy from n^A)" onto the closed
subspace

{xEntp(A)"\ait(x) = <£, y> x for all

by

for xEn9(A)" and \l/Env(A)l, where ya is defined by

for all xEn9(A)" . It is easy to verify that

Qyto* = Q-y(X*)
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for all x in n^A)" and y in G. This formula will be used to prove the next
lemma. Moreover, we will see from the proof of the next lemma that if ^ is
separating for n^A)" , then £y6<?6y is the identity map of n^(A)"{\{pq}' .
Lemmas 3.1, 3.2 and 3.4 are keys to establish our main results in this paper.

Lemma 3.1. Let (A, G, a) be a C* -dynamical system and let <p be an a-
invariant state of A. Then we have :

(1) Qy(nv(A)") c n9(Af n {pj for all y in G.
(2) If ^ is separating for nv(A)", then

Proof. (1) Let <^ be an eigenvector for y' in a(u9). Take any element x
from 7i y (A)" . We then have

Hence we see that

and thus the Alaoglu-Birkhoff mean ergodic theorem yields that

This means that

Passing to the *-operation and using the formula established before this lemma,
we obtain that

PvWQyfr*) = ptp(y
t)Q7(x*)ptp(y

r - y).

Since this formula holds for all x in n^A)", we have

= ptp(y
r)Q7(x)ptp(y

t - y).

We therefore have
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This means that Qy(x)en9(A)"r\{p9}'.
(2) Take any element x from n9(A)" . For any vector £ and r\ in H9, we

have

We thus obtain that

p9(y + /)*M/) =
and in particular

If xp9 = p9x, for any element y in 7^(4)' we then have

t9 = yxp9£9 = yp9x£9 =

Take any element z from {\JQy(n9(A)")}f. Then, for y1 and j;2 in n9(A)',
y

we have

7

This means that x6{u6y(^W)}"- Q.E.D.

Lemma 3,2. Lef (^ be an ^.-invariant state on A. Then we obtain

Proof. Note that p9(y + Y)xp9(y
f) = Qy(x)p9(y') for all xen9(A)" and

7, y 'eG (see the proof of Lemma 3.1 (2)). By summation over 7, we see that
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Moreover by summation over /, we obtain that

We therefore conclude that

Since the reverse inclusion is clear by Lemma 3.1, we complete the proof.
Q.E.D.

Lemma 3.3. Let (A, G, a) be a C* -dynamical system and let cp be an on-
invariant state of A. If £v is separating for n^A)" , then Qy(ntp(A)) is strongly
dense in Qyfa^A)") for all y in G.

Proof. Take any element x from n^A)". It then follows from Kaplansky's
density theorem [8, Theorem 2.3.3] that there exists a net {xj, with ||Xj|| ^ ||x||,
in nv(A) which strongly converges to x. Take any element r\ from H9. Given e
> 0, we choose an element z in n^A)' such that \\rj — z<^|| < e. Since

for a11 yen<,>(A)", we have

If we choose an index i such that ||gv(x)z^ — Q^Cx^z^H < s, we then have

\\Qy(x)fl - Q7(xjri\\ ^ \Qy(x)r, - Qy(x)z^\\ + \\Qy(x)z£9 - Qy(x^9\\

+ II Qy(xdz$v - Qy(xjri || < || Qy(x) || £ + s + || Qy \\ II x \\ e.

This establishes the desired result. Q.E.D.

Let (p be an a-invariant state of A. From now on, we denote by q9 the
support projection of p9, in n9(A)"9 which is directly defined as the projection
from Hy onto the closed subspace generated by n9(A)'p9H9. In the case when
the canonical cyclic vector ^ is separating for n9(A)"9 i.e., cyclic for n9(A)' , we
remark that q9 = 1.

Lemma 3.4 Let <p be an a-invariant state of A. Assume that

*9W n {P9}' = n9(A)" n n,(A)' n [pj.

V {PtpXtp^pcp}" is abelian, or if ^ is separating for n9(A}" ', then we have
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Proof. Assume that {p(p7i(p(A)p(p}" is abelian. Let jU be an orthogonal
measure corresponding to n<p(A)r(]{p<p}

f. It then follows from [1, Theorem
4.1.25] that

for all a in A, where K^(d) is defined as

for all b in A. On the other hand, for any x in n^A)" n {ivK, there exists a net
{aj in A such that n9(a^ weakly converges to x. We then have

*P<p = P<pXP9 = Limp^Tc^fliJpp = Limit ^P*-

Since KM(df) lies in {n(p(A)(j{p(p}}' (d. [1, Theorem 4.1.25 and Proposition
4.3.40]), we conclude that xp^ belongs to {n(p(A)\]{p(p}}'p(p. It therefore follows,
from the assumption, that

Multiplying the above inclusion by n^A)' from the left-hand side, we obtain that

{M^''nOU'K ^ K^rn^Wn^}'}^.
Since the reverse inclusion is clear, we obtain the desired result.

Next we consider the case when ^ is separating for 71^(^4)". Let S be the
antilinear operator on Hv defined by

Sx£9 = **£„

for xen^A)". We then have

Since n^A)"^ is a core for S, we obtain that Su? = u^S. Hence the uniqueness
of the polar decomposition of 5 shows that Juf = u® J, which means that Jpv(y)
= p9(y)J for all yeG, i.e., Jp^ = p9J, where J denotes the modular conjugation
associated with ^ (cf. [1, 2.5.2, or 8, 8.13]). Since Jnv(A)"J = n^A)' , we have

We thus obtain the desired result. Q.E.D.

Let cp be an a-invariant state of A. Then we put
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aw = M^)"n{p*}'-

This notation will be used in the next lemma and the proof of Lemma 3.7.

Lemma 3.5. Let cp be an ^-invariant state of A. If we have

for all xeSR, yen^A)", zEnv(A)', ^ep^H^,, then we have

Proof. Since qvHv is invariant under n9(A)' and q^p^ = pvq9 = p9, q
belongs to 9M. On the other hand, for all xeSW and all zen^A)', we have

Hence, we see that g^eSRnSR'. By assumption, we have

Therefore we obtain that

mq9 c: {n(p(A)f(j{p(p}Un(p(A)ff}'q(p = {n9(A)"r\n9(A)r (\{p9}'}q9.

Since the reverse inclusion is clear, we complete the proof. Q.E.D.

Lemma 3,6. Let cp be an en-invariant state of A. The following conditions
are equivalent'.

(1) cp is a G-central state of almost periodic type.
(2) [Qy(nv(x))9 q9nv(y)q^\ = 0 for all x, y in A and y in G.

Proof. Let m be an invariant mean on G. For all x, ye A, zen^A)', yeG
and ^rjep^H^ we have

From Lemma 3.1 and the proof of Lemma 3.5, we easily see that q^ lies in the
commutant of Qy(n9(A)"). Then Proposition 2.2 (l)-(2) easily yields the
equivalence of conditions (1) and (2). Q.E.D.

Lemma 3070 Let <p be an a-invariant state of A. Consider the following
conditions.

(1) {M^rnfo}'}^ = KWn^Wn{p^}'}^.
(2) <p is a G-central state of almost periodic type.
Then it follows that (1)=>(2) and if ^ is separating for 71^(^4)", the conditions

(1) and (2) are equivalent.
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Proof. (1)=>(2). Using Lemma 3.1, we have Qy(n9(A)") c n9(A)" n{p«,}'
for 7 in G. By condition (1), we have

for all y in G. As seen in the proof of Lemma 3.5, q^ is an element in
50ln50T. We therefore obtain that

[6y(^(x)), q^n^yjq^ = 0

for all x, y in A and 7 in G. Thus we see from Lemma 3.6 that cp is a G-central
state of almost periodic type.

(2) => (1). Assume that £9 is separating for n^A)". Combining Lemma 3.6
with Lemmas 3.1 (2) and 3.3, we obtain that

lx, q^yq^ = 0

for all xeXFJ and ye n9(A). Thus we see the desired result from Lemma 3.5.
Q.E.D.

Lemma 3.8. Let <p be a G-central state of almost periodic type. Assume
that the canonical cyclic vector ^ is separating for n^A}". Then we have

= nv(AY n %W n

Proof. Put

We now assert that

In fact, it easily follows from Lemma 3.2 that

and the reverse inclusion is clear.
Since p^n^A^'p^ is abelian by [1, Proposition 4.3.30] and since ^ is also

cyclic for p^n^A)'' p^ in p^H^ p^p^ is maximal abelian in p^H^. Hence we
have

from which it follows that

{^ (Ay n {Pj}P, = p^'^ = p^ w^ = { u
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Here the third equality follows from Lemma 3.2 and the fifth equality from
Lemma 3.7. Since £9 is also separating for n^A)', we conclude that

M )̂' n W = M^)"n M )̂' n {?«,}'-
This completes the proof. Q.E.D.

Now we may summarize what we have obtained in the following theorem.

Theorem 3090 Let (A, G, a) be a C*-dynamical system, where G is a locally
compact abelian group. Let cp be an ^-invariant state of A. Consider the
following conditions:

(1) (p is a G-central state of almost periodic type.
(2) [Qy(n9(x))9 q^n^yjq^ = 0 for all x, y in A and y in G, where qv is the

support projection of p^ in n9(A}".

(3) {M^)"n{p*}'}^ = (M^rnM^ynfo}'}^.
(4) n9(A)' n {p9}' = n9(A)" n n9(A)' fl {?„}' and {p^n^p^}" is abelian.
(5) n9(A)' n {P(P}' = n9(A)"n9(A)' n {p9}'.
It follows that (l)o(2)<=(3)<=(4)=>(5) and if ^ is separating for n9(A)",

then the five conditions (l)-(5) are equivalent.

Proof. (l)o(2). This follows from Lemma 3.6.
(3) =>(!). This follows from Lemma 3.7.
(4)=>(3). This follows from Lemma 3.4.
Now we assume that ^ is separating for n^A)". Then the implication

(1)=>(5) follows from Lemma 3.8. Since condition (1) implies that {p(pn(p(A)p(p}"
is abelian (see [1, Proposition 4.3.30]), the four conditions (l)-(4) are equivalent.
Moreover the implication (5) => (3) follows from Lemma 3.4. Thus the five
conditions (l)-(5) are equivalent. Q.E.D.

In the above theorem, we remark that condition (5) does not necessarily
implies condition (1), hence condition (4), in general (see Example 3.15). Thus
the condition that ^ be separating for n9(A)" is necessary for the implications
(5)=>(4) and (1)=>(5).

Corollary 3.W. Let (A, G? a) be as in Theorem 3.9 and let cp be an oa-ergodic
state of A. Then the four conditions (l)-(4) in Theorem 3.9 are equivalent.

Proof. By the above theorem, we have only to prove the implication
(1)=>(4). But this immediately follows from statement (2) of Theorem 2.4.

Q.E.D.

lolL Let (A, G, a) be as in Theorem 3.9. Assume that an a-
invariant state (p of A is factorial. Then the four conditions (l)-(4) in Theorem
3.9 are equivalent.
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Proof. If <p is a G-central state of almost periodic type, then <p is G-
central. Hence, cp is a-ergodic from the note preceding Corollary 2.5. By
Corollary 3.10, we complete the proof. Q.E.D.

Consider the case when A is the C*-algebra of all compact operators on a
Hilbert space. Since every state on A is factorial, Corollary 3.11 will be useful
for such a C* -dynamical system (A, G, a).

As mentioned before, almost periodic G-centrality implies G-centrality and
the converse is not true in general (see Example 3.15). On the other hand, if we
consider ./V-centrality for some closed subgroup N of G, that condition is usually
stronger than G-centrality. Hence it is very natural to consider whether or not
we can find a closed subgroup N of G such that JV-centrality is equivalent to
almost periodic G-centrality. We now give an approach to this "duality"
problem.

Proposition 30120 Let (A, G, a) be as in Theorem 3.9. Let (p be an a-
invariant state of A such that the canonical cyclic vector ^ is separating for
n^A)" . Assume that the point spectrum ^(u9) of uv is a countable closed
subgroup in G. We denote by N^ the annihilator of ^(u9). Then the following
conditions are equivalent.

(1) cp is a G-central state of almost periodic type.
(2) (p is Ny-central.

Proof. Note that under the above assumptions, p9 is equal to the
projection e onto the subspace of w$ -invariant vectors in H9 (see [1, Theorem
4.3.27]).

(1)=>(2). By Theorem 3.9, {env(A)e}" (= {p^A^}") is abelian and we
have

n9(Af n K$; = nv(Af n {e}1 = n9(A)' n {pj c n9(A)" .

Using [4, Corollary 2], then we easily see that

efr^AYUn^Ayutftye = en9(A)"e.

Let x and y be elements in A, z be an element in n^A)' , and ^ be a vector in
eH. We then see that

For any e > 0, using the Alaoglu-Birkhoff mean ergodic theorem, we choose a
convex combination C^u®) of uv,
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such that

u*)-e)n9(*m, \\(C,(u«)-e)n(p(x*)t\\<s/2\\y\\ \\z\\U\\.

Now put

We then have

(2) =>(!). JV^-centrality of <p shows that

(cf. [1, Theorem 4.3.14]). Since p9 = e, it then follows that

*9W n OU' = n9(A)" n ̂ (^y n {P(p}'.

On the other hand, since {p(pn(p(A)p(p}" = {entp(A)e}" ' , A^-centrality of cp implies
that {p(pn(p(A)p(p}" is abelian (cf. [1. Theorem 4.3.14]). By Theorem 3.9, we
complete the proof. Q.E.D.

We remark that in the implication (2)=>(1) of the above proposition, the
condition that ^ be separating for n^A)" is not necessary. Note also that the
proof of Proposition 3.12 did not use this condition except to show that
n^A)' n {p9}' c: nv(A)rf. And this inclusion is valid for every a-ergodic state (see
Theorem 2.4 (2), or Corollary 3.10). Thus we have the following.

Proposition 3.13,, Let (A, G, a) be as in Theorem 3.9. Let cp be an a-ergodic
state of A. Assume that the point spectrum a(u9) of u9 is a countable closed
subgroup of G. We denote by N^ the annihilator of afa9). Then the following
conditions are equivalent.

(1) (p is a G-central state of almost periodic type.
(2) cp is N^-central.

Note that an a-invariant factorial state q> is a-ergodic if it satisfies either of
conditions (1) and (2) in Proposition 3.13. Hence the result of Proposition 3.13
is valid under the assumption that cp is factorial.

This paper ends by stating simple examples.
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Example 3.14. Let u be any unitary operator, on an infinite-dimensional
Hilbert space H, with a unique unit eigenvector ^ corresponding to the
eigenvalue zero. Let A be a C*-algebra on H such that uAu* = A and
A =£ {0}. Then we consider a C*-dynamical system (A, Z, a) where Z denotes
the set of integers and the action a is defined by ocn(x) = unxu~n. Furthermore,
define an a-invariant state cp on A by

Then {p(pn(p(A)p(p}" is abelian and n9(A}' n {p9}' = C • 1, from which it follows that
q> is a G-central state of almost periodic type (cf. Theorem 3.9). Note also that
<p is an extremal point in the weak* closure of the convex set of almost periodic
states of A. Some results related to extremal almost periodic states will be
discussed in [7].

Next we give an example of a G-central state which is not a G-central state
of almost periodic type.

Example 3.15. Let A be the C*-algebra of all 2 x 2 complex matrices and
let a group G be the one-dimensional torus group. We define an action of G by

|~1 01
ar = Ad LO t ]

for all teG. Then the a-invariant state cp of A defined by cp(x) = x11 for x
= (xtj) E A is G-central. Note also that

' = M^rnM^'nfo}' (= c-i).
But (p is not a G-central state of almost periodic type.
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